

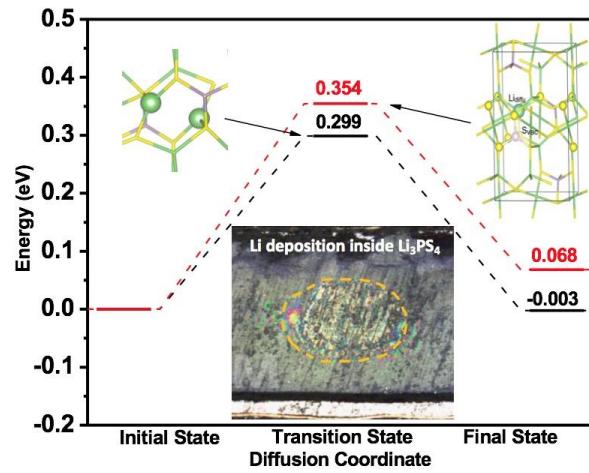
1 Visualizing lithium dendrite formation within solid- 2 state electrolytes

3 Minghao Sun,[†] Tiefeng Liu,[¶] Yifei Yuan,[‡] Min Ling,^{†*} Nan Xu,[†] Yanyan Liu,[†] Lijing Yan[†], Hui
4 Li[†], Chengyong Liu,[§] Yingying Lu[†], Yao Shi[†], Yi He[†], Yongsheng Guo[§], Xinyong Tao,[¶] Chengdu
5 Liang^{†§*}, Jun Lu^{‡*}

6 [†]Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture
7 Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou
8 310027, P. R. China;

9 [¶]College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou
10 310014, China

11 [‡]Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Ave,
12 Lemont, IL 60439, USA;


13 [§]Research Institute, Contemporary Amperex Technology, Limited, Ningde 352000, P. R. China;
14

15 ABSTRACT

16 Solid-state electrolyte (SSE) is promising for application in all-solid-state lithium metal batteries
17 due to its reliable safety and longevity. The failure of solid-state electrolyte (SSE) to suppress
18 dendrite formation of Li metal anodes has been conventionally explained by uneven Li deposition
19 at Li/SSE interfaces and its subsequent dendritic growth. While Li deposition within SSE has been
20 recently proposed as another key cause for SSE failure, little is known regarding the Li growth
21 details inside SSE itself. In this work, we performed *in-situ* microscopic observation of Li
22 deposition inside SSE and obtained visualized evidences regarding the dynamic process of Li
23 dendrite formation and growth. Li is seen to directly nucleate and propagate within the SSE,
24 leading to its structural cracking. Such behavior should be caused by the presence of P- and S-
25 based crystalline defects in Li₃PS₄ SSE, which is consistent with the cryo-transmission electron
26 microscopy observations and theoretical calculations. This observation provides important insights
27 into the growth mechanisms of Li dendrites within a working lithium battery.

28 TOC GRAPHICS

29

30

31 **Introduction**

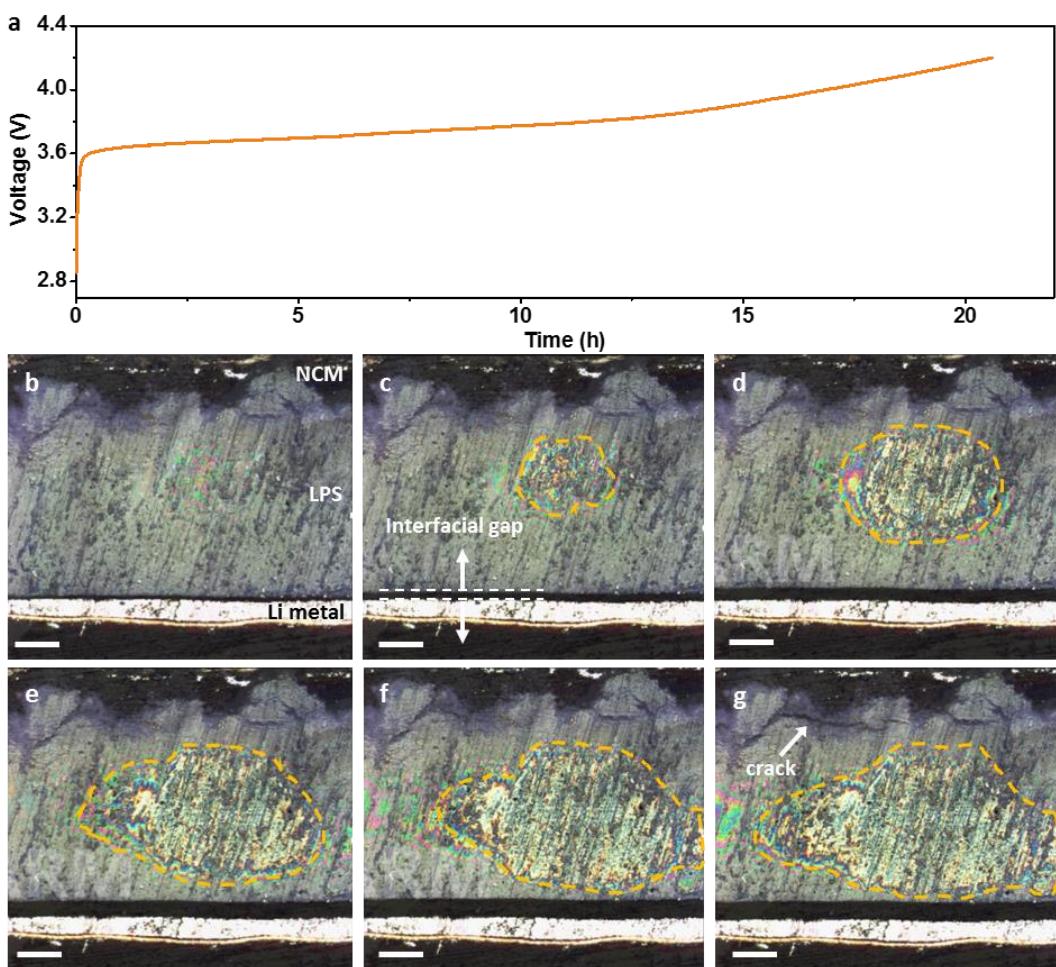
32 Featured by high specific capacity (3860 mAh g⁻¹) and the lowest negative electrochemical
33 potential (-3.04 V vs. SHE), lithium (Li) metal is considered as the ultimate choice of battery anode
34 for high-energy-density energy storage systems¹⁻⁴. Presently, during an electrochemical Li plating
35 process, the dendrite growth is problematic to the Li metal anode⁵⁻⁸. Such a behavior incurs a low
36 coulombic efficiency and severe safety risk of assembled Li metal batteries (LMBs)⁹⁻¹². As for its
37 formation, most of understandings and assumptions are originally based on observation in the
38 liquid or polymer electrolytes where the dendrites result from the Li nucleation and uneven
39 deposition on Li/electrolyte interface^{13, 14}. As such, for the past many years, the researchers have
40 developed various conceptual strategies, such as enhancing interfacial compatibility and
41 developing solid-state electrolyte (SSE) to deal with the adverse effect of Li dendrites^{7, 15, 16}.

42 Among, the SSE has gained significant research interest because of its high mechanical rigidity
43 to hinder Li dendrite growth^{17, 18}. Yet, recent study has reported the penetration of metallic Li into
44 SSE materials¹⁹, which has been explained by uneven Li deposition at Li/SSE interfaces and rapid
45 dendrite growth through the SSE²⁰⁻²³. During the charging processes, owing to the inhomogeneous
46 contact between SSE and Li metal, interfacial voids (*i.e.*, pores and cracks) tend to be first filled
47 by Li protuberances as the Li nuclei^{7, 20, 24, 25}. As the local current density is maximized and the
48 electric field is concentrated at the Li protuberances, Li will preferentially deposit at these sites
49 during subsequent charging²⁶. However, it is surprising to observe that Li dendrites still grow at
50 the Li/SSE interfaces that are finely polished, at the modified grain boundaries and even at the
51 surfaced of single-crystalline SSE²⁷, which cannot be simply explained by the above
52 “inhomogeneous Li/SE interface” theory.

53 Until very recently, there are some noteworthy exceptions in literature, contradicting the

54 conventional understanding of dendrites stemming from the Li/SSE interface²⁸. Han and
55 coworkers found that the direct reduction of Li ions could occur within the SSE during
56 charging/discharging process as a result of nonnegligible electronic conductivity of SSE²⁹. Wang
57 *et al.* also demonstrated that high electronic conductivity of the SSE leads to the metallic Li
58 dendrite growth in the bulk (grain and grain boundary)³⁰. Decreasing the electronic conductivity
59 is thus considered to be an effective approach to limit the metallic Li dendrite. In spite of the recent
60 studies focusing on Li dendrite growth within SSE, the fundamental understanding of such growth
61 behavior is quite limited due to lack of direct observation in contrast to the few indirect *in situ*
62 characterizations^{31, 32}. Therefore, compared with well-established Li dendrite formation
63 mechanism in Li/electrolyte interface, the recognition of the Li deposition process in SSE is still
64 in its infancy, calling for more explorations in the formation mechanism of Li dendrites in SSE⁵.

65 Here, we carried out direct *in-situ* cross-sectional microscopic observation of the Li growth
66 behaviors within the SSE and further corroborated such observations by cryo-transmission electron
67 microscope microscopy (cryo-TEM) and theoretical simulations. We observed that Li nucleation
68 and growth could directly occur inside the SSE. These visualized evidences regarding Li
69 deposition and dendrite propagation in the SSE unraveled their adverse impacts on the structural
70 integrity of SSE. We thus proposed that the nucleation and local growth of Li dendrites inside the
71 SSE lead to its cracking and failure. Furthermore, this mechanism occurs prior to the Li dendrite
72 formation at the Li/SSE interface. This work is thus expected to call for more research attention
73 and effort to address the Li dendrite growth problem.


74 The Li₃PS₄ (LPS) was considered as the key component in solid-state battery due to its high Li⁺
75 conductivity (*ca.* 10⁻⁴ S cm⁻¹) and low electron conductivity (2.2×10⁻⁹ S cm⁻¹). The X-ray
76 diffraction (XRD) measurements shows that the as-prepared LPS SSE belongs to the β -phase

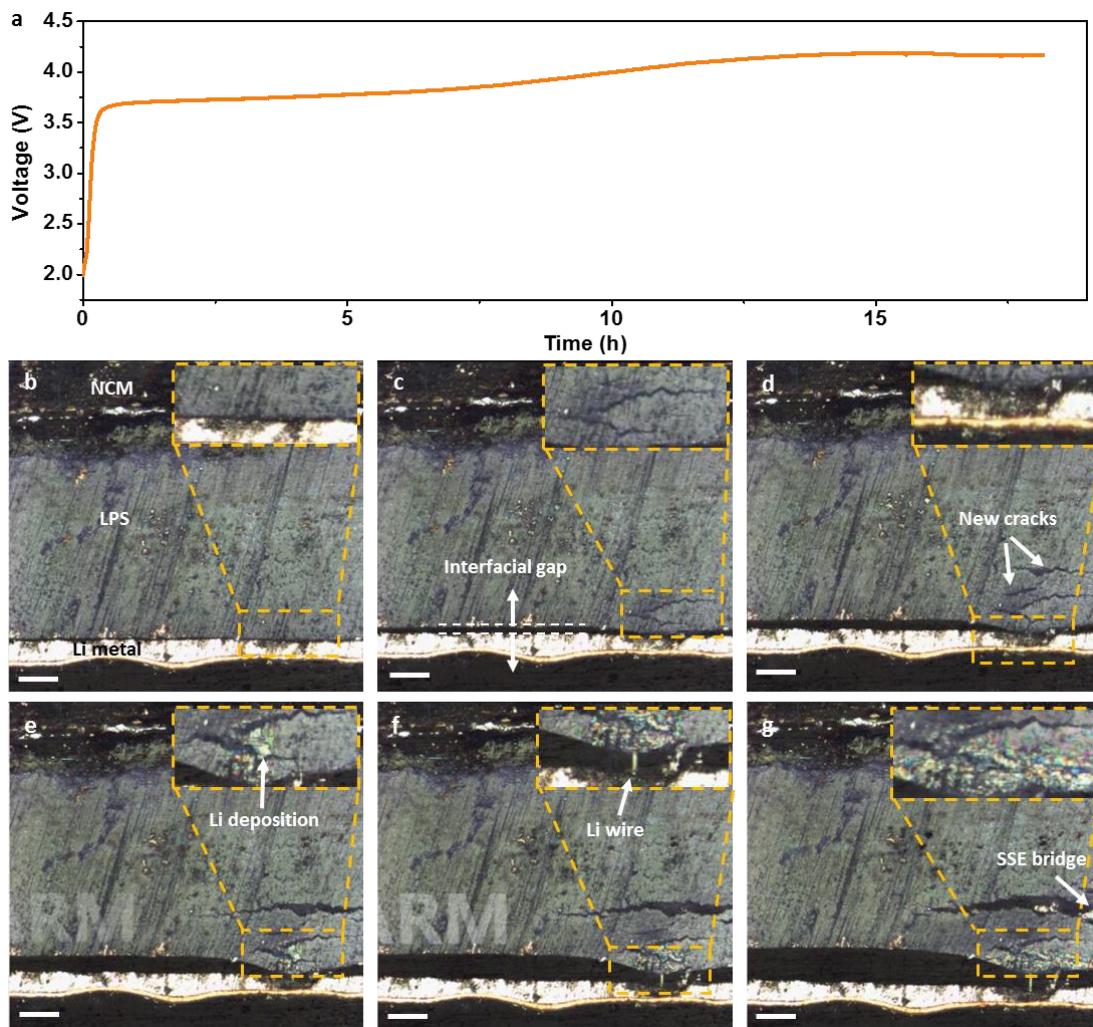
77 (PDF#76-0973) crystalline structure (Figure S1a), which is consistent with the previous report.
78 Particle size of the LPS is in the range from 5 to 10 μm as shown in Figure S1b. Analysis of energy-
79 dispersive X-ray (EDX) spectroscopy also revealed the uniform distribution of elemental P and S
80 in the LPS SSE (Figure S2). High-resolution transmission electron microscopy (HRTEM) and
81 selected-area electron diffraction (SAED) patterns revealed the polycrystalline structure of the LPS
82 particles (Figure S3). The LPS material has a specific surface area of $15.32 \text{ m}^2 \text{ g}^{-1}$ and an average
83 pore diameter of 34.24 nm (Figure S4).

84 The laminate of LPS SSE was firstly fabricated by high pressure of 300 MPa. NCM, LPS
85 laminate and Li metal foil (thickness of 50 μm) with round discs (diameter of 8 mm) were
86 assembled into Li/LPS/NCM cell. In detail, a cathode disc was attached to one side of the LPS and
87 cold pressed at 450 MPa for 2 min. And then, Li metal disc was attached onto the other side of the
88 electrolyte disc and cold pressed at 50 MPa for 10 s to assemble the Li/LPS/NCM cell.
89 Traditionally, Li deposition inside SSE is determined either via ex situ observations (e.g., second
90 electron mode or backscattered electron mode of a scanning electron microscope) or inferred from
91 in situ characterization results (e.g., neutron depth profiling)^{20, 26, 33, 34}. However, due to the
92 instability of Li metal and SSE toward moisture and O₂, the specimens will corrode and deform
93 during the transfer process at the ambient environment, limiting achieving a correct understanding
94 of the Li deposition process inside SSE.

95 To enable direct observation of the evolving process of Li deposition inside SSE, we carried out
96 a cross-sectional *in situ* optical microscopic observation technique for a Li/LPS/NCM cell, as
97 shown in Figure S5. The assembled Li/LPS/NCM cell was charged at a constant current density
98 of $100 \mu\text{A cm}^{-2}$. A typical charging platform profile from 3.6 to 4.2 V was collected (Figure 1a),
99 in which no sharp polarization of voltages or shorting could be detected, allowing us to visualize

100 the Li distribution inside SSE during the entire charging process. In Figure 1b-g, the deposition
101 process of Li inside LPS is depicted by a series of cross-sectional snapshots taken at 0, 3, 6, 9, 12
102 and 18 h of the charging process. As shown in Figure 1b, no Li dendrites are formed at the Li/SE
103 interface before charging, while the SSE are detached from the Li metal anode quickly as the
104 charging process begins, a process that might be attributed to the volumetric expansion of SSE in
105 the regions outside of the camera field, excluding the possibility of Li deposition induced by the
106 Li/SE interface within the camera vision.

107
108 **Figure 1.** *In situ* optical observation of the “point-to-surface” Li deposition process inside LPS.
109 (a) A typical charging profile of a Li/LPS/NCM cell without obvious cracks generated in LPS. (b-
110 g) Cross-sectional snapshots of the cell in (a) taken at 0 (b), 3 (c), 6 (d), 9 (e), 12 (f) and 18 h (g)
111 of the charging process. Scale bars: 100 μ m.

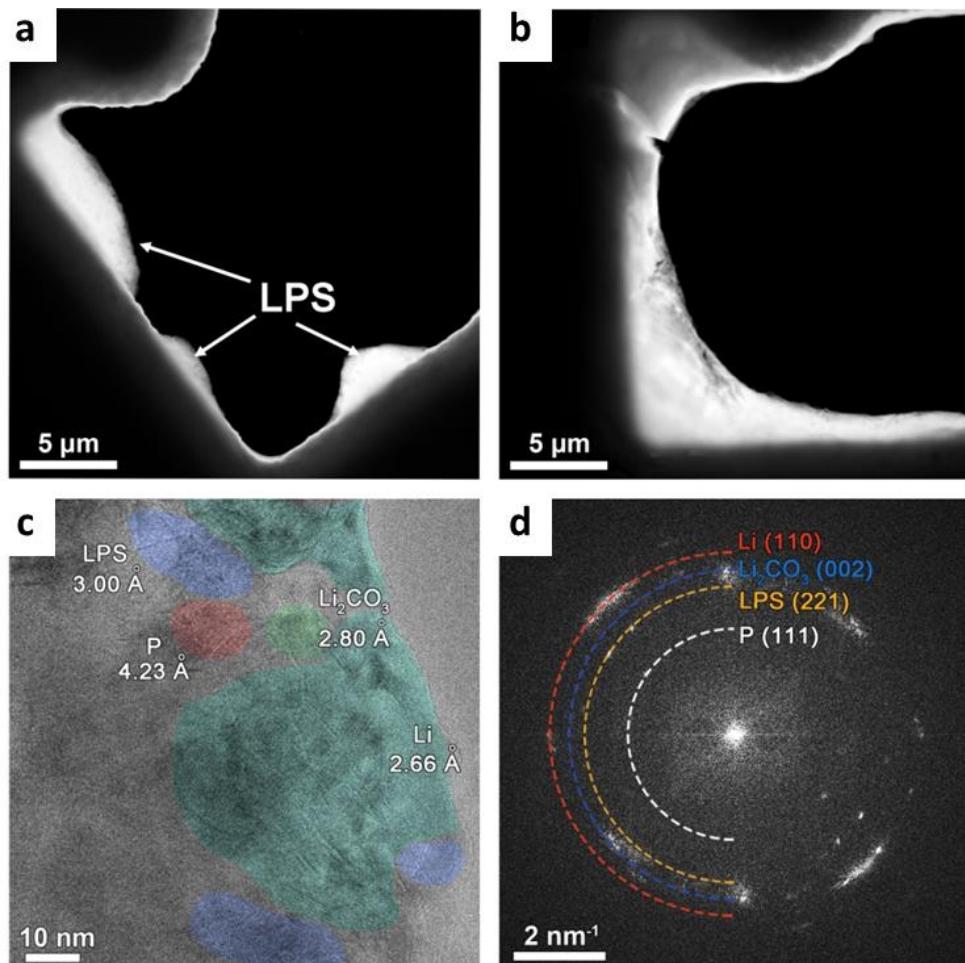

112 After 3 h, local Li reduction appeared in LPS SSE (Figure 1b). The LPS SSE detached
113 increasingly from Li metal anode is an indication that the insert of Li dendrites incurs the volume
114 exploration of LPS SSE. Consequently, local Li concentration rapidly increased as the decreasing
115 cross-sectional areas between Li anode and LPS SSE. As the charging process continues, the area
116 of Li reduction gradually increased and the interfacial gap between Li anode and LPS SSE also
117 slowly enlarged (Figure 1c, d). The growth of metallic Li in bulk of LPS can enhance the electron
118 conductivity of the corresponding region. Therefore, the subsequent reduction of Li ions from LPS
119 SSE preferentially appears around the deposited Li metal, forming silver-like Li area (Figures 1e-
120 g and Video S1). No evident dendrite formation was observed on anode surface. In addition, the
121 occurrence of cracks near the cathode region (indicated by the arrow in Figure 1g) is tentatively
122 caused by the volumetric variation of LPS SSE rather than that of cathodes, considering that the
123 volumetric variation of NCM (2%-4%) is far below the critical value (7.5%). Notably, this
124 structural change of LPS SSE has no obvious influence on electrochemical behaviors of the full
125 cell. Crystalline structure of the LPS SSE is nearly unchanged, as shown in the XRD pattern
126 (Figure S1a).

127 In parallel, we demonstrate that Li deposition could induce cracking of LPS from the inside, not
128 from the outside, where Li^+ is transferred into a Li/LPS/NCM cell. There are no obvious cracks or
129 Li deposition was observed inside LPS SSE or at the Li/LPS interface at the beginning (Figure
130 2b). As the charging began, cracks were formed quickly inside SSE and the Li/SE interfaces started
131 to detach (Figure 2c), suggesting Li deposition inside SSE. Next, as more Li is deposited inside
132 SSE, leading to the emergence of new cracks (indicated by the white arrow in Figure 2d, the old
133 cracks and Li/SE interfacial gaps are broadened. There is a small contact area remained to offer
134 the Li^+ /electron transfer between LPS SSE and Li metal (inset of Figure 2d). Local Li^+ /electron

135 concentration, which obviously induced the formation of Li wire in the contact area, could be
136 regarded as the visual evidence for the Li dendrite formation and growth at the interface (Figures
137 2e-f). Continuous growth of the Li wire is maintained during the subsequent charging process,
138 elongating with the broadening of the Li/LPS interfacial gap (Figure 2f). Subsequently, when this
139 full cell was performed with a discharging procedure. Obviously, the Li wire is the byproduct of
140 Li/SE interfacial detachment rather than the converse, for the shear modulus of Li metal (2.83
141 GPa) is much smaller than that of LPS (18-25 GPa)³⁵. Moreover, because the Li content is
142 extracted from LPS SSE during the subsequent discharging process, the volumetric shrinkage of
143 LPS SSE induces narrowing of the as-formed cracks (including the Li/SE interfacial gap) and
144 bending of the Li wire (see Video S2), confirming that the cracks in LPS are induced by Li
145 deposition³⁶. After a series of charge/discharge procedures, the full cell based on LPS SSE
146 seriously suffer a low coulombic efficiency (Figure S6), indicating a battery failure induced by Li
147 formation dendrite inside LPS SSE.

148 To achieve deeper insights into Li dendrite formation depending on the rates, in-situ
149 observations of the battery was further performed at the increased current densities of 200, 500
150 and 1000 $\mu\text{A cm}^{-2}$. As shown in Video S3, the LPS SSE expands longitudinally in the charging
151 processes, and shrinks accordingly at discharging, which suggests formation and dissolution of Li
152 dendrites in the LPS SSE, respectively. More importantly, a clear correlation could be drawn
153 between the LPS SSE expansion/shrinkage rate and the charging/discharging rate of the battery,
154 namely, the LPS SSE expands/shrinks more violently as the charging/discharging current
155 increases. As such, it's reasonable to conclude that the larger the charging/discharging rate, the
156 faster Li dendrites deposit/dissolute in the LPS SSE. It should be noted that only some small areas
157 of Li dendrite formation could be observed at the cross-sectional surface of the battery, which

158 seems insufficient to induce such violent volumetric variations of the LPS SSE shown in Video
159 S3 and suggests Li dendrite formation beneath the cross-sectional surface. This is also consistent
160 with our hypothesis that Li dendrite formation could be induced by the randomly dispersed atomic
161 scale defects in LPS (see below).


162
163 **Figure 2.** *In situ* optical observation of the crack formation process induced by Li deposition inside
164 LPS. (a) A typical charging profile of a Li/LPS/NCM cell with obvious cracks generated in LPS.
165 (b-g) Cross-sectional snapshots of the cell in (a) taken at the 0 (b), 1 (c), 2 (d), 5 (e), 8 (f) and 18
166 h (g) of the charging process. Scale bars: 100 μ m.

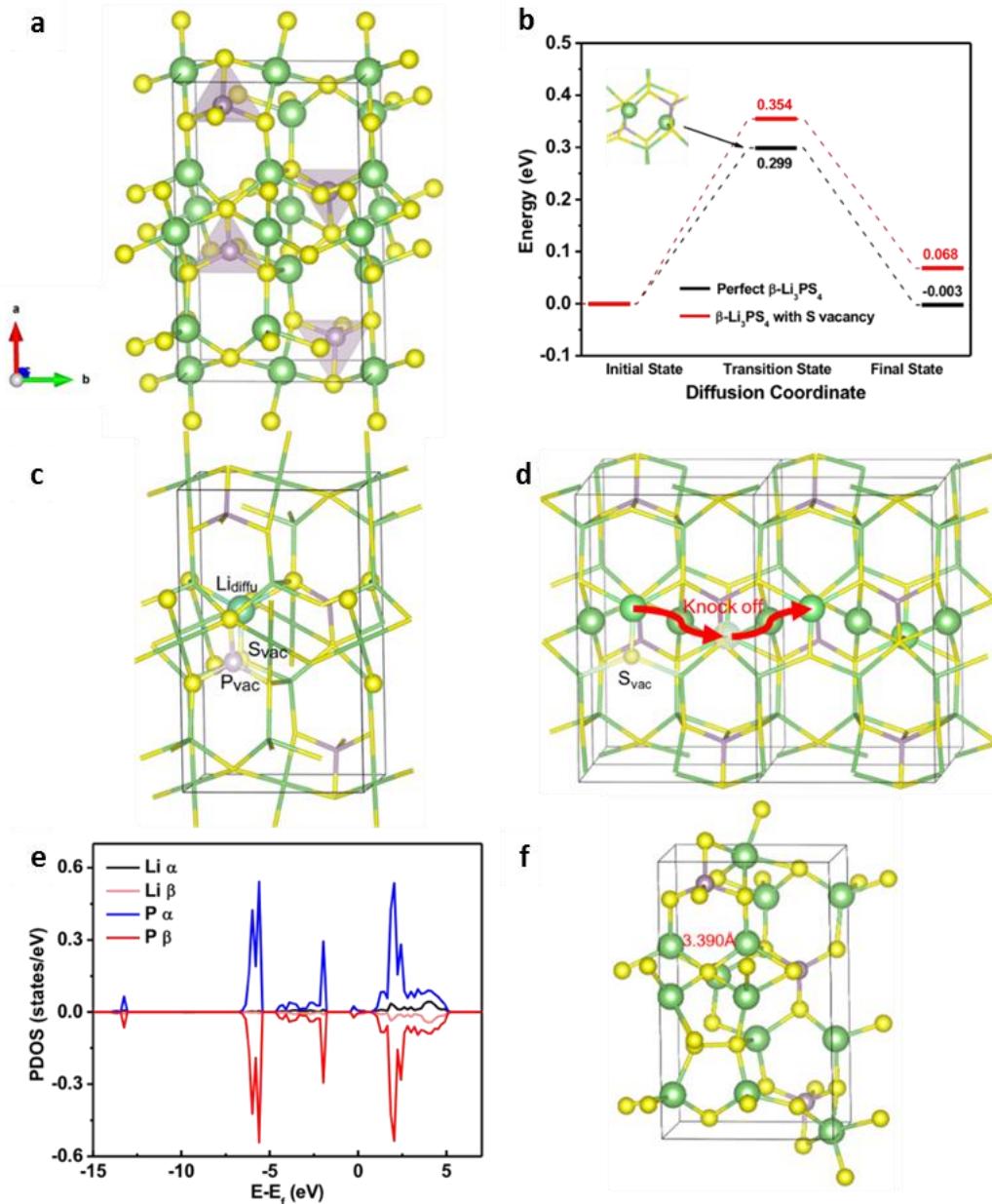
167 As reported in previous studies, the cracks induced by Li deposition inside SSE tend to become
168 interconnected as the Li deposition accumulates in the bulk of SSE²⁶. Meanwhile, the excess

169 chemical potential of Li at the cracks relative to pure Li metal further motivates continuous Li
170 propagation along the cracks, leading to shorting of the cells when the Li deposition in the cracks
171 are interconnected. However, based on the above observations, we speculate on a possible process
172 of LPS SSE for battery failure. During the charging process, the Li uptake within LPS SSE induces
173 the volume expansion and then structural cracks, which commonly tend to become interconnected
174 as the charging proceeds and are favor for continuous propagation of Li deposition in the cracks.
175 Meanwhile, the LPS SSE cracking (including the detaching of Li/SE interface) leads to rapid
176 arrival of cut-off voltage during the charging process of the cells. As the charging proceeds, if the
177 Li deposition in the cracks interconnects before the cell reaches the upper-limit voltage, shortage
178 of the cell is eminent. However, if the cell reaches the upper-limit voltage ahead of the Li
179 deposition interconnecting in the bulk of SSE, shortage of the cell could be prevented.

180 To further reveal the origins regarding the Li appearance inside LPS SSE, it is prerequisite to
181 confirm Li nucleation within LPS. Normally, metallic Li is difficult to be observed due to its high
182 sensitivity to high intensive electron beam of HRTEM. Recently, the cryo-TEM technique has
183 been proven for its feasibility for observing Li metal³⁷. The Cu grid is used as the substrate for the
184 LPS electrolyte. Initially, some LPS SSE was dispersed in Cu grid. The resultant Cu grid was
185 subsequently added into the interlayer by two LPS SSEs. After the charge procedure, such a Cu
186 grid was collected and observed using the Cryo-TEM technique under the temperature of -180 °C.
187 Based on morphological observations before and after Li deposition in LPS SSE, the LPS SSE
188 expanded evidently (Figure 3a, b). The HRTEM image of the LPS was clearly shown in Figure
189 3c. The interplanar spacing of 3.0 Å matched well with the (221) plane of LPS. Similarly, the
190 crystalline Li, Li₂CO₃ and P can be detected as evidenced by their (110), (002) and (111) crystal
191 planes, respectively. Besides, the fast fourier transform (FFT) in Figure 3d reconfirmed the

192 existence of the LPS crystal, Li metal and inorganic Li compounds. This phenomenon indicates
193 that Li nucleates in the LPS SSE, and may grow with the increase of circulation.

194
195 **Figure 3.** Cryo-TEM for the LPS observation. (a, b) STEM images illustrating morphological
196 change before and after Li deposition in LPS SSE. (c) HRTEM image of LPS SSE after charge.
197 (d) The corresponding FFT of (c).


198 Normally, Li reduction within the SSE requires simultaneously high electron/ion concentration
199 for the initial Li nucleation. While the electronic conduction of SSE has been generally considered
200 to be low, we propose here that the crystalline defects such as S and P vacancies in LPS SSE should
201 be responsible for the nonnegligible electron conduction. To testify this hypothesis, Density
202 functional theory (DTF) is used to evaluate the ability of electronic transfer in the LPS phase. The

203 migration pathway or active energy of interstitial Li^+ ions in the SSE with S vacancy and P vacancy
204 were studied respectively. As for Li migration mechanism in perfect $\beta\text{-Li}_3\text{PS}_4$, Generally, two
205 mechanisms are involved in interstitial Li^+ ion migration in the SSE, namely, the direct-hopping
206 mechanism, which refers to an interstitial Li^+ ion migrating along the lattice interstices of the SSE
207 without substituting the lattice atoms, and the knock-off mechanism, in which an interstitial Li^+
208 ion migrates by substituting and pushing a lattice Li atom into the adjacent interstitial position³⁸.

209 The $\beta\text{-Li}_3\text{PS}_4$ unit cell was optimized using a higher convergence precision and the optimized
210 structure is shown in Figure 4a. The PS_4^{3-} tetrahedrons in $\beta\text{-Li}_3\text{PS}_4$ is highlighted in which the
211 lattice Li atom is coordinated with sulfur atoms. Despite the existence of large holes between the
212 adjacent tetrahedrons, the migration energy for Li to migrate through it is as high as 0.735 eV,
213 which is reasonable because the direct-hopping paths along a, b and c directions (Figure 4a) are
214 all separated by the PS_4^{3-} group. By contrast, the knock-off mechanism is thermodynamically more
215 favorable. In this process, the interstitial Li^+ ion migrates by pushing the adjacent lattice Li forward
216 with an energy barrier of only 0.299 eV (Figure 4b). This is consistent with Yang's work, in which
217 the knock-off mechanism is also considered the most favorable mechanism for Li migration in $\beta\text{-}$
218 Li_3PS_4 SSE³⁸. The stable location of the interstitial Li^+ ion is between the sulfur atoms of two
219 tetrahedrons in the c direction, labeled as Li_{diffu} in Figure 4c. Figure 4d illustrates the migration of
220 an interstitial Li^+ ion from the initial position to a centrosymmetric final position by pushing the
221 central adjacent lattice forward. The energy profile along the migration path and configuration of
222 the transition state are shown in the main graph and left inset graph of Figure 4b and 4d,
223 respectively. Next, the interstitial Li^+ ion migrates forward to another stable location of the
224 neighboring image in a reverse way, enabling Li migration in perfect $\beta\text{-Li}_3\text{PS}_4$ by repeating the
225 above knock-off process.

226 However, the reality is that there are countless defects existing as-synthesized materials
227 including the LPS electrolyte. In the model of Li migration/deposition mechanism in β -Li₃PS₄ with
228 the defects. We studied the migration mechanism of interstitial Li⁺ ions in β -Li₃PS₄ with the defects
229 and tried to determine the effects of those defects on triggering Li deposition. Considering that the
230 interstitial Li⁺ ions are exotic atoms for the LPS, the sulfur and phosphorus atoms in the nearby
231 PS₄³⁻ tetrahedrons are overcoordinated compared with the regular ones and could also generate
232 atomic-scale vacancies. The migration of interstitial Li⁺ ions in the LPS with S vacancy and P
233 vacancy were studied respectively.

234 For PS₄³⁻ tetrahedrons, the sulfur atoms are negatively charged while the central phosphorus
235 atom is positively charged. Upon encountering an S vacancy during transfer, the interstitial Li⁺ ion
236 will be reduced to some extent by gaining electrons from the adjacent S atoms to balance the
237 charge of the local region. Meanwhile, to stabilize the positive charges that the P atoms carry, the
238 P atoms will shift toward the partially reduced interstitial Li⁺ ions and shorten the P-Li distance by
239 0.420 Å compared with those in perfect LPS. The overlapping between the valence state density
240 of P and Li atoms suggests the emergence of new bonds (Figure 4e) that are a hindrance to the
241 migration of interstitial Li. Thus, the migration energy needed to complete the knock-off
242 mechanism increases to 0.354 eV (Figure 4b) and the energy of the final state in the pathway is
243 higher than that of the initial state. Therefore, the migration of interstitial Li⁺ ions in LPS with S
244 vacancy is thermodynamically unfavorable, retarding the migration of interstitial Li⁺ ions such as
245 traffic jams and initiating Li deposition by providing the trapped Li with electrons.

246

247 **Figure 4.** Comparison of the interstitial Li⁺ ion transfer behaviors in perfect or defective β -Li₃PS₄.
248 (a) Structure of the optimized β -Li₃PS₄ unit cell with the PS_4^{3-} subunit highlighted as violet
249 tetrahedrons. (b) Positions of the interstitial ion Lidiffu, S vacancy S_{vac} and P vacancy P_{vac}. Other
250 atoms away from the interstitial ion are hidden for clarity. All structures are visualized using the
251 VESTA package⁴⁰. (c) Comparison of the energy profiles along the migration path in perfect LPS
252 and LPS with S vacancy. The inset graph exhibits the configuration of the migration transition
253 state in perfect LPS. (d) The migration pathway of an interstitial Li⁺ ion from the initial position
254 to a centrosymmetric final position via a knock-off mechanism in LPS. (e) The density of valence
255 states of the interstitial Li⁺ ion and central phosphorus atom in LPS with S vacancy. α and β mean
256 spin-up and spin-down orbitals, respectively. (f) The structure of an interstitial Li⁺ ion inside LPS
257 with P⁺ vacancy.

258 For the P vacancy, lacking a central phosphorus atom renders the PS_4^{3-} tetrahedron electron
259 enrichment region inside the SE lattice. In this case, the interstitial Li^+ ions and lattice Li near the
260 P vacancy would be approached to balance the charge, consequently distorting the lattice structure
261 of LPS. The optimized structure of an interstitial Li^+ ion inside LPS with P vacancy is shown in
262 Figure 4f. The average distance between the interstitial Li^+ ion and lattice Li ions nearby is
263 calculated as 3.390 Å, while the corresponding average distance is 3.787 Å in perfect SSE. A body-
264 centered cubic Li bulk structure from the Materials Project database is used for comparison. Closer
265 to the nearest neighbor distance of 2.966 Å in the bulk, the accumulation of Li is faster and more
266 likely to occur in SSE with P vacancy. Based on the above, we conclude that both S and P vacancies
267 could induce trapping of interstitial Li^+ ions in LPS, while the latter will be reduced by gaining
268 electrons from the SSE during subsequent charging²⁶, providing nucleation sites for Li deposition.
269 It should be noted that the Li depositions induced by S and P vacancies is consistent with their
270 random distribution in LPS SSE. Meanwhile, the energy barrier of Li nucleation is lower as the
271 temperature decreases, favoring the rapid interconnection of Li depositions and is consistent with
272 the results in previous works³⁹.

273 In summary, we for the first time visualized Li nucleation and growth within the SSE and
274 provided reasonable explanation for such interesting behavior. Accompanied with large volume
275 expansion, this behavior adversely impacts the structural integrity of LPS SSE, resulting in the
276 occurrence of cracks. We believe this work can provide the battery community a different view to
277 understand the issues of Li dendrite growth associated with the SSE and more efforts should thus
278 be spent to efficiently address such growth problems within the SSE crystals in addition to the
279 Li/SSE interfaces.

280 **ASSOCIATED CONTENT**

281 **Supporting Information.**

282 The Supporting Information is available free of charge on the ACS Publications website at DOI:
283 10.1021/acsenergylett ((please add manuscript number))

284 Detailed information on SSE preparation, material and electrochemical measurement, DFT
285 computational method, further electrochemical characteristics and a video file of the in-situ test
286 are also provided.

287 **AUTHOR INFORMATION**

288 **Corresponding Authors**

289 *Email: minling@zju.edu.cn (M.L.)

290 *Email: cdliang@zju.edu.cn (C.D.L.)

291 *Email: junlu@anl.gov (J.L.)

292 **ORCID**

293 Min Ling: 0000-0001-9132-418X

294 Jun Lu: 0000-0003-0858-8577

295 Chengdu Liang: 0000-0002-3017-7785

296 Yifei Yuan: 0000-0002-2360-8794

297 **Notes**

298 The authors declare no competing financial interest.

299 **ACKNOWLEDGMENT**

300 M.L. acknowledges financial supports from the National Key R&D Program of China (Grant
301 No. 2018YFB0104300). Work at Argonne National Laboratory was supported by the U. S.
302 Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Vehicle
303 Technologies Office under Clean Vehicles, US-China Clean Energy Research Centre (CERC-
304 CVC2). Argonne National Laboratory is operated for DOE Office of Science by UChicago
305 Argonne, LLC, under contract number DE-AC02-06CH11357.

306 **REFERENCES**

- 307 1. Aguesse, F.; Manalastas, W.; Buannic, L.; Lopez Del Amo, J. M.; Singh, G.; Llordes, A.;
308 Kilner, J. *ACS Appl. Mater. Inter.* **2017**, *9*, 3808-3816.
- 309 2. Liu, T.; Zheng, J.; Hu, H.; Sheng, O.; Ju, Z.; Lu, G.; Liu, Y.; Nai, J.; Wang, Y.; Zhang, W.;
310 Tao, X. *J. Energy Chem.* **2021**, *55*, 272-278.
- 311 3. Zhang, D.; Dai, A.; Wu, M.; Shen, K.; Xiao, T.; Hou, G.; Lu, J.; Tang, Y. *ACS Energy Lett.*
312 **2020**, *5*, 180-186.
- 313 4. Shen, K.; Wang, Z.; Bi, X.; Ying, Y.; Zhang, D.; Jin, C.; Hou, G.; Cao, H.; Wu, L.; Zheng,
314 G.; Tang, Y.; Tao, X.; Lu, J. *Adv. Energy. Mater.* **2019**, *9*, 1900260.
- 315 5. Tikekar, M. D.; Choudhury, S.; Tu, Z.; Archer, L. A. *Nat. Energy* **2016**, *1*, 16114
- 316 6. Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C. *Adv. Energy Mater.* **2016**, *6*, 1501590.
- 317 7. Tsai, C. L.; Roddatis, V.; Chandran, C. V.; Ma, Q.; Uhlenbruck, S.; Bram, M.; Heitjans,
318 P.; Guillon, O. *ACS Appl. Mater. Inter.* **2016**, *8*, 10617.
- 319 8. Ye, H.; Xin, S.; Yin, Y.-X.; Guo, Y.-G. *Adv. Energy Mater.* **2017**, *7*, 1700530.
- 320 9. Sheng, O.; Zheng, J.; Ju, Z.; Jin, C.; Wang, Y.; Chen, M.; Nai, J.; Liu, T.; Zhang, W.; Liu,
321 Y.; Tao, X. *Adv. Mater.* **2020**, *32*, 2000223.

- 322 10. Lin, Z.; Liu, T.; Ai, X.; Liang, C. *Nat. Commun.* **2018**, *9*, 5262.
- 323 11. Li, Y.; Lu, J. *ACS Energy Lett.* **2017**, *2*, 1370-1377.
- 324 12. Zhang, D.; Dai, A.; Fan, B.; Li, Y.; Shen, K.; Xiao, T.; Hou, G.; Cao, H.; Tao, X.; Tang,
325 Y. *ACS Appl. Mater. Inter.* **2020**, *12*, 31542-31551.
- 326 13. Cheng, L.; Chen, W.; Kunz, M.; Persson, K.; Tamura, N.; Chen, G.; Doeff, M. *ACS Appl.*
327 *Mater. Inter.* **2015**, *7*, 2073-81.
- 328 14. Kim, Y.; Yoo, A.; Schmidt, R.; Sharafi, A.; Lee, H.; Wolfenstine, J.; Sakamoto, J. *Front.*
329 *Energy Res.* **2016**, *4*, 20.
- 330 15. Gao, Z.; Sun, H.; Fu, L.; Ye, F.; Zhang, Y.; Luo, W.; Huang, Y. *Adv. Mater.* **2018**, *30*,
331 e1705702.
- 332 16. Wood, K. N.; Noked, M.; Dasgupta, N. P. *ACS Energy Lett.* **2017**, *2*, 664-672.
- 333 17. Lou, S.; Zhang, F.; Fu, C.; Chen, M.; Ma, Y.; Yin, G.; Wang, J. *Adv. Mater.*, 2000721.
- 334 18. Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.;
335 McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V.; Westover, A. S.; Zeier, W. G.
336 *ACS Energy Lett.* **2020**, *5*, 922-934.
- 337 19. Famprakis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C. *Nat. Mater.* **2019**,
338 1278–1291.
- 339 20. Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.;
340 Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y.-M. *Adv. Energy Mater.* **2017**, *7*, 1701003.
- 341 21. Bucci, G.; Swamy, T.; Bishop, S.; Sheldon, B. W.; Chiang, Y.-M.; Carter, W. C. *J.*
342 *Electrochem. Soc.* **2017**, *164*, A645-A654.
- 343 22. Yonemoto, F.; Nishimura, A.; Motoyama, M.; Tsuchimine, N.; Kobayashi, S.; Iriyama, Y.
344 *J. Power Sources* **2017**, *343*, 207-215.

- 345 23. Hong, Z.; Viswanathan, V. *ACS Energy Lett.* **2018**, 3, 1737-1743.
- 346 24. Schmidt, R. D.; Sakamoto, J. *J. Power Sources* **2016**, 324, 126-133.
- 347 25. Raj, R.; Wolfenstine, J. *J. Power Sources* **2017**, 343, 119-126.
- 348 26. Shen, F.; Dixit, M. B.; Xiao, X.; Hatzell, K. B. *ACS Energy Lett.* **2018**, 3, 1056-1061.
- 349 27. Porz, L.; Swamy, T.; Sheldon, B. W.; Rettenwander, D.; Frömling, T.; Thaman, H. L.;
- 350 Berendts, S.; Uecker, R.; Carter, W. C.; Chiang, Y.-M. *Adv. Energy Mater.* **2017**, 7, 1701003.
- 351 28. Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P.; He, C.; Kaskel, S.; Zhang, Q. *ACS Energy Lett.* **2020**, 5, 833-843.
- 353 29. Han, F.; Yue, J.; Zhu, X.; Wang, C. *Adv. Energy Mater.* **2018**, 8, 1703644.
- 354 30. Han, F.; Westover, A. S.; Yue, J.; Fan, X.; Wang, F.; Chi, M.; Leonard, D. N.; Dudney, N. J.; Wang, H.; Wang, C. *Nat. Energy* **2019**, 4, 187-196.
- 356 31. Kim, S. H.; Kim, K.; Choi, H.; Im, D.; Heo, S.; Choi, H. S. *J. Mater. Chem. A* **2019**, 7, 357 13650-13657.
- 358 32. Lou, S.; Yu, Z.; Liu, Q.; Wang, H.; Chen, M.; Wang, J. *Chem* **2020**, 6, 2199-2218.
- 359 33. Ren, Y. Y.; Shen, Y.; Lin, Y. H.; Nan, C. W. *Electrochim. Commun.* **2015**, 57, 27-30.
- 360 34. Bron, P.; Roling, B.; Dehnen, S. *J. Power Sources* **2017**, 352, 127-134.
- 361 35. Masias, A.; Felten, N.; Garcia-Mendez, R.; Wolfenstine, J.; Sakamoto, J. *J. Mater. Sci.*
- 362 **2018**, 54, 2585-2600.
- 363 36. Lewis, J. A.; Cortes, F. J. Q.; Boebinger, M. G.; Tippens, J.; Marchese, T. S.; Kondekar, N.; Liu, X.; Chi, M.; McDowell, M. T. *ACS Energy Lett.* **2019**, 4, 591-599.
- 365 37. Lee, J. Z.; Wynn, T. A.; Schroeder, M. A.; Alvarado, J.; Wang, X.; Xu, K.; Meng, Y. S. *ACS Energy Lett.* **2019**, 4, 489-493.

- 367 38. Yang, Y.; Wu, Q.; Cui, Y.; Chen, Y.; Shi, S.; Wang, R. Z.; Yan, H. *ACS Appl. Mater. Inter.*
368 **2016**, 8, 25229.
- 369 39. Akolkar, R. *J. Power Sources* **2014**, 246, 84-89.
- 370 40. Momma, K.; Izumi, F. *J. Appl. Crystallogr.* **2011**, 44, 1272-1276.