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Abstract

Terrestrial ecosystems remove about 30% of the carbon dioxide (CO,) emitted by human
activities each year!, yet the persistence of this carbon sink depends partly on how plant biomass
and soil organic carbon (SOC) stocks respond to future increases in atmospheric CO, (refs. 2,3).
Although plant biomass often increases in elevated CO, (¢CO,) experiments*®, SOC has been
observed to increase, remain unchanged or even decline’. The mechanisms that drive this
variation across experiments remain poorly understood, creating uncertainty in climate
projections®®. Here we synthesized data from 108 eCO, experiments and found that the effect of
eCO, on SOC stocks is best explained by a negative relationship with plant biomass: when plant
biomass is strongly stimulated by eCO,, SOC storage declines; conversely, when biomass is
weakly stimulated, SOC storage increases. This trade-off appears to be related to plant nutrient
acquisition, in which plants increase their biomass by mining the soil for nutrients, which
decreases SOC storage. We found that, overall, SOC stocks increase with eCO; in grasslands
(8+2%) but not in forests (0+2%), even though plant biomass in grasslands increase less (9+3%)
than in forests (23+2%). Ecosystem models do not reproduce this trade-off, which implies that
projections of SOC may need to be revised.



Introduction

The future of the land sink, especially of soil carbon, is particularly uncertain®. Soils can become
either sources or sinks of carbon with rising levels of atmospheric CO,, depending on the
prevalence of gains via photosynthesis or losses via respiration®!°. This uncertainty in terrestrial
ecosystem model projections reflects uncertainty in both the mechanisms and the parameter
values controlling soil carbon cycling under eCO,!'!.

Plant growth generally increases in response to eCO,*!2, with soil nutrients identified as the
dominant factor explaining variability across experiments!?-15, The effect of eCO, on soil carbon
stocks (Bsoi1) is more equivocal. Although the expectation is that soil carbon will accrue as eCO,
increases plant growth!®, a few experiments show increases in Bg,;, many show no change, and
some even show losses’. The observed variation in By, across experiments is puzzling, and there
is large disagreement regarding the dominant mechanisms explaining this variation”-!7-18,

A positive relationship between the effects of eCO, on plant biomass and soil carbon pools is
expected if increased plant production under eCO, increases carbon inputs (litter) into the soil.
Indeed, a positive relationship between inputs and soil carbon storage is formalized in first order
kinetics'® and is applied in most terrestrial ecosystem models!®?°. Because the effect of eCO, on
plant aboveground biomass (Byiant) 1s strongly correlated with the effect of eCO; on litter
production (Extended Data Fig. 1a, 7=0.81) and on root production?!, a positive relationship
between Bpiane and Pyoii can thus be expected based on first order kinetics. This hypothesis,
however, ignores soil carbon losses associated with accelerated soil organic matter
decomposition sometimes observed under eCO,”-'8. Plants acquire limiting resources from soils
through carbon investment belowground in root growth, exudates, and symbiotic bacteria and
fungi. Accelerated decomposition of soil organic matter fueled by plant carbon inputs can enable
plant nutrient uptake (the “priming effect”??). The return on this belowground carbon investment
is an increase in aboveground biomass production'>. However, the priming effect can decrease
soil carbon’. A negative relationship between Byjane and Pgoii may thus emerge through the
economics of plant resource acquisition.

Here, we evaluate the mechanisms of By, including its relationship with Byjane, by synthesizing
268 observations of By from 108 eCO, experiments spanning the globe with coupled Bpianc-Psoit
data (Supplementary Table 1) using meta-analysis techniques. We explore how well these
mechanisms are represented in ecosystem models, and upscale the geographical distribution of
Bsoil derived from experiments to identify regions where models might be missing important
processes.

Results

Predictors of SOC accrual under eCO,

Overall, eCO, increased soil carbon stocks by 4.6% across experiments (Fig. 1, 95%-CI: 1.7% to
7.5%). Given the strong variation in B across factors (Fig. 1), we used a random-forest
approach in the context of meta-analysis (meta-forest) to quantify the importance of 19 potential
predictors (Extended Data Table 1), including climate, soil, plant, and ecosystem variables and
their interactions, accounting for covariation across predictors and potential nonlinearities.
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Fig. 1. Meta-analysis of the effect of elevated CO, on soil carbon (%) across different factors. n=108.
Overall means and 95% confidence intervals are given; we interpret CO, effects when the zero line is not
crossed by the confidence intervals. Arrows represent 95% confidence intervals that extend beyond the
limits of the plot. Soil carbon stocks represent values in ambient CO, plots as a continuous variable, here
expressed as intervals of equal sample size for illustration purposes. Values in parenthesis are sample sizes.
CO, effects represent, on average, an increase in CO, from 372 ppm to 616 ppm. FACE: Free Air CO,
Enrichment, OTC: Open Top Chamber, AM: arbuscular mycorrhizal, AM-ER: mix of AM and ericoid
mycorrhizal, ECM: ectomycorrhizal, N-fixer: fixation of atmospheric nitrogen.

We found that B,y 1s the most important predictor of By (Extended Data Fig. 2a,b, n=108),
revealing a strong coupling between CO,-driven changes in plant biomass and soil carbon. In
addition, By, increased with background SOC stocks (Fig. 1), also identified as an important
predictor.

Contrary to expectations from some first order models!®?, the relationship between PBg,; and
Bpiant Was negative. For the subset (n=73) of field experiments with intact soils (non-potted plants
and non-reconstructed soils), we found a significant interaction between By and nitrogen (N)-
fertilization (Extended Data Fig. 2¢, p<0.01). In non-fertilized experiments, the slope between
Bsoil and Ppiane Was significantly negative (Fig. 2a, p<0.0001, R?=0.67, n=38), whereas in fertilized
experiments the slope was less pronounced and nonsignificant (p=0.34, n=35) (Extended Data



Fig. 3a). In non-fertilized experiments, increases in plant biomass were associated with
decreasing soil carbon stocks (Fig. 2a), consistent with the priming effect. In N-fertilized
experiments, eCO, generally increased both plant biomass and soil carbon (Extended Data Fig.
3b), in line with first order kinetics.
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Fig. 2. Elevated CO, experiments show an inverse relationship between the effects of elevated CO,
on plant biomass and soil carbon (a). This inverse relationship can be explained by the different
efficiencies in plant nutrient uptake (c) between arbuscular mycorrhizal (AM) and ectomycorrhizal
(ECM) nutrient-acquisition strategies driving opposite effects on plant biomass and soil carbon pools (b),
including mineral-associated soil organic matter (MAOM) stocks (d). Regression line (a) is based on a
quadratic mixed-effects meta-regression model and 95% confidence interval (R>=0.67, p<0.0001, n=38).
Dots in (a) represent the individual experiments in the meta-analysis, with dot sizes proportional to model
weights. Dots in (b-d) represent overall effect sizes from a meta-analysis and 95% confidence intervals.
Data shown here are for non-fertilized experiments (see Extended Data Fig. 3 for nutrient-fertilized
experiments).

We propose a framework to explain the negative relationship between By, and Bpane based on
plant nutrient acquisition strategies. Symbiotic associations between plants and arbuscular (AM)
and ecto (ECM) mycorrhizal fungi mediate Byjane (Extended Data Fig. 2d), resulting in much
higher Bpan in ECM than AM when nutrient availability is low (Fig. 2b). ECM plants efficiently
increase N-uptake under eCO; (Fig. 2¢, n=12), enhancing .. However, acquiring N from soil
organic matter via priming accelerates soil carbon losses’, reducing Bso; in ECM (Fig. 2b). In
contrast, eCO, did not significantly affect N-uptake in AM systems (Fig. 2c, n=12). This
outcome limits Byjant in AM systems but stimulates B (Fig. 2b), likely due to increased carbon
inputs through fine-root production and rhizodeposition?!->324 combined with decreased carbon
losses?. The composition of the soil organic matter may mediate this effect as well; AM plants
produce more easily decomposable litter?®, which enhances mineral-associated soil organic
matter (MAOM) formation?’ and results in a greater fraction of soil carbon in MAOM under AM
relative to ECM systems?®2°, Indeed, eCO, increases MAOM more strongly in AM systems than
in ECM systems (Fig, 2d, n=19). Because MAOM is less accessible to microbial decomposers3?,
greater MAOM in AM systems could limit priming-induced losses and promote long-term soil
carbon storage.



We considered three alternative mechanisms that could potentially explain this tradeoff. First,
grasses allocate more carbon to roots than trees, which is associated with greater SOC stocks?!'-32.
Because grassland species associate with AM fungi and the majority of tree species in the dataset
associate with ECM, the observed increase in By, in AM could be driven by ecosystem type
rather than mycorrhizal type. However, we found that eCO, effects on root biomass and fine-root
production were generally lower in grasses than trees, and also in AM than ECM trees (Extended
Data Fig. 4). Second, in non-fertilized experiments with available data (n=16), eCO, increased
litter C:N by 8%, which could reduce the decomposability of litter and the stabilization of carbon
in the soil?’. If litter quality is reduced more in ECM than AM, this could help explain why eCO,
increased SOC in AM, but not in ECM. However, the effect of eCO, on litter quality was similar
between mycorrhizal types (Extended Data Fig. 4). Finally, contrasting B, in AM vs. ECM
could be driven by larger background SOC in grasslands vs. forests, given that higher SOC is
associated with higher B (Fig. 1). We found, however, that background SOC was similar
between mycorrhizal types and ecosystem types (Extended Data Fig. 4). Thus, differences in root
allocation, litter quality and background SOC in grasses vs. trees cannot explain the tradeoff
between Byoi and Bpyiane. Instead, losses in SOC associated with plant nutrient uptake (priming
effect) in ECM, and gains associated with rhizodeposition in AM, are likely key. Experiments
including both AM and ECM tree species should be targeted to better understand the impacts of
nutrient-acquisition strategies under eCO,.

Upscaling

To explore the potential geographical distribution of By, we simulated a global FACE
experiment (Fig. 3a). Unlike Fig. 1 where predictors are analyzed individually, our meta-forest
model can upscale By,; from experiments while accounting for all important predictors
simultaneously on a grid (Extended Data Figs. 5-6, 10-fold cross-validated R? = 0.51).
Grasslands, croplands, and shrublands showed a stronger potential to accumulate soil carbon in
response to experimental eCO, than forests (Fig. 3a,b). Soils in semi-arid herbaceous ecosystems
were particularly responsive to eCO,, consistent with the results from the Mojave desert FACE
experiment that showed eCO,-driven increases in soil carbon, but not biomass3?. We identified
large areas not currently sampled with eCO, experiments, particularly in the tropics and high
latitudes (Fig. 3c,d, Extended Data Fig. 6), where new experiments would help reduce
uncertainties.
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Fig. 3. Effect of elevated CO, (~240 ppm) on soil carbon stocks upscaled from 108 CO, experiments.
(a,b) Relative effect of elevated CO, on soil carbon upscaled based on a meta-forest approach with data
from CO, experiments. (c, d) Standard error in (a). Green dots represent the location of the CO,
experiments included in the analysis. (e,f) Difference between expected CO, effects on soil carbon stocks
based on CMIP5 models and upscaled based on experiments (shown in a). Expected values result from
the relationship between By and By coded in models. Positive values (red color) indicate an
overestimation by models; negative values (blue color) indicate an underestimation by models. Shaded
areas between -15 to 15 and from 60 to 90 degrees in latitude represent ecosystems not well sampled by
experiments and are excluded from the analysis.

Data-model comparisons

In addition to the negative relationship between B, and Bpian, We also found a significantly
negative relationship between . and the effect of eCO, on aboveground biomass production
(Extended Data Fig. 1b, R?=0.55, p<0.001), which is strongly correlated with litter production
(Extended Data Fig. 1a, R>=0.63, =0.81, p<0.01). This result questions the positive relationship
between litter inputs and soil carbon stocks encoded in most ecosystem models. Thus, we



investigated the relationship between By and Bpiane in models from three different model
ensembles (description in Extended Data Table 2). First, models from the FACE model-data
synthesis project (FACE-MDS)?** mimic the experimental treatment in six eCO, experiments and
allow for a direct comparison with respective observations. While observations from the six
experiments included in FACE-MDS showed a negative relationship between By and Bpjane (Fig.
4a, blue line, R?=0.99, p<0.001), the twelve models simulated a positive relationship when
pooled by experiment (Fig. 4a, red line, R?=0.91, p<0.01). The relationship across all models
individually was positive as well (Extended Data Fig. 7a, dashed line, R?>=0.37, p<0.0001), and
none of the individual models was able to reproduce the observations. Second, to investigate
whether the same relationships emerge across the globe and in simulations where CO, increases
gradually, we evaluated global century-scale relationships between By and Bpjane from the
TRENDY and CMIP5 model ensembles (Fig. 4b,c). Overall, TRENDY and CMIP5 models did
not simulate a negative relationship either (Fig. 4b,c). Instead, most models simulated a positive
relationship and the vast majority of model simulations fell into the upper-right quadrant
(Extended Data Fig. 7b,c), reflecting that inputs drive SOC accumulation in the first-order
decomposition soil model structure common to the models.

In TRENDY and CMIP5 model simulations, s; was estimated over a much longer time period
than in experiments (Extended Data Table 2). Given the relatively slow turnover times of SOC
pools, and the slow pace of evolutionary pressures on both plants and soil microbes, long-term
effects likely differ to those found in experiments. However, first order models also simulate a
positive relationship Bpani:Bsoit When they are forced to simulate the temporal scale of
experiments (Fig. 4a), suggesting important processes are missing in models. By including
explicit links between plant growth, belowground carbon allocation and SOC decomposition
rates, models may more effectively reproduce the observed negative relationship between g
and PBylane and improve long-term projections.
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Figure 4. Comparison of modeled and measured relationships between aboveground biomass and
soil carbon responses to CO,. (a) Relationship observed (blue) and modeled (red) across 6 eCO,
experiments. Model results are based on 12 models applied to the same 6 experiments with a common
forcing and initialization protocol. Experiments included are Duke FACE (DUKE), Kennedy Space
Center (KSCO), Nevada Desert FACE (NDFF), Oak Ridge FACE (ORNL), Prairie PHACE (PHAC), and
Rhinelander (RHIN). Regression line across observations in (a) is based on a quadratic meta-regression
model. Modeled simulations averaged in (a) for each experiment are from the FACE Model-Data-
Synthesis project phase 2. (b,c) Global-scale relationship simulated by ecosystem models (b) from the
TRENDY ensemble for the historical increase in CO, since the year 1700 and (c) from the CMIP5



ensemble for an increase in CO, from 372 ppm to 616 ppm as in eCO, experiments. Dotted lines are the
1:1 line.

To estimate the error in terrestrial ecosystem model projections of By, caused by ignoring the
tradeoff between Byoii and Bprani, We calculated “expected”-Bs,; as a function of our upscaled Bpyjant
and the ratio Boit/Bplane Simulated by CMIP5 models. CMIPS models overestimated B for
forests (Fig. 3e,f, red color). In contrast, CMIP5 models underestimated B,; in large areas
dominated by grasses (Fig. 3e.f, blue color), likely because they do not account for the effects of
rhizodeposition on By,;?'. Results with TRENDY models were similar (Extended Data Fig. 8).

Discussion

In summary, our synthesis of experiments shows that soil carbon stocks can increase by ~5% in
response to a 65% step increase in CO, concentrations, with a strong coupling between CO,-
driven changes in plant aboveground biomass and soil carbon. However, the coupling between
plant biomass and soils is an inverse relationship (Fig. 2a, Extended Data Fig. 1b), opposite to
that simulated by many ecosystem models (Fig. 4). The effect of eCO, on soil carbon storage is
dependent on a fine balance between changes in inputs and changes in turnover'®, where the
latter is dependent on root-microbe-mineral interactions in the rhizosphere. Our results suggest
that rhizosphere responses, and especially priming, explain much of the variation in f,; across
experiments (Fig. 2). Most models focus on carbon inputs and underestimate rhizosphere
effects!'!-2033 likely explaining the disagreement in B, between observations and models (Figs.
3.4). We propose a framework to explain B, based on nutrient acquisition strategies!>3%37. On
one end of the spectrum, substantial acquisition of soil N is possible via priming’® in ECM plants,
causing a stronger plant biomass sink at the expense of soil carbon accrual. On the other end, low
nutrient availability strongly constrains the plant biomass sink3® in AM plants. However, the
ecosystem-level sink is not necessarily eliminated; instead, eCO, can trigger soil carbon accrual
through plant carbon-allocation belowground?!-23-24, When plant growth is severely limited by N
or other nutrients, eCO, may only cause a transient priming effect in ECM, with high soil
decomposition and insufficient nutrient uptake rendering no ecosystem-level sink*’.

Our results underline the potential of grassland soils to store carbon as atmospheric CO, levels
continue to rise. The results also suggest that current state of the art models may overestimate the
soil carbon sequestration potential of forests in large parts of the world. Previous studies suggest
that the potential of vegetation to take up CO, will slow later in this century due to nutrient
constraints!>~143839 Our synthesis indicates that these nutrient constraints extend to carbon
storage in ecosystems as a whole — through a partial tradeoff between increased plant growth
and soil carbon storage whereby ecosystems where plant growth is more nutrient limited
accumulate more carbon belowground. The apparent mismatch between observations and how
most models represent the biomass-to-soil link suggests that many terrestrial ecosystem models
do not adequately represent the critical processes driving soil carbon accumulation. Models are
evolving to include more sophisticated representations of soil nutrient cycling, and some now
include microbial activity explicitly*4°. This change towards coupled carbon-nutrient cycling
mediated by plant-soil interactions is important for more realistically and accurately modeling
the carbon cycle today and for projecting the land sink in the future.
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Methods

Overview. Here, we collect data on the effects of elevated CO, on soil carbon stocks (B in
both relative and absolute terms and synthesize them through meta-analysis. We also collect data
on climatic, experimental, and vegetation characteristics that could potentially explain variability
in Bgoir (“predictors”). In Fig. 1, we show a descriptive meta-analysis of overall B, across
different predictor factors. We next combine the strengths of meta-analysis (e.g. accounting for
within-study variability, weights) with random-forest (e.g. computational efficiency,
nonlinearities, interactions) — meta-forest — to quantify the relative importance of 19 predictors in
explaining variation in P in the dataset. In Fig. 2, we describe the regression between B and
its most important predictor (Byiant), and explore the possible mechanisms underlying this
relationship. In Fig. 3, we apply the data-trained meta-forest model to upscale By;. Finally, we
investigate whether the emerging relationship between B, and Bpjane found in experiments is
represented in models (Fig. 4).

Data collection. We have compiled the openly available Report of Mutualistic Associations,
Nutrients, and Carbon under eCO, (ROMANCE) v1.0 dataset*' with data on soil organic carbon
(SOC) and plant biomass from eCO, experiments. Expanding van Groenigen et al’s 2014 meta-
analysis’ of 53 experiments reporting soil organic carbon (SOC) data, we used Google Scholar to
gather a total of 166 studies related to eCO, experiments, published from 1st January 2013—1st
May 2019. Search terms were either “elevated CO,”, “increased CO,” or “CO, enrichment” and
either “soil carbon” or “plant biomass.” To account for experiments that could have been omitted
by van Groenigen et al. prior to 2013, we consulted the list of CO, experiments from
INTERFACE (https://www.bio.purdue.edu/ INTERFACE/experiments.php), the Global List of
FACE Experiments from the Oak Ridge National Laboratory

(http://facedata.ornl.gov/global face.html), the ClimMani database on manipulation experiments
(www.climmani.org) and the database described by Dieleman et al.*>. We recorded the structure
of each eCO, experiment from the papers, taking into consideration the start date and total
duration of the experiment (years), and the location of the experiment (coordinates). When the
data were presented in figures, mean values and standard error were extracted using GraphClick.

For this meta-analysis, only one datum per experiment was considered to avoid
pseudoreplication. The effects of eCO, on soil C pools are modulated by increases in soil C
inputs from plant litter as well as feedbacks between plants and soils altering soil biogeochemical
cycles that can take several years to occur. Thus, we used the most recent measurements in each
experiment as the most representative data of the effect of eCO, on SOC.

For plant biomass, measurements across different time-points were combined so that only
one effect size was analyzed per study. The combined effect size and variance that account for
the correlation among the different time-point measurements was calculated following the
method described in Borenstein et al.3, using a conservative approach by assuming non-
independency of multiple outcomes (= 1) and performed using the MAd package in R*. We
collected data on both aboveground biomass stocks and production. When aboveground biomass
production data were unavailable, we collected plant data in the following order or preference:
NPP, aboveground biomass increment, foliage production and yield. When biomass or soil data
were not reported, studies were excluded. We also included the data on litter production reported
by Song and Wan® to study the interactions with aboveground biomass and production data.

Soil carbon measurements in the dataset were reported at different depths, varying from 5
to 30 cm maximum depth, with an average depth of ~20 cm. When upscaling eCO, effects on



SOC through meta-forest, we included a fixed value of 0-30 cm in depth as a covariate to control
for the influence of soil depth, interpolating predictions for the same soil depth of models.

SOC data reported as concentrations were transformed to stocks (g m2) using soil bulk
density. When bulk density was not reported, we used data reported for similar experiments
within the same site or assumed a bulk density of 1 g cm=3. Assumptions are indicated in the
dataset.

Studies from ROMANCE v1.0 were not included in the meta-analysis if they met any of
the following exclusion criteria: 1) studies with no SOC data; ii) papers with no plant biomass
data; ii1) studies where the duration of the eCO, experiment lasted less than 0.5 years. A total of
138 independent experiments were collected, of which, 108 were included in the final analysis
based on these exclusion criteria.

Meta-analysis. Two types of effect size were calculated: 1) the log response ratio (mean response
in elevated-to-ambient CO, plots), to measure effect sizes in relative terms (%) for each
experiment; and 2) the raw mean difference, to compute effect sizes in absolute terms (g m2).
For each experiment, we collected data on SOC stocks, standard deviation and sample size under
elevated and ambient (control) CO, plots. Effect sizes were calculated using the escalc function
from the R package metafor*®. We calculated overall effects in a weighted, mixed-effects model
using the rma.mv function in metafor. The potential non-independency of studies within the
same site (e.g. different species, different treatments) was accounted for by including “site” as a
random effect. Effect size measurements from individual studies in the meta-analysis were
weighted by the inverse of the variance*’. 13% of studies did not report standard deviations,
which were thus imputed using Rubin and Schenker’s*® resampling approach from studies with
similar means. These calculations were performed using the R package metagear®.

Variable Importance and upscaling approach. 19 potential moderators were coded (Extended
Data Table 1). Including all 19 moderators in a meta-regression risks overfitting the model.
Therefore, we applied the R package ‘metaforest’° to identify potentially relevant moderators in
predicting Bs.i across the complete dataset of 108 studies. The approach is based on the machine-
learning ‘random forest’ algorithm, which is robust to overfitting, and is integrated in a meta-
analytic context by incorporating the variance and weight of each experiment as in classic meta-
analysis (see above).

As an initial step, we conducted variable pre-selection by including the 19 predictors in
metaforest with 10,000 iterations and replicated 100 times with a recursive algorithm in the
preselect function from metafor*¢. Moderators that consistently displayed negative variable
importance (i.e., that showed a reduction in predictive performance) were dropped using the
preselect_vars function. Moderators that improved predictive performance were then carried
forward to optimize the model. Parameters of the meta-forest model were optimized using the
train function from the caret package®!, and calculated 10-fold cross validated R? with 75% of
the data used as training data and 25% for validation. Unlike maximum likelihood model-
selection approaches, this method can handle many potential predictors and their interactions and
considers non-linear relationships. Partial dependence plots were produced which visualize the
association of each moderator with the effect size, while accounting for the average effect of all
other moderators.

As a sensitivity test, and to identify important interactions between predictors, we ran an
alternative model-selection procedure using maximum likelihood estimation. For this purpose,



we used the rma.mv() function from the metafor R package*® and the glmulti() function from the
glmulti R package® to automate fitting of all possible models containing the 5 most important
predictors and their interactions (level=2). Model selection was based on Akaike Information
Criterion corrected for small samples (AICc), with the relative importance value for a particular
predictor equal to the sum of the Akaike weights (probability that a model is the most plausible
model) for the models in which the predictor appears.

Finally, the data-trained meta-forest model was applied to global gridded data of pre-
selected predictors (see Extended Data Table 1 for gridded data sources) to estimate the effect of
elevated CO, on SOC. The resulting global maps are geographically constrained to ecosystems
best represented by experiments. We remove the estimates for latitudes comprised between -15
to 15 degrees, corresponding to tropical ecosystems not sampled by experiments (Fig. 3c, green
dots), and from 60 to 90 degrees.

Nitrogen fertilization and soil disturbance. We used the information reported in the papers to
assess whether the soils were exposed to external inputs of N fertilization (“yes”) or not (“no”
Experiments were also classified as either having "disturbed" or "intact" soils as noted in the
papers. If not, experiments which used pots or reconstructed soils were categorized as disturbed.
We used the same approach and classification as in ref>3.

To upscale the effect of nitrogen fertilization and disturbance on P, we reclassified the
ESA CCI land cover map https://www.esa-landcover-cci.org/?qg=node/164. Reclassification files
are accessible online https://figshare.com/account/projects/74721/articles/11710155. For
example, we classify “Cropland, rainfed”-“Herbaceous cover” (class 11) and “Cropland,
irrigated or post-flooding” (class 20) as fertilized.

Nutrient-acquisition strategy classification. We considered the importance of the type of
symbiotic association as a driver of eCO, effects on soil C. Mycorrhizal status includes AM,
ECM and a mix of AM and ericoid (ER) mycorrhizal fungal associations. Here, we also
considered some plant species known to associate with N-fixing microorganisms. We refer to
this classification as "Symbiotic", because it includes both mycorrhizal status and N-fixation.
Together, these four symbiosis types represent different mechanisms plants use to acquire
nutrients'.

We assessed the impact of the dominant symbiotic association type by classifying all
studies as ECM, AM, AM-ER, and N-fixers, using the check-lists by Wang et al.>* and Maherali
et al.”, with additional classifications derived from the literature. Species that associate with
both ECM and AM (e.g. Populus spp.) were classified as ECM because these species can
potentially benefit from increased N-availability due to the presence of ECM fungi*¢. Most of the
N-fixers in the dataset were associated with both N-fixing symbionts as well as AM fungi, but
we classified them as N-fixers because these species can potentially benefit from N acquired
through N-fixation.

MAOM data. We retrieved data on mineral-associated organic matter (MAOM) and particulate
organic matter (POM) for the subset of studies employing size or density fractionation of soil
organic matter (n = 19). Because of methodological differences, POM is loosely defined as
organic matter recovered in the total coarse (typically > 53um) or light (typically < 1.6 g cm-3)
soil fraction. Where MAOM was not reported, it was estimated based on mass balance by
subtracting the POM fraction from total C.


https://www.esa-landcover-cci.org/?q=node/164
https://figshare.com/account/projects/74721/articles/11710155

FACE Model-Data-Synthesis. We use data from the FACE Model-Data Synthesis (FACE-
MDS) Project Phase 23*37-61 in which 12 models were applied to 6 eCO, experiments. Each
model covered the time periods representative of the FACE experiments, following a
standardized protocol including meteorological forcing, CO, concentration, site history, and
vegetation characteristics for each site.

Experiments included in the FACE-MDS Phase 2 were Duke FACES?, Kennedy Space
Center®, Nevada Desert FACE®, Oak Ridge FACE?}, Prairie PHACE®>% and Rhinelander®’.
Models included were CLM4.0%, CLM4.5, DAYCENT, CABLE, JULES®’, LPJ-GUESS, OCN,
TECO, ORCHIDEE"’, GDAY, ISAM, and SDGVM. See ref. for an overview of model
structures and processes. As in the observational data, we compared relative changes in
aboveground biomass and soil carbon stocks of each experiment for eCO, relative to control
treatments.

TRENDY models We use model outputs from the TRENDY v7 S1 simulations, where each
model is driven by standardized forcings of observed increasing CO, for years 1700-2018 CE,
and constant preindustrial climate and land use. We selected six models that provided outputs for
aboveground vegetation carbon (taken as the sum of wood and leaf carbon), soil carbon, and
NPP (CABLE-POP’!, CLM5.072, ISAM73, LPJ-GUESS’4, ORCHIDEE”?, ORCHIDEE-CNP?).
Wood carbon often includes coarse roots in models. Here, we evaluate relative changes and
numbers are not sensitive to the exact definition. Description of models can be found in ref’®.
Briefly, ORCHIDEE-CNP includes an interactive N and phosphorus cycle, whereas ORCHIDEE
is a C-only model. The rest have coupled C-N cycles. Relative changes were calculated based on
means over ten initial years (i, vary depending on the model) and j = 2008-2017 as (C; — C;)/C;.
To reduce effects of discrepant response timescales of soil C and biomass, we estimated the

steady-state soil C storage (C”) as:
G
C=1_ 25,

NPP;

where AC; is the change in soil C over the years 2008-2017. The relative change in soil C is then
taken as (C* — C;) / C;. Data shown in Fig. 4 is based on pooled data from all six models. We
randomly sampled outputs from N gridcells for each model in order not to bias the visualization
towards models with a large number of gridcells (i.e. higher resolution). N is chosen as the
number of gridcells in the model with the coarsest resolution.

CMIPS Models - Expected By,;. We used projected SOC (Csoil) and biomass pool (Cveg)
responses to rising CO, as simulated by CMIP5 models as a comparison for the upscaled values
we derive from experiments. Specifically, we used data from the experiment “esmFixClim1”, in
which CQO; is increased by 1% per year from 285 ppm. In the esmFixClim1 experiment, the
increase in [CO,] only affects vegetation and not the radiation code of the models, enabling a
quantification of the effect of eCO; in isolation (e.g. excluding warming), and thus a close
comparison with eCO, experiments. At a [CO,] increasing rate of +1% year'!, [CO,] reaches 372
ppm (average concentration in ambient CO, plots in the dataset) in the 28th year and 616 ppm
(average concentration in elevated CO, plots in the dataset) in the 78th year. ACveg and ACsoil
were calculated as the difference between the respective carbon stocks in the 28th and the 78th
year.



Though plants in both experiments and our CMIP5 dataset see a similar increase in [CO,],
experiments simulate a step increase in CO, over half a decade, whereas the increase in CO; in
CMIPS5 models is much slower and over the course of 50 years (Extended Data Table 2). As soil
organic matter turns over slowly, the resulting PBs,; from experiments is lower than ACsoil from
models, and the comparison not meaningful. We thus focus on the specific relationship Bypjant:Bsoil
in experiments vs. models. Here, we calculated the spatially explicit ratio of ACvegcwp to
ACsoilcypp. This was done for five Earth System Models in the CMIP5 ensemble with
esmFixClim1 simulations (CanESM2; GFDL-ESM2M; HadGEM2-ES; IPSL-CM5A-LR; MPI-
ESM-LR). Then, we calculate “expected” By, from CMIP5 applying the same Bpjan used for
experiments with the model-average ACvegcmip to ACsoilcyp ratio:

ACsoilcpp

expected (Mg C ha™') = Bplant X 77—~
With B,ane as the effect of elevated CO, on plant biomass derived from eCO,

experiments. We then computed the difference between the expected (modeled) and observed
(upscaled) effects of elevated CO, on By As both expected and upscaled Bg,i use the same Bpjane,
this transformation allows us to directly tackle the consequences of the different Byoii/Bplant Tatios
between experiments and models. We acknowledge, however, that the ratio is likely to change
over time, so the comparison needs to be interpreted with caution. We found, however, that first-
order models also simulate a positive relationship between By, and Bpian When forced to simulate
the same duration as experiments (Fig. 4a), suggesting that the sign of the Bii:Bpian relationship
in CMIP5 models would not likely reverse if CMIP5 models would be forced to simulate a step
increase in CO, over 5 years as in experiments.

Code availability
The R code used in the analysis presented in this paper is available in GitHub and can be
accessed at https://github.com/cesarterrer/SoilC_CO,

Data availability

All the empirical data that support the main findings of this study have been deposited in
Figshare: (https://figshare.com/account/home#/projects/74721) and GitHub
(https://github.com/cesarterrer/SoilC_CO,). FACE-MDS data can be accessed at
https://www.osti.gov/dataexplorer/biblio/dataset/1480327. CMIPS5 data can be accessed at
https://esgt-index1.ceda.ac.uk/search/cmip5-ceda/. TRENDY data can be requested at
http://dgvm.ceh.ac.uk/index.html.
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Extended Data Figure 1 | Relationship of the effects of eCO, on aboveground biomass
production with litter production (a) and soil carbon storage (b). Results for non-fertilized
field eCO, experiments (n=10, and n=35, respectively). Dots represent individual experiments,
with dot size in (b) proportional to the weights in the meta-regresion.
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Extended Data Figure 2 | Variable importance of 19 predictors of the effects of CO; on soil
carbon and biomass stocks. (a-b) Variable importance of the effect of CO, on soil carbon
stocks in (a) relative (%) and (b) absolute terms (g m2) across the full dataset (n=108). (c)
Variable importance of the effect of CO, on soil carbon stocks (%) across the subset of eCO,
experiments in “intact” soils (n=73). (d) Variable importance of the effect of CO, on plant
aboveground biomass (n=138). Variable importance in (a,b,d) is quantified based on a meta-
forest model. Variable importance in (c) is quantified based on the sum of AICc weights, which
allows for the quantification of the importance of interactions between predictors. As an initial
step, moderators that consistently displayed negative variable importance (i.e., that showed a

reduction in predictive performance) were automatically dropped.
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Extended Data Figure 3 | Effects of elevated CO; on soil carbon and plant biomass in the
subset of nitrogen-fertilized eCO, studies (n=35), expressed as a regression (a) and overall
effects in meta-analysis (b). Dot sizes in (a) represent the individual studies and are drawn
proportional to the weights in the model. The regression with the subset of non-fertilized studies
is also shown here for comparison. Dots in (b) represent the effect sizes and 95% confidence
intervals from the meta-analysis.
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Extended Data Figure 4 | Analysis of variables potentially explaining the observed effects of
elevated CO; on soil carbon. Effects of elevated CO, on root biomass (n=45), fine-root
production (n=11), litter C:N (n=16) and background soil carbon stocks (n=38), between
ecosystem types (grassland vs. forest) and nutrient-acquisition strategies (arbuscular mycorrhizae
—AM- vs. ectomycorrhizae -ECM-).
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Extended Data Figure S | Partial dependence plots of the six most important predictors of
the effect of elevated CO, on soil carbon stocks across 108 experiments. The figure shows the
predicted CO, effect (yi) in relative (a) and absolute terms (b) across each predictor and the most
important interaction between predictors (right panels) in a random-forest meta-analysis. Error
bands represent 95% confidence intervals. Partial regression plots give a graphical depiction of
the marginal effect of a variable on the response and the shape and direction of the relationship.
Little variation in yi across the values of a predictor generally reflects the low predictive power
of the predictor for yi. However, important predictors may show little variation in yi when
involved in interactions, so the right panels show the most important interaction in the model.
More details about the different predictors in Extended Data Table 1. From a total of 19
predictors, only the six most important predictors and the most important interaction are shown

here.
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Extended Data Figure 6 | Representativeness of the upscaling predictors of the effect of

elevated CO; on soil carbon stocks. Histograms showing the distribution of both the predictors
in the training dataset of CO, experiments and the data used to upscale the global distribution of
the effect. Predictions exclude regions between -15 to 15 and from 60 to 90 degrees latitude due

to the lack of experiments.
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Extended Data Figure 7 | Relationship between the effects of CO, on aboveground biomass
and soil carbon across individual models from three model ensembles. (a) FACE Model Data
Synthesis Phase 2. Individual model results are represented by colored symbols and lines. Each
symbol represents one site; lines represent model-specific linear regressions. To ease
interpretation of the results and the comparison with Fig. 4 axis limits are set. Dashed line and
error band represent the linear regression line and standard error across all experiment-by-model
results. (b) TRENDY v7 models. (c) CMIP5 models.
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Extended Data Figure 8 | Difference between expected CO, effects on soil carbon stocks
based on TRENDY models and upscaled based on experiments. Expected values result from
the relationship between B, and Bpiane coded in models. Positive values (red color) indicate an
overestimation by models; negative values (blue color) indicate an underestimation by models.



Extended Data Tables

Extended Data Table 1 | List of predictors used to examine and upscale the effects of

elevated CO; on soil carbon.

Predictor Source Upscaling
Mean annual temperature (MAT) reported in papers scaled from CRU77
Mean annual precipitation (MAP) reported in papers scaled from CRU77

Duration of the experiment
Experiment type

Ecosystem type

Vegetation type
Symbiotic type

Effect of elevated CO, on plant
biomass

Disturbance

Nitrogen fertilization

Soil carbon stock in control plot

Soil depth of carbon measurements
Soil C:N ratio

Soil pH

Soil available P

Maximum Leaf Area Index
(LAImax)

Mean Leaf Area Index (LAImean)

Maximum fraction of absorbed
photosynthetically active radiation
(fAPARmax)

Mean fraction of absorbed
photosynthetically active radiation
(fAPARmean)

reported in papers
reported in papers

reported in papers

reported in papers
reported in papers

reported in papers

reported in papers

reported in papers

reported in papers
reported in papers
80
79

81

1 km year 2012 v2
land.copernicus.eu/global/products/I
ai

1 km year 2012 v2

1 km year 2012 v2
land.copernicus.eu/global/products/
fapar

1 km year 2012 v2

non-important
scaled for FACE only

scaled from ESA land cover:
http://maps.elie.ucl.ac.be/CCl/view
er/download.php

non-important
scaled from ref’®

scaled from ref!?

scaled from ESA land cover:
http://maps.elie.ucl.ac.be/CCl/view
er/download.php

scaled from ESA land cover:
http://maps.elie.ucl.ac.be/CCl/view
er/download.php

scaled from ref”?

scaled for 0-30 cm depth
80

Non-important

81

land.copernicus.eu/global/products/I
ai

non-important
land.copernicus.eu/global/products/

fapar

non-important




Extended Data Table 2 | Synthetic description of the basic characteristics of three model

ensembles in terms of their treatment of CO, effects.

Model ensemble | Spatial CO; concentration Time CO, CO,
extent exposure increase
FACE-MDS 2 Site-level From current levels to elevated CO, ~ 10 years | Step
(6 sites) (“future”) increase
TRENDY v7 S1 Global From preindustrial levels to current CO, 1700-2018 | Gradual
(“historical”)
CMIP5 Global From current levels to elevated CO, 50 years | Gradual
esmFixClim1 (“future”)
Experiments Site-level From current levels to elevated CO, ~1-10 years | Step
(“future”) increase




Supplementary Table 1 | Overview of CO, enrichment experiments included in the
analysis.

Experiment Type Ecosystem Duration  Citation
ArizonaFACE - wheat - high N FACE Agricultural 1.5 82

China FACE rice - high N - weakly FACE Agricultural 3 83

China FACE rice - high N - strongly FACE Agricultural 3 83

China FACE wheat - low N FACE Agricultural 4 84

China FACE wheat - high N FACE Agricultural 4 84

China OTC - low N OTC Tree Stand 5 85,86

China OTC - high N OTC Tree Stand 5 85,86

DUKE FACE FACE Tree Stand 9 87

EucFACE FACE Tree Stand 4 39

FACTS II - Aspen FACE Tree Stand 11 88

FACTS II - Aspen/Birch FACE Tree Stand 11 88

GiFACE FACE Grassland 13.5 89

Hohenheim FACE Agricultural 4.5 90

Jasper Ridge - sandstone OoTC Grassland 5.41 91

Jasper Ridge - serpentine OTC Grassland 3 91

JRGCE - Control FACE Grassland 14 92 pers.comm
JRGCE - N FACE Grassland 14 92 pers.comm
Merritt Island OTC Tree Stand 11 63 pers.comm
NewZealandFACE FACE Grassland 13 93

New Zealand Greenhouse Chamber  Grassland 0.75 94

New Zealand OTC - P. radiata OTC Tree Stand 6 95

New Zealand OTC - N. fusca OTC Tree Stand 6 95




ORNL FACE

Placerville - low N
Placerville - medium N
Placerville - high N
POPFACE - alba
EUROFACE - alba
POPFACE - euramericana
POPFACE - euramericana
POPFACE - nigra
POPFACE - nigra
Shortgrass Grassland
SoyFACE

FACE Stillberg - larix
FACE Stillberg - pinus
SwissFACE- grass - low N
SwissFACE- grass - high N

SwissFACE- clover - low N

SwissFACE- clover - high N

Tallgrass Grassland
UMBS - aspen
WSL - loam, low N
WSL - loam, high N
WSL - sand, low N

WSL - sand, high N

FACE

OTC

OoTC

OTC

FACE

FACE

FACE

FACE

FACE

FACE

OoTC

FACE

FACE

FACE

FACE

FACE

FACE

FACE

OTC

OoTC

OoTC

OTC

OoTC

OoTC

Tree Stand
Tree Stand
Tree Stand
Tree Stand
Tree Stand
Tree Stand
Tree Stand
Tree Stand
Tree Stand
Tree Stand
Grassland
Agricultural
Tree Stand
Tree Stand
Grassland
Grassland
Grassland
Grassland
Grassland
Tree Stand
Tree Stand
Tree Stand
Tree Stand

Tree Stand

11

5.5

55

55

10
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Nevada Desert FACE
BangorFACE - alnus
BangorFACE - betula
BangorFACE - fagus

Tas FACE

Ginninderra

Sky Oaks

Antwerp OTC

Lancaster - Abies alba
Lancaster - Abies alba
Lancaster - Betula pendula
Lancaster - Betula pendula
Lancaster - Carpinus betulus
Lancaster - Carpinus betulus
Lancaster - Fagus sylvatica
Lancaster - Fagus sylvatica
Lancaster - Pinus sylvestris
Lancaster - Pinus sylvestris
Lancaster - Quercus robur
Lancaster - Quercus robur

BioCON - Low N

BioCON - High N

BioCON - legumes - Low N

FACE

FACE

FACE

FACE

FACE

Chamber

Chamber

OTC

Chamber

Chamber

Chamber

Chamber

Chamber

Chamber

Chamber

Chamber

Chamber

Chamber

Chamber

Chamber

FACE

FACE

FACE

Shrubland

Tree Stand

Tree Stand

Tree Stand

Grassland

Grassland

Shrubland

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Tree Stand

Grassland

Grassland

Grassland
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1.25
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BioCON - legumes - High N

Gainesville - Arachis glabrata
Gainesville - Paspalum notatum
Swiss Central Alps

Swiss Central Alps F

Swiss Jura

CLIMAITE

CLIMAITE D

CLIMAITE T

CLIMAITE TD

MBS - low N

MBS - high N

PHACE - ambient T

PHACE - elevated T
Rice-FACE - LN

Rice-FACE - HN
Rice-FACE2 - LN
Rice-FACE2 - HN
Rice-FACE3

T-FACE - ambient T
T-FACE - elevated T

OTC Changbai Mountain Research
Maoxian Field China

SoilFACE4 - LN

FACE

Chamber

Chamber

OTC

OoTC

Chamber

FACE

FACE

FACE

FACE

OoTC

OoTC

FACE

FACE

FACE

FACE

FACE

FACE

FACE

FACE

FACE

OTC

Chamber

FACE

Grassland

Agricultural
Agricultural
Grassland
Grassland
Grassland
Shrubland
Shrubland
Shrubland
Shrubland
Tree Stand
Tree Stand
Grassland
Grassland
Agricultural
Agricultural
Agricultural
Agricultural
Agricultural
Agricultural
Agricultural
Tree Stand
Tree Stand

Agricultural
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1.5
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126,127
128,129
130

131




SoilFACE4 - HN FACE Agricultural 0.5 131

SoilFACE4 - LN FACE Agricultural 0.5 131

SoilFACE4 - HN FACE Agricultural 0.5 131

OTC New Delhi OTC Agricultural 2 132

FACE NBRI - teak FACE Tree Stand 3.83 133

FACE NBRI - butea FACE Tree Stand 3.83 133

OTC Hyperaba India - 550ppm - C4 OTC Agricultural 5 134

OTC Hyperaba India - 700ppm - C4 OTC Agricultural 5

OTC Hyperaba India - 550ppm - C3 OoTC Agricultural 5 134

OTC Hyperaba India - 700ppm - C3 OTC Agricultural 5 134

OTC CRRI Cuttack India OTC Agricultural 3 135

FACE Sapporo - brown soil FACE Tree Stand 10 136 pers.comm
FACE Sapporo - volcanic ash FACE Tree Stand 10 137, pers.comm
Glasshouse University of Paris XI Chamber  Agricultural 0.67 138
SAWFACE Spain FACE Wetland 2 139

Myc: mycorrhizal type (AM: arbuscular mycorrhizae, ECM: ectomycorrhizae), F: nitrogen-
fertilization treatment, W: high water treatment, T: high temperature treatment, D: drought
treatment, P: phosphorus treatment, FACE: Free Air Carbon Dioxide Enrichment, G:
Greenhouse/Growth chamber, OTC = Open Top Chamber






