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Abstract
Terrestrial ecosystems remove about 30% of the carbon dioxide (CO2) emitted by human 
activities each year1, yet the persistence of this carbon sink depends partly on how plant biomass 
and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO2 (refs. 2,3). 
Although plant biomass often increases in elevated CO2 (eCO2) experiments4–6, SOC has been 
observed to increase, remain unchanged or even decline7. The mechanisms that drive this 
variation across experiments remain poorly understood, creating uncertainty in climate 
projections8,9. Here we synthesized data from 108 eCO2 experiments and found that the effect of 
eCO2 on SOC stocks is best explained by a negative relationship with plant biomass: when plant 
biomass is strongly stimulated by eCO2, SOC storage declines; conversely, when biomass is 
weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient 
acquisition, in which plants increase their biomass by mining the soil for nutrients, which 
decreases SOC storage. We found that, overall, SOC stocks increase with eCO2 in grasslands 
(8±2%) but not in forests (0±2%), even though plant biomass in grasslands increase less (9±3%) 
than in forests (23±2%). Ecosystem models do not reproduce this trade-off, which implies that 
projections of SOC may need to be revised.



Introduction
The future of the land sink, especially of soil carbon, is particularly uncertain9. Soils can become 
either sources or sinks of carbon with rising levels of atmospheric CO2, depending on the 
prevalence of gains via photosynthesis or losses via respiration9,10. This uncertainty in terrestrial 
ecosystem model projections reflects uncertainty in both the mechanisms and the parameter 
values controlling soil carbon cycling under eCO2

11.

Plant growth generally increases in response to eCO2
4,12, with soil nutrients identified as the 

dominant factor explaining variability across experiments12–15. The effect of eCO2 on soil carbon 
stocks (βsoil) is more equivocal. Although the expectation is that soil carbon will accrue as eCO2 
increases plant growth16, a few experiments show increases in βsoil, many show no change, and 
some even show losses7. The observed variation in βsoil across experiments is puzzling, and there 
is large disagreement regarding the dominant mechanisms explaining this variation7,17,18. 

A positive relationship between the effects of eCO2 on plant biomass and soil carbon pools is 
expected if increased plant production under eCO2 increases carbon inputs (litter) into the soil. 
Indeed, a positive relationship between inputs and soil carbon storage is formalized in first order 
kinetics16 and is applied in most terrestrial ecosystem models19,20. Because the effect of eCO2 on 
plant aboveground biomass (βplant) is strongly correlated with the effect of eCO2 on litter 
production (Extended Data Fig. 1a, r=0.81) and on root production21, a positive relationship 
between βplant and βsoil can thus be expected based on first order kinetics. This hypothesis, 
however, ignores soil carbon losses associated with accelerated soil organic matter 
decomposition sometimes observed under eCO2

7,18. Plants acquire limiting resources from soils 
through carbon investment belowground in root growth, exudates, and symbiotic bacteria and 
fungi. Accelerated decomposition of soil organic matter fueled by plant carbon inputs can enable 
plant nutrient uptake (the “priming effect”22). The return on this belowground carbon investment 
is an increase in aboveground biomass production15. However, the priming effect can decrease 
soil carbon5. A negative relationship between βplant and βsoil may thus emerge through the 
economics of plant resource acquisition. 

Here, we evaluate the mechanisms of βsoil, including its relationship with βplant, by synthesizing 
268 observations of βsoil from 108 eCO2 experiments spanning the globe with coupled βplant-βsoil 
data (Supplementary Table 1) using meta-analysis techniques. We explore how well these 
mechanisms are represented in ecosystem models, and upscale the geographical distribution of 
βsoil derived from experiments to identify regions where models might be missing important 
processes.

Results
Predictors of SOC accrual under eCO2
Overall, eCO2 increased soil carbon stocks by 4.6% across experiments (Fig. 1, 95%-CI: 1.7% to 
7.5%). Given the strong variation in βsoil across factors (Fig. 1), we used a random-forest 
approach in the context of meta-analysis (meta-forest) to quantify the importance of 19 potential 
predictors (Extended Data Table 1), including climate, soil, plant, and ecosystem variables and 
their interactions, accounting for covariation across predictors and potential nonlinearities.



Fig. 1. Meta-analysis of the effect of elevated CO2 on soil carbon (%) across different factors. n=108. 
Overall means and 95% confidence intervals are given; we interpret CO2 effects when the zero line is not 
crossed by the confidence intervals. Arrows represent 95% confidence intervals that extend beyond the 
limits of the plot. Soil carbon stocks represent values in ambient CO2 plots as a continuous variable, here 
expressed as intervals of equal sample size for illustration purposes. Values in parenthesis are sample sizes.
CO2 effects represent, on average, an increase in CO2 from 372 ppm to 616 ppm. FACE: Free Air CO2 
Enrichment, OTC: Open Top Chamber, AM: arbuscular mycorrhizal, AM-ER: mix of AM and ericoid 
mycorrhizal, ECM: ectomycorrhizal, N-fixer: fixation of atmospheric nitrogen.

We found that βplant is the most important predictor of βsoil (Extended Data Fig. 2a,b, n=108), 
revealing a strong coupling between CO2-driven changes in plant biomass and soil carbon. In 
addition, βsoil increased with background SOC stocks (Fig. 1), also identified as an important 
predictor.

Contrary to expectations from some first order models19,20, the relationship between βsoil and 
βplant was negative. For the subset (n=73) of field experiments with intact soils (non-potted plants 
and non-reconstructed soils), we found a significant interaction between βplant and nitrogen (N)-
fertilization (Extended Data Fig. 2c, p<0.01). In non-fertilized experiments, the slope between 
βsoil and βplant was significantly negative (Fig. 2a, p<0.0001, R2=0.67, n=38), whereas in fertilized 
experiments the slope was less pronounced and nonsignificant (p=0.34, n=35) (Extended Data 



Fig. 3a). In non-fertilized experiments, increases in plant biomass were associated with 
decreasing soil carbon stocks (Fig. 2a), consistent with the priming effect. In N-fertilized 
experiments, eCO2 generally increased both plant biomass and soil carbon (Extended Data Fig. 
3b), in line with first order kinetics.

Fig. 2. Elevated CO2 experiments show an inverse relationship between the effects of elevated CO2 
on plant biomass and soil carbon (a). This inverse relationship can be explained by the different 
efficiencies in plant nutrient uptake (c) between arbuscular mycorrhizal (AM) and ectomycorrhizal 
(ECM) nutrient-acquisition strategies driving opposite effects on plant biomass and soil carbon pools (b), 
including mineral-associated soil organic matter (MAOM) stocks (d). Regression line (a) is based on a 
quadratic mixed-effects meta-regression model and 95% confidence interval (R2=0.67, p<0.0001, n=38). 
Dots in (a) represent the individual experiments in the meta-analysis, with dot sizes proportional to model 
weights. Dots in (b-d) represent overall effect sizes from a meta-analysis and 95% confidence intervals. 
Data shown here are for non-fertilized experiments (see Extended Data Fig. 3 for nutrient-fertilized 
experiments).

We propose a framework to explain the negative relationship between βsoil and βplant based on 
plant nutrient acquisition strategies. Symbiotic associations between plants and arbuscular (AM) 
and ecto (ECM) mycorrhizal fungi mediate βplant (Extended Data Fig. 2d), resulting in much 
higher βplant in ECM than AM when nutrient availability is low (Fig. 2b). ECM plants efficiently 
increase N-uptake under eCO2 (Fig. 2c, n=12), enhancing βplant. However, acquiring N from soil 
organic matter via priming accelerates soil carbon losses7, reducing βsoil in ECM (Fig. 2b). In 
contrast, eCO2 did not significantly affect N-uptake in AM systems (Fig. 2c, n=12). This 
outcome limits βplant in AM systems but stimulates βsoil (Fig. 2b), likely due to increased carbon 
inputs through fine-root production and rhizodeposition21,23,24 combined with decreased carbon 
losses25. The composition of the soil organic matter may mediate this effect as well; AM plants 
produce more easily decomposable litter26, which enhances mineral-associated soil organic 
matter (MAOM) formation27 and results in a greater fraction of soil carbon in MAOM under AM 
relative to ECM systems28,29. Indeed, eCO2 increases MAOM more strongly in AM systems than 
in ECM systems (Fig, 2d, n=19). Because MAOM is less accessible to microbial decomposers30, 
greater MAOM in AM systems could limit priming-induced losses and promote long-term soil 
carbon storage.



We considered three alternative mechanisms that could potentially explain this tradeoff. First, 
grasses allocate more carbon to roots than trees, which is associated with greater SOC stocks31,32. 
Because grassland species associate with AM fungi and the majority of tree species in the dataset 
associate with ECM, the observed increase in βsoil in AM could be driven by ecosystem type 
rather than mycorrhizal type. However, we found that eCO2 effects on root biomass and fine-root 
production were generally lower in grasses than trees, and also in AM than ECM trees (Extended 
Data Fig. 4). Second, in non-fertilized experiments with available data (n=16), eCO2 increased 
litter C:N by 8%, which could reduce the decomposability of litter and the stabilization of carbon 
in the soil27. If litter quality is reduced more in ECM than AM, this could help explain why eCO2 
increased SOC in AM, but not in ECM. However, the effect of eCO2 on litter quality was similar 
between mycorrhizal types (Extended Data Fig. 4). Finally, contrasting βsoil in AM vs. ECM 
could be driven by larger background SOC in grasslands vs. forests, given that higher SOC is 
associated with higher βsoil (Fig. 1). We found, however, that background SOC was similar 
between mycorrhizal types and ecosystem types (Extended Data Fig. 4). Thus, differences in root 
allocation, litter quality and background SOC in grasses vs. trees cannot explain the tradeoff 
between βsoil and βplant. Instead, losses in SOC associated with plant nutrient uptake (priming 
effect) in ECM, and gains associated with rhizodeposition in AM, are likely key. Experiments 
including both AM and ECM tree species should be targeted to better understand the impacts of 
nutrient-acquisition strategies under eCO2.

Upscaling
To explore the potential geographical distribution of βsoil, we simulated a global FACE 
experiment (Fig. 3a). Unlike Fig. 1 where predictors are analyzed individually, our meta-forest 
model can upscale βsoil from experiments while accounting for all important predictors 
simultaneously on a grid (Extended Data Figs. 5-6, 10-fold cross-validated R2 = 0.51). 
Grasslands, croplands, and shrublands showed a stronger potential to accumulate soil carbon in 
response to experimental eCO2 than forests (Fig. 3a,b). Soils in semi-arid herbaceous ecosystems 
were particularly responsive to eCO2, consistent with the results from the Mojave desert FACE 
experiment that showed eCO2-driven increases in soil carbon, but not biomass33. We identified 
large areas not currently sampled with eCO2 experiments, particularly in the tropics and high 
latitudes (Fig. 3c,d, Extended Data Fig. 6), where new experiments would help reduce 
uncertainties.



Fig. 3. Effect of elevated CO2 (~240 ppm) on soil carbon stocks upscaled from 108 CO2 experiments. 
(a,b) Relative effect of elevated CO2 on soil carbon upscaled based on a meta-forest approach with data 
from CO2 experiments. (c, d) Standard error in (a). Green dots represent the location of the CO2 
experiments included in the analysis. (e,f) Difference between expected CO2 effects on soil carbon stocks 
based on CMIP5 models and upscaled based on experiments (shown in a). Expected values result from 
the relationship between βsoil and βplant coded in models. Positive values (red color) indicate an 
overestimation by models; negative values (blue color) indicate an underestimation by models. Shaded 
areas between -15 to 15 and from 60 to 90 degrees in latitude represent ecosystems not well sampled by 
experiments and are excluded from the analysis. 

Data-model comparisons
In addition to the negative relationship between βsoil and βplant, we also found a significantly 
negative relationship between βsoil and the effect of eCO2 on aboveground biomass production 
(Extended Data Fig. 1b, R2=0.55, p<0.001), which is strongly correlated with litter production 
(Extended Data Fig. 1a, R2=0.63, r=0.81, p<0.01). This result questions the positive relationship 
between litter inputs and soil carbon stocks encoded in most ecosystem models. Thus, we 



investigated the relationship between βsoil and βplant in models from three different model 
ensembles (description in Extended Data Table 2). First, models from the FACE model-data 
synthesis project (FACE-MDS)34 mimic the experimental treatment in six eCO2 experiments and 
allow for a direct comparison with respective observations. While observations from the six 
experiments included in FACE-MDS showed a negative relationship between βsoil and βplant (Fig. 
4a, blue line, R2=0.99, p<0.001), the twelve models simulated a positive relationship when 
pooled by experiment (Fig. 4a, red line, R2=0.91, p<0.01). The relationship across all models 
individually was positive as well (Extended Data Fig. 7a, dashed line, R2=0.37, p<0.0001), and 
none of the individual models was able to reproduce the observations. Second, to investigate 
whether the same relationships emerge across the globe and in simulations where CO2 increases 
gradually, we evaluated global century-scale relationships between βsoil and βplant from the 
TRENDY and CMIP5 model ensembles (Fig. 4b,c). Overall, TRENDY and CMIP5 models did 
not simulate a negative relationship either (Fig. 4b,c). Instead, most models simulated a positive 
relationship and the vast majority of model simulations fell into the upper-right quadrant 
(Extended Data Fig. 7b,c), reflecting that inputs drive SOC accumulation in the first-order 
decomposition soil model structure common to the models. 

In TRENDY and CMIP5 model simulations, βsoil was estimated over a much longer time period 
than in experiments (Extended Data Table 2). Given the relatively slow turnover times of SOC 
pools, and the slow pace of evolutionary pressures on both plants and soil microbes, long-term 
effects likely differ to those found in experiments. However, first order models also simulate a 
positive relationship βplant:βsoil when they are forced to simulate the temporal scale of 
experiments (Fig. 4a), suggesting important processes are missing in models. By including 
explicit links between plant growth, belowground carbon allocation and SOC decomposition 
rates, models may more effectively reproduce the observed negative relationship between βsoil 
and βplant and improve long-term projections.

Figure 4. Comparison of modeled and measured relationships between aboveground biomass and 
soil carbon responses to CO2. (a) Relationship observed (blue) and modeled (red) across 6 eCO2 
experiments. Model results are based on 12 models applied to the same 6 experiments with a common 
forcing and initialization protocol. Experiments included are Duke FACE (DUKE), Kennedy Space 
Center (KSCO), Nevada Desert FACE (NDFF), Oak Ridge FACE (ORNL), Prairie PHACE (PHAC), and 
Rhinelander (RHIN). Regression line across observations in (a) is based on a quadratic meta-regression 
model. Modeled simulations averaged in (a) for each experiment are from the FACE Model-Data-
Synthesis project phase 2. (b,c) Global-scale relationship simulated by ecosystem models (b) from the 
TRENDY ensemble for the historical increase in CO2 since the year 1700 and (c) from the CMIP5 



ensemble for an increase in CO2 from 372 ppm to 616 ppm as in eCO2 experiments. Dotted lines are the 
1:1 line.

To estimate the error in terrestrial ecosystem model projections of βsoil caused by ignoring the 
tradeoff between βsoil and βplant, we calculated “expected”-βsoil as a function of our upscaled βplant 
and the ratio βsoil/βplant simulated by CMIP5 models. CMIP5 models overestimated βsoil for 
forests (Fig. 3e,f, red color). In contrast, CMIP5 models underestimated βsoil in large areas 
dominated by grasses (Fig. 3e,f, blue color), likely because they do not account for the effects of 
rhizodeposition on βsoil

21. Results with TRENDY models were similar (Extended Data Fig. 8).

Discussion
In summary, our synthesis of experiments shows that soil carbon stocks can increase by ~5% in 
response to a 65% step increase in CO2 concentrations, with a strong coupling between CO2-
driven changes in plant aboveground biomass and soil carbon. However, the coupling between 
plant biomass and soils is an inverse relationship (Fig. 2a, Extended Data Fig. 1b), opposite to 
that simulated by many ecosystem models (Fig. 4). The effect of eCO2 on soil carbon storage is 
dependent on a fine balance between changes in inputs and changes in turnover18, where the 
latter is dependent on root-microbe-mineral interactions in the rhizosphere. Our results suggest 
that rhizosphere responses, and especially priming, explain much of the variation in βsoil across 
experiments (Fig. 2). Most models focus on carbon inputs and underestimate rhizosphere 
effects11,20,35, likely explaining the disagreement in βsoil between observations and models (Figs. 
3,4). We propose a framework to explain βsoil based on nutrient acquisition strategies15,36,37. On 
one end of the spectrum, substantial acquisition of soil N is possible via priming5 in ECM plants, 
causing a stronger plant biomass sink at the expense of soil carbon accrual. On the other end, low 
nutrient availability strongly constrains the plant biomass sink38 in AM plants. However, the 
ecosystem-level sink is not necessarily eliminated; instead, eCO2 can trigger soil carbon accrual 
through plant carbon-allocation belowground21,23,24. When plant growth is severely limited by N 
or other nutrients, eCO2 may only cause a transient priming effect in ECM, with high soil 
decomposition and insufficient nutrient uptake rendering no ecosystem-level sink39.

Our results underline the potential of grassland soils to store carbon as atmospheric CO2 levels 
continue to rise. The results also suggest that current state of the art models may overestimate the 
soil carbon sequestration potential of forests in large parts of the world. Previous studies suggest 
that the potential of vegetation to take up CO2 will slow later in this century due to nutrient 
constraints12–14,38,39. Our synthesis indicates that these nutrient constraints extend to carbon 
storage in ecosystems as a whole — through a partial tradeoff between increased plant growth 
and soil carbon storage whereby ecosystems where plant growth is more nutrient limited 
accumulate more carbon belowground. The apparent mismatch between observations and how 
most models represent the biomass-to-soil link suggests that many terrestrial ecosystem models 
do not adequately represent the critical processes driving soil carbon accumulation. Models are 
evolving to include more sophisticated representations of soil nutrient cycling, and some now 
include microbial activity explicitly36,40. This change towards coupled carbon-nutrient cycling 
mediated by plant-soil interactions is important for more realistically and accurately modeling 
the carbon cycle today and for projecting the land sink in the future.
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Methods
Overview. Here, we collect data on the effects of elevated CO2 on soil carbon stocks (βsoil) in 
both relative and absolute terms and synthesize them through meta-analysis. We also collect data 
on climatic, experimental, and vegetation characteristics that could potentially explain variability 
in βsoil (“predictors”). In Fig. 1, we show a descriptive meta-analysis of overall βsoil across 
different predictor factors. We next combine the strengths of meta-analysis (e.g. accounting for 
within-study variability, weights) with random-forest (e.g. computational efficiency, 
nonlinearities, interactions) – meta-forest – to quantify the relative importance of 19 predictors in 
explaining variation in βsoil in the dataset. In Fig. 2, we describe the regression between βsoil and 
its most important predictor (βplant), and explore the possible mechanisms underlying this 
relationship. In Fig. 3, we apply the data-trained meta-forest model to upscale βsoil. Finally, we 
investigate whether the emerging relationship between βsoil and βplant found in experiments is 
represented in models (Fig. 4).

Data collection. We have compiled the openly available Report of Mutualistic Associations, 
Nutrients, and Carbon under eCO2 (ROMANCE) v1.0 dataset41 with data on soil organic carbon 
(SOC) and plant biomass from eCO2 experiments. Expanding van Groenigen et al’s 2014 meta-
analysis7 of 53 experiments reporting soil organic carbon (SOC) data, we used Google Scholar to 
gather a total of 166 studies related to eCO2 experiments, published from 1st January 2013–1st 
May 2019. Search terms were either “elevated CO2”, “increased CO2” or “CO2 enrichment” and 
either “soil carbon” or “plant biomass.” To account for experiments that could have been omitted 
by van Groenigen et al. prior to 2013, we consulted the list of CO2 experiments from 
INTERFACE (https://www.bio.purdue.edu/ INTERFACE/experiments.php), the Global List of 
FACE Experiments from the Oak Ridge National Laboratory 
(http://facedata.ornl.gov/global_face.html), the ClimMani database on manipulation experiments 
(www.climmani.org) and the database described by Dieleman et al.42. We recorded the structure 
of each eCO2 experiment from the papers, taking into consideration the start date and total 
duration of the experiment (years), and the location of the experiment (coordinates). When the 
data were presented in figures, mean values and standard error were extracted using GraphClick.

For this meta-analysis, only one datum per experiment was considered to avoid 
pseudoreplication. The effects of eCO2 on soil C pools are modulated by increases in soil C 
inputs from plant litter as well as feedbacks between plants and soils altering soil biogeochemical 
cycles that can take several years to occur. Thus, we used the most recent measurements in each 
experiment as the most representative data of the effect of eCO2 on SOC.

For plant biomass, measurements across different time-points were combined so that only 
one effect size was analyzed per study. The combined effect size and variance that account for 
the correlation among the different time-point measurements was calculated following the 
method described in Borenstein et al.43, using a conservative approach by assuming non-
independency of multiple outcomes (r = 1) and performed using the MAd package in R44.  We 
collected data on both aboveground biomass stocks and production. When aboveground biomass 
production data were unavailable, we collected plant data in the following order or preference: 
NPP, aboveground biomass increment, foliage production and yield. When biomass or soil data 
were not reported, studies were excluded. We also included the data on litter production reported 
by Song and Wan45 to study the interactions with aboveground biomass and production data.

Soil carbon measurements in the dataset were reported at different depths, varying from 5 
to 30 cm maximum depth, with an average depth of ~20 cm. When upscaling eCO2 effects on 



SOC through meta-forest, we included a fixed value of 0-30 cm in depth as a covariate to control 
for the influence of soil depth, interpolating predictions for the same soil depth of models.

SOC data reported as concentrations were transformed to stocks (g m-2) using soil bulk 
density. When bulk density was not reported, we used data reported for similar experiments 
within the same site or assumed a bulk density of 1 g cm-3. Assumptions are indicated in the 
dataset.

Studies from ROMANCE v1.0 were not included in the meta-analysis if they met any of 
the following exclusion criteria: i) studies with no SOC data; ii) papers with no plant biomass 
data; iii) studies where the duration of the eCO2 experiment lasted less than 0.5 years. A total of 
138 independent experiments were collected, of which, 108 were included in the final analysis 
based on these exclusion criteria.

Meta-analysis. Two types of effect size were calculated:1) the log response ratio (mean response 
in elevated-to-ambient CO2 plots), to measure effect sizes in relative terms (%) for each 
experiment; and 2) the raw mean difference, to compute effect sizes in absolute terms (g m-2). 
For each experiment, we collected data on SOC stocks, standard deviation and sample size under 
elevated and ambient (control) CO2 plots. Effect sizes were calculated using the escalc function 
from the R package metafor46. We calculated overall effects in a weighted, mixed-effects model 
using the rma.mv function in metafor. The potential non-independency of studies within the 
same site (e.g. different species, different treatments) was accounted for by including “site” as a 
random effect. Effect size measurements from individual studies in the meta-analysis were 
weighted by the inverse of the variance47. 13% of studies did not report standard deviations, 
which were thus imputed using Rubin and Schenker’s48 resampling approach from studies with 
similar means. These calculations were performed using the R package metagear49.

Variable Importance and upscaling approach. 19 potential moderators were coded (Extended 
Data Table 1). Including all 19 moderators in a meta-regression risks overfitting the model. 
Therefore, we applied the R package ‘metaforest’50 to identify potentially relevant moderators in 
predicting βsoil across the complete dataset of 108 studies. The approach is based on the machine-
learning ‘random forest’ algorithm, which is robust to overfitting, and is integrated in a meta-
analytic context by incorporating the variance and weight of each experiment as in classic meta-
analysis (see above). 

As an initial step, we conducted variable pre-selection by including the 19 predictors in 
metaforest with 10,000 iterations and replicated 100 times with a recursive algorithm in the 
preselect function from metafor46. Moderators that consistently displayed negative variable 
importance (i.e., that showed a reduction in predictive performance) were dropped using the 
preselect_vars function. Moderators that improved predictive performance were then carried 
forward to optimize the model. Parameters of the meta-forest model were optimized using the 
train function from the caret package51, and calculated 10-fold cross validated R2 with 75% of 
the data used as training data and 25% for validation. Unlike maximum likelihood model-
selection approaches, this method can handle many potential predictors and their interactions and 
considers non-linear relationships. Partial dependence plots were produced which visualize the 
association of each moderator with the effect size, while accounting for the average effect of all 
other moderators.

As a sensitivity test, and to identify important interactions between predictors, we ran an 
alternative model-selection procedure using maximum likelihood estimation. For this purpose, 



we used the rma.mv() function from the metafor R package46 and the glmulti() function from the 
glmulti R package52 to automate fitting of all possible models containing the 5 most important 
predictors and their interactions (level=2). Model selection was based on Akaike Information 
Criterion corrected for small samples (AICc), with the relative importance value for a particular 
predictor equal to the sum of the Akaike weights (probability that a model is the most plausible 
model) for the models in which the predictor appears. 

Finally, the data-trained meta-forest model was applied to global gridded data of pre-
selected predictors (see Extended Data Table 1 for gridded data sources) to estimate the effect of 
elevated CO2 on SOC. The resulting global maps are geographically constrained to ecosystems 
best represented by experiments. We remove the estimates for latitudes comprised between -15 
to 15 degrees, corresponding to tropical ecosystems not sampled by experiments (Fig. 3c, green 
dots), and from 60 to 90 degrees. 

Nitrogen fertilization and soil disturbance. We used the information reported in the papers to 
assess whether the soils were exposed to external inputs of N fertilization (“yes”) or not (“no”). 
Experiments were also classified as either having "disturbed" or "intact" soils as noted in the 
papers. If not, experiments which used pots or reconstructed soils were categorized as disturbed. 
We used the same approach and classification as in ref53.

To upscale the effect of nitrogen fertilization and disturbance on βsoil, we reclassified the 
ESA CCI land cover map https://www.esa-landcover-cci.org/?q=node/164. Reclassification files 
are accessible online https://figshare.com/account/projects/74721/articles/11710155. For 
example, we classify “Cropland, rainfed”-“Herbaceous cover” (class 11) and “Cropland, 
irrigated or post-flooding” (class 20) as fertilized.

Nutrient-acquisition strategy classification. We considered the importance of the type of 
symbiotic association as a driver of eCO2 effects on soil C. Mycorrhizal status includes AM, 
ECM and a mix of AM and ericoid (ER) mycorrhizal fungal associations. Here, we also 
considered some plant species known to associate with N-fixing microorganisms. We refer to 
this classification as "Symbiotic", because it includes both mycorrhizal status and N-fixation. 
Together, these four symbiosis types represent different mechanisms plants use to acquire 
nutrients15.

We assessed the impact of the dominant symbiotic association type by classifying all 
studies as ECM, AM, AM-ER, and N-fixers, using the check-lists by Wang et al.54 and Maherali 
et al.55, with additional classifications derived from the literature. Species that associate with 
both ECM and AM (e.g. Populus spp.) were classified as ECM because these species can 
potentially benefit from increased N-availability due to the presence of ECM fungi56. Most of the 
N-fixers in the dataset were associated with both N-fixing symbionts as well as AM fungi, but 
we classified them as N-fixers because these species can potentially benefit from N acquired 
through N-fixation.

MAOM data. We retrieved data on mineral-associated organic matter (MAOM) and particulate 
organic matter (POM) for the subset of studies employing size or density fractionation of soil 
organic matter (n = 19). Because of methodological differences, POM is loosely defined as 
organic matter recovered in the total coarse (typically > 53µm) or light (typically < 1.6 g cm-3) 
soil fraction. Where MAOM was not reported, it was estimated based on mass balance by 
subtracting the POM fraction from total C. 

https://www.esa-landcover-cci.org/?q=node/164
https://figshare.com/account/projects/74721/articles/11710155


FACE Model-Data-Synthesis. We use data from the FACE Model-Data Synthesis (FACE-
MDS) Project Phase 234,57–61, in which 12 models were applied to 6 eCO2 experiments. Each 
model covered the time periods representative of the FACE experiments, following a 
standardized protocol including meteorological forcing, CO2 concentration, site history, and 
vegetation characteristics for each site.

Experiments included in the FACE-MDS Phase 2 were Duke FACE62, Kennedy Space 
Center63, Nevada Desert FACE64, Oak Ridge FACE38, Prairie PHACE65,66 and Rhinelander67. 
Models included were CLM4.068, CLM4.5, DAYCENT, CABLE, JULES69, LPJ-GUESS, OCN, 
TECO, ORCHIDEE70, GDAY, ISAM, and SDGVM. See ref.60 for an overview of model 
structures and processes. As in the observational data, we compared relative changes in 
aboveground biomass and soil carbon stocks of each experiment for eCO2 relative to control 
treatments.

TRENDY models We use model outputs from the TRENDY v7 S1 simulations, where each 
model is driven by standardized forcings of observed increasing CO2 for years 1700-2018 CE, 
and constant preindustrial climate and land use. We selected six models that provided outputs for 
aboveground vegetation carbon (taken as the sum of wood and leaf carbon), soil carbon, and 
NPP (CABLE-POP71, CLM5.072, ISAM73, LPJ-GUESS74, ORCHIDEE70, ORCHIDEE-CNP75). 
Wood carbon often includes coarse roots in models. Here, we evaluate relative changes and 
numbers are not sensitive to the exact definition. Description of models can be found in ref76. 
Briefly, ORCHIDEE-CNP includes an interactive N and phosphorus cycle, whereas ORCHIDEE 
is a C-only model. The rest have coupled C-N cycles. Relative changes were calculated based on 
means over ten initial years (i, vary depending on the model) and  j = 2008-2017 as (Cj – Ci)/Ci. 
To reduce effects of discrepant response timescales of soil C and biomass, we estimated the 
steady-state soil C storage (C*) as: 

𝐶∗ =
𝐶𝑗

1 ―  
𝛥𝐶𝑗

𝑁𝑃𝑃𝑗
  ,

where 𝛥𝐶𝑗 is the change in soil C over the years 2008-2017. The relative change in soil C is then 
taken as (𝐶∗ ―  𝐶𝑖) / 𝐶𝑖. Data shown in Fig. 4 is based on pooled data from all six models. We 
randomly sampled outputs from N gridcells for each model in order not to bias the visualization 
towards models with a large number of gridcells (i.e. higher resolution). N is chosen as the 
number of gridcells in the model with the coarsest resolution.

CMIP5 Models - Expected βsoil. We used projected SOC (Csoil) and biomass pool (Cveg) 
responses to rising CO2 as simulated by CMIP5 models as a comparison for the upscaled values 
we derive from experiments. Specifically, we used data from the experiment “esmFixClim1”, in 
which CO2 is increased by 1% per year from 285 ppm. In the esmFixClim1 experiment, the 
increase in [CO2] only affects vegetation and not the radiation code of the models, enabling a 
quantification of the effect of eCO2 in isolation (e.g. excluding warming), and thus a close 
comparison with eCO2 experiments. At a [CO2] increasing rate of +1% year-1, [CO2] reaches 372 
ppm (average concentration in ambient CO2 plots in the dataset) in the 28th year and 616 ppm 
(average concentration in elevated CO2 plots in the dataset) in the 78th year. ΔCveg and ΔCsoil 
were calculated as the difference between the respective carbon stocks in the 28th and the 78th 
year. 



Though plants in both experiments and our CMIP5 dataset see a similar increase in [CO2], 
experiments simulate a step increase in CO2 over half a decade, whereas the increase in CO2 in 
CMIP5 models is much slower and over the course of 50 years (Extended Data Table 2). As soil 
organic matter turns over slowly, the resulting βsoil from experiments is lower than ΔCsoil from 
models, and the comparison not meaningful. We thus focus on the specific relationship βplant:βsoil 
in experiments vs. models. Here, we calculated the spatially explicit ratio of ΔCvegCMIP to 
ΔCsoilCMIP. This was done for five Earth System Models in the CMIP5 ensemble with 
esmFixClim1 simulations (CanESM2; GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-LR; MPI-
ESM-LR). Then, we calculate “expected” βsoil from CMIP5 applying the same βplant used for 
experiments with the model-average ΔCvegCMIP to ΔCsoilCMIP ratio:

 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 (𝑀𝑔 𝐶 ℎ𝑎―1) = 𝛽𝑝𝑙𝑎𝑛𝑡 ×
∆𝐶𝑠𝑜𝑖𝑙𝐶𝑀𝐼𝑃

∆𝐶𝑣𝑒𝑔𝐶𝑀𝐼𝑃
  

With βplant as the effect of elevated CO2 on plant biomass derived from eCO2 
experiments. We then computed the difference between the expected (modeled) and observed 
(upscaled) effects of elevated CO2 on βsoil. As both expected and upscaled βsoil use the same βplant, 
this transformation allows us to directly tackle the consequences of the different βsoil/βplant ratios 
between experiments and models. We acknowledge, however, that the ratio is likely to change 
over time, so the comparison needs to be interpreted with caution. We found, however, that first-
order models also simulate a positive relationship between βsoil and βplant when forced to simulate 
the same duration as experiments (Fig. 4a), suggesting that the sign of the βsoil:βplant relationship 
in CMIP5 models would not likely reverse if CMIP5 models would be forced to simulate a step 
increase in CO2 over 5 years as in experiments. 

Code availability
The R code used in the analysis presented in this paper is available in GitHub and can be 
accessed at https://github.com/cesarterrer/SoilC_CO2

Data availability
All the empirical data that support the main findings of this study have been deposited in 
Figshare: (https://figshare.com/account/home#/projects/74721) and GitHub 
(https://github.com/cesarterrer/SoilC_CO2). FACE-MDS data can be accessed at 
https://www.osti.gov/dataexplorer/biblio/dataset/1480327. CMIP5 data can be accessed at 
https://esgf-index1.ceda.ac.uk/search/cmip5-ceda/. TRENDY data can be requested at 
http://dgvm.ceh.ac.uk/index.html.
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Extended Data
Extended Data Figures

Extended Data Figure 1 | Relationship of the effects of eCO2 on aboveground biomass 
production with litter production (a) and soil carbon storage (b). Results for non-fertilized 
field eCO2 experiments (n=10, and n=35, respectively). Dots represent individual experiments, 
with dot size in (b) proportional to the weights in the meta-regresion.



Extended Data Figure 2 | Variable importance of 19 predictors of the effects of CO2 on soil 
carbon and biomass stocks. (a-b) Variable importance of the effect of CO2 on soil carbon 
stocks in (a) relative (%) and (b) absolute terms (g m-2) across the full dataset (n=108). (c) 
Variable importance of the effect of CO2 on soil carbon stocks (%) across the subset of eCO2 
experiments in “intact” soils (n=73). (d) Variable importance of the effect of CO2 on plant 
aboveground biomass (n=138). Variable importance in (a,b,d) is quantified based on a meta-
forest model. Variable importance in (c) is quantified based on the sum of AICc weights, which 
allows for the quantification of the importance of interactions between predictors. As an initial 
step, moderators that consistently displayed negative variable importance (i.e., that showed a 
reduction in predictive performance) were automatically dropped.



Extended Data Figure 3 | Effects of elevated CO2 on soil carbon and plant biomass in the 
subset of nitrogen-fertilized eCO2 studies (n=35), expressed as a regression (a) and overall 
effects in meta-analysis (b). Dot sizes in (a) represent the individual studies and are drawn 
proportional to the weights in the model. The regression with the subset of non-fertilized studies 
is also shown here for comparison. Dots in (b) represent the effect sizes and 95% confidence 
intervals from the meta-analysis.



Extended Data Figure 4 | Analysis of variables potentially explaining the observed effects of 
elevated CO2 on soil carbon. Effects of elevated CO2 on root biomass (n=45), fine-root 
production (n=11), litter C:N (n=16) and background soil carbon stocks (n=38), between 
ecosystem types (grassland vs. forest) and nutrient-acquisition strategies (arbuscular mycorrhizae 
–AM– vs. ectomycorrhizae –ECM–).



Extended Data Figure 5 | Partial dependence plots of the six most important predictors of 
the effect of elevated CO2 on soil carbon stocks across 108 experiments. The figure shows the 
predicted CO2 effect (yi) in relative (a) and absolute terms (b) across each predictor and the most 
important interaction between predictors (right panels) in a random-forest meta-analysis. Error 
bands represent 95% confidence intervals. Partial regression plots give a graphical depiction of 
the marginal effect of a variable on the response and the shape and direction of the relationship. 
Little variation in yi across the values of a predictor generally reflects the low predictive power 
of the predictor for yi. However, important predictors may show little variation in yi when 
involved in interactions, so the right panels show the most important interaction in the model. 
More details about the different predictors in Extended Data Table 1. From a total of 19 
predictors, only the six most important predictors and the most important interaction are shown 
here.



Extended Data Figure 6 | Representativeness of the upscaling predictors of the effect of 
elevated CO2 on soil carbon stocks. Histograms showing the distribution of both the predictors 
in the training dataset of CO2 experiments and the data used to upscale the global distribution of 
the effect. Predictions exclude regions between -15 to 15 and from 60 to 90 degrees latitude due 
to the lack of experiments.



Extended Data Figure 7 | Relationship between the effects of CO2 on aboveground biomass 
and soil carbon across individual models from three model ensembles. (a) FACE Model Data 
Synthesis Phase 2. Individual model results are represented by colored symbols and lines. Each 
symbol represents one site; lines represent model-specific linear regressions. To ease 
interpretation of the results and the comparison with Fig. 4 axis limits are set. Dashed line and 
error band represent the linear regression line and standard error across all experiment-by-model 
results. (b) TRENDY v7 models. (c) CMIP5 models.
 



Extended Data Figure 8 | Difference between expected CO2 effects on soil carbon stocks 
based on TRENDY models and upscaled based on experiments. Expected values result from 
the relationship between βsoil and βplant coded in models. Positive values (red color) indicate an 
overestimation by models; negative values (blue color) indicate an underestimation by models.



Extended Data Tables
Extended Data Table 1 | List of predictors used to examine and upscale the effects of 
elevated CO2 on soil carbon.

Predictor Source Upscaling

Mean annual temperature (MAT) reported in papers scaled from CRU77

Mean annual precipitation (MAP) reported in papers scaled from CRU77

Duration of the experiment reported in papers non-important

Experiment type reported in papers scaled for FACE only

Ecosystem type reported in papers scaled from ESA land cover: 
http://maps.elie.ucl.ac.be/CCI/view

er/download.php

Vegetation type reported in papers non-important

Symbiotic type reported in papers scaled from ref78 

Effect of elevated CO2 on plant 
biomass

reported in papers scaled from ref12

Disturbance reported in papers scaled from ESA land cover: 
http://maps.elie.ucl.ac.be/CCI/view

er/download.php

Nitrogen fertilization reported in papers scaled from ESA land cover: 
http://maps.elie.ucl.ac.be/CCI/view

er/download.php

Soil carbon stock in control plot reported in papers scaled from ref79

Soil depth of carbon measurements reported in papers scaled for 0-30 cm depth

Soil C:N ratio 80 80

Soil pH 79 Non-important

Soil available P 81 81

Maximum Leaf Area Index 
(LAImax)

1 km year 2012 v2
land.copernicus.eu/global/products/l

ai

land.copernicus.eu/global/products/l
ai

Mean Leaf Area Index (LAImean) 1 km year 2012 v2 non-important

Maximum fraction of absorbed 
photosynthetically active radiation 

(fAPARmax)

1 km year 2012 v2
land.copernicus.eu/global/products/

fapar

land.copernicus.eu/global/products/
fapar

Mean fraction of absorbed 
photosynthetically active radiation 

(fAPARmean)

1 km year 2012 v2 non-important



Extended Data Table 2 | Synthetic description of the basic characteristics of three model 
ensembles in terms of their treatment of CO2 effects.
Model ensemble Spatial 

extent
CO2 concentration Time CO2 

exposure
CO2 
increase

FACE-MDS 2 Site-level 
(6 sites)

From current levels to elevated CO2 
(“future”)

~ 10 years Step 
increase

TRENDY v7 S1 Global From preindustrial levels to current CO2 
(“historical”)

1700-2018 Gradual

CMIP5 
esmFixClim1

Global From current levels to elevated CO2 
(“future”)

50 years Gradual

Experiments Site-level From current levels to elevated CO2 
(“future”)

~ 1-10 years Step 
increase



Supplementary Table 1 | Overview of CO2 enrichment experiments included in the 
analysis. 
Experiment Type Ecosystem Duration Citation

ArizonaFACE - wheat - high N FACE Agricultural 1.5 82

China FACE rice - high N - weakly FACE Agricultural 3 83

China FACE rice - high N - strongly FACE Agricultural 3 83

China FACE wheat - low N FACE Agricultural 4 84

China FACE wheat - high N FACE Agricultural 4 84

China OTC - low N OTC Tree Stand 5 85,86

China OTC - high N OTC Tree Stand 5 85,86

DUKE FACE FACE Tree Stand 9 87

EucFACE FACE Tree Stand 4 39

FACTS II - Aspen FACE Tree Stand 11 88

FACTS II - Aspen/Birch FACE Tree Stand 11 88

GiFACE FACE Grassland 13.5 89

Hohenheim FACE Agricultural 4.5 90

Jasper Ridge - sandstone OTC Grassland 5.41 91

Jasper Ridge - serpentine OTC Grassland 3 91

JRGCE - Control FACE Grassland 14 92, pers.comm

JRGCE - N FACE Grassland 14 92, pers.comm

Merritt Island OTC Tree Stand 11 63, pers.comm

NewZealandFACE FACE Grassland 13 93

New Zealand Greenhouse Chamber Grassland 0.75 94

New Zealand OTC - P. radiata OTC Tree Stand 6 95

New Zealand OTC - N. fusca OTC Tree Stand 6 95



ORNL FACE FACE Tree Stand 11 96

Placerville - low N OTC Tree Stand 5.5 97

Placerville - medium N OTC Tree Stand 5.5 97

Placerville - high N OTC Tree Stand 5.5 97

POPFACE - alba FACE Tree Stand 2 98

EUROFACE - alba FACE Tree Stand 6 99

POPFACE - euramericana FACE Tree Stand 2 98

POPFACE - euramericana FACE Tree Stand 6 99

POPFACE - nigra FACE Tree Stand 2 98

POPFACE - nigra FACE Tree Stand 6 99

Shortgrass Grassland OTC Grassland 5 100

SoyFACE FACE Agricultural 6 101

FACE Stillberg - larix FACE Tree Stand 9 102,103

FACE Stillberg - pinus FACE Tree Stand 9 102,103

SwissFACE- grass - low N FACE Grassland 10 104

SwissFACE- grass - high N FACE Grassland 10 104

SwissFACE- clover - low N FACE Grassland 10 104

SwissFACE- clover - high N FACE Grassland 10 104

Tallgrass Grassland OTC Grassland 8 105

UMBS - aspen OTC Tree Stand 0.5 106

WSL - loam, low N OTC Tree Stand 3.75 107

WSL - loam, high N OTC Tree Stand 3.75 107

WSL - sand, low N OTC Tree Stand 3.75 107

WSL - sand, high N OTC Tree Stand 3.75 107



Nevada Desert FACE FACE Shrubland 10 108,109

BangorFACE - alnus FACE Tree Stand 4 99,110

BangorFACE - betula FACE Tree Stand 4 99,110

BangorFACE - fagus FACE Tree Stand 4 99,110

Tas FACE FACE Grassland 6 111

Ginninderra Chamber Grassland 2 42

Sky Oaks Chamber Shrubland 6 112

Antwerp OTC OTC Tree Stand 3.75 113

Lancaster - Abies alba Chamber Tree Stand 1.25 114

Lancaster - Abies alba Chamber Tree Stand 1.25 114

Lancaster - Betula pendula Chamber Tree Stand 1.25 114

Lancaster - Betula pendula Chamber Tree Stand 1.25 114

Lancaster - Carpinus betulus Chamber Tree Stand 1.25 114

Lancaster - Carpinus betulus Chamber Tree Stand 1.25 114

Lancaster - Fagus sylvatica Chamber Tree Stand 1.25 114

Lancaster - Fagus sylvatica Chamber Tree Stand 1.25 114

Lancaster - Pinus sylvestris Chamber Tree Stand 1.25 114

Lancaster - Pinus sylvestris Chamber Tree Stand 1.25 114

Lancaster - Quercus robur Chamber Tree Stand 1.25 114

Lancaster - Quercus robur Chamber Tree Stand 1.25 114

BioCON - Low N FACE Grassland 10 http://www.cedarcreek
.umn.edu

BioCON - High N FACE Grassland 10 http://www.cedarcreek
.umn.edu

BioCON - legumes - Low N FACE Grassland 10 http://www.cedarcreek
.umn.edu



BioCON - legumes - High N FACE Grassland 10 http://www.cedarcreek
.umn.edu

Gainesville - Arachis glabrata Chamber Agricultural 6 115

Gainesville - Paspalum notatum Chamber Agricultural 6 115

Swiss Central Alps OTC Grassland 3.17 116

Swiss Central Alps F OTC Grassland 3.17 116

Swiss Jura Chamber Grassland 6 117

CLIMAITE FACE Shrubland 8 118

CLIMAITE D FACE Shrubland 8 119

CLIMAITE T FACE Shrubland 8 119

CLIMAITE TD FACE Shrubland 8 119

MBS - low N OTC Tree Stand 1.5 120

MBS - high N OTC Tree Stand 1.5 120

PHACE - ambient T FACE Grassland 8 65

PHACE - elevated T FACE Grassland 8 65

Rice-FACE - LN FACE Agricultural 2 121,122

Rice-FACE - HN FACE Agricultural 2 121,122

Rice-FACE2 - LN FACE Agricultural 7 123,124

Rice-FACE2 - HN FACE Agricultural 10 123,124

Rice-FACE3 FACE Agricultural 5 125

T-FACE - ambient T FACE Agricultural 3 126,127

T-FACE - elevated T FACE Agricultural 3 126,127

OTC Changbai Mountain Research OTC Tree Stand 10 128,129

Maoxian Field China Chamber Tree Stand 6 130

SoilFACE4 - LN FACE Agricultural 0.5 131



SoilFACE4 - HN FACE Agricultural 0.5 131

SoilFACE4 - LN FACE Agricultural 0.5 131

SoilFACE4 - HN FACE Agricultural 0.5 131

OTC New Delhi OTC Agricultural 2 132

FACE NBRI - teak FACE Tree Stand 3.83 133

FACE NBRI - butea FACE Tree Stand 3.83 133

OTC Hyperaba India - 550ppm - C4 OTC Agricultural 5 134

OTC Hyperaba India - 700ppm - C4 OTC Agricultural 5  

OTC Hyperaba India - 550ppm - C3 OTC Agricultural 5 134

OTC Hyperaba India - 700ppm - C3 OTC Agricultural 5 134

OTC CRRI Cuttack India OTC Agricultural 3 135

FACE Sapporo - brown soil FACE Tree Stand 10 136, pers.comm

FACE Sapporo - volcanic ash FACE Tree Stand 10 137, pers.comm

Glasshouse University of Paris XI Chamber Agricultural 0.67 138

SAWFACE Spain FACE Wetland 2 139

Myc: mycorrhizal type (AM: arbuscular mycorrhizae, ECM: ectomycorrhizae), F: nitrogen-
fertilization treatment, W: high water treatment, T: high temperature treatment, D: drought 
treatment, P: phosphorus treatment, FACE: Free Air Carbon Dioxide Enrichment, G: 
Greenhouse/Growth chamber, OTC = Open Top Chamber




