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Coupled Spin Dynamics and Molecular Dynamics (SD-MD)

methodology

SD-MD methodology:

» Adding classical magnetic spins to MD:

> For every
magnetic atom
in the system,
one has:
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SPIN package in LAMMPS
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Spin—lattice coupling

P Scalable symplectic algorithms (massively parallel spin-lattice

dynamics).

» Nine types of magnetic interactions (exchange, Zeeman, DMI, ...).

» Resolution of long-range magnetic interactions (Ewald and P3M).

» Three spin minimizers and magnetic GNEB method.

Tranchida, Julien, et al. "Massively parallel symplectic algorithm for coupled magnetic spin
dynamics and molecular dynamics." Journal of Computational Physics 372 (2018): 406-425.
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Examples of application:

Thermal transport in

magnetic materials

» Abnormal behavior: drop of the
lattice thermal conductivity at Tc.

» Green-Kubo equilibrium atomic
and spin dynamics approach.

Magnetic textures in

multiferroic materials

P Large scale simulation of spin

texttures in Bismuth ferrite.

P Simulation of magnetic
configurations at ferroelectric
domain walls.
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Zhou, Yanguang, et al. "Atomistic Simulation of Phonon and Magnon Thermal Transport across the
Ferro-Paramagnetic Transition." arXiv preprint arXiv:1901.00966 (2019).
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Chauleau, J-Y., et al. "Electric and antiferromagnetic chiral textures at multiferroic domain walls."

Nature materials (2019): 1-5.



Spin and Lattice potential energy surfaces (PES), and

common approach in S-L dynamics

Molecular dynamics PES .

™

P> In metals, usually an
EAM-like potential.

» Parametrization can be
on ab-initio data, or on
experiments (elastic
constants, binding-
energies, ...).

Energy

Spin dynamics PES

P> Exchange interaction,
Zeeman, anisotropy, ...

P> Parametrized from 1°
principles calculations
(spin-spirals, ..
observables (Tc, ...).
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Coupled spin-lattice PES

» Usual approach: overlaying the magnetic and
mechanical PES
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» Proved sufficient to reproduce qualitative results

(magnon-phonon scattering, thermal conductivity, ..

).

® Limitations: not internally consistent, cannot
reproduce quantitative DFT results.




A framework for generating magneto-elastic PES for iron,

using machine-learning interatomic potentials

Generating DB

Fitting a Spin
Hamiltonian

Subtracting
magnetic PES

Training a ML-
Interatomic potential

Running SD-MD
simulations

Content of a database (DB) for machine-learning interatomic potential training

» We focus on iron: » Weak spin-orbit coupling, but...

» Interesting spin-lattice coupling at high pressure,

» Well-known and broadly studied.

» ML-IAP are trained on a DB of atomic configurations:

One configuration
s

. r*i (3

Neonf(14+6+6*N4ioms(conf))

*Energy of configuration

*Virial components (stress
applied on the cell)

*Forces on the atoms,
3*Natoms quantities
*Magnetic moments,
3*N,oms quantities

]

@ ML inter-atomic potential reflects the configurations is in the DB:
» The physical relevance of the configurations is fundamental.

> Interatomic potential ‘a la carte’: configurations for a given range of validity.

» Example: if | need a potential simulating phonons and elastic constants only, | will only perform the

corresponding ab initio calculations.



A framework for generating magneto-elastic PES for iron,

using machine-learning interatomic potentials

Generating DB

Fitting a Spin
Hamiltonian

Subtracting
magnetic PES

Training a ML-

Interatomic potential

Running SD-MD
simulations

Generating a DB for machine-learning interatomic potential training

P Each configuration is the result of a self-consistent

Density Functional Theory (DFT) calculation

(performed with Quantum Espresso or VASP).
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» Numerical verifications: k-points and PW cutoff

convergence, number bands (when high
smearing), energy convergence.

P Physics verifications: lattice constant, bulk
modulus, Bohr magneton.

» Chosen DFT setup:

» PBE pseudo-potential
» Non-collinear and spin-orbit coupling
> Smearing corresponding to 300K.

» Two sets of configurations generated.

Equation of state configurations
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Sdderlind, Per, and A. Gonis. "Assessing a solids-biased density-gradient
functional for actinide metals.” Phys. Rev. B 82.3 (2010): 033102.




A framework for generating magneto-elastic PES for iron,
using machine-learning interatomic potentials

Fitting magnetic interactions on ab-initio results

Generating DB

P Objective: fitting an exchange interaction and a magnetic anisotropy on DFT calculations performed
with the same setup as the DB generation.

Eittin > a S N » Parametrization of a Heisenberg exchange Hamiltonian: L
Hamiltonian . i@ 1
= . Tij 2 Tij 2 o.oa-— 2\\ i
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Subtracting j
magnetic PES » For now, we are using the parametrization of a Heisenberg T e N =
Hamiltonian formerly published. L . = e

Interatomic dist. (A)

Training a ML-

» From this parametrized magnetic interaction, per-atom energy and mechanical forces for each atom of

Interatomic potential each configurations are computed and stored:
Neigh Neighdj'-<’]"~~>
Running SD-MD E Z Jij(rij) 8i - 85 ZJ: dri; (s - 55) €
. . J
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Szilva, A., et al. "Interatomic exchange interactions for finite-temperature magnetism
and nonequilibrium spin dynamics." Phys Rev. Lett. 111.12 (2013): 127204.



A framework for generating magneto-elastic PES for iron,

using machine-learning interatomic potentials

Generating DB

Fitting a Spin
Hamiltonian

Subtracting
magnetic PES

Training a ML-
Interatomic potential

Running SD-MD
simulations

Subtracting the PES corresponding to the magnetic Hamiltonian

» The magnetic Hamiltonian is used as a reference potential.

» From each configuration, we subtract the energy, the mechanical forces (and, in principle, the virial
components) generated by the parametrized spin Hamiltonian:

DET PES Magnetic PES Fictitious PES

Energy
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P Generates a fictitious DB, on which we will train a ML-interatomic 7
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A framework for generating magneto-elastic PES for iron,

using machine-learning interatomic potentials

Generating DB

Fitting a Spin
Hamiltonian

Subtracting
magnetic PES

Training a ML-
Interatomic potential

Running SD-MD
simulations

Training a machine-learning interatomic potential on the fictitious PES

P Using the SNAP approach (developed at Sandia,

implemented in LAMMPS).

» Energy and forces are expressed in terms of

bispectrum components:

gNAP:ﬂO+/B'Bi
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P Training results, energy and force errors:
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*Molecular Dynamics engine

v !

Database
+Atomic configurations,

forces, and energies.

*«Communicate with LAMMPS; Weighted
regression to obtain SNAP coefficients.

FitSNAP

Physical metrics
«Forces,

*Energies,

«Elastic constants, ...

' !

Hyper parameters
«Cutoff distance,
*Group weights,
*Number of terms, ...

)}> DAKOTA

*Optimization and sensitivity
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interatomic potentials." Journal of Computational Physics 285 (2015): 316-330.
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A framework for generating magneto-elastic PES for iron,
using machine-learning interatomic potentials

Running SD-MD simulations

Generating DB

» Sum-up the contributions of the SNAP and Spin potentials:

.. ) |pz|
Fitting a Spin Z + ZVSNAP Tij) ZJm Tij) 8i - 8j
Hamiltonian

P Tested minimization, NVE and NVT runs.

» Two calculation examples: EOS for two different spin temperatures, and Curie curve.

Subtracting
magnetic PES
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P> Next test: influence of magnon-phonon scattering on the phonon dispersion.




Conclusions

10
Results:

@ A new framework aiming at improving the accuracy of coupled spin and lattice simulations was

developed.

@ An initial DB of configurations was produced by DFT calculations (should work for phonons and

elastic constants).

@ We tested the framework on iron, and for simple SD-MD calculations.

Perspectives:

P Improving the potential’s range of validity by adding more diverse configuration
sets.
P Improving the spin model:

» Accounting for the effects of the spin-orbit coupling, should lead a stronger S-
L coupling.

» Accounting for longitudinal spin fluctuations (very important for nickel, or for
iron at higher pressure).

@ Any suggestion welcome, feel free to contact us (jtranch@sandia.gov).
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