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• Steady increase in natural gas production in the 
U.S. from 2005- current.

Introduction

U.S. EIA, 2018
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Mari Voldsund, Kristin Jordal, Rahul Anantharaman, Int J Hydrogen Energy 2016.

• Dependence of methane steam reforming 

on H2 production.

• 95% of US H2 production comes from 

SMR

Hydrogen production worldwide, by technology

Voldsund, et al. 
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Methane Steam Reforming

Methane Steam Reforming:   

𝐶𝐻4 𝑔 + 𝐻2𝑂 𝑔 ⇌ 𝐶𝑂 𝑔 + 3𝐻2 𝑔

∆𝐻298𝐾 = +206 Τ𝑘𝐽 𝑚𝑜𝑙,

H2O 𝑔 +CO 𝑔 ⇌CO2 𝑔 +H2 𝑔

∆𝐻298𝐾 = −41 Τ𝑘𝐽 𝑚𝑜𝑙

• Activity:    Rh, Ru >  Ni, Ir >Pt, Pd

Two-dimensional volcano-plot of the turn over frequency as 

a function of O and C adsorption energy. 

• Group VIII transition metal as catalyst  

Jones, et al

Jones, et al. First principles calculations and experimental infights into methane steam reforming over transition metal catalysts, J. Catal. 258,2008. 

• Challenges:  Deactivation by sintering; 

carbon blockage; poisoning by S/As/P 

etc. 
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Introduction
Pyrochlore Reforming Catalysts

A-site cation

B-site cation

Oxygen anion

What makes Pyrochlores viable reforming 

catalysts?

• High chemical and thermal stability [1].

• Mechanical strength to accommodate 

substitutions [2].

• Active metal can dispersed into small and stable 

clusters by substitution into the B-site.

• Substitution with lower valence cations in the A-

site and/or B-site can create oxygen vacancies, 

which may increase lattice oxygen-ion mobility to 

reduce carbon formation.

[1] D. Sedmidubsky, et al., The Journal of Chemical Thermodynamics 37 (2005) 1098.
[2] H. Zhou, et al., Journal of Alloys and Compounds 438 (2007) 217

(A2B2O7) 
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Project overview

Kumar et al., Current Opinion in Chemical Engineering, (2015) 9, pp. 8-15. 

• Develop a pyrochlore catalyst with high carbon tolerance under low steam-to-carbon ratio 

• Explore the effect of Y substitution at A site/ B site of the structure

• Determine how Y location influence carbon accumulation and activity
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Calculations performed with 
HSC Chemistry v9.2 using
H2O/CH4 ratio= 1

• Low steam-to-carbon ratio S/C=1

• Rh substituted La2Zr2O7

• Y loadings of 1.5,  4 , 6.5 wt%

• Y at A/B site of structure
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Experimental

Dissolved nitrate

salts into DI water

(stirring)

Aqueous citric acid

solution

(1.2:1 CA/M ratio)

Heated stirring solution to 70°C Stirring at 70°C for ~8 h

Added Ethylene Glycol 

(1:1 EG/CA)

Transparent glassy resin

Polymerization in 

heating mantle at 

130°C

Calcine for 4 h at 900°C 

Pechini Method

XRD-Crystal structure

TPR- Reducible sites

TPD- Oxygen species

TGA- Carbon analysis

Raman-Oxygen /Carbon

XPS-Surface property

Fresh Catalyst Activity TestSpent Catalyst 

TPSR

Long term activity
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XRD Results-pyrochlore support

Pyrochlore 

• XRD patterns of the freshly calcined

La2-xYxZr2O7 supports
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Raman spectroscopy

Eg

F2gA1gF2g
F2gF2g

• 100-750 cm-1 , sensitive to oxygen-cation

vibrations 

• Six Raman active modes for cubic A2B2O7

pyrochlores

• A1g + Eg + 4F2g
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Fresh Catalysts 
XRD

Perovskite phase  LaRhO3
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TPR

Fresh Catalysts 

• Two major peaks observed for 

reduction of Rh2O3 into Rh.

• Lower T peak –reduction of Rh2O3 at 

surface of support.

• Higher T peak– reduction of Rh2O3 in 

the pyrochlore structure. 
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Activity Test 
TPSR

Y= 1.5 wt%

CH4

H2

CO

CO2

Y= 4 wt%

CH4

H2

CO

CO2

Y= 6.5 wt%

CH4

H2

CO

CO2

• 4% of Y loading enhanced the performance of the catalyst for SMR, while 6.5 % of Y inhibited the 

performance of the catalyst. 
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Spent Catalysts

• The catalysts retained their pyrochlore 

structure. 
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Spent Catalyst
Raman spectroscopy

Y 1.5% A

Y 4% A

Y 6.5% A

No Y

Y 1.5% B

Y 4% B

• Carbon formation on each catalyst

• Graphitic carbon vs polycrystalline carbon 

G band

D band

Catalysts IG/ID

Y 1.5 % A 0.65

Y4% A 0.66

Y6.5% A 0.89

No Y 0.67

Y 1.5% B 0.91

Y 4% B 0.83
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Conclusions

• Y at A site of A2B2O7 structure influences the structure of Rh-substituted La2Zr2O7, and affects the 

performance of the prepared catalysts for SMR

• Y at A site with loading of 4 wt% showed optimal performance for SMR, while a further increase of 

Y loading inhibits the performance of the catalyst, which may be due to distortion of crystal 

structure caused by Y. 

• Y at B site inhibits the performance of the catalysts at low Y loading. 

Future study

• Explore substituted Rh dispersion in catalysts by TEM/EDX to further understand Y function in 

modification of the catalysts.  

• Explore other promoters which could help in active metal dispersion in support materials, such as 

Ce, Nb, W, etc. 
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Thank you !


