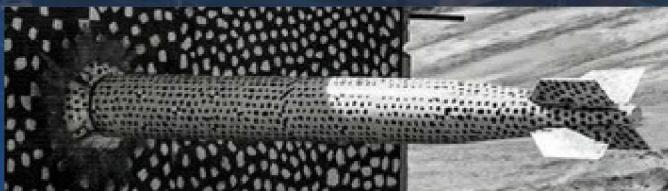


Sandia
National
Laboratories

SAND2020-4050C



Improving the accuracy of spin-lattice simulations with machine-learning interatomic potentials

PRESENTED BY

J. Tranchida, A. Cangi, M.A. Wood, A.P. Thompson, M. Desjarlais

Contact: jtranch@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

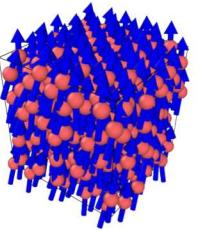
Coupled Spin Dynamics and Molecular Dynamics (SD-MD) methodology

SD-MD methodology:

- ▶ Adding classical magnetic spins to MD:

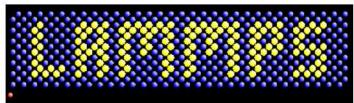
▶ For every magnetic atom in the system, one has:

$$\left\{ \begin{array}{lcl} \frac{\partial \mathbf{r}_i}{\partial t} & = & \mathbf{v}_i \\ \frac{\partial \mathbf{v}_i}{\partial t} & = & \mathbf{F}_i(\mathbf{r}_{ij}, \mathbf{s}_{i,j}) \\ \frac{\partial \mathbf{s}_i}{\partial t} & = & \boldsymbol{\omega}_i \times \mathbf{s}_i \end{array} \right.$$



$$\mathbf{H}_{sl} = \underbrace{\sum_{i=1}^N \frac{|\mathbf{p}_i|^2}{2m_i} + \sum_{i,j=1}^N V(r_{ij})}_{\text{MD Hamiltonian}} - \underbrace{\sum_{i,j,i \neq j}^N J(r_{ij}) \mathbf{s}_i \cdot \mathbf{s}_j}_{\text{Spin-lattice coupling}} - \mu_B \mu_0 \sum_{i=0}^N g_i \mathbf{s}_i \cdot \mathbf{H}_{ext}$$

SPIN package in LAMMPS



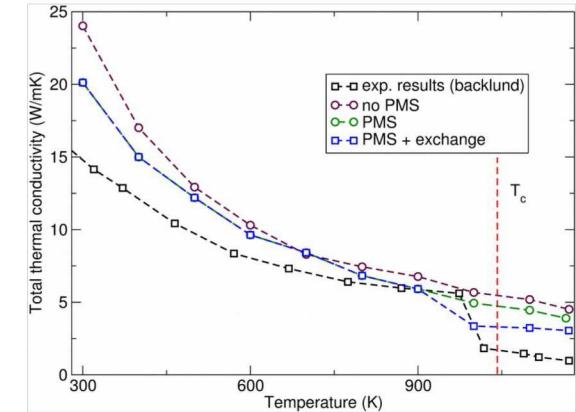
- ▶ Scalable symplectic algorithms (massively parallel spin-lattice dynamics).
- ▶ Nine types of magnetic interactions (exchange, Zeeman, DMI, ...).
- ▶ Resolution of long-range magnetic interactions (Ewald and P3M).
- ▶ Three spin minimizers and magnetic GNEB method.

Tranchida, Julien, et al. "Massively parallel symplectic algorithm for coupled magnetic spin dynamics and molecular dynamics." Journal of Computational Physics 372 (2018): 406-425.

Examples of application:

Thermal transport in magnetic materials

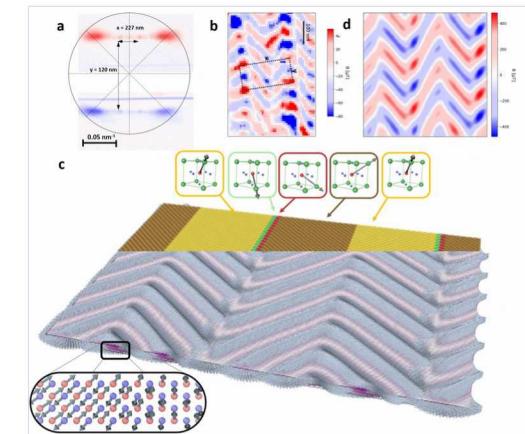
- ▶ Abnormal behavior: drop of the lattice thermal conductivity at T_c .
- ▶ Green-Kubo equilibrium atomic and spin dynamics approach.



Zhou, Yanguang, et al. "Atomistic Simulation of Phonon and Magnon Thermal Transport across the Ferro-Paramagnetic Transition." arXiv preprint arXiv:1901.00966 (2019).

Magnetic textures in multiferroic materials

- ▶ Large scale simulation of spin textures in Bismuth ferrite.
- ▶ Simulation of magnetic configurations at ferroelectric domain walls.

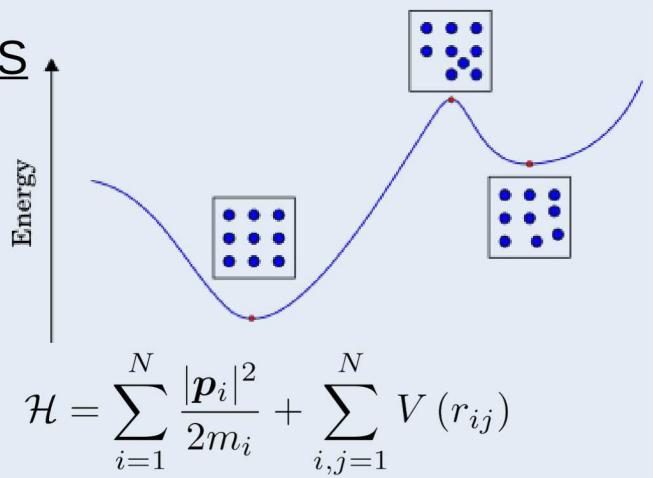


Chauleau, J-Y., et al. "Electric and antiferromagnetic chiral textures at multiferroic domain walls." Nature materials (2019): 1-5.

Spin and Lattice potential energy surfaces (PES), and common approach in S-L dynamics

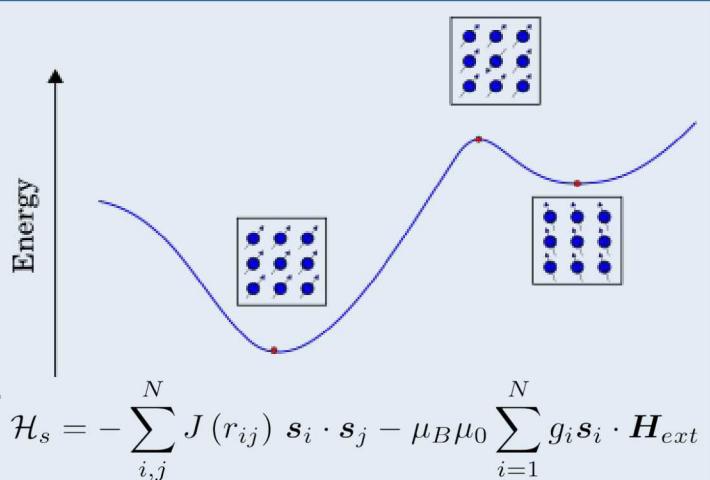
Molecular dynamics PES

- ▶ In metals, usually an EAM-like potential.
- ▶ Parametrization can be on ab-initio data, or on experiments (elastic constants, binding-energies, ...).



Spin dynamics PES

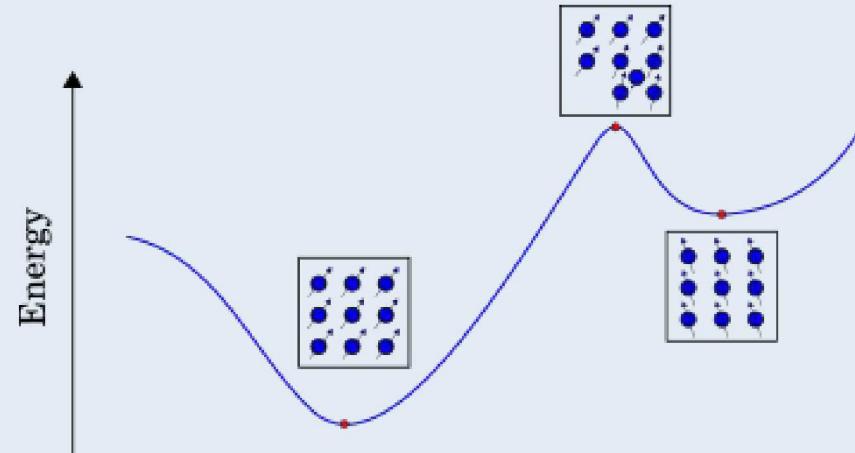
- ▶ Exchange interaction, Zeeman, anisotropy, ...
- ▶ Parametrized from 1st principles calculations (spin-spirals, ...), or exp. observables (Tc, ...).



Coupled spin-lattice PES

- ▶ Usual approach: overlaying the magnetic and mechanical PES.

$$\mathcal{H}_{sl} = \underbrace{\sum_{i=1}^N \frac{|\mathbf{p}_i|^2}{2m_i} + \sum_{i,j=1}^N V(r_{ij})}_{\text{MD Hamiltonian}} - \underbrace{\sum_{i,j,i \neq j}^N J(r_{ij}) \mathbf{s}_i \cdot \mathbf{s}_j - \mu_B \mu_0 \sum_{i=0}^N g_i \mathbf{s}_i \cdot \mathbf{H}_{ext}}_{\text{Spin-lattice coupling}}$$



- ▶ Proved sufficient to reproduce qualitative results (magnon-phonon scattering, thermal conductivity, ...).

✖ Limitations: not internally consistent, cannot reproduce quantitative DFT results.

A framework for generating magneto-elastic PES for iron, using machine-learning interatomic potentials

Generating DB

Fitting a Spin Hamiltonian

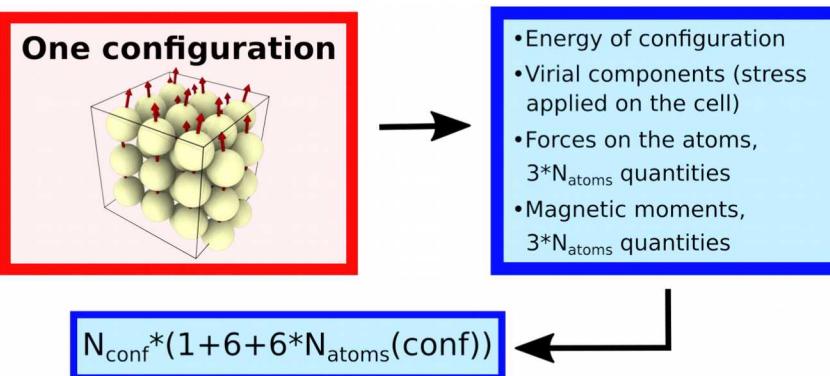
Subtracting magnetic PES

Training a ML-Interatomic potential

Running SD-MD simulations

Content of a database (DB) for machine-learning interatomic potential training

- ▶ We focus on **iron**:
 - ▶ Weak spin-orbit coupling, but...
 - ▶ Interesting spin-lattice coupling at high pressure,
 - ▶ Well-known and broadly studied.
- ▶ ML-IAP are trained on a DB of atomic configurations:



- ML inter-atomic potential reflects the configurations in the DB:

- ▶ The physical relevance of the configurations is fundamental.
- ▶ Interatomic potential 'a la carte': configurations for a given range of validity.

- ▶ Example: if I need a potential simulating phonons and elastic constants only, I will only perform the corresponding ab initio calculations.

A framework for generating magneto-elastic PES for iron, using machine-learning interatomic potentials

Generating DB

Fitting a Spin Hamiltonian

Subtracting magnetic PES

Training a ML-Interatomic potential

Running SD-MD simulations

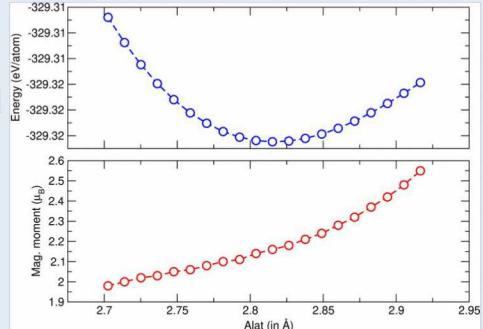
Generating a DB for machine-learning interatomic potential training

- ▶ Each configuration is the result of a self-consistent Density Functional Theory (DFT) calculation (performed with Quantum Espresso or VASP).

- ▶ Numerical verifications: k-points and PW cutoff convergence, number bands (when high smearing), energy convergence.
- ▶ Physics verifications: lattice constant, bulk modulus, Bohr magneton.
- ▶ Chosen DFT setup:
 - PBE pseudo-potential
 - Non-collinear and spin-orbit coupling
 - Smearing corresponding to 300K.
- ▶ Two sets of configurations generated.

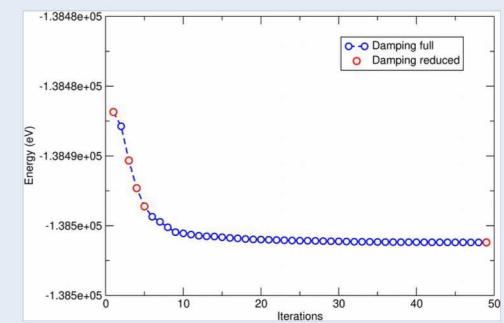
Equation of state configurations

- ▶ Lattice compression expansion ($\sim \pm 4\%$) on decorrelated 54 atom cells.
- ▶ Each run has 20 configurations.
- ▶ This group has 200 configurations.



DFT-MD configurations

- ▶ Performing DFT-MD runs on 128 atom cells.
- ▶ Decorrelated snapshots
- ▶ 40 configurations are stored.



A framework for generating magneto-elastic PES for iron, using machine-learning interatomic potentials

Generating DB

Fitting a Spin Hamiltonian

Subtracting magnetic PES

Training a ML-Interatomic potential

Running SD-MD simulations

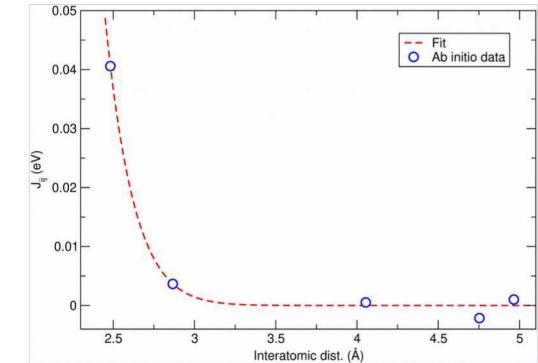
Fitting magnetic interactions on ab-initio results

- ▶ Objective: fitting an exchange interaction and a magnetic anisotropy on DFT calculations performed with the same setup as the DB generation.

- ▶ Parametrization of a Heisenberg exchange Hamiltonian:

$$H_{ex} = - \sum_{i,j}^N J_{ij}(r_{ij}) \mathbf{s}_i \cdot \mathbf{s}_j \quad \text{with} \quad J_{ij}(r_{ij}) = 4\alpha \left(\frac{r_{ij}}{\delta} \right)^2 \cos(\gamma r_{ij}) \exp \left(- \left(\frac{r_{ij}}{\delta} \right)^2 \right)$$

- ▶ For now, we are using the parametrization of a Heisenberg Hamiltonian formerly published.



- ▶ From this parametrized magnetic interaction, per-atom energy and mechanical forces for each atom of each configurations are computed and stored:

$$E_i = - \sum_j^{Neigh} J_{ij}(r_{ij}) \mathbf{s}_i \cdot \mathbf{s}_j \quad \mathbf{F}_i = \sum_j^{Neigh} \frac{d J_{ij}(r_{ij})}{d r_{ij}} (\mathbf{s}_i \cdot \mathbf{s}_j) \mathbf{e}_{ij}$$

A framework for generating magneto-elastic PES for iron, using machine-learning interatomic potentials

Generating DB

Fitting a Spin Hamiltonian

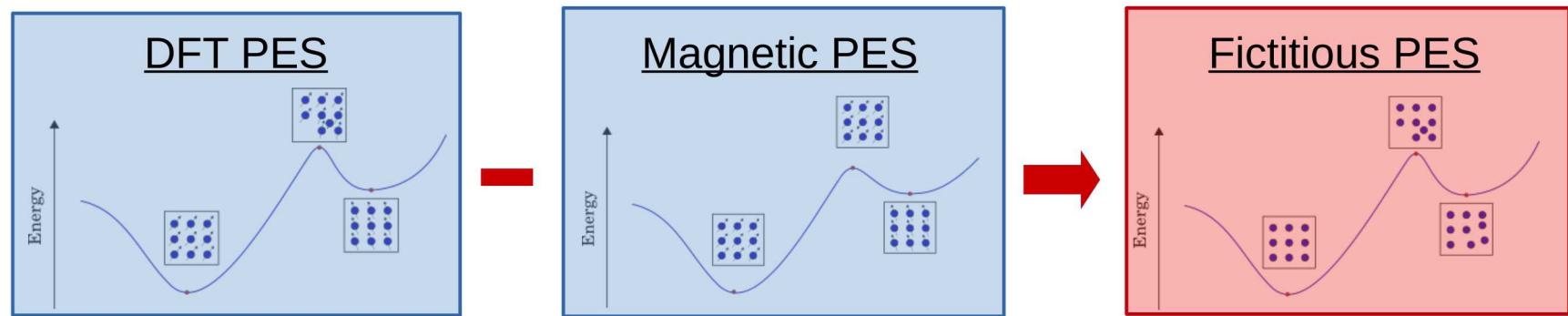
Subtracting magnetic PES

Training a ML-Interatomic potential

Running SD-MD simulations

Subtracting the PES corresponding to the magnetic Hamiltonian

- ▶ The magnetic Hamiltonian is used as a reference potential.
- ▶ From each configuration, we subtract the energy, the mechanical forces (and, in principle, the virial components) generated by the parametrized spin Hamiltonian:



- ▶ Generates a fictitious DB, on which we will train a ML-interatomic potential.

$$E_i^{Fic} = E_i^{DFT} - E_i^{Mag}$$

$$\mathbf{F}_i^{Fic} = \mathbf{F}_i^{DFT} - \mathbf{F}_i^{Mag}$$

A framework for generating magneto-elastic PES for iron, using machine-learning interatomic potentials

Generating DB

Fitting a Spin Hamiltonian

Subtracting magnetic PES

Training a ML-Interatomic potential

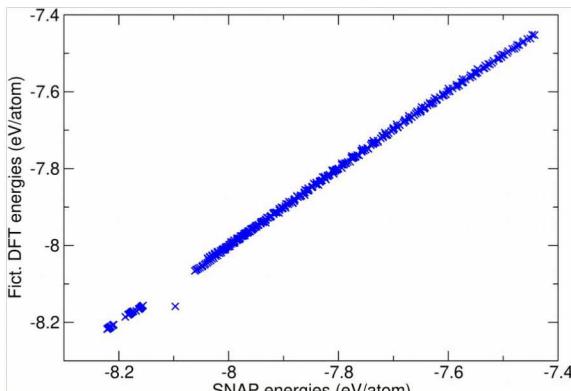
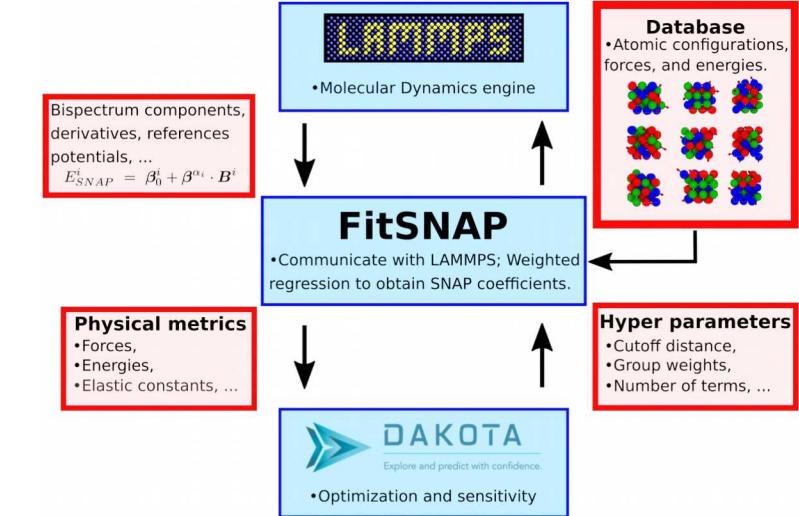
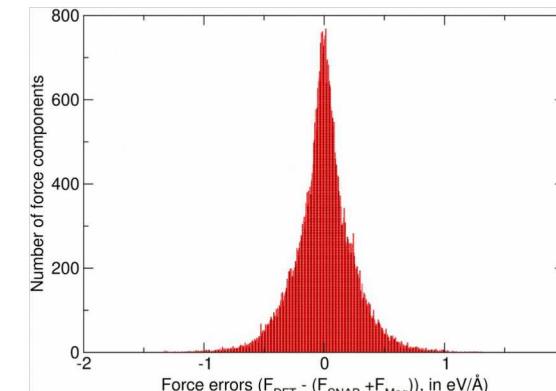
Running SD-MD simulations

Training a machine-learning interatomic potential on the fictitious PES

- ▶ Using the SNAP approach (developed at Sandia, implemented in LAMMPS).
- ▶ Energy and forces are expressed in terms of bispectrum components:

$$\left\{ \begin{array}{l} E_{SNAP}^i = \beta_0 + \beta \cdot \mathbf{B}^i \\ \mathbf{F}_{SNAP}^j = -\beta \cdot \sum_{i=1}^N \frac{\partial \mathbf{B}_i}{\partial \mathbf{r}_j} \end{array} \right.$$

- ▶ Training results, energy and force errors:



A framework for generating magneto-elastic PES for iron, using machine-learning interatomic potentials

Generating DB

Fitting a Spin Hamiltonian

Subtracting magnetic PES

Training a ML-Interatomic potential

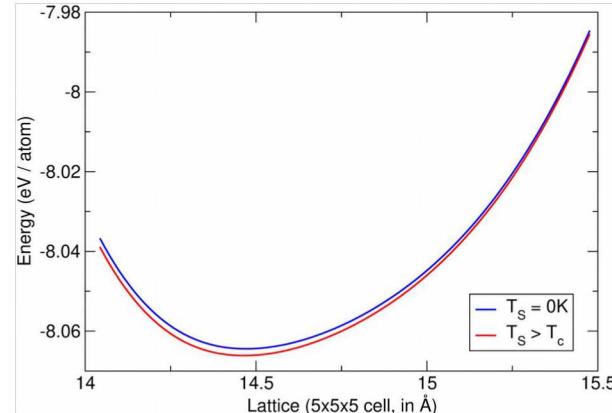
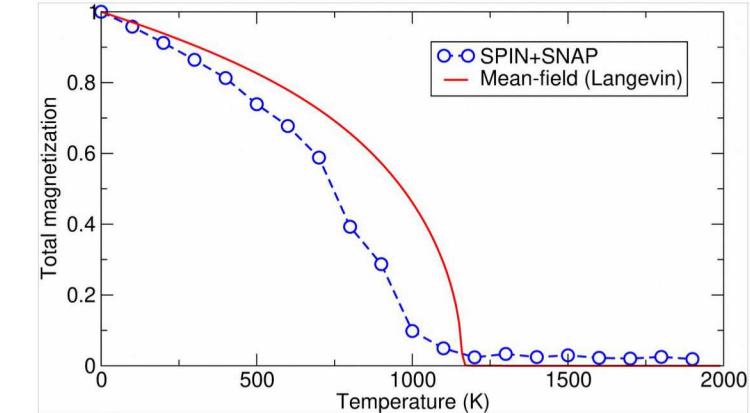
Running SD-MD simulations

Running SD-MD simulations

- ▶ Sum-up the contributions of the SNAP and Spin potentials:

$$\mathcal{H}_{sl} = \sum_i^N \frac{|\mathbf{p}_i|^2}{2m_i} + \sum_{i,j}^N V^{SNAP}(\mathbf{r}_{ij}) - \sum_{i,j}^N J_{ij}(r_{ij}) \mathbf{s}_i \cdot \mathbf{s}_j$$

- ▶ Tested minimization, NVE and NVT runs.
- ▶ Two calculation examples: EOS for two different spin temperatures, and Curie curve.



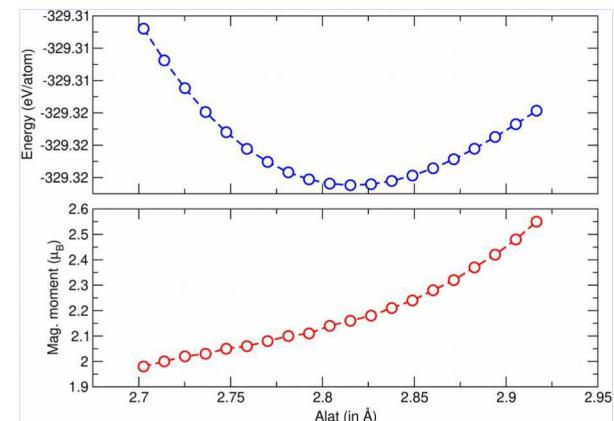
- ▶ Next test: influence of magnon-phonon scattering on the phonon dispersion.

Results:

- A new framework aiming at improving the accuracy of coupled spin and lattice simulations was developed.
- An initial DB of configurations was produced by DFT calculations (should work for phonons and elastic constants).
- We tested the framework on iron, and for simple SD-MD calculations.

Perspectives:

- ▶ Improving the potential's range of validity by adding more diverse configuration sets.
- ▶ Improving the spin model:
 - Accounting for the effects of the spin-orbit coupling, should lead a stronger S-L coupling.
 - Accounting for longitudinal spin fluctuations (very important for nickel, or for iron at higher pressure).



- ◆ Any suggestion welcome, feel free to contact us (jtranch@sandia.gov).