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Coupled Spin Dynamics and Molecular Dynamics (SD-MD) 
methodology 

SD-MD methodology: 

II.- Adding classical magnetic spins to MD:

>. For every
magnetic atom
in the system,
one has:
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Spin—lattice coupling

SPIN package in LAMMPS 

II. Scalable symplectic algorithms (massively parallel spin-lattice
dynamics).

II. Nine types of magnetic interactions (exchange, Zeeman, DMI, ...).

II. Resolution of long-range magnetic interactions (Ewald and P3M).

II.- Three spin minimizers and magnetic GNEB method.
Tranchida, Julien, et al. "Massively parallel symplectic algorithm for coupled magnetic spin
dynamics and molecular dynamics." Journal of Computational Physics 372 (2018): 406-425.
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Examples of application: 

Thermal transport in 
magnetic materials 

II- Abnormal behavior: drop of the
lattice thermal conductivity at Tc.

► Green-Kubo equilibrium atomic
and spin dynamics approach.

LL

25 k 

- \

20 -\\

a 15 \Cs13,

7 10 -E
-

Tg 5 -

0

-o exp. results (backlund)
-o no PMS

o-o PMS
PMS + exchange
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Zhou, Yanguang, et al. "Atomistic Simulation of Phonon and Magnon Thermal Transport across the
Ferro-Paramagnetic Transition." arXiv preprint arXiv:1901.00966 (2019).
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Magnetic textures in 
multiferroic materials

P.- Large scale simulation of spin
texttures in Bismuth ferrite.

P.- Simulation of magnetic
configurations at ferroelectric
domain walls.
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Chauleau, J-Y., et al. "Electric and antiferromagnetic chiral textures at multiferroic domain walls."
Nature materials (2019): 1-5.
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L Spin and Lattice potential energy surfaces (PES), and 
common approach in S-L dynamics 

Molecular dynamics PES A

1110- In metals, usually an

EAM-like potential.

► Parametrization can be
on ab-initio data, or on
experiments (elastic
constants, binding-
energies, ...).
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Spin dynamics PES A

Exchange interaction,

Zeeman, anisotropy, ...

► Parametrized from 1st
principles calculations
(spin-spirals, ...), or exp.

—observables (Tc, ...). Hs /-1 B E gisi • Hext
i=1

Coupled spin-lattice PES 

Usual approach: overlaying the magnetic and
mechanical PES.
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Spin—lattice coupling

Proved sufficient to reproduce qualitative results
(magnon-phonon scattering, thermal conductivity, ...).

- Limitations: not internally consistent, cannot
reproduce quantitative DFT results.



A framework for generating magneto-elastic PES for iron, 
using machine-learning interatomic potentials 

L Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES

TIntTraining a ML-eratomic potential 

Running SD-MD
simulations 

Content of a database (DB) for machine-Iearning interatomic potential training 

We focus on iron: >. Weak spin-orbit coupling, but...

> Interesting spin-lattice coupling at high pressure,

Well-known and broadly studied.

ML-IAP are trained on a DB of atomic configurations:

One configuration
J

•Energy of configuration

•Virial components (stress
applied on the cell)

•Forces on the atoms,

3*N atoms quantities

•Magnetic moments,

3*Natoms quantities

Nconf*(1+6+6*Natorns(conf))

• ML inter-atomic potential reflects the configurations is in the DB:

> The physical relevance of the configurations is fundamental.

> Interatomic potential 'a la carte': configurations for a given range of validity.

Example: if I need a potential simulating phonons and elastic constants only, I will only perform the
corresponding ab initio calculations.



A framework for generating magneto-elastic PES for iron, 
using machine-learning interatomic potentials 

L Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES

TintTraining a ML-eratomic potential 

Running SD-MD
simulations 

Generating a DB for machine-Iearning interatomic potential training

Each configuration is the result of a self-consistent
Density Functional Theory (DFT) calculation
(performed with Quantum Espresso or VASP).
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- Numerical verifications: k-points and PW cutoff
convergence, number bands (when high
smearing), energy convergence.

IP- Physics verifications: lattice constant, bulk
modulus, Bohr magneton.

P. Chosen DFT setup: 

PBE pseudo-potential

Non-collinear and spin-orbit coupling

P- Smearing corresponding to 300K.

Two sets of configurations generated.

Equation of state configurations

IP- Lattice compression
expansion (-
4%) on decorrelated
54 atom cells.

O- Each run has 20
configurations.

IP- This group has 200
configurations.
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DFT-MD configurations
Performing DFT-
MD runs on 128
atom cells.

L11.- 40 configurations
are stored.

■ Decorrelated
snapshots
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Söderlind, Per, and A. Gonis. "Assessing a solids-biased density-gradient
functional for actinide metals." Phys. Rev. B 82.3 (2010): 033102.



1 A framework for generating magneto-elastic PES for iron, 
usina machine-learnina int ra omic potentials

T Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES

TIntTraining a ML-eratomic potential 

Running SD-MD
simulations 

Fitting magnetic interactions on ab-initio results 

Objective: fitting an exchange interaction and a magnetic anisotropy on DFT calculations performed
with the same setup as the DB generation.

Parametrization of a Heisenberg exchange Hamiltonian:
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For now, we are using the parametrization of a Heisenberg
Hamiltonian formerly published.
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L From this parametrized magnetic interaction, per-atom energy and mechanical forces for each atom of
each configurations are computed and stored:
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Szilva, A., et al. "Interatomic exchange interactions for finite-ternperature magnetism
and nonequilibriurn spin dynamics." Phys Rev. Lett. 111.12 (2013): 127204.



1 A framework for generating magneto-elastic PES for iron, 
using machine-learning in eratomic potentials

Generating DB

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES

TIntTraining a ML-eratomic potential 

Running SD-MD
simulations 

Subtracting the PES corresponding to the magnetic Hamiltonian 

- The magnetic Hamiltonian is used as a reference potential.

- From each configuration, we subtract the energy, the mechanical forces (and, in principle, the virial
components) generated by the parametrized spin Hamiltonian:

•

DFT PES 
• • •

Magnetic PES 

Generates a fictitious DB, on which we will train a ML-interatomic
potential.

Fictitious PES
• • •
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A framework for generating magneto-elastic PES for iron, 
using machine-learning interatomic potentials 

Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES 

Training a ML-
Interatomic potential 

Running SD-MD
simulations 

Training a machine-learning interatomic potential on the fictitious PES 

Pi- Using the SNAP approach (developed at Sandia,
implemented in LAMMPS).

10- Energy and forces are expressed in terms of
bispectrum components:

riSNAP = 130 + 0 • Bi

F:IVAP
i=i 

Or3-

■ Training results, energy and force errors:
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• Forces,
•Energies,
•Elastic constants, ...

[•Communicate with LAMMPS; Weighted

regression to obtain SNAP coefficients.

FitSNAP

DAKOTA
Explore and predict with confidence.

•Optimization and sensitivity
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2

Database
•Atomic configurations,
forces, and energies.

it VI

Hyper parameters

•Cutoff distance,
•Group weights,
• Number of terms, ...

Thompson, Aidan P., et al. "Spectral neighbor analysis method for automated generation of quantum-accurate
interatomic potentials." Journal of Computational Physics 285 (2015): 316-330.



1 A framework for generating magneto-elastic PES for iron, 
using machine-learning interatomic potentials 

T Generating DB 

Fitting a Spin 
Hamiltonian 

Subtracting 
magnetic PES

TIntTraining a ML-eratomic potential 

1Running SD-MD 
simulations 

Running SD-MD simulations

■ Sum-up the contributions of the SNAP and Spin potentials:
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Pi- Tested minimization, NVE and NVT runs.
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IP- Two calculation examples: EOS for two different spin temperatures, and Curie curve.
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Next test: influence of magnon-phonon scattering on the phonon dispersion.



Conclusions 
10

Results: 

A new framework aiming at improving the accuracy of coupled spin and lattice simulations was
developed.

An initial DB of configurations was produced by DFT calculations (should work for phonons and
elastic constants).

We tested the framework on iron, and for simple SD-MD calculations.

Perspectives: 

Improving the potential's range of validity by adding more diverse configuration
sets.
Improving the spin model:

> Accounting for the effects of the spin-orbit coupling, should lead a stronger S-
L coupling.

> Accounting for longitudinal spin fluctuations (very important for nickel, or for
iron at higher pressure).

Any suggestion welcome, feel free to contact us (jtranch@sandia.gov).
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