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Abstract—Scientific applications need to integrate various pro-
gramming, computational and data models, over diverse, evolving
and heterogeneous infrastructure at scale. Pervasive and effective
abstractions are thus critical; however, the process of developing
abstractions for scientific applications and infrastructures is not
well understood. While formal approaches for system develop-
ment are suited for well-defined, closed environments, they are
less effective in designing abstractions for scientific systems and
applications. The design science research (DSR) method pro-
vides the basis for designing practical systems that can handle
real-world complexities. In contrast to formal approaches, DSR
emphasizes both practical relevance and knowledge creation by
building and rigorously evaluating all artifacts. We show how
DSR provides a well-defined framework for developing abstrac-
tions and middleware systems for distributed systems. Specif-
ically, we address the critical problem of distributed resource
management on heterogeneous infrastructure over a dynamic
range of scales, a challenge that currently limits many scientific
applications. We use the pilot-abstraction, a widely used resource
management abstraction for high-performance, high throughput,
big data, and streaming applications, as a case study for evaluat-
ing the DSR activities. For this purpose, we analyze the research
process and artifacts produced during the design and evaluation
of the pilot-abstraction. We find DSR provides a concise frame-
work for iteratively designing and evaluating systems. Finally, we
capture our experiences and formulate different lessons learned.

I. INTRODUCTION

New scientific applications and discoveries are enabled by
advanced data and compute infrastructures, algorithms, and
tools. Scientific progress increasingly depends on driving for-
ward the ability to support large-scale computational and data
demands of simulations in conjunction with data processing,
analytics, and machine learning [1], [2]. The complexity of de-
veloping, deploying and scaling scientific applications arises
from various sources, in particular, the increasing heterogene-
ity that exists at all levels, from hardware, infrastructure, mid-
dleware to software [3].

Abstractions are crucial for scalable systems that hide in-
ternal complexities and expose simple interfaces [4], [5]. De-
signing useful abstractions is challenging: hiding complexity
does not automatically lead to simple interfaces. The possible
design space for abstractions is typically vast, and there is no
consensus on what constitutes effective abstractions. Further,
there are no accepted recipes to design and develop abstrac-
tions for large-scale scientific distributed compute and data
infrastructures.

The particular challenge addressed in this paper is the design
of abstractions for resource management on distributed and
heterogeneous compute and data infrastructure. Currently, the
scale and uptake of scientific, data-intensive applications are
hindered by a reliance on proprietary application and systems-
level resource management systems. These are often imple-
mented using rigid and ad-hoc approaches [6]. A generalized
abstraction that helps overcome these limitations and enable
scalable applications is needed.

While formal approaches maybe suitable for closed systems,
they have limitations for designing open, scientific distributed
systems. Iivari emphasizes that the “theory-with-practical-
implications research strategy has seriously failed to produce
results that are of real interest in practice [7]”. DSR is an it-
erative approach to building, evaluating, and refining software
systems. While many research approaches solely focus on the-
ory and knowledge, DSR emphasizes practical relevance. It
realizes that complex systems need to be designed and eval-
uated in real-world settings. By introducing a rigorous eval-
uation of the produced artifacts, DSR provides generalizable
knowledge that informs future design iterations, but can also
be transferred to other problems.

We propose the application of the design science research
method (DSR) [8] to the design of an abstraction and mid-
dleware for distributed resource management. Specifically, we
apply the DSR method to the process of designing the pilot-
abstraction [6]. Based on in-depth studies of different applica-
tions, we define the design objective. Using rigorous build/e-
valuate cycles, we design, evaluate, and evolve the abstraction
from a compute-centric to an integrated abstraction for man-
aging compute and data resources and applications. In this
paper, we demonstrate the suitability of DSR for creating well-
defined abstractions and implement these in a real-world sys-
tem.

As part of DSR, we define different evaluation methods
and criteria for assessing the abstraction. For example, we in-
vestigate the usability and versatility of the abstraction in sev-
eral case studies, e. g., in ensemble-based simulations, MapRe-
duce, and stream processing applications. We use conceptual
modeling to provide and validate our understanding of the
pilot-abstraction and the underlying mechanisms. Further, we
study different implementations of the abstraction concerning
the performance and scalability using different types of ap-
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Fig. 1: Design Science Research Method (adapted from
Hevner [8]): To address the complexity of the problem space,
we follow an iterative research approach of continuously build-
ing and evaluating abstractions.

plications, e. g., from the domains of genome sequencing and
light source sciences.

This paper makes the following contributions: (i) it uses the
DSR framework to assemble a set of methods for the design
and evaluation of abstractions, (ii) it demonstrates the valid-
ity of DSR for designing and evaluation abstractions, such as
the pilot-abstraction, (iii) it surveys publications related to
the pilot-abstraction and investigates the used methods for de-
sign and evaluation, and (iv) it synthesizes the experiences
gathered during this process in a set of lessons learned. DSR
was initially introduced in the domain of information system
research; we believe this is its first application to scientific
distributed computing.

This paper is structured as follows: We begin with an intro-
duction of the methodology in Section II, and continue with an
investigation of scientific applications and their characteristics
in Section III. The result is five application scenarios that the
abstraction needs to address. We present the pilot-abstraction
in Section IV. In Section V, we discuss the methods used for
evaluating the system. We discuss our learnings and experi-
ences of applying DSR in Section VI.

II. METHODOLOGY

The objective of this section is to provide an introduction
to design science research (DSR) [8]. DSR avoids the limita-
tions of theory-based approaches, in particular, their inability
to capture complex, real-world systems. It emphasizes the iter-
ative creation, evaluation, and refinement of systems. The com-
plexity of scientific applications and infrastructure make DSR
suitable for designing abstractions that enable applications to
scale across heterogeneous infrastructure. For this purpose, we
customize DSR and apply it the first time to the problem of
abstraction development (see Figure 1).

The build-evaluate-refine cycle has two primary inputs: The
environment provides essential context for the problem, in par-
ticular, concerning application requirements, characteristics,
and infrastructure. The knowledge base defines, in particu-
lar, the foundations and methodologies used the evaluation.
In the following, we give an overview of the different design
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Fig. 2: Application Analysis (adapted from [12]): Patterns
emerge by observing application characteristics and implemen-
tations.

science research activities (adapted from Peffer [9]): (i) prob-
lem identification, (ii) definition of objectives, (iii) design and
implementation, (iv) demonstration, and (v) evaluation.

A. Problem Identification and Objectives

Before starting the design process, an understanding of the
problem and design objectives is essential. Common meth-
ods for this activity are literature reviews, expert interviews,
focus groups, and surveys [10]. In scientific application de-
velopment, requirements frequently only emerge during the
creation of the systems leading [11]. Thus, iterative methods,
such as DSR, are instrumental. The challenge addressed by
this paper is the design and development of effective abstrac-
tions that provide the right level of detail and support a vari-
ety of application scenarios and infrastructure while retaining
ease-of-use.

B. Design

1) Abstraction Design: Abstractions are a fundamental
method of computer science, enabling reasoning about a prob-
lem at the right level while allowing the underlying system to
implement a solution [4]. Shaw defines an abstraction as “a
simplified description or specification of a system that empha-
sizes some of the system’s details or properties while suppress-
ing others [5].”

To develop efficient abstractions, an understanding of ap-
plications and infrastructure usage modes is instrumental. An
important foundation for the development of abstractions are
patterns. Patterns are suitable solutions to recurring problems
in a particular context that can be applied multiple times with-
out doing it exactly the same ways [13], [12]. Patterns can
be discovered by observing common problem decompositions
(e. g., task and data partitioning), communication, and coor-
dination structures in applications. Jha et al. utilize this pro-
cess to study patterns and abstractions for distributed applica-
tions [12]. Mattson et al. [13] investigate patterns for parallel
and distributed applications. Figure 2 illustrates the relation-
ship between applications, patterns, abstractions, and systems.
Discovered patterns serve as candidates for the development of
abstractions and their implementation in a middleware system.

An abstraction represents the external interface of the sys-
tem. Thus, careful design is essential. The desired properties
of an abstraction are generality and simplicity [14]. General-
ity refers to the ability of the abstraction to be broadly used.



Simplicity is reflected in multiple properties, e. g., ease-of-use,
maintainability, and extensibility [15].

The development of abstractions is a difficult task and re-
quires the identification of essential concepts, properties, and
relationships. Conceptual modeling enables abstract thinking
and reasoning about a system and its abstraction. Conceptual
models represent and describe systems, e. g., applications, sys-
tems, and infrastructure. They can be used to formulate con-
cepts about the system, explaining how a system works. My-
lopoulos defines a conceptual model as ‘‘a description of an
aspect of the physical and social world around us for the pur-
poses of understanding and communication [16].” Johnson de-
fines a conceptual model as “a high-level description of how
a system is organized and operates [17].” Conceptual mod-
els were introduced to computer science in 1984 by Brodie,
Mylopoulos, and Schmidt to overcome the increasing special-
ization of computer science disciplines to describe high-level
aspects and interactions better [18]. Conceptual models are
used in different areas, e. g., for software architectures [19],
and programming languages [5].

2) System Design: Software architecture and engineering
research is the study of useful system organization [20], i. e.,
the design of the composition/decomposition of systems and
subsystems and the communication between these. Common
objectives of the system design are flexibility, maintainability,
and re-usability [19]. Patterns are an important aspect of de-
signing software systems. Initially, introduced in the domain of
building architecture [21], were adopted to the domain of soft-
ware architecture and engineering by Beck/Cunningham [22].

A fundamental principle of system design is modulariza-
tion and decomposition. Modularization has many benefits,
e. g., flexibility, comprehensibility, and maintainability [23].
Further, the development time can be reduced by the abil-
ity to distribute work across different groups. According to
Parnas, the most critical criteria for organizing a system is in-
formation hiding [24], i. e., the ability to carefully control the
information exposed by a component using well-defined exter-
nal interfaces and hiding information that is likely to change.

A common type of modularization used by complex systems
is a layered architecture [25]. The layered architecture model
partitions the system in distinct hierarchical layers. Each layer
encapsulates a defined set of functions and provides services
to the layer above. This pattern is widely used in system-level
software, such as databases, operating systems, middleware,
and distributed system.

Similar to a layered architecture model is the hourglass
model [14], which relies on a central bottleneck layer at the
waist of the hourglass that connects a wide range of lower-level
and higher-level services. Resource management is commonly
described using hourglass models [26], [27].

C. Evaluation

A rigorous evaluation of all artifacts is a crucial part of the
DSR process. Sonnenberg/Brocke [10] propose four evalua-
tion activities. Eval 1 evaluates the problem statements, using

methods such as literature review and surveys. Eval 2 investi-
gates the design specifications, e. g., using expert interviews,
demonstrations, simulations, and benchmarking. Eval 3 is con-
cerned with the instantiation of an artifact, e. g., a prototype,
using methods, such as experimentation. Last, Eval 4 observes
the artifact in the real world. We utilize different evaluation
methods for different activities, in particular, case studies [28],
performance characterization, and modeling [29]. In the fol-
lowing, we particularly focus on methods for performance and
scalability evaluations, i. e., Eval 3 and 4.

1) Performance Characterization: Performance measure-
ments and characterizations are common methods for describ-
ing a system in artificial and natural settings (Eval 3/4). Perfor-
mance measurements can have different objectives: (i) work-
load and system characterization, (ii) performance improve-
ments, and (iii) to evaluate design alternatives [30]. An essen-
tial component of a performance evaluation is the workload
defined as the set of all inputs (programs and data) that a sys-
tem receives from its environment [30]. A benchmark refers
to a workload that is used to compare computer systems. A
workload used in performance evaluations should be represen-
tative; in the best case, it should reflect an actual, real-world
workload. Benchmarking refers to the process of comparing
two or more computer systems [29]. A measure describes the
performance of a system, e. g., the runtime or throughput of a
system. More complex metrics can capture cost/price or qual-
ity/runtime trade-offs [31].

Scientific applications are complex, unique, and not well-
represented by standard benchmarks. The chosen metrics of-
ten do not provide a comprehensive view of the system, and
thus, are not a proxy for real-world performance [31]. Further,
most benchmarks neglect application-level quality metrics and
focus mostly on runtime and scaling performance. However,
it is often challenging to obtain real-world performance data
that provide useful insights. For example, for data-intensive
applications, there are, e. g., complex infrastructure compo-
nents, such as data source, broker, and processing applications,
that need to be carefully controlled. To account for that, often
simplified, synthetic workloads are used to study performance
(e. g., the Mini-App framework [32]). Similar techniques are
commonly used for generating reproducible data and compute
workloads, see [33], [34], [35].

2) Performance Models: Performance models [36] are a
way of abstracting performance-related insights into an ana-
lytical model. An analytical model is a precise formulation of
a model using mathematical logic, entities, and relations to
describe concepts [37]. Analytical models are white-box and
can quantify the relationship between the different concepts.
Statistical models, in contrast, derive insights and predictions
from data [38]. The advantage of statistical models is that they
do not require domain knowledge and can model highly com-
plex domains. However, they are often black-box models, i. e.,
they are more difficult to interpret.

Many computer science domains use performance models,
e. g., for programming languages, operating systems, database
systems, system components (e. g., schedulers), as well as par-



allel and distributed systems. For example, database systems
utilize cost-based optimizer to generate an optimal query ex-
ecution plan [39]. A well-known performance model for dis-
tributed applications is Amdahl’s Law [40].

III. APPLICATION SCENARIOS, CHARACTERISTICS AND
REQUIREMENTS

Understanding the problem domain is an essential step in
the design process. In this section, we discuss important ap-
plication characteristics and requirements.

A. Application Characteristics

The requirements of scientific applications are growing
more diverse and complex [41], [42]. An increasing number
of instruments, such as light sources, telescopes, and genome
sequence machines, generate vast volumes of data. Applica-
tions are becoming more sophisticated and increasingly require
the combination of various processing types, e. g., simulation,
analytics, and machine learning. These processing types im-
pose different requirements on abstractions, middleware, and
infrastructure.

While the integration of different processing types is chal-
lenging, it yields many benefits, e. g., it has been demonstrated
that machine learning-based approximation techniques can im-
prove simulations (e. g., by quickly identifying regions of in-
terests). Another example is the guidance of experiments using
machine learning, e. g., to find interesting events and regions,
and to adapt sampling accordingly [41].

While data-intensive, scientific applications are highly di-
verse, they often share common computational and data char-
acteristics. Early studies, e. g., the Berkeley Dwarfs [43], fo-
cused on the understanding of parallel algorithms based on
their computation and data movement patterns. Jha et al. [12]
study distributed applications. In D3 science [44], we con-
ducted a survey consisting of 9 questions and a series of work-
shops to understand the distributed and dynamic data aspects
of 13 scientific applications. The Big Data Ogres [45], [46]
introduce a multi-dimensional framework, so-called facets,
which represent key characteristics of big data applications
and use them to define a set of Mini Apps based on a study
of more than 50 use cases collected by NIST [47].

Based on an investigation of 50+ applications and their
characteristics in [44], [45], [52], we derived five applications
scenarios: task-parallel, data-parallel, dataflow, iterative, and
streaming (see Table I). In the following, we discuss important
characteristics and patterns found in these application scenar-
ios.

An important characteristic is the decomposition pattern:
Task-level parallelism describes the execution of diverse com-
pute tasks on multiple compute resources. In contrast, data-
parallelism creates tasks by partitioning the data. Abstractions,
such as MapReduce [56], enable the data-parallel processing
and aggregation of data using high-level primitives. The run-
time system then handles the implementation of the paral-
lelism, i. e., the partitioning of the data, the mapping of data

to tasks, the orchestration and synchronization of tasks and
data movements.

The dataflow model further generalizes the data-parallel
model by supporting applications comprising of multiple
stages of processing. The abstraction is based on directed
acyclic graphs, where nodes represent multiple stages of pro-
cessing and the flow of data between these stages. It was in-
vented in the 1960s at MIT [57] and later adapted to the do-
main of data-intensive computing (LGDF2 [58], Dryad [59])
as a way to describe data processing pipelines comprising of
multiple stages, e. g., map, reduce, shuffling. A stage can also
be comprised of an external application (e. g., a simulation).

Iterative computation is a scenario applicable in particular
to model training in machine learning applications. An impor-
tant requirement of these types of applications is the need to
cache data to facilitate reading and processing data multiple
times [60]. In machine learning applications, this pattern is
often found as many optimization techniques require multiple
passes on the data to compute and update model parameters.

The last scenario is stream processing, defined as the ability
to process unbounded data feeds and provide near-realtime in-
sights [61]. The processing patterns for streaming are similar.
However, the amount of data is typically smaller, as messages
are processed in small batches. The management of state be-
tween individual messages can be required. Stream processing
is used to analyze data streams from scientific experiments,
e. g., light source sciences [32].

B. Application Requirements

To support these scenarios, an efficient resource manage-
ment abstraction and middleware that can support highly di-
verse task-based workloads is required. The heterogeneity of
the tasks in these application scenarios is high, i. e., often
tasks with diverse runtime, resource, and data requirements
need to be efficiently managed. For example, complex sce-
narios require the management of both long-running tasks,
e. g., simulation tasks, and short-running tasks, e. g., data-
parallel tasks arising from analytics applications. Further, data-
intensive applications can be highly unpredictable due to data-
dependencies and as a result very complex task graphs. The
necessity to respond to dynamic events demands support for
task creation at runtime. The requirements for the abstraction
and middleware can be summarized as follows:
R1 Abstractions: Provide a higher-level abstraction that hides

the details of complex distributed infrastructure, but allows
reasoning about trade-offs. The abstractions should be sim-
ple and easy-to-use, while supporting as many application
scenarios as possible (applicable). Further, it should be
generalizable to multiple systems and implementations.

R2 Middleware for Application-Level Resource Manage-
ment: Provide the ability to manage highly diverse paral-
lel and dependent tasks and associated data on heteroge-
neous infrastructure comprising of complex hardware and
software stacks. The system should support the interop-
erable use of infrastructures and should be extensible to
new frameworks and applications.



Task-Parallel Data-Parallel/MapReduce Dataflow Iterative Streaming
Description Focus on functional de-

composition into tasks and
control flow

Decomposition based on data
with minimal communica-
tion between tasks

Multiple processing stages
modeled with a directed
acyclic graph

Multiple generations of
tasks with sharing of data
between the generations

Processing of unbounded
data feeds in near-realtime

Characteristics Decomposition of a prob-
lem into a diverse set of de-
pendent and parallel tasks

Embarrassingly parallel,
loosely-coupled with mini-
mal communication. Details,
such as communication and
synchronization hidden from
the application

Multiple stages, loosely-
coupled parallelism, global
communication for shuffle
operation

Loosely coupled par-
allelism with global
communication for up-
dating machine learning
model parameters

Data is processed in small
batches often using data-
parallel algorithms. For
many algorithms, a global
state needs to be main-
tained across batches of
data

Application
Example

Molecular Dynamics [48],
[49], Ensemble-Kalman
Filter [50], Scientific Gate-
ways and Workflows [51]

Map-Only analytics [52],
Molecular Data analysis
Hausdorff Distance [53]

MapReduce for sequence
alignment [54], Molecular
Data analysis leaflet finder
and RMSD [53]

Machine learning algo-
rithms, K-Means [55]

Streaming for light source
data [32]

TABLE I: Data-Intensive Application Scenarios – Characteristics and Patterns: Data-intensive applications are more
complex than compute-oriented applications and require the management of data, I/O and compute resources.

R3 Dynamism and Adaptivity: Ability to respond to changes
in the environment at runtime. Both middleware and ab-
straction need to support this capability.

R4 Performance, Scalability, and Efficiency: The sys-
tem should provide adequate performance, mainly
high-throughput and low latencies, for highly diverse
task-based workloads. By doing so, the system sup-
ports the strong and weak scaling of applications while
ensuring efficient resource usage.

IV. PILOT-ABSTRACTION: AN ABSTRACTION AND MODEL
FOR DISTRIBUTED RESOURCE MANAGEMENT

The need for tools and high-level abstractions to support
application development and the extreme heterogeneity of in-
frastructures has been widely recognized [12]. Resource man-
agement is a fundamental challenge in distributed and parallel
computing. The current state is characterized by highly hetero-
geneous and fragmented systems, rigid point solutions, and a
lack of a unified model for expressing data and compute tasks.
The advent of data-intensive, machine learning, and streaming
applications complicated the state even further. Infrastructure
is getting more complicated by introducing new storage and
memory tiers as well as accelerators.

Data-intensive applications exhibit complex characteristics
and demand a highly flexible abstraction for allocating re-
sources and managing highly diverse workloads of tasks. Bal-
ancing application characteristics and infrastructure requires
careful consideration of application-level and infrastructure-
level concerns. High-level abstractions are critical to retain
developer productivity and to scale applications. For exam-
ple, the ability to manage resources efficiently, taking into
account application objectives is important. By infusing ap-
plication knowledge (e. g., about the data, compute and I/O
characteristics) into scheduling decisions, the runtime and scal-
ability can be significantly improved [62]. Thus, data needs to
be integrated into these abstractions as first-class citizen.

A. Pilot-Abstraction and Conceptual Model

The pilot-abstraction [6] is a unified abstraction for re-
source management on heterogeneous infrastructure from
high-performance computing, high-throughput computing, big
data, and cloud for distributed applications. In the following,

we discuss the experience of developing and extending the
abstraction and underlying middleware systems to support
the described application scenarios. In this section, we focus
on the DSR activities and artifacts related to the design and
creation of the abstraction and middleware system.

We follow the iterative design approach of DSR closely
aligning the abstraction design to real application needs. The
first system focused on the design of an application-internal
resource management framework for replica-exchange simu-
lations [48]. The resource management capabilities were eval-
uated using different application scenarios as case studies
and performance measurements on different HPC infrastruc-
tures focusing on the internal resource management subsystem.
Based on the positive evaluation, we generalized the abstrac-
tion and created a re-usable, application-agnostic, standalone
pilot-job system called BigJob [63].

The observation of similar concepts for other infrastructures
and applications [64] motivated the development of the pilot-
abstraction [6], a general abstraction for the re-occurring con-
cept of utilizing a placeholder job as a container for a set of
computational tasks. The abstraction comprises of two main
concepts, the pilot that represents a placeholder for a spe-
cific set of resources and the compute-unit, a self-contained
task. The implementation of the pilot-job system conceals de-
tails about the resource management systems of the different
infrastructures (e. g., HPC, HTC, and clouds). Thus, the user
can focus on the composition of tasks rather than dealing with
infrastructure specific aspects.

The pilot-abstraction addresses the need to efficiently and
flexibly manage resources on application-level across dis-
tributed, heterogeneous infrastructure. Pilot-jobs provide two
key capabilities: (i) they support the late binding of resources
and workloads, and (ii) they provide a higher-level abstrac-
tion for the specification of application workloads removing
the need the manage the execution of the workload manually.
At the same time, they provide critical capabilities to compose
task- and data-parallel workloads while providing optimal scal-
ability and performance by managing task granularities, data
dependencies, and I/O via the abstraction. The design of the
pilot-abstraction aims to offer a simple as possible and general
interface to these capabilities.

Another artifact of the design process is a conceptual model
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Fig. 3: DSR Evaluation Activities and Criteria (adapted
from Sonnenberg [10]): The incremental evaluation provides
valuable input for refinement and valuable knowledge that can
be transferred to other problems.

for understanding pilot-based systems. The P* model [6] aims
to provide a common framework to understand the abstraction,
as well as commonly used pilot-job systems. The P* model
defines the high-level concepts and mechanisms found in most
pilot-systems. The model specification is done using a func-
tional description of the components and interactions, as well
as various components and interaction diagrams. The charac-
teristics and interactions of all concepts and analysis of dif-
ferent pilot-systems using the model is available in [6]. Turilli
et al. [65] refined the framework.

While the pilot-job concept was developed for HPC and
HTC, the need to manage data in conjunction with pilots
and tasks became apparent. Pilot-Data [66] extends the pilot-
abstraction and provides the ability to manage storage and
data, and couple these effectively with computational tasks.
With the emergence of big data frameworks, such as Hadoop,
Spark, and Dask, the ability to couple HPC applications to
specialized data processing engines become increasingly im-
portant, which lead to the development of Pilot-Hadoop [67],
[68]. Further, extensions for in-memory processing [68], and
streaming [32] have been designed and implemented.

B. Middleware: System Design and Architecture

The objective of the system design phase is to create a sys-
tem design and implementation that can support the desired
abstractions. We applied methods and practices described ear-
lier to achieve a flexible, maintainable, and comprehensible
architecture. The system architecture is based on well-known
design patterns [69], e. g., the adaptor pattern for abstracting
specific resource types, i. e., HPC, cloud, and data infrastruc-
tures, such as Hadoop and Spark. For some of these infrastruc-
tures, we utilize the SAGA [70] as an access layer for local
resource management systems. The design artifacts of the ar-
chitecture model are created using block diagrams inspired by
UML [71] to visualize system layers, composition, and in-
teractions. Examples of architectural models artifacts can be
found here: Pilot-Job [63], Pilot-Data [66], Pilot-Hadoop [67],
and Pilot-Streaming [32].

Application 2Application 1 Application 3

Pilot-API

P* Model

Architecture Model

Statistical Model

Conceptual Model

Analytical Model

Performance Model

Application scenarios based on 
common elements and 
characteristics

Defines core concepts, their 
relationships and interactions. 
Exposed via Pilot-API.

Describes the structure of 
the system

Performance model for reasoning 
and prediction of performance of 
pilot-system and applications

Fig. 4: Understanding the DSR Artifacts using Different
Methods: Modeling techniques for characterization and eval-
uation of the pilot-abstraction and system.

V. EVALUATION

Evaluation is an essential part of the DSR process and en-
sures that the designed system achieves the desired purpose.
We explain the distinct types of evaluation conducted on dif-
ferent artifacts produced throughout the Eval 1-4 activities pro-
posed by Sonnenberg [10]. Figure 3 illustrates the four main
activities: problem statement, design, construction, and use.
We discuss in-depth the used methods and criteria used for
evaluating the output of every stage.

Table II summarizes the evaluation methods used for the dif-
ferent DSR activities and the evolution of the pilot-abstraction.
As proposed in [10], we evaluate the system interior, i. e., the
architecture, as well as the exterior, i. e., the usage of the ab-
straction and system.

Figure 4 summarizes the modeling methods used. We use
conceptual modeling to provide high-level intuition and to al-
low reasoning about inevitable trade-offs. Architecture models
enable the evaluation of the internal structure of the systems.
Performance models are used to describe the dynamic prop-
erties while using the abstraction and system. Insights from
the conducted evaluations inform the abstraction design and
to provide generalizable knowledge. In the following, we dis-
cuss the applied methods and criteria in detail.

A. Problem Identification and Design Evaluation (Eval 1/2)

Eval 1 activity, i. e., the justification of the problem state-
ment and research gap, has been performed in the introduction
and Section III. The results of the literature and application
survey define the design objectives for the pilot-abstraction.
The main criteria applied for evaluation of the problem was
the importance and applicability of the design idea to a broad
set of applications.

The design of the pilot-abstraction and middleware system
is evaluated according to three main criteria: simplicity, gen-
erality, and applicability. An important artifact of the design
phase is the P* conceptual model. The model defines the ele-
ments, characteristics, and interactions. The objective of P* is
to provide a minimal but complete model that provides an in-
tuition of the system. A metric for the simplicity of the model
is the number of elements of the model, which is very low
with four main concepts. The design of the pilot-abstraction
reduces the amount of code necessary significantly while pro-
viding interoperability across different infrastructures. Further,



Pilot-Job [63], [6] Pilot-Data [66] Pilot-Hadoop [67] Pilot-Memory [68] Pilot-Streaming [32]
Description Management of computational tasks

on heterogeneous infrastructure
Management of data and
compute tasks

Management of Hadoop
and Spark

Management of in-memory
runtimes for iterative tasks

Streaming data sources and
processing

Infrastructure HPC, HTC, Cloud HPC, Cloud, Hadoop/-
Yarn

HPC, Cloud, Hadoop/-
Yarn

HPC, Cloud, Hadoop/Yarn HPC, Cloud, Serverless

System Design
(Eval 2)

Conceptual model [6], architecture
model [63]

Conceptual model [6],
architecture model [66]

Architecture model [67] Architecture model [68] Architecture model [32]

Performance,
Scalability
and Efficiency
(Eval 3)

Pilot overhead, application and task
runtimes, strong scaling, analytical
model for replica-exchange simula-
tions [72]

Pilot overhead, applica-
tion and task runtimes,
strong scaling

Runtime, strong scaling Runtime, strong scaling Throughput, latency, scal-
ability, statistical perfor-
mance model for through-
put [73]

Case Studies
(Eval 4)

Adaptive Replica Exchange [48],
[72], Ensemble Kalman Filter simula-
tions [50], HIV binding [49], science
portals [51], Pilot-MapReduce [54]

Genome Sequencing, K-
Mean [66], [55]

Wordcount, K-Means K-Means Light source data recon-
struction, K-Means

TABLE II: Evaluation: Overview of Case Studies, Modeling Approaches and Performance Evaluation Methods Used.

we demonstrate the model’s generality by comparing and map-
ping different implementations of the pilot-abstraction [6].

B. System Implementation (Eval 3)

The Eval 3 activity evaluates the pilot-abstraction in artifi-
cial settings. The developed conceptual models provide an im-
portant basis for the construction of the system and the perfor-
mance evaluation by offering essential information about the
structure and expected behavior of the system.

The prototype implementation of the pilot-system is evalu-
ated using an architecture model comprising of several compo-
nent and interaction diagrams. The main criteria are feasibility,
extensibility, interoperability.

The feasibility and generality of the abstraction is shown in
various prototype and production implementations [63], [74].
Various extensions, e. g., for data management, in-memory
processing, and in support of new infrastructures, such as
cloud and serverless, demonstrate the extensibility of the sys-
tem. The implementation maps the pilot-abstraction to the dif-
ferent infrastructures enabling interoperability. We verified the
interoperability by various experiments with a broad set of dis-
tributed HPC and data-intensive applications.

C. Performance and Case Studies (Eval 4)

An important objective of the pilot-abstraction is to over-
come barriers to scaling. Thus, performance and scalability
are essential evaluation criteria as both are instrumental for
the many scientific applications. We use three approaches: (i)
performance characterization of the pilot-system and several
applications, and (ii) analytical performance modeling and (iii)
statistical performance modeling for selected use cases.

As benchmarks do not correctly reflect the requirements
of scientific applications, we rely on custom experiments for
evaluations. A challenge for performance characterizations and
modeling is the experimental design and data collection. The
experimental design is the process of determining the factors,
factor levels, and combinations of these for an experiment to
understand the effect of each factor while minimizing the num-
ber of experiments [29], [75]. A good experimental design is
essential to capture essential characteristics while minimizing
data collection efforts.

We propose the Mini App framework [32] to address these
challenges and to automate and accelerate the build-assess-

refine cycle. The Mini App framework helps to evaluate ab-
stractions, middleware, and infrastructure in real-world condi-
tions. Further, the data collected can serve as a basis for sta-
tistical models and predictions. It was designed to support an
excellent experimental design following best practices defined
by Gray [31] and Waller [76]: (i) Simplicity: Easy-to-use and
setup via high-level APIs and configurations. (ii) Relevance:
It gives the developer full control of the application workload
and metrics necessary for the application scenario. (iii) Scal-
ability: Support for distributed resources and datasets at vari-
ous scale levels and data rates. (iv) Portability: Infrastructure
and application-agnostic by design. Different types of infras-
tructure supported via pilot-abstraction. (v) Reproducibility:
It provides comprehensive automation of performance exper-
iments ensuring repeatability and reproducibility.

Another important aspect of DSR is the ability to derive
knowledge and insights. We use different modeling approaches
to generalize abstractions, systems, and applications. For ex-
ample, we provide analytical models for the performance of
the application and pilot-systems [72], [66]. These models cap-
ture the significant components of the runtime and allow users
to understand the impact of input data volume and parallelism
on the runtime. Further, it enables the assessment of the sys-
tem overheads and their ratio to the overall runtime of the
application. Further, we use statistical modeling, e. g., for the
prediction of the throughput of streaming systems for different
infrastructure configurations [73].

Further, we evaluate the applicability of the abstraction in
a natural setting, e. g., in various applications [50], [77], and
frameworks [54]. In these investigations, we assess whether
the pilot-abstraction meets the defined requirements concern-
ing its capabilities, simplicity, and the feasibility to imple-
ment, deploy, and execute applications. In particular, we fo-
cus on the resource management requirements, such as the
ability to adapt to changing resource needs, while providing
adequate performance and scalability. The abstraction proved
useful to capture the critical parameters necessary to express
task and data decompositions and the associated performance
trade-offs. In various case studies, we demonstrated that the
abstraction allows a suitable control of the compute and data
movements.
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Fig. 5: Iterative Research Approach: Using an iterative feed-
back loop of abstraction design and evaluation using real-
world and synthetic applications to refine design and system.

VI. DISCUSSION

Abstractions are vital for handling complexity and build-
ing systems at an unprecedented scale. We present the de-
sign science research method to design and evaluate the pilot-
abstraction— an abstraction for enabling resource manage-
ment across heterogeneous, distributed resources. By itera-
tively addressing real-world application and system challenges
using the DSR method, we were able to design, develop and
refine the pilot-abstraction, and evaluated it against the defined
requirements:
R1 Abstractions: The Pilot-Abstraction’s capabilities and

simplicity have been evaluated and validated in several
application scenarios, e. g., ensemble simulations, data-
intensive applications, and streaming. Further, the exten-
sive usage of the Pilot-Abstraction for higher-level build-
ing blocks, e. g., a workflow framework [78], an ensemble
simulations management framework, and a MapReduce
framework [54], demonstrates its viability and usefulness.

R2 Middleware for Application-Level Resource Manage-
ment: The pilot-system provides interoperable use of
HPC, cloud, and data infrastructures. In [79], we explore
the interoperable use of HPC, HTC, and clouds. In [66],
we use and characterize the use of Pilot-Data on HPC
and HTC resources. The system is extensible to new in-
frastructures, such as Hadoop [67], streaming [32], and
serverless [73].

R3 Dynamism and Adaptivity: An important capability of
the pilot-abstraction is the ability to respond to changes
in the environment at runtime. In [63], we explore the
usage of additional cloud resources at runtime to meet
application demands. In [73], we demonstrated a model
for throughput prediction to determine the optimal set of
resources for a given workload.

R4 Performance, Scalability, and Efficiency: We demon-
strated in various studies that the pilot-abstraction en-
ables the creation of scalable application by given fine-
grained control on data/task composition while hiding the
details [63], [66], [53], [73].

The incremental evaluation of the artifacts of the DSR pro-

cess provides valuable input for future iterations and general-
izable knowledge for similar problems. In the following, we
describe and synthesize our experiences of the development
of the pilot-abstraction in a set of lessons learned to inform
the design process of future systems.

Iteration: The iterative design and evaluation process of
DSR is instrumental in creating appropriate abstractions and
middleware systems. Building real systems and applications
is instrumental in discovering new usage modes and further
requirements. Implementing smaller working systems is in-
strumental before scaling to more extensive resources and fur-
ther applications. Specifically, we iteratively grew the pilot-job
system from supporting coarse-grained ensembles of simula-
tion tasks on single infrastructures to support for high-volume,
fine-grained data-parallel tasks, and streaming.

Automation: Collecting data on the design is an instru-
mental part of the process. Automating experiments for per-
formance characterizations and measurements is important to
enable the exploration of larger parameter spaces and to en-
sure reproducibility. We developed the Mini Apps framework
to formalize and automate the experiments and data collection.
Figure 5 illustrates the feedback loop used for the design of
pilot-abstraction and the implementation in the pilot-system.
By using continuous evaluations, partially automated with the
Mini App framework, valuable inputs for the abstraction and
experimental design and modeling process are generated.

Abstraction Design: The design process is complex and
requires the careful trade-off of capabilities, simplicity, and
generality. The more application-specific knowledge can be
induced via abstractions into middleware systems, the better
the decision the system can make, e. g., concerning schedul-
ing. However, the more application-specific the abstraction,
the less general is its utility. Balancing simplicity, generality,
and capability is challenging and requires a careful evaluation
of the abstraction in different applications and settings.

Compute and Data: Managing heterogeneous compute
tasks at scale is challenging by itself. The addition of data
complicates the problem significantly. There is a significant
amount of heterogeneity and dynamism in the way data can
be stored, transferred, and used. Typically, a great extent of
the data lifecycle is external to the applications. We address
these challenges, particularly by focusing on defined applica-
tion scenarios (see Table I) and by supporting and optimizing
for important patterns, e. g., MapReduce.

Optimize Application Algorithms: A universal abstraction
and system for resource management can help to scale appli-
cations by simplifying and standardizing the process of re-
source and task management. In many cases, an improvement
of algorithms can lead to even more significant improvements
compared to scaling out a non-optimal algorithm to more re-
sources (see e. g. [53]).

Limitations of Abstractions: In many cases, systems are
not limited by conceptual abstraction, but by the implementa-
tion of the system and infrastructure. Further, abstractions can
exhibit undesirable behaviors. Leaky abstractions describe the
phenomena that abstractions frequently fail in real-world set-



tings exposing complexities from underlying systems that it
meant to abstract [80].

Re-Use and Interoperability: A well-designed abstraction
is a minimal requirement for developing robust and scalable
software systems. By abstracting commonalities between sys-
tems, interoperability can be achieved. However, significant
investments into the stability and robustness of the system are
required to support real-world applications.

REFERENCES

[1] Anthony J. G. Hey, Stewart Tansley, and Kristin M. Tolle. The Fourth
Paradigm: Data-Intensive Scientific Discovery. Microsoft, 2009.

[2] Geoffrey Fox, Judy Qiu, David Crandall, Gregor Von Laszewski, Oliver
Beckstein, John Paden, Ioannis Paraskevakos, Shantenu Jha, Fusheng
Wang, Madhav Marathe, Anil Vullikanti, and Thomas Cheatham. Con-
tributions to high-performance big data computing. In L. Grandinetti,
G.R. Joubert, K. Michielsen, S.L. Mirtaheri, M. Taufer, and R Yokota,
editors, Future Trends of HPC in a Disruptive Scenario. IOS Press Vol-
ume 34 of Advances in Parallel Computing, 2019.

[3] Jeffrey S. Vetter, Ron Brightwell, Maya Gokhale, ..., and Jeremiah
Wilke. Extreme heterogeneity 2018 - productive computational science
in the era of extreme heterogeneity: Report for doe ascr workshop on
extreme heterogeneity.

[4] Alfred V. Aho and Jeffrey D. Ullman. Foundations of Computer Science.
Computer Science Press, Inc., USA, 1992.

[5] Mary Shaw. On Conceptual Modelling: Perspectives from Artificial In-
telligence, Databases, and Programming Languages, chapter The Im-
pact of Modelling and Abstraction Concerns on Modern Programming
Languages. In Topics in Information Systems [18], 1984.

[6] Andre Luckow, Mark Santcroos, Andre Merzky, Ole Weidner, Pradeep
Mantha, and Shantenu Jha. P*: A model of pilot-abstractions. IEEE 8th
International Conference on e-Science, pages 1–10, 2012.
http://dx.doi.org/10.1109/eScience.2012.6404423.

[7] Juhani Iivari. A paradigmatic analysis of information systems as a design
science. Scandinavian Journal of Information Systems, 19:39–, 01 2007.
https://aisel.aisnet.org/sjis/vol19/iss2/5/.

[8] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. De-
sign science in information systems research. MIS Quarterly, 28(1):75–
105, 2004.

[9] Ken Peffers, Tuure Tuunanen, Marcus Rothenberger, and Samir Chat-
terjee. A design science research methodology for information systems
research. J. Manage. Inf. Syst., 24(3):45–77, December 2007.

[10] Christian Sonnenberg and Jan vom Brocke. Evaluations in the science
of the artificial – reconsidering the build-evaluate pattern in design sci-
ence research. In Ken Peffers, Marcus Rothenberger, and Bill Kuechler,
editors, Design Science Research in Information Systems. Advances in
Theory and Practice, pages 381–397, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg.

[11] Judith Segal. Models of scientific software development. In SECSE 08,
First International Workshop on Software Engineering in Computational
Science and Engineering, May 2008. Workshop co-located with ICSE
08 http://icse08.upb.de/.

[12] Shantenu Jha, Murray Cole, Daniel S. Katz, Manish Parashar, Omer
Rana, and Jon Weissman. Distributed computing practice for large-scale
science and engineering applications. Concurrency and Computation:
Practice and Experience, 25(11):1559–1585.

[13] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for
Parallel Programming. Addison-Wesley Professional, first edition, 2004.

[14] Micah Beck. On the hourglass model. Commun. ACM, 62(7):48–57,
June 2019.

[15] Joshua Bloch. How to design a good api and why it matters. In Com-
panion to the 21st ACM SIGPLAN Symposium on Object-Oriented Pro-
gramming Systems, Languages, and Applications, OOPSLA ’06, page
506–507, New York, NY, USA, 2006. ACM.

[16] John Mylopoulos. Conceptual modelling and telos. http://www.cs.
toronto.edu/∼jm/2507S/Readings/CM+Telos.pdf, 1992.

[17] Jeff Johnson and Austin Henderson. Conceptual models: Begin by de-
signing what to design. Interactions, 9(1):25–32, January 2002.

[18] Michael L. Brodie, John Mylopoulos, and Joachim W. Schmidt. On Con-
ceptual Modelling: Perspectives from Artificial Intelligence, Databases,
and Programming Languages. Topics in Information Systems. Springer
New York, 1984.

[19] Bernd Bruegge and Allen H. Dutoit. Object-Oriented Software Engi-
neering Using UML, Patterns, and Java. Prentice Hall Press, Upper
Saddle River, NJ, USA, 3rd edition, 2009.

[20] M. Shaw. The coming-of-age of software architecture research. In Pro-
ceedings of the 23rd International Conference on Software Engineering.
ICSE 2001, pages 657–664a, May 2001.

[21] C. Alexander, P.D.A.C. Alexander, S. Ishikawa, M. Silverstein, M. Ja-
cobson, Center for Environmental Structure, I. Fiksdahl-King, and
A. Shlomo. A Pattern Language: Towns, Buildings, Construction. Center
for Environmental Structure Berkeley, Calif: Center for Environmental
Structure series. OUP USA, 1977.

[22] Kent Beck and Ward Cunningham. Using pattern languages for object
oriented programs. In Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), 1987.

[23] David Lorge Parnas. On the criteria to be used in decomposing systems
into modules. Commun. ACM, 15(12):1053–1058, December 1972.

[24] David Lorge Parnas. Information distribution aspects of design method-
ology. Methods, 4(5):6–7, 1971.

[25] David Garlan and Mary Shaw. An introduction to software architecture.
Technical report, Pittsburgh, PA, USA, 1994.

[26] I. Foster and C. Kesselman. The Grid 2: Blueprint for a New Computing
Infrastructure. ISSN. Elsevier Science, 2003.

[27] Judy Qiu, Shantenu Jha, Andre Luckow, and Geoffrey C. Fox. Towards
hpc-abds: An initial high-performance big data stack. In Proceedings of
ACM Big Data Interoperability Framework Workshop, 2015.

[28] Kathleen M. Eisenhardt. Building theories from case study research.
The Academy of Management Review, 14(4):532–550, 1989.

[29] Raj Jain. The art of computer systems performance analysis - techniques
for experimental design, measurement, simulation, and modeling. Wiley
professional computing. Wiley, 1991.

[30] D. Ferrari. Computer Systems Performance Evaluation. Prentice-Hall,
1978.

[31] Jim Gray. Benchmark Handbook: For Database and Transaction Pro-
cessing Systems. Morgan Kaufmann, San Francisco, CA, USA, 1992.

[32] André Luckow, George Chantzialexiou, and Shantenu Jha. Pilot-
streaming: A stream processing framework for high-performance com-
puting. IEEE eScience International Conference, abs/1801.08648, 2018.

[33] W. Buchholz. A synthetic job for measuring system performance. IBM
Systems Journal, 8(4):309–318, 1969.

[34] J. W. Anderson, K. E. Kennedy, L. B. Ngo, A. Luckow, and A. W.
Apon. Synthetic data generation for the internet of things. In 2014
IEEE International Conference on Big Data (Big Data), 2014.

[35] Andre Merzky, Ming Tai Ha, Matteo Turilli, and Shantenu Jha. Synapse:
Synthetic application profiler and emulator. Journal of Computational
Science, 27:329 – 344, 2018.

[36] Adolfy Hoisie. Performance modeling overview. Talk at
PAM 2018: Performance Analysis and Modeling Workshop:
https://indico.bnl.gov/event/3950/contributions/12021/attachments/
10817/13215/Talk at the Perf Workshop Feb 2018.pdf, 2018.

[37] A. Bordgida, J. Mylopoulos, and H. K. T. Wong. On Conceptual Mod-
elling: Perspectives from Artificial Intelligence, Databases, and Pro-
gramming Languages, chapter Generalization/Specialization as a Basis
for Software Specification. In Topics in Information Systems [18], 1984.

[38] Danilo Bzdok, Naomi Altman, and Martin Krzywinski. Statistics versus
machine learning. Nature Methods, 15:233 EP –, 04 2018.

[39] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD ’79, NY, NY, USA, 1979. ACM.

[40] Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS ’67 (Spring), pages
483–485, New York, NY, USA, 1967. ACM.

[41] Geoffrey C. Fox, James A. Glazier, J. C. S. Kadupitiya, Vikram Jad-
hao, Minje Kim, Judy Qiu, James P. Sluka, Endre T. Somogyi, Mad-
hav Marathe, Abhijin Adiga, Jiangzhuo Chen, Oliver Beckstein, and
Shantenu Jha. Learning everywhere: Pervasive machine learning for
effective high-performance computation. CoRR, abs/1902.10810, 2019.

[42] Engineering National Academies of Sciences and Medicine. Future Di-
rections for NSF Advanced Computing Infrastructure to Support U.S.

http://dx.doi.org/10.1109/eScience.2012.6404423
https://aisel.aisnet.org/sjis/vol19/iss2/5/
http://www.cs.toronto.edu/~jm/2507S/Readings/CM+Telos.pdf
http://www.cs.toronto.edu/~jm/2507S/Readings/CM+Telos.pdf
https://indico.bnl.gov/event/3950/contributions/12021/attachments/10817/13215/Talk_at_the_Perf_Workshop_Feb_2018.pdf 
https://indico.bnl.gov/event/3950/contributions/12021/attachments/10817/13215/Talk_at_the_Perf_Workshop_Feb_2018.pdf 


Science and Engineering in 2017-2020. The National Academies Press,
Washington, DC, 2016.

[43] Krste Asanović, Ras Bodik, Bryan Christopher Catanzaro, Joseph James
Gebis, Parry Husbands, Kurt Keutzer, David A. Patterson,
William Lester Plishker, John Shalf, Samuel Webb Williams, and
Katherine A. Yelick. The landscape of parallel computing research: A
view from berkeley. Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[44] Shantenu Jha, Daniel S. Katz, Andre Luckow, Neil Chue Hong , Omer
Rana, and Yogesh Simmhan. Introducing distributed dynamic data-
intensive (d3) science: Understanding applications and infrastructure.
Concurrency and Computation: Practice and Experience, 29(8), 2017.

[45] Geoffrey C. Fox, Shantenu Jha, Judy Qiu, and Andre Luckow. Towards
an understanding of facets and exemplars of big data applications. In
Proceedings of Beowulf’14, Annapolis, MD, USA, 2014. ACM.

[46] Geoffrey C. Fox, Shantenu Jha, Judy Qiu, and Andre Luckow. A sys-
tematic approach to big data benchmarks. In Lucio Grandinetti, Gerhard
Joubert, Marcel Kunze, and Valerio Pascucci, editors, Big Data and High
Performance Computing, volume 24, pages 47–66. IOS Press, München,
2015. http://dx.doi.org/10.3233/978-1-61499-583-8-47.

[47] NIST BigData Working Group. http://bigdatawg.nist.gov/usecases.php,
2019.

[48] Andre Luckow, Shantenu Jha, Joohyun Kim, Andre Merzky, and Bet-
tina Schnor. Adaptive Replica-Exchange Simulations. Royal Society
Philosophical Transactions A, pages 2595–2606, jun 2009.

[49] David W. Wright, Benjamin A. Hall, Owain A. Kenway, Shantenu Jha,
and Peter V. Coveney. Computing clinically relevant binding free en-
ergies of hiv-1 protease inhibitors. Journal of Chemical Theory and
Computation, 10(3):1228–1241, 2014. PMID: 24683369.

[50] Yaakoub El-Khamra and Shantenu Jha. Developing autonomic dis-
tributed scientific applications: A case study from history matching using
ensemble kalman-filters. In Proceedings of the 6th International Con-
ference Industry Session on Grids Meets Autonomic Computing, GMAC
’09, pages 19–28, New York, NY, USA, 2009. ACM.

[51] Sharath Maddineni, Joohyun Kim, Yaakoub El-Khamra, and Shantenu
Jha. Distributed application runtime environment (dare): A standards-
based middleware framework for science-gateways. Journal of Grid
Computing, 10(4):647–664, 2012.

[52] G. C. Fox, J. Qiu, S. Kamburugamuve, S. Jha, and A. Luckow. Hpc-
abds high performance computing enhanced apache big data stack. In
2015 15th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing, pages 1057–1066, May 2015.

[53] Ioannis Paraskevakos, Andre Luckow, Mahzad Khoshlessan, George
Chantzialexiou, Thomas E. Cheatham, Oliver Beckstein, Geoffrey C.
Fox, and Shantenu Jha. Task-parallel analysis of molecular dynamics
trajectories. In Proceedings of the 47th International Conference on
Parallel Processing, ICPP 2018, New York, NY, USA, 2018. ACM.

[54] Pradeep Kumar Mantha, Andre Luckow, and Shantenu Jha. Pilot-
MapReduce: An Extensible and Flexible MapReduce Implementation
for Distributed Data. In Proceedings of third international workshop on
MapReduce and its Applications, MapReduce ’12, pages 17–24, New
York, NY, USA, 2012. ACM.

[55] Shantenu Jha, Judy Qiu, André Luckow, Pradeep Kumar Mantha, and
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