
Development and Application of a 
Data-Driven Methodology for 

Validation of Risk-Informed Safety 
Margin Characterization Models

Reactor Concepts Research Development and 
Demonstration (RCRD&D)

Nam Dinh
North Carolina State University

Collaborators
George Washington University

The Ohio State University

Alison Hahn, Federal POC
Curtis Smith, Technical POC

Project No. 16-10918



 

Milestone: M2NU-16-NC-NCSU-030401-151 
Final Technical Progress Report 

      
Project Number: IRP-16-10918 

DOE Contract No.: DE-NE0008530 
 
 

Development and Application of a Data-Driven Methodology 
for Validation of Risk-Informed Safety Margin 

Characterization Models 
 

Project PI: Nam Dinh (ntdinh@ncsu.edu) 
Technical Contact: Yong-Joon Choi 

Federal Contact: Alison Hahn 
 

North Carolina State University 
Nam Dinh, Abhinav Gupta, Igor Bolotnov, John Baugh, and Maria Avramova 

Purdue University 
Hany Abdel-Khalik 

University of Michigan 
Xiaodong Sun 

The George Washington University 
Philippe Bardet 

Zachry Nuclear Engineering 
Jeffery Lane 

R.T. Sewell Associates 
Robert Sewell 

Centroid PIC, Inc. 
Ram Sampath 

Idaho National Laboratory 
Steven Prescott, Cristian Rabiti, Robert Youngblood 

Oak Ridge National Laboratory 
Weiju Ren 

 
 

January 2021 
 



 ii 

Abstract 

 

The document is the Final Technical Progress Report for the Nuclear Energy University Program’s 

Integrated Research Project (IRP) on “Development and Application of a Data-Driven Methodology for 

Validation of Risk-Informed Safety Margin Characterization Models” that supports the LWR Sustainability 

Program’s RISMC R&D Pathway. The project goal is to develop and demonstrate a data-driven 

methodology for validation of advanced computer models used in nuclear power plant safety analysis. 

Specifically, the advanced computer models are those in the toolkit developed to support risk-informed 

safety margin characterization (RISMC), an integrated deterministic/probabilistic safety analysis 

methodology developed in the Department of Energy’s Light Water Reactor Sustainability (LWR-S) 

program. 

The report reflects the progress made towards the project’s stated goal by contributions by researchers and 

graduate students from universities, with support from researchers from national laboratories and industry 

companies. The project organization, effort coordination and technical implementation are summarized, 

followed by discussion of main findings, issues, and path forward. Selected chapters provide a more 

detailed description of tasks, approaches and respective findings and recommendations. Noteworthy are 

contributions that serve as guidelines for methodology development. It is also noted that this report is 

complemented by other milestone reports (as stand-alone deliverables) that provide detailed discussion of 

the technical developments.  The project results have been documented in a number (12) dissertations and 

these, 50+ peer-reviewed publications in technical journals and conference proceedings.  
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Nomenclature 

 

AMS Advanced Modeling and Simulation 

BN Bayesian Network 

BWR Boiling Water Reactor 

CA Code Adequacy 

CASL Consortium for Advanced Simulation of Light Water Reactors 

CAE Claim, Argument, and Evidence 

CFD Computational Fluid Dynamics 

CPT Conditional Probability Table 

CSAU Code Scaling, Applicability, and Uncertainty 

DA Data Applicability 

DD Data-Driven 

EM Evaluation Model 

EMDAP Evaluation Model Development and Assessment Process 

EMU Experimental Measurement Uncertainty 

EU Expected Utility 

EVSI Expected Value of Sample Information 

GSN Goal Structuring Notation 

GWU The George Washington University 

HMM Heterogeneous Multiscale Integration 

IET Integrated Effect Test 

INL Idaho National Laboratory 

ML Machine Learning 

M&S Modeling & Simulation 

NCSU North Carolina State University 

NPP Nuclear Power Plant 

ORNL Oak Ridge National Laboratory 

PCM Physics-guided Covered Mapping 

PCMM Predictive Capability Maturity Model 

PCMQ Predictive Capability Maturity Quantification 

PIRT Phenomena Identification and Ranking Table 

PP Phenomenology Pyramid 

PWR Pressurized Water Reactor 

PRA Probabilistic Risk Analysis 

QoI Quantity of interest 

ROM Reduce Order Modeling 

RAVEN Risk Analysis Virtual Environment 

RPP Reactor Prototypicality Parameter 

RISMC Risk-Informed Safety Margin Characterization 

SPH Smoothed Particle Hydrodynamics 

STH System Thermal-Hydraulics 

U-M University of Michigan 

UQ Uncertainty Quantification 

V&V Verification and Validation 

VUQ V&V and UQ  
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1. Project Overview 
 

1.1. Goal, Vision, and Approach 

 

The goal of the integrated research project is to develop and demonstrate a data-driven methodology 

for validation of advanced computer models for nuclear power plant safety analysis. Specifically, the 

advanced computer models are those in the toolkit developed to support the risk-informed safety margin 

characterization (RISMC), an integrated deterministic/probabilistic safety analysis methodology developed 

in the Department of Energy’s Light Water Reactor Sustainability (LWR-S) program. 

The project is carried out with vision that the new validation methodology for safety analysis codes 

will build upon the U.S. Nuclear Regulatory Commission’s Code Scaling, Applicability and Uncertainty 

(CSAU) methodology, and its subsequent regulatory guide NRC 1.203 on “Transient and Accident Analysis 

Methods”, also known as Evaluation Model Development and Assessment Process (EMDAP). The 

resulting methodology, called Risk-informed EMDAP or REMDAP, should meet requirements of the 

RISMC methodology. The project team brings to bear advanced methods and tools in verification, 

validation, sensitivity, and uncertainty analysis to facilitate the implementation of already demanding 

EMDAP in a risk-informed application.  

The project’s technical approach involves applying the developed validation methodology to guide the 

validation of computer models for flooding hazard analysis and for system thermal-hydraulics analysis. 

Respectively, the RISMC tools are (1) a Smoothed Particle Hydrodynamics code used in the LWR-S 

program for flooding simulation, and (2) a system-level reactor core thermal-hydraulics simulation code. 

In both cases, the RISMC models are applied to study a selected class of accident scenarios, for which 

sources of errors and uncertainties and predictive capability gaps are identified. Methods and tools of 

sensitivity, uncertainty and scaling analysis are applied to guide the development of a verification and 

validation plan, including the validation data plan.  The latter identifies and characterizes existing and 

available data and databases and defines requirements for data to be obtained experimentally and 

computationally. Validation experiments (e.g., fluid dynamics, and fluid-structure interactions, turbulent 

mixing, and thermal stratification) and high-fidelity computer simulation (“numerical experiments”) are 

formulated, designed, built, and operated to produce data for validation of the respective RISMC tools. 

Lessons learned by means of the two applications will serve as useful feedback for refining the proposed 

methodology and associated techniques.  

One major challenge in validation is a lack of relevant data, including lack of confidence in the 

applicability of models and their supporting data in prototypic reactor conditions. In addition to this, the 

computational and methodological limitations of previous eras led to reliance on human judgment that can 

now be reduced. It is not that we no longer need data: rather, nowadays, it is possible to improve the use 

that we make of the data that we have (or can obtain).  

In addition, in order to bridge the remaining gap in data, the project investigates and advances:  

(a) a decision-theoretic framework for predictive capability maturity quantification;  

(b) techniques for simulation-based scaling for evaluation of applicability of experiments and determination 

of the validation domain;  

(c) reduced order modeling techniques to enable uncertainty quantification;  

(d) data-driven multi-scale integration that enables effective use of “big data” generated by advanced 

experiments and validated computational simulations;  

(e) validation data plan as a dynamic risk-informed instrument to guide design of experiments and 

simulation, and  
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(f) validation data management system that makes use of the Nuclear Energy Knowledgebase for Advanced 

Modelling and Simulation (NE-KAMS) infrastructure. 

The proposed project will bring to bear advanced methods and tools in verification, validation, 

sensitivity, and uncertainty analysis to facilitate the implementation of already demanding EMDAP in a 

risk-informed application (see Figure 1.1). in REMDAP, the risk-informed dimension manifests itself 

through the requirements (Box 1.1 in Figure 1.1) and measured by PCMQ (Box 1.3 in Figure 1.1). The 

proposed approach will combine the NRC’s CSAU methodology with the state-of-the-art uncertainty 

characterization techniques to provide a mathematically defendable basis for calculating biases and their 

uncertainties for the wide range of operating conditions that represent the intended range of model 

application.  Our proposed approach will allow for a reliable scaling of the biases between the experimental 

and application conditions that precludes the need for model calibration. Quantitative metrics will be used 

to judge the relevance and value of available experimental information within the application scenario. 

Further, it will reduce reliance on the heuristics.  The choice of models and model parameters will be based 

on the Phenomena Identification and Ranking Table (PIRT) process, increasingly aided by 

sensitivity/uncertainty analysis. 

 

 

Figure 1.1. Risk-informed Evaluation Model Development and Assessment Process. Orange boxes denote 

developments in the project and indicate EMDAP elements where the advances are expected to impact.  

 

Many limitations of a "validation" process arise because the experimental data correspond only 

partially to a scenario of interest. Consequently, a scenario-based approach for V&V-UQ proposed in this 

project is intended to overcome these limitations. Another challenge in validation is a lack of relevant data, 
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including lack of confidence in the applicability of models and their supporting data in prototypic reactor 

conditions. In addition to this, the computational and methodological limitations of previous eras led to 

reliance on human judgment that can now be reduced. It is not that we no longer need data: rather, 

nowadays, it is possible to improve the use that we make of the data that we have (or can obtain). In 

particular, a new physics-guided validation strategy based on first principles physics will rigorously map 

and bound the simulation errors in the domain of intended model use. To our knowledge, this represents a 

first-of-a-kind approach for the determination of the validation domain in the nuclear engineering 

community that presents a significant shift from the current approach for expert-determined scale distortion 

uncertainties. This is what we mean by “data-driven.” 

The project pursues a simulation-aided uncertainty-guided data-driven approach to enable effective 

implementation of the CSAU/EMDAP elements. The project investigates:  

(a) Risk-informed approaches for collection and characterization of evidence,  

(b) Decision-oriented framework for quantification of “validity” (or “maturity”), with a probabilistic 

criterion for adequate level of validation. 

(c) Techniques for physics-based simulation-aided scaling, uncertainty, and sensitivity analysis (to 

compute and optimize the relevance and value of experiments), 

(d) Methods for data-driven model development and assessment process that effectively utilizes data from 

physical and numerical experiments. 

 

The project team applies the developed validation methodology to guide the validation of computer 

models for flooding risk-assessment and for system thermal-hydraulics analysis. Specifically, the RISMC 

tools selected in the proposed project are a Smoothed Particle Hydrodynamics (SPH-NEUTRINO) code for 

flooding simulation and the CTF code as surrogate for reactor system thermal-hydraulics simulation. In 

both cases, the RISMC models will be applied to study a selected class of accident scenarios, for which 

sources of errors and uncertainties and predictive capability gaps will be identified. Methods and tools of 

sensitivity, uncertainty and scaling analysis will be applied to guide the development of a verification and 

validation plan, including the validation data plan.  The later identifies and characterizes existing and 

available data and databases and defines requirements for data to be obtained experimentally and 

computationally. Validation experiments (fluid dynamics, and fluid-structure interactions, turbulent 

mixing, and thermal stratification) and high-fidelity computer simulation (“numerical experiments”) will 

be formulated, designed, built, and operated to produce data for validation of the respective RISMC tools. 

Through the two applications, lessons learnt will provide feedbacks to the methodology and associated 

techniques.  

 

1.2. Project Organization and Execution 

 

The project has three inter-related sub-domains and respective Tasks: (i) Task 1: Validation 

methodology development; (ii) Task 2: Flooding hazard simulation code application, and Task 3: System 

thermal-hydraulics simulation code application. The three sub-teams were organized, with overlapping 

participation, to ensure two-way information flow from methodology to applications, and between the two 

applications.  

• The methodology group is led by NCSU, Purdue, ORNL and INL.  

• The flooding application group is led by GWU, CPI, NCSU, RTS and INL.  

• The system thermal-hydraulics (STH) application is led by UM, ZNE, Purdue and NCSU.  
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Table 1.1. The project’s principal investigators. 

  

 
 

The coordination started from the kick-off meeting and reinforced and adjusted by the half-yearly and 

annual meetings. The exchanges were initiated and maintained via electronic communication, and 

teleconferences.  

Capability and human resources development: The project team places a high significance on attracting 

young talented students and researchers for the project, and their training. The project recruited and 

involved two post-doctoral research scholars and thirteen graduate students.  

Coordination and integration: The project coordination is conducted through project meetings, group 

meeting, and topical meetings. Three groups are organized along the Task areas, each has a coordinator. 

The project’s principal investigator provides overall coordination that facilitates integration. 

Milestones and deliverables: 

The project is implemented through a series of milestones. The list of milestones (M2 and M3 reports) 

and delivery schedule were submitted and accepted by the NEUP program (Table 1.2).  

Table 1.2. Major and minor milestones (left column includes milestone ID number, level, and schedule). 

N151 

12/2019 
(M2) Final Report for (Project 16-10918) Development and Application of a Data-Driven 

Methodology for Validation of Risk-Informed Safety Margin Characterization Models 

N152 

12/2017 
(M2) Year 1 Status Report for (Project 16-10918) Development and Application of a Data-

Driven Methodology for Validation of RISMC Models 

N153 

6/2018 
(M2) Formulation of a data-driven methodology for validation of RISMC models  

N154 

3/2019 
(M2) Methods and tools to support the data-driven methodology for validation of RISMC 

models 
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N155 

6/2019 
(M2) Application of the data-driven methodology to validation of a system thermal-

hydraulics-based simulation model 

N156 

9/2019 
(M2) Application of the data-driven methodology to validation of a computational fluid 

dynamics-based simulation model 

N157 

9/2017 
(M3) Assessment of predictive capability maturity 

N158 

12/2017 
(M3) Risk-informed approach to validation 

N159 

3/2018 
(M3) Reduced order model development and application 

N1510 

6/2018 
(M3) Approaches to implementation and evaluation of coupling of codes 

N1511 

12/2018 
(M3) System thermal-hydraulic model validation experiment 

N1512 

12/2018 
(M3) Computational fluid dynamics code validation experiment  

N1513 

3/2019 
(M3) Using high-fidelity CFD simulation to support calibration and validation of system 

thermal-hydraulics model 

N1514 

6/2019 
(M3) Using high-fidelity CFD simulation to support calibration and validation of coarse-grain 

CFD model 

 

Table 1.3. The project’s milestones relationships. Each M2-level (major) milestone is supported by two 

M3-level (minor) milestones. 

 N151: Final Report 

 Methodology Development Applications 

   STH/CTF Flooding/SPH 

M2 N153 RFW N154 M&T N155 STH N156 CFD 

M3 N157 

PCMQ 

N158 

PRAV 

N159 

ROMT 

N1510 

CCVV 

N1511 

STHE 

N1513 

H2LS 

N1512 

CFDE 

N1514 

H2LC 

 N152 Y1R 

 

 

1.3. Project Technical Implementation 

 

The project technical implementation is task-based, milestone-oriented, following the approach 

outlined in the original proposal. Project tasks and information flow are illustrated in Figure 1.2 and Figure 

1.3.  Relationship between the project tasks and milestones are presented in Table 1.4. 
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Figure 1.2. Project tasks and information flow. 

 

 

 
 

Figure 1.3. Information flow in application tracts. 
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Table 1.4. Relationship between the project tasks and milestones. 

Miles-

tone 

NO 

Task 
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4 3.5 

157   x                

158  x                 

153 x x # * * * x x * *  *  * *  *  

159     x              

1510      x        *     

154  * # x # * *            

1511               *   x 

1513               *  x  

155  #      *      x x x # # 

1512           *  x      

1514           * x        

156  #      * x x x # #      

152  %  %  %  % %  % % % %  % % % 

151 Final Report (integration) 

x – direct support; # – synthesized; * – input; % - progress report. 

 

Task Area 1 – Validation Methodology Development for RISMC Models: Development of 

methodology, including framework and enabling methods for validation of RISMC models. 

   

Task 1.1: Define RISMC requirements for model applications, RISMC models (codes), and their 

validation.  

Task 1.2: Develop validation methodology of RISMC models.  

Task 1.3: Predictive capability maturity quantification (PCMQ): evidence-based framework for 

quantifying maturity of predictive capability. 

Task 1.4: Simulation-based scaling (SBS): an information-theoretic based method to quantify similarity 

and applicability of experiment to reactor prototypic process 

Task 1.5: Reduced order modeling (ROM): to achieve computational efficiency much needed in 

RISMC applications. 

Task 1.6: Data-driven multi-scale modeling (DDM): to make use of data for model improvement. 

Task 1.7: Validation data plan (VDP): to identify data needs and planning experimental activities to 

meet data requirements. 

Task 1.8. Validation data management system (VDMS) using NE-KAMS to support validation 

activities. 

 

Task Area 2 – Flooding Hazard Simulation Code Application: Apply the methodology to flooding 

simulation model for a storm surge scenario. 

 

Task 2.1: Perform RISMC analysis of storm surge flood scenarios to guide VDP 

Task 2.2: Define data plan for SPH-NEUTRINO model validation (VDP). 

Task 2.3: Develop flooding hazard analysis database (VDB). 

Task 2.4: Generate numerical simulation data used for validation of NEUTRINO model (CFD). 

Task 2.5: Design experiments used for validation of NEUTRINO model (Exp). 

 

Task Area 3 – System Thermal-hydraulics Application: Apply the methodology to system-level 

core thermal-hydraulics model and CTF. 
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Task 3.1: Perform RISMC analysis to guide VDP for CTF in post-dryout regime 

Task 3.2: Define CTF Validation data plan (VDP) 

Task 3.3: Develop CTF validation data base (VDB) 

Task 3.4: Generate numerical simulation data used for validation of CTF model (CFD) 

Task 3.5: Design experiments used for validation of CTF model (Exp) 

Note #1: Tasks 2.1 and 3.1 are focused on analysis that serves to guide development of the respective 

VDP (Validation Data Plan). As such, the analysis is intended to be limited in scope (as opposed to a full-

scope RISMC treatment). Considering the available resources and timeline of the required input, the 

problem statement for Tasks 2.1 and 3.1 will allow for scenario assumptions and system simplification 

appropriate for methodology demonstration. 

 

Note #2:  The IRP focus is on methodology development for validation of advanced CFD-type code 

(SPH) and system thermal-hydraulics (STH). Initially, the choice for STH was RELAP-7, a next generation 

system thermal-hydraulics code under development in the LWR Sustainability program.  As the project 

started, the team learned about the delay of RELAP-7 code release. At the kick-off meeting, the team 

evaluated options, and decided to focus the validation demonstration on core thermal hydraulics using CTF 

as surrogate for RELAP-7. The focus on the core thermal hydraulics is motivated by its high priority in 

safety analysis. CTF (aka COBRA-TF) is a sub-channel analysis code for core thermal-hydraulics based on 

multi-field two-fluid model, similar to the one in STH, but allowing for higher (sub-channel) resolution. 

We expect CTF-like capability be in advanced STH. In fact, CTF is currently used as the T-H component 

in CASL-VERA. The choice for CTF is also critical because the IRP team has access to the source codes 

and validation experiments for CTF, both are essential for the implementation and demonstration of the 

developed IRP methodology. The decision was communicated to the IRP TPOC and RISMC Technical 

Lead. The team put in place the backup option (with CTF) to cope with the delay of RELAP-7 release.  

 

1.4. Project Technical Findings 

 

The project technical findings are discussed on task basis and given in detail in the corresponding 

sections of this report. The main findings and issues are highlighted as follows: 

(1)  Risk-informed validation approach (RFW/PRAV): The project study proposed a formal validation 

approach that provides a basis to quantify credibility of risk assessments that are based on advanced 

simulation codes. The efficiency of the risk informed validation approach lies in the identification of critical 

structures, systems, and components (SSCs) that contribute to the system-level risk using Bayesian 

statistics. The validation methodology employs a data-driven approach to quantify the quality of data that 

is used to evaluate experimental fragilities for flooding failures. As the fragility assessment of a flooding 

scenario suffers from large epistemic uncertainties, the credibility of system-level validation is expressed 

using probabilistic distribution and maturity levels. To ensure that the system-level validation is complete 

and consistent, an additional validation index called consistency index is introduced. The risk informed 
validation approach is integrated with USNRC’s Evaluation Model Development and Assessment Process 

(EMDAP) framework for a complete and wider applicability of the framework. 

In the project’s milestone report M3NU-16-NC-NCSU-030401-158, Bodda and Gupta (2018) explored 

a novel approach to quantitatively assess the validation of a system-level simulation based on the available 

information from component level validation. The proposed approach uses performance-based probabilistic 

risk assessment (PRA) as the basis for validation as well as for allocating resources towards improving the 

validation either by collecting additional data or by enhancing the accuracy of simulation tools. The 

approach builds upon characterizing the validation in terms of an overlapping coefficient which is described 

as the joint area under the experimentally obtained and simulation based probability density functions of 

basic parameters or events. The approach utilizes the power of Bayesian statistics by mapping fault trees 
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and event trees into a Bayesian network which allows consideration of non-Boolean relationships between 

events as well as allows consideration of correlated events in the network. Starting with the experimental 

and simulation based probability density functions of basic parameters or basic events, a Bayesian network 

is used to propagate the risk for the system. The experimental data is graded by RSU: Relevance (∈𝑅), 

Scaling (∈𝑆) and Uncertainty (∈𝑈). The experimental data is identified based on integral effect tests (IET) 

and relevant separate effect tests (SET). If experimental data is not available for any event, then the 

experimental fragility curve can be taken as the best estimate simulation fragility curve. The fragilities and 

the risk associated with each intermediate event and the top event is calculated separately for both the 

experimental and simulated data. This set of curves are then used for evaluating the overlapping coefficient 

of each event. The PRA based approach helps in identification of critical path thereby reducing the 

computational effort by focusing on only those events that lie on the critical path. Reliance on the events of 

critical path can also be used to determine the allocation of resources among different events for improving 

the validation at component or intermediate levels. When a validation between the experimental and 

simulation data is available for the basic parameters and not for the basic events directly in the network, a 

hidden layer is added below the basic events to relate the fundamental parameters to the basic events. The 

relationship between the hidden layer nodes and the basic event nodes can be defined by either a 

mechanistic model or a simulation-based generation of response surface. Availability of new validation 

data, either through new experimental information or enhanced simulation tools, can be incorporated in a 

relatively straightforward manner by employing Bayesian updating to calculate posterior fragilities and the 

corresponding overlapping coefficients. 

For details, see Chapter 2 and cited therein references. 

 

(2) Data-Driven Validation Methodology for RISMC M&S (RFW): Risk-Informed Safety Margin 

Characterization (RISMC) is a modern methodology for Nuclear Power Plant safety analysis that combines 

a dynamic probabilistic risk assessment (PRA) and “best estimate plus uncertainty” realization of the 

RISMC mechanistic models. Controlled by probabilistic tools with initial and boundary conditions, 

multiple simulations are performed with mechanistic tools to identify the safety margin and vulnerability 

of the reactor. Since the result of RISMC is used to inform and support the decision regarding design, 

operation, and safety of nuclear power plant, a mathematically defendable and robust approach is needed 

for the validation of the simulation tools, such that a confident and effective decision can be made regarding 

the high-consequence nuclear safety. Due to the lack of prototypical data and deficiencies of the simulation 

model, a framework is needed to guide the validation of RISMC Modeling & Simulation (M&S) tools in 

three major aspects: generating & gathering direct all related evidence, integrating evidence into a claim 

regarding the model credibility/uncertainty, and making confident and robust decision for the model 

credibility/uncertainty. Also, since RISMC requires a large number of simulations for every external event, 

it’s sometimes inefficient to pursue high-order-accuracy M&S tools, where the facilities’ margins are 

enormous compared to code uncertainty. As a result, the sufficiency of simulation accuracy depends on the 

characteristics of the scenario and validation that adapts such a concept is known as the risk-informed 

validation. The objective is to advise the safety management group on how to make a best and effective 

assessment for the model uncertainty, given the research goal and the scenario information. Although many 

validation frameworks have been developed, none of them explicitly adapts the risk-informed concept. 

Moreover, many elements are performed as black boxes due to the inherent limitations and challenges. 

When the system becomes large and complex, the uncertainties induced by these limitations could grow up 

and accumulate. Without proper investigations, such issues can be easily overlooked and the user may 

experience a loss of confidence on the validation decision. As a result, a risk-informed validation framework 

is needed for assessing the credibility/uncertainty of RISMC M&S tools. At the same time, new 

methodologies/technologies are needed to resolve the major issues and challenges of traditional validation 

methodologies. 

 

In the project of “Development and Application of a Data-Driven Methodology for Validation of Risk-

Informed Safety Margin Characterization Models”, a validation framework, named Risk-informed 
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Evaluation Model Development and Assessment Process (REMDAP), is proposed for the validation of 

RISMC M&S tools. REMDAP is designed based on the framework of Evaluation Model Development and 

Assessment Process (EMDAP) and the methodology of Code Scaling Applicability, and Uncertainty 

(CSAU). By incorporating data-driven and risk-inform concept, REMDAP aims to present a significant 

shift from the current approach for expert-determined validation to the data-driven approach. In this study, 

a concept of sufficient accuracy is developed and adapted in the REMDAP framework to account for the 

unfrozen model forms, parameters and computational resources in the RISMC analysis. A tentative 

workflow is prepared based on the currently developing methodologies/technologies. Next, the progress of 

developing key methodologies in the REMDAP framework, including the data-driven closure development, 

data-driven uncertainty quantification, and Predictive Capability Maturity Quantification & Bayesian 

Network (PCMQBN) are demonstrated. Presently, this study demonstrates some initial developments of 

classifying methodologies based on assumptions and conditions, the objective is to identify the feature and 

create an initial proof-of-concept for applying Data Driven Modeling (DDM) in the model development 

and validation process. The application of REMDAP to sophisticated RISMC tools, including Cobra-TF 

and NEUTRINO-SPH, is still under development. 

 

First, a data-driven closure development methodology is under initial development and the available 

data-driven methods are classified into two types. The parametric model is built upon the fixed model form 

that relies on human knowledge, while the nonparametric model solely depends the data. Illustrative 

examples are prepared for both types of model development methods and observations are analyzed. 

Second, a data-driven uncertainty quantification (UQ) methodology is developed and the present methods 

are classified into two types: global data-driven UQ and local data-driven UQ. The global approach targets 

at system code like Cobra-TF by assuming that the model has been well-verified and closures are the major 

source of uncertainties. The local approach uses Physics-Informed Machine Learning (PIML) to construct 

a surrogate between the simulation error and the input physical features. It’s designed for the coarse-grid 

CFD like NEUTRINO-SPH, where error of each computing element is characterized with PIML. 

Illustrative examples are prepared for both types of data-driven UQ methods and observations are analyzed.  

 

Another major challenge of RISMC M&S tools validation is the decision-making process under 

uncertainty. Traditional validation relies heavily on expert judgments and the process is obscure and 

heuristic. In this study, a decision-theoretic methodology PCMQBN is under development. The objective 

is to construct a transparent, consistent and improvable validation process with mathematical languages and 

effectively make decisions on model credibility with adequate confidence based on a set of uncertain beliefs 

and a set of utilities. Guidance is constructed for the uncertainty grade of the R/S/U 

(Relevance/Scaling/Uncertainty) grading system. Illustrative examples are prepared to demonstrate the 

guidance and major findings. In addition, a framework of Bayesian sensitivity study is proposed for 

PCMQBN and the objective is to improve the robustness of the PCMQBN’s result. 

 

For details, see Chapter 3 and cited therein references. 

 

(3) Predictive Capability Maturity Quantification (with Bayesian Network) (PCMQ-BN): In this 

project study, a framework of PCMQBN is developed to formalize and quantify the validation decision-

making process with mathematical languages. The objective is to support the decision-making process for 

simulation adequacy in a transparent, consistent, and improvable manner. PCMQBN first formalizes the 

mathematical representation of simulation adequacy as a triplet of scenario, predictive capability level, and 

belief. Next, argumentation theory is employed to formalize the decision-making process in validation as 

an argument for simulation adequacy that is based on evidence from the validation frameworks and 

activities. In this process, all related evidence is characterized such that its representation is consistent with 

the definition of simulation adequacy. Next, all evidence is quantified where the predictive capability is 

represented by maturity levels and the belief is quantified by probabilities. Next, Bayes’ theorem is used to 

integrate the quantified evidence, and the Bayesian network is used to represent this integration by directed 
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acyclic graphs. To ensure the consistency of network connections and causal dependence on well-known 

physics, rules, and knowledge, a synthetic model is also suggested for evaluating the conditional probability 

among all nodes in the network by calculating the Reactor Prototypicality Parameter. A sensitivity analysis 

is performed to evaluate the impact of conditional probability and decision parameters. It is found that the 

conditional dependency between simulation adequacy and validation result has higher impacts on those 

between [R]elevancy/[S]caling/[U]ncertainty grade and data applicability. It is also found that relative 

weights of evidence from different databases have large impacts on the final data adequacy. Therefore, 

during a validation decision-making process, the correlations and dependencies among different databases 

and attributes need to be evaluated more carefully than accuracy assessments and scaling analysis for 

separate models and databases. Based on the sources and levels of uncertainty, three phases of development 

are defined for documenting and grading the quality of the assessment process and simulation adequacy 

results.  

To demonstrate the capability of PCMQBN, a case study is performed to assess the adequacy of SPH 

methods in simulating the scenario of “floods damage the building structures, enter the room, and cause 

diesel generator (DG) malfunctioning”. The validation framework CSAU and its regulatory guide EMDAP 

is used for collecting evidence and qualitative adequacy assessment. Since opposite conclusions are 

obtained from two numerical benchmarks, the PCMQBN framework is used to further refine the adequacy 

assessment with quantitative results. For separate benchmarks, it is found that the belief level on the 

adequacy claim for the SPH method is consistent with the qualitative results from CSAU/EMDAP. 

Meanwhile, it is found that the belief level for an adequate SPH simulation is 83% when evidence from 

both benchmarks are used. Comparing to the qualitative result, there is higher confidence that the SPH 

simulation is adequate for the designated purposes based on available evidence. Also, the uncertainty of 

simulation adequacy is less than that from the qualitative assessment since the contradictory results suggest 

a non-informative adequacy distribution. To further demonstrate how PCMQBN results can be used in risk-

informed validation, a risk-informed safety analysis is performed to evaluate potential damages to SSCs of 

NPPs by water waves. SPH simulations are performed to determine the structural loads by a wave for 60 

cycles. Based on a synthetic ensemble model, distributions of SPH predictions and corresponding 

consequences are made based on the simulation adequacy results. It turns out that the expected loss 

determined based on the PCMQBN results is 30% less than that loss from the qualitative assessment. As a 

result, the formalized PCMQBN framework is able to reduce the uncertainty in simulation adequacy 

assessment and the expected losses in the risk-informed analysis due to that uncertainty.  

 

For details, see Chapter 4 and the project’s milestone report M3NU-16-NC-NCSU-030401-157. 

 

(4) Reduced Order Modeling (ROM) & Physics Coverage Mapping (PCM) (M&T): This project 

segment has focused on further development of reduced order modeling techniques and physics-guided 

coverage mapping methodology to support the validation of computerized physics models employed in 

support of engineering calculations. Two challenges are targeted by these developments. First, how to take 

advantage of high-fidelity software tools in a manner that is computationally feasible. High fidelity tools 

are sought because they are believed to enable better predictions of complex physics phenomena. 

Engineering analyses however require numerous executions of such tools to achieve engineering objectives 

such as design optimization, propagation of uncertainties, integration of measurements from separate 

effects of integral effects experiments, etc. The cost of running this analysis is prohibitively large, forcing 

analysts to revert back to lower-fidelity models. To address this challenge, reduced order modeling 

techniques with error preserving bounds are sought in this project. The project has started with recent 

advances in reduced order modeling techniques that rely on the use of randomization to seek optimum 

reduction conditions for a given model. The project has further developed a number of algorithms to enable 

reduction across multiple physics models and has integrated the use of neural networks with previously 

developed randomized reduction algorithms. The outcome is an advanced set of reduction algorithms 

suitable for reducing complexity of multi-physics models for both transient and steady state calculations, 
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with mathematically rigorous upper-bounds on the maximum errors resulting from the reduction. For the 

second challenge tackled by this project segment, the goal is to answer a recurring question in validation 

exercises, that is, why and how could analyst rely on experimental data, often collected in idealized 

conditions, to validate modeling results for other conditions, for which no experimental data exist, 

representing the envisaged domain of model application. To address this challenge, investments in a new 

methodology, called physics-guided coverage mapping has been made. The idea is to rely on high fidelity 

modeling tools to identify in a non-parametric fashion the relationship between experimental and 

application conditions. The non-parametric description implies that no assumptions are made about the 

functional form relating application responses to experimental responses. Instead, information theory 

principles are employed directly to find the best joint PDF relating the experimental responses and the 

application responses. Going beyond this initial rendition of physics-guided coverage mapping 

methodology, the project has invested into further developing this methodology to account for modeling 

errors and constraints that might be present, which if not respected, would lead to incorrect mapping results. 

Examples include constraints on the input model parameters that must be respected when the parameters 

are perturbed. Also, in many situations, model parameters are pre-calculated by other computer codes, and 

the model is validated along with these parameters. In principle, any perturbations to these parameters 

would result in additional modeling errors that are yet to be validated. Hence, algorithms have been 

developed to ensure no additional errors are introduced due to parameters perturbations. This is achieved 

via a constrained sensitivity analysis exercise to ensure zero sensitivities of the modeling errors to parameter 

perturbations.  

In the study Zhou and Abdel-Khalik (2017) further develop a data-driven methodology called physics-

guided coverage mapping (PCM) to support model validation with the primary objective of formulating 

mathematically defendable procedures for mapping biases from the experimental domain to the application 

domain where measurements are scarce. PCM-based bias mapping is demonstrated using an application of 

BWR full-size fine-mesh bundle test (BFBT) experiments axial void distributions. The transfer of biases is 

done directly using kernel density estimation techniques and a joint probability distribution constructed by 

a pseudo response obtained non-parametrically using alternating conditional expectation (ACE) algorithm, 

which maximizes the mutual information between the pseudo response and the application response. 

Central to these developments is the ability to measure the importance of individual experiments which can 

be done quantitatively using the proposed algorithm. Thus, this work has further developed the PCM 

methodology as a calibration-free methodology to estimate application responses using the available body 

of experimental data. PCM requires for its optimal performance high fidelity physics models for both the 

application and experimental conditions. It also requires performing multiple uncertainty analyses which 

are later harvested for correlations that directly relate the application to the experimental response. By doing 

so, one needs not to identify the individual sources of uncertainties which precludes the need to solve an 

ill-posed problem. The study was performed using TRACE code. Current effort is to apply the method to 

CTF and post-dryout experiments. 

For details, see Chapter 5 ad peer-reviewed references listed therein. 

 

(5) Multiscale Simulation by Code Coupling for Flooding Scenarios (CCVV): Events such as the 

flooding around the Fort Calhoun (2011), Vermont Yankee (2013), and St. Lucie (2014) nuclear power 

plants have highlighted the need for accurate simulations to determine the risk of flooding at these and other 

facilities around the country.   However, plant response to flooding due to hurricane storm surge involves 

multiple spatiotemporal scales. While ocean circulation models can simulate large-scale storm surge events, 

assessment of the resilience of critical infrastructure to storm-induced flooding require much smaller scales 

that are more appropriate for fluid solvers, which can resolve finer scale processes.  Therefore, bridging the 

gap between these simulation approaches is essential, and calls for the conception, development, and 

evaluation of a multi-scale methodology that can accommodate the substantial differences in scales.   
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We describe a modeling framework that incorporates the larger scale finite element (FE) model, 

ADCIRC, along with the smaller scale smoothed particle hydrodynamics (SPH) code, Neutrino, to provide 

finer level resolution for complex geometries.  ADCIRC is an ocean circulation model that solves the 

shallow water equations over a mesh of nodes and triangular elements. The use of unstructured grids with 

varying element sizes means that a mesh can be gradually refined in areas that require greater levels of 

topographic detail. While these refinements can reach the meter scale, shallow water equations are not 

suitable for simulating the hydrodynamic processes that occur beneath that scale and that must account for 

the complex geometries of, for example, a nuclear power plant. Such simulations require smaller-scale 

models like the mesh-free fluid solver, Neutrino. 

 

Our approach draws on a methodology called subdomain modeling, which allows local changes in a 

finite element model to be accommodated with less computational effort than would be required by re-

running the entire simulation. Provided a subdomain is large enough to contain the altered hydrodynamics, 

changes can be made—such as refinements in spatial resolution and the addition of flood protection 

measures—and simulations performed on a subdomain without the need to calculate new boundary values.   

Objectives of the project include enhanced spatial resolution of subdomain meshes to get finite element 

simulations closer to facility-scale features and topography; data libraries and reuse to curtail the need for 

large, ocean-scale simulations, allowing modelers to instead start from the subdomain scale; ADCIRC-

Neutrino coupling to facilitate subdomain-to-facility scale interactions; and verification and validation to 

ensure the correctness of computer implementations. 

 

Results are based on datasets obtained from and through collaboration with the United States Army 

Corps of Engineers (USACE), and include (1) refinement and evaluation of subdomain modeling for its 

computational benefit and solution quality in actual, real-world applications that consider a range of 

USACE engineering design scenarios, (2) development of a post-processing approach that facilitates the 

use of spatially and temporally coarse datasets from USACE as boundary conditions for subdomain 

modeling, allowing us to adopt a library of states (LOS) perspective so that simulation results from a variety 

of historical and synthetic storms are available for reuse—this allows us to recover boundary conditions of 

a quality comparable to datasets with a much finer temporal resolution, (3) a prototype coupling approach 

using subdomain modeling to combine the larger scale finite element model, ADCIRC, with the smaller 

scale smoothed particle hydrodynamics code, Neutrino, to provide finer level resolution for complex 

geometries. 

For details, see Chapter 6 and the project’s milestone report M3NU-16-NC-NCSU-030401-1510. 

 

(6) Validation acceptance criteria (RFW): In an early report, Youngblood (2017) provided an analysis 

of approaches of acceptance criteria for validation process, from “traditionalist” and ‘revisionist” 

perspectives. Further, he highlighted scaling-induced uncertainty. If we lack data at full scale, and are not 

completely certain of the applicability of data obtained at reduced scale, then we have a residual epistemic 

uncertainty about our model, and we do not know how to deal with it except by making essential use of 

expert analysis and expert judgment. It may prove to be possible to address this issue at least partially in 

the likelihood model that we use in Bayesian analysis, but a convincing explication of this remains to be 

developed. Given relevant data obtained at multiple scales, there might be a way to “learn” (machine-learn) 

how to correct for scale differences. This would not qualify as classical “validation,” but it may turn out to 

be useful: it would help in formulating a project-specific approach to scaling. 

For details, see Appendix A in the project’s milestone report M2NU-16-NC-NCSU-030401-152. 

 

(7) Industry perspectives on risk-informed methodology: In an early study by the project’s industry 

partner, Sewell (2018) analyzed external events PRA in the nuclear industry, bringing out four principal 

insights. Firstly, model validation approaches should address the entire uncertainty distribution, and thus 
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be keyed to development of (at least) the best estimate (eliminating model bias) and the aleatory variation 

(i.e., model error, or σ). The scope of models considered should also enable evaluation of the epistemic 

variation (i.e., differences existing among models that reflect data uncertainties and the competing 

hypotheses/theories of an informed technical community (ITC), plus code-to-code variations in results of 

models solving similar hypothesis/theory). Secondly, model validation should consider the broad scope of 

customer requirements. For PRA in the nuclear industry, customer requirements may pertain to safety 

analysis and regulatory requirements, as well as a licensee’s own financial analyses toward effective 

operational management of their nuclear facility. Thirdly, owing to its past and existing role, and its 

demonstrated efficacy, the SSHAC approach logically serves as a de facto template for requirements and 

procedures for validating models and their use in the nuclear industry, particularly for PHA and PRA. 

Finally, as PHA and PRA are naturally compatible with decision science, validation approaches can be 

resolved, or tailored, to the needs of the specific decision.  

(8)  SPH/CFD model validation experiment (CFDE): The primary purpose of this task is to 

demonstrate an application of the data-driven validation methodology on a flooding simulation model. A 

large-scale oscillating tank experiment was designed, constructed, instrumented and conducted and then 

used to validate the SPH code Neutrino, as well as determine parameters that affect the simulation results. 

The 90% and 50% end-wall pressure bounds were compared, as was the pressure impulse. The simulation 

bounds fell mostly within the experimental bounds, with exceptions at the beginning of the cycle (~40% 

difference), at peak pressure (~75% difference), and at the end of the cycle (~40% difference). The 

simulation pressure impulse matched the experiments well and was within 10%. Additionally, seven 

parameters were identified and investigated to determine their significance. All seven parameters were 

identified as significant. However, the particle size, interaction-radius to particle-size ratio, and fluid 

settling seem to have a greater effect due to larger fluctuation in their results.  

The next step is to quantify the significance of each parameter. Once this is done, those parameters 

that have the greatest effect on the simulation results can be optimized. The optimization goal would be to 

increase the accuracy of the simulation results while still accounting for the computational runtime of the 

simulation. This optimization will also depend on the scenario and a valid parameter range vs. result criteria 

needs to be established.  

Further, insights gained from the experimental validation exercise led to suggestions on refinements 

of the initial framework. For details, see Chapter 7 in this report. 

 

(9) Adequacy of SPH model for flooding analysis: In this study, a scoping-stage assessment is 

performed for SPH’s adequacy in simulating the real-scale external flooding scenarios, especially in 

predicting the surface-wave impacts on SSCs at NPP sites. To ensure the completeness and consistency, 

validation frameworks, Code Scalability Applicability and Uncertainty (CSAU), and its regulatory guide, 

Evaluation Model Development and Assessment Process (EMDAP) are followed to guide validation 

activities and to make final code adequacy assessment. First, an external-flooding scenario is designed, and 

SPH simulations are performed with an SPH-based software named Neutrino. A Phenomenon Identification 

and Ranking Table (PIRT) is created, and the surface-wave impacts are identified as one of the high-rank 

phenomena. At the same time, a performance measurement standard is created for measuring the code 

adequacy in informing safety decisions consistently and transparently. At the scoping stage, these criteria 

are selected based on authors’ knowledge and reviewed by researchers in related fields. Next, numerical 

benchmarks are designed for assessing the code adequacy of SPH methods and corresponding software 

implementations on Neutrino. Next, code accuracy is evaluated by comparing simulation results from 

Neutrino against experimental measurements in each benchmark. Meanwhile, a scaling analysis is 

performed to determine a group of dimensionless number for characterizing important physics and to assess 

the applicability of validation database collected in reduced-scale facility to the prototypic scenario. Finally, 

results from all activities are brought together to make an adequacy decision. It is found that, based on the 

current evidence, SPH methods and associated Neutrino software can predict the unbroken surface-wave 
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peak pressure onto stationary rigid with reasonable accuracy if the suggested sizes of particles are used. 

However, the available evidence is not sufficient to support the decisions of SPH’s adequacy in predicting 

impact force on dynamic rigid structures. 

The validation exercises of the SPH simulation highlighted several aspects of data for the data-driven 

methodology: general uncertainty values; data for scaling; and bands of applicable validation data. Through 

varying the SPH parameters it was shown that the particle size, interaction-radius to particle-size ratio, and 

fluid settling are important factors can have a large influence on the uncertainty of the results. The process 

used for this research can be used in developing validation cases against experiments for the flooding 

scenario areas of pressure, duration, max height/splash, and turbulence. The resulting uncertainty can then 

be used in correlation with scenario applicability in the PCMQBN data driven methodology for an overall 

model confidence rating. 

 For details, see Chapter 8 and Chapter 9 in this report. 

(11) Industry perspectives on data-driven methodology: In an early phase of the project, a study by 

the project’s industry partner (Zachry) concluded that if successful, the project could advance the safety 

analysis methods and offer better information to support the decision making process. Many of the proposed 

ideas seem promising, but additional progress and integration of the methods is necessary to determine the 

feasibility for industry application and regulatory acceptance. Over the course of the project, efforts were 

made to formalize and communicate developments (of methods and tools), including through peer-reviewed 

publications. A follow-up study by Zachry focused on “requirements for data-driven validation 

framework”, outlining challenges (e.g., methodology inertia, overfitting, cost of changes). The study 

concluded that the integration of a data-driven methodology into RISMC models for nuclear safety analysis 

is a clear step forward for the industry. For the near future, we see the most promise in Physics-Separated 

and Physics Evaluated Machine Learning domains (for details, refer to Chang & Dinh, 2018, IJTS). We 

believe that the input space for these types of problems is too vast for the data-only type of approach that 

has gained traction in other applications. The strategy most likely to succeed will leverage the advantages 

of a physics-based approach with those of a data-driven approach.  

 

(12) STH model validation experiment (STHE): The primary purpose of this study is to demonstrate 

an application of the data-driven validation methodology for a STH model. The task is to establish 

experimental facilities, conduct experiments, and provide data support for the data-driven validation 

methodology development. Compared to the traditional validation practices, data-driven validation relies 

on data from experiments (and advanced computational analyses) that are specifically designed for the 

model and use state-of-the-art methods to rigorously map and bound the simulation uncertainties in the 

domain of intended model use.  Therefore, data-driven validation presents a significant shift from the 

current validation practices based on expert-determined scale distortions. CTF, a subchannel analysis code, 

was chosen as the subject of STH code validation. In addition, based on the literature and feedback from 

the STH code validation subgroup, dispersed flow film boiling (DFFB) regime, where droplets are 

dispersed in a continuous superheated vapor phase, was chosen as the phenomenon focus of the study. 

 

Three phases for the experimental investigation were proposed. In the first phase (Phase I), an air-

water experiment was to be carried out at room temperature to test necessary optical instrument for droplet 

measurements and to develop proper experimental procedures, which serve as guidelines for elevated-

temperature and pressure experiments. The second and third phase (Phase II/III) experimental work would 

involve modification of the Phase I experimental facility and proper configuration of components, which is 

not included in this report. Data processing was completed using LaVision ParticleMaster package and in-

house computer codes to obtain polydispersed droplets diameter and velocity statistics. Additionally, the 

particle diameter distribution was modeled using a lognormal distribution. The distribution uncertainty was 

used to represent the data uncertainty quantification. Also, the estimated parameters’ confidence interval in 
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the distribution model fitting process was provided based on bootstrap resampling and central limit theorem. 

Finally, SMD calculation results based on two approaches, namely data-based and distribution-based, were 

provided. The processed data and quantified uncertainty from Phase I experiments would be valuable to the 

validation process in the data-driven model development. 

The choice of CTF and post-dryout heat transfer in dispersed droplet film-boiling flow as the target 

for validation imposes demanding operating conditions for a UM test facility, while limiting the facility’s 

flow diagnostic capability. Efforts are required to complete the facility construction and bring it to a reliable 

operation, to generate data for the STH/CTF validation task. While the test facility was constructed to 

generate data for the project, time (and resources) allocated within the IRP enabled completion of Phase I 

of the experimental plan, as summarized in Chapter 10 of this report. For details, see the project milestone 

report M3NU-16-NC-NCSU-030401-155.  

 

(13) STH/MCFD Modeling and UQ using High-Resolution Experiments (STH): The project study 

introduced a modular Bayesian approach to quantify and reduce the uncertainties of Multiphase 

Computational Fluid Dynamics simulations. The proposed approach is supported by three machine learning 

methods: principal component analysis for dimensionality reduction, feedforward neural network for 

surrogate modeling, and Gaussian processes for model form uncertainty evaluation.  The epistemic 

uncertainty is quantified through the modular Bayesian approach, then combined with the aleatoric 

uncertainty of the stochastic flow fluctuation for a comprehensive uncertainty evaluation of the MCFD 

predictions. Based on the obtained uncertainty, probability-boxes can be constructed for comprehensive 

risk analysis.  

With the support of high-resolution experimental measurements acquired in a test section with a cross 

section of 10 mm × 30 mm, a comprehensive case study has been performed to evaluate the uncertainty of 

three quantities of interest: void fraction, liquid velocity, and gas velocity. The proposed approach is 

implemented based on the open-source deep learning library PyTorch and can be run on GPU for efficient 

and fast evaluation. The case study demonstrates that the proposed approach can effectively quantify and 

reduce the uncertainty of the MCFD predictions. With the consideration of the model parameter uncertainty 

only, the prediction uncertainty can be significantly reduced, and any unphysical predictions can be 

eliminated. The results can be further improved with the combination of the model parameter uncertainty 

and model form uncertainty. The proposed approach provides a general framework that utilizes different 

experimental measurements for a comprehensive UQ of high-resolution, low-fidelity numerical models, an 

example close to this work is the boiling and heat transfer problem. 

Be that as it may, it should also be noted that discrepancies between the MCFD predictions and 

experimental measurements still exist after the UQ is performed. The main reason is the model form 

uncertainty trained with Gaussian process neglects the influence of the inlet conditions. To further improve 

the work, additional experiments need to be performed for a broader range of the inlet conditions. Based 

on larger measurement databases, a model form uncertainty that takes both the location and inlet conditions 

as input can be trained to better reflect the physics underlying the bubbly flows. Furthermore, the effect of 

data size on the UQ results could also be evaluated with the additional available data. 

 

(14) High-fidelity Simulation Data Generation (H2LS/STH): To support data-driven modeling and 

validation of coarse-grid models, methods of Direct Numerical Simulation (DNS) for both single-phase and 

two-phase flow are employed to generate high-fidelity data. Large scale simulations running on massively 

parallel supercomputers, which constitute the major objective of this task, pose several problems for their 

successful execution and subsequent, or in-situ, post-processing and data analysis. Major challenges with 

the simulations performed herein with PHASTA were, understandably, of a logistical nature, which 

required efficient data management code, either integrated as subroutines within PHASTA using advanced 

MPI libraries or developed as separate programs capable of handling large volumes of data.  
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The technical objectives of the large-scale simulations include 

• Implementing code functionalities in PHASTA to make DFFB simulations feasible. This includes 

suite of tools to assign fully turbulent inflow boundary conditions, droplet injection at the upstream 

spacer-grid location and scalable MPI I/O routines for high data throughput. 

• Single-phase and two-phase simulations on large scale supercomputers for a range of operating 

DFFB conditions, including different flow Reynolds numbers and droplet collision Weber 

numbers. 

• Data collection, post-processing and analysis from single and two-phase simulations.  

o Study of turbulent flow features including mean flow properties, Reynolds stresses and 

turbulent anisotropy to gain insight into the effect of spacer-grids and mixing vanes.  

o Analysis of the axial evolution of droplet volume, interfacial area and Sauter mean 

diameter, for different Weber numbers, and comparison with existing correlation in the 

STH code COBRA-TF [20] and empirical correlation from prior DFFB experiments, 

conducted at the rod bundle heat transfer facility  

• Data archival to support future developments on data-driven, machine learning based turbulence 

and STH modeling.  

 

The key conclusions from this project contribution are: 

• The research herein highlights the capability of PHASTA, coupled with level-set method, to 

simulate the post-LOCA DFFB regime. Simulations with unprecedented resolution and fidelity 

were performed to illuminate droplet dynamics in this critical PWR regime. 

• Advanced high-resolution data collection tools are implemented in PHASTA which enable detailed 

study of turbulence from DNS scale simulations, optimized for large scale supercomputers. 

• The high spatial and temporal resolution of data collected from the single-phase and two-

simulations is archived and would, potentially, serve as a data mine for the development of machine 

learning based turbulence and STH models. 

• The results from single-phase simulations highlight the effect of spacer-grids and mixing vanes on 

convective enhancement. Further, invariant analysis of the data reveals that the mixing vanes 

modify the state of turbulence in the downstream region. 

• The results from two-phase simulations emphasize the importance of considering droplet feedback 

to turbulence, in addition to the enhancement provided by spacer-grids and mixing vanes. The SMD 

results at the downstream locations match well with experimental data, establishing confidence in 

PHASTA and the incorporated level-set method in simulating the DFFB regime. 

• All tools are in place for a more extensive parametric study of the DFFB regime, with a range of 

bulk Reynolds number and collision Weber numbers. Single droplet collision studies are 

recommended for characterizing uncertainties associated with collision events. 

• The most limiting assumption of the current simulations, in contrast to the real DFFB conditions, 

is the lack of heat transfer modeling. Consideration of heat transfer mechanisms requires more 

extensive development efforts in PHASTA, including methods for phase change, conjugate heat 

transfer and modeling of radiative heat transfer. 

 

For more details, see Chapter 11 of this report, and milestone report M3NU-16-NC-NCSU-030401-1513. 

 

(15) CFD Modeling and Validation (SPH/CFD): The project study established that currently validation 

of SPH turbulence models has been conducted mostly for small-scale flows in simple geometries by 

comparison with mesh-based CFD results and small-scale experimental data. There is no study of the effects 

of particle resolution/size on the performance of the above-mentioned turbulence models.  The study by 

Bui led to the following: (i) Either one-equation or two-equation equation turbulence model is 

recommended to be used in the SPH modeling of simple turbulent flows, such as open-channel flows or 

straight fluid spreading; (ii) More complex and computationally expensive algebraic Reynolds stress model 
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is suitable for more complex flow conditions and for fluid-structure interactions; (iii) Closure laws, such as 

wall functions and the mixing length, used in all previously mentioned turbulence models would need 

proper validation for different flow conditions and scales; (iv) Physics-constrained machine learning (ML) 

can be used to either to develop and validate closure model surrogates, or to construct a data-driven 

turbulence model to calculate turbulence viscosity directly. Both of these approaches require data from 

high-fidelity simulations and/or experiments. 

 

(16) CFD Data-Driven Modeling: The project study introduced and implemented two data-driven 

approaches to model CFD error leveraging the potential of massive high-fidelity (HF) data. The first 

approach is type II approach, the advantage of it is code efficiency, machine learning (ML) process only 

needed to be done once based on a pre-calculated RANS results. The disadvantage of it is the error 

introduced because of the inaccuracy of the pre-calculated RANS result. The second approach is type I 

approach, which is use ML surrogate model to replace turbulence model in CFD iteration. Two case studies 

have been performed to demonstrate and evaluate these two approaches. According to the results of both 

case studies, the data-driven model largely improved RANS model. The improved RANS model allows 

more accurate and flexible prediction for turbulence flow, which is not only the aim of turbulence modeling 

but also fundamental for coarse mesh CFD in NPP. As nuclear safety problem becomes increasingly 

stringent and requires detailed analysis of thermal-hydraulics, computationally efficient CFD methods are 

needed to support the study of a broad range of accident scenarios. Current turbulence modeling requires 

different RANS models for different flow patterns, which largely hinder the use of CFD for complex 

scenarios with transient flow patterns.  

 

(17) Data-Driven Modeling, Calibration, and Validation (H2LS/H2LC): The effort in this area aims 

to develop and assess a data-driven approach for turbulence modeling (DDTM) approach that could be 

leveraged in engineering analysis including simulation of thermal-hydraulic processes in nuclear power 

plants (NPP). Traditionally, the most common method in computational fluid dynamics (CFD) used in 

engineering practice is based on the solution of Reynolds-averaged Navier–Stokes (RANS) equations. The 

method has limitations in the calculation accuracy and complexity of choosing turbulence model and 

parameters for different flow configurations. High fidelity (HF) simulations, such as the Direct numerical 

simulation (DNS) and the Large eddy simulation (LES), could break the two limitations of RANS but their 

computational expenses are too large to be used in engineering practice. The DDTM approach aims to 

develop a RANS-based method which is as accurate as HF simulations and applicable to a broad range of 

flow patterns leveraging the power of machine learning. The potential advantages of DDTM are in three 

aspects: The first advantage is to let data automatically improves the model. Labor cost and human biases 

in devising the mathematical expressions are reduced; The second advantage is the potential to integrate 

the various types of turbulence models into one model, which could greatly simplify the CFD simulation 

process and system code coupling; The third advantage is the potential to largely reduce computational 

expense by applying the framework of DDTM into coarse mesh simulation, where the DDTM approach 

not only simulate the turbulence error but also the error caused by using coarse mesh. 

The main contribution of this work is the proposal of a new DDTM approach. The new approach is 

named as “multi-model data-driven turbulence modeling (MDTM)”, compared to the “single-model data-

driven turbulence modeling (SDTM)” approach proposed by other researchers. The term “model” here 

refers to the turbulence models in RANS. The SDTM approach is so far considered as the most suitable 

DDTM approach for our purpose. But it has two limitations that prevent it from being a practical approach: 

First, the single-model approach fails when the baseline model result is far from the true result; Second, the 

selection of baseline turbulence model form and parameters could make a difference in prediction accuracy. 

But one could not quantitatively determine which baseline model is the most suitable one for a certain flow 

configuration beforehand. Hence the MDTM approach is proposed to overcome these limitations by 
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increasing the degree of freedom to the machine learning surrogate model and let the machine learning 

surrogate model automatically select the most suitable baseline model to be used. 

Numerical experiments have been performed to test the performance of DDTM. 5 case studies are 

performed to answer 5 critical questions about DDTM separately. The 1st question is whether the SDTM 

approach performs better than traditional turbulence model approach. 1D channel flow problem with DNS 

data is used to answer this question. The 2nd question is whether the MDTM approach performs better than 

the SDTM approach. This question is also answered by 1D channel flow problem with DNS data and 2D 

lid-driven cavity problem with LES data. The 3rd question is whether the MDTM approach could be applied 

to more complex flow configurations. The question is answered by 2D lid-driven cavity problem with LES 

data. The 4th question is whether the HF data could use LF data (such as RANS) instead. The question is 

answered by 2D lid-driven cavity problem with RANS data. The last question is whether the LF model 

could be coarse mesh RANS. The question is also answered by 2D lid-driven cavity problem. 

For details, see the project’s milestone report M3NU-16-NC-NCSU-030401-1514. 

 

(18) Data-Driven Framework for error estimation and mesh-model optimization in STH (M&T): The 

project study, a data-driven framework (optimal mesh-model information system, or OMIS) was developed 

and demonstrated to improve applications of the coarse-mesh codes by predicting their simulation errors 

and suggesting the optimal mesh size and closure models. The OMIS framework was illustrated based on 

the mixed convection case study. By learning from massive data instead of human experience, the OMIS 

framework provides data-driven guidance to help a user improve the modeling and simulation. This 

modularized procedure is extendible to modeling and simulation using other coarse-mesh codes where mesh 

size is one of the key model parameters. Scalability of the OMIS framework in the GELI (Global 

Extrapolation via Local Interpolation) condition is achieved by exploring local physics instead of global 

physics with the usage of advanced deep learning techniques and statistical approaches. It is expected to 

improve the scale-distorted approaches that connect scaled data to the real full-scale applications and reduce 

the uncertainty of scaling. This work also contributes to the development of a data-driven framework for 

the validation and uncertainty quantification of CFD-like codes. The OMIS framework treats physical 

models, coarse mesh sizes, and numerical solvers as an integrated model, which can be considered as a 

surrogate for governing equations and closure correlations. The prediction of simulation error takes all the 

error sources into account and shows a promising accuracy in the case study. For details, see Bao et al 

(NED-2019); Bao et al (ANE-2020). 

 

(19) Validation Data Management System (VDMS): In the project study Ren et al. established that in 

order to ensure successful further development in the project, an issue that must be addressed as soon as 

possible is the current lack of a clear understanding of the validation data structure for advanced thermal-

hydraulics analysis in reactor safety applications. The project investigated capability of NE-KAMS: 

Nuclear Energy – Knowledge base for Advanced Modeling and Simulation. One of the major characteristics 

that made NE-KAMS stand out during a nationwide survey of existing database systems was its 

customizable management of data and data interrelationships based on the data structure of interest.  The 

importance of customizable management of data and data interrelationships was illustrated, where each 

circle represents a model, which may comprise multiple sub-models; and each line indicates a relation 

between the two models.  The sub-models and sub-interrelationships multiply inside each circle.  Data from 

the models and sub-models reflect the complex structure.  Apparently, to confidently interpret and correctly 

use the data, the data interrelationships must be accurately maintained and understood. The project 

recommends further development, and use of NE-KAMS. For more detail, see Chapter 12. 
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1.4.1. Summary 

 

In summary, the research conducted in this project has made important steps to advance the technical 

state of knowledge in the area of model validation by addressing the fundamental limitation of existing 

validation exercises - that is how to provide scientific guarantees on the simulation predictability for the 

intended wide range of reactor conditions using limited set of experiments and simulation analysis datasets. 

The research findings to date supports an initial team vision that the proposed methodology will:  

• enable the RISMC models to provide a prediction of plant safety characteristics with associated 

uncertainty, which are crucial in the RISMC decision making process. 

• serve as an instrument to coordinate R&D program for validation of RISMC models, supporting the 

continued safe operation of existing nuclear plants. 

• guide efforts to maintain and develop the supporting research infrastructures, such as experimental 

facilities and numerical tools. 

The project research provides valuable input towards guiding the development of both the RISMC 

formulation and the RISMC toolkit. It is critical to realize that V&V should not be an afterthought. Instead, 

it is necessary to integrate the V&V efforts into the development of RISMC formulations and toolkit. Lack 

of appropriate and sufficient experimental data has been a historic concern and yet the perceived need for 

such data continues to grow because every piece of data is considered equally relevant. The project team 

believes that the information-guided decision-theoretic based approach proposed in this project can assist 

by ranking the relevance of data for a particular RISMC scenario and thereby guiding efficient management 

of resources for future experimental studies and in some cases eliminating the need completely.  
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Velocimetry. In Proceedings of the Advances in Thermal Hydraulics (ATH-2018). Orlando, FL, 

USA, November, 2018. 

[RP.9] Y. Liu, N. Dinh, Y. Sato, and B. Niceno, “Validation and Uncertainty Quantification of DNB 

Closures in MCFD Solver Using Inverse Bayesian Inference Method”, Paper 198. Proceedings 

of ANS Conference on Best Estimate Plus Uncertainty (BEPU-2018), Lucca, Italy, May 2018  

[RP.10] B. Hanna, N. Dinh, and I.A. Bolotnov, “Coarse-Grid Computational Fluid Dynamic Errors 

Prediction by Machine Learning”, International Congress on Advanced Nuclear Power Plants,  

ICAPP 2018, Charlotte, NC, April 2018 

[RP.11] Yang Liu and Nam Dinh, “Development of VUQ Framework for Wall Boiling Model in a MCFD 

solver”, "- The 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics 

(NURETH-17), Xi’an, China，September 3 - 8, 2017. 

[RP.12] Yangmo Zhu and Nam Dinh, “A Data-Driven Approach for Turbulence Modeling”, "- The 17th 

International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17), Xi’an, 

China，September 3 - 8, 2017 (“Best Student Paper Award”) 

[RP.13] Linyu Lin, Nam Dinh, Niels Montanari, Ram Sampath, Nadir Akinci, Steven Prescott, 2017 

“Assessment of Smoothed Particle Hydrodynamic in application of High-Wind risk analysis"- 

The 17th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-17), 

Xi’an, China，September 3 - 8, 2017. 

[RP.14] Paridhi Athe, Nam Dinh, and Hany Abdel-Khalik, “Investigation of Similarity Metrics for 

Simulation based Scaling Analysis,” International topical meeting on Advances in thermal 

hydraulics 2016 (ATH 16), New Orleans, LA, June 12-16, 2016 

[RP.15] Xiaoqin Zhang, Yang Liu, Xiaodong Sun and Nam Dinh, “Design of Validation Experiments for 

Model Improvement of Dispersed Flow Film Boiling in COBRA-TF”, ANS Winter Meeting, 

2018, ANS Transactions 

[RP.16] H. Bao, N. Dinh, J. Lane, and R. Youngblood, “Study of Data-Driven Mesh-Model Optimization 

in System Thermal-Hydraulic Simulation “, ANS Annual Meeting. Summer 2018. ANS 

Transactions. 

[RP.17] Linyu Lin and Nam Dinh, “Predictive Capability Maturity Quantification with Bayesian 

Networks“, ANS Annual Meeting. Summer 2018. ANS Transactions. 

[RP.18] Chih-Wei Chang, Nam Dinh, and Sacit Cetiner, “Physics-Constrained Machine Learning for 

Two-Phase Flow Simulation Using Deep Learning-Based Closure Relation ”, American Nuclear 

Society Winter Meeting, ANS Transactions, November 2017 

[RP.19] Chih-Wei Chang aad Nam Dinh, “A Study of Physics-Informed Deep Learning for System Fluid 

Dynamics Closures”, American Nuclear Society Winter Meeting, ANS Transactions, November 

2016 

[RP.20] Jia Zhou, Hany Abdel-Khalik, and Nam Dinh, “Model Calibration vs. Physics-guided Coverage 

Mapping: Case Study - Pressure Drop Calculations”, ANS Transactions, June 2016 

[RP.21] “Detailed Analysis of the Effects of Spacer-grid and Mixing Vanes on Turbulence in a PWR sub-

channel under DFFB conditions based on DNS Data”, N. Saini, I.A. Bolotnov, Advances in 

Thermal Hydraulics, Paris-Saclay, France, March 31st – April 3rd, 2020 – Postponed to October 

20-23, 2020 (COVID-19). 

[RP.22] “Interface Tracking Simulations of droplet interaction with spacer grids under DFFB conditions”, 

N. Saini, I.A. Bolotnov, 18th International Topical Meeting on Nuclear Reactor Thermal 
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Hydraulics (NURETH-18), Portland, OR, USA, Aug. 18-22, 2019. *** Invited for publication in 

a special issue of Nuclear Engineering and Design. 

[RP.23] “Nucleate Boiling Simulation using Interface Tracking Method -- Bubble Departure diameter 

and Bubble Release Frequency”, M. Li, I.A. Bolotnov, 18th International Topical Meeting on 

Nuclear Reactor Thermal Hydraulics (NURETH-18), Portland, OR, USA, Aug. 18-22, 2019.  

[RP.24] “High fidelity simulations for characterizing Sauter mean diameter of droplets in DFFB regime”, 

N. Saini, S. Satpathy, I.A. Bolotnov, 2018 International Congress on Advances in Nuclear Power 

Plants (ICAPP 18), Charlotte, NC, USA, April 8-11, 2018. 

[RP.25] “Multi-bubble Flow Boiling Simulation using Interface Tracking Method”, M. Li, I.A. Bolotnov, 

2018 International Congress on Advances in Nuclear Power Plants (ICAPP 18), Charlotte, NC, 

USA, April 8-11, 2018. 

[RP.26] “Development of Evaporation and Condensation Model – Pool Boiling Simulation using ITM 

approach”, M. Li, I.A. Bolotnov, Transactions of 2018 ANS Annual Meeting, Philadelphia, PA, 

June 17th – 21st, 2018. 

[RP.27] Dongli Huang and Hany Abdel-Khalik, 2019, “Investigative Study on Impact of Modeling 

Uncertainties in Uncertainty Quantification of Neutronics Core Simulation,” Proc. M&C 2019, 

Portland, OR, August 2019. 

[RP.28] Dongli Huang, Hany Abdel-Khalik, Ondrej ChvalaPD, and Ivan Maldonado, “Uncertainty 

Quantification for Nuclear Core Simulation,” Proceedings of ICONE 26, London, UK, July 2018. 

[RP.29] Dongli Huang, Hany S. Abdel-Khalik, Ondrej Chvala, and Guillermo I. Maldonado, “Efficient 

Evaluation of Core Simulator Few-Group Cross-Section Uncertainties via PCM”, International 

Conference on Mathematics & Computational Methods Applied to Nuclear Science & 

Engineering (M&C2017), Jeju, Korea, April 16-20, 2017. 

[RP.30] Siqi Zhang, Hany S. Abdel-khalik, Alberto Talamo, and Dimitri Rochman, “Physics-guided 

Neutronic Validation Methodology with Demonstration to KUCA cores,” International 

Conference on Mathematics & Computational Methods Applied to Nuclear Science & 

Engineering (M&C2017), Jeju, Korea, April 16-20, 2017. 

[RP.31] Jia Zhou and Hany S. Abdel-Khalik, “Avoiding Calibration via a Non-Parametric Physics-guided 

Coverage Mapping Algorithm,” Transactions of the American Nuclear Society, Winter Meeting, 

October, 2017. 

[RP.32] Zhang, X., Liu, Y., Sun, X., and Dinh, N., “Design of Validation Experiments for Model 

Improvement of Dispersed Flow Film Boiling in COBRA-TF,” Transactions of the American 

Nuclear Society, Vol. 119, ANS Winter Meeting, November 11-15, 2018, pp. 133-136, Orlando, 

FL. 

[RP.33] Time Dependent Sensitivity Analysis of CTF, A. Tezbasaran, and M. Avramova, Best Estimate 

Plus Uncertainty International Conference (BEPU-2020), Oct 11-17, In preparation 

[RP.34] Sensitivity Analysis of CTF For Coping Time Evaluation During Loss Of Coolant Accidents, A. 

Tezbasaran, and M. Avramova, Best Estimate Plus Uncertainty International Conference (BEPU-

2020), Oct 11-17, In preparation 

[RP.35] John Baugh and Tristan Dyer. State-based formal methods in scientific computation. In Abstract 

State Machines, Alloy, B, TLA, VDM, and Z: 6th International Conference, ABZ 2018, pages 

392–396, Cham, 2018. Springer. Lecture Notes in Computer Science 10817 

[RP.36] Alper Altuntas and John Baugh. Hybrid theorem proving as a lightweight method for verifying 

numerical software. In Proceedings of the Second International Workshop on Software 

Correctness for HPC Applications, Correctness’18, pages 1–8. IEEE, 2018 

[RP.37] Tristan Dyer, Alper Altuntas, and John Baugh. Bounded verification of sparse matrix 

computations. In Proceedings of the Third International Workshop on Software Correctness for 

HPC Applications, Correctness’19, pages 36–43. IEEE/ACM, 2019 

[RP.38] Tristan Dyer and John Baugh. Verifying and Visualizing Models of Scientific Software, in 

preparation for submission to ABZ 2021, International Conference on Rigorous State Based 

Methods 
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[RP.39] “Knowledgebase Structure Formulation and Requirements Development in a Data-Sparse 

Reality,” Paper Number: VVS2017-4019, Program of the V&V 2017 ASME Verification and 

Validation Symposium, May 3–5, 2017, Las Vegas, Nevada, Weiju Ren and Lianshan Lin. 

[RP.40] S. S. Bodda, A. Gupta, and N. Dinh, “Risk informed validation framework for external flooding 

scenario,” In Transactions of the 25th International Conference on Structural Mechanics in 

Reactor Technology (2019). 

[RP.41] S. S. Bodda, A. Gupta, and N. Dinh, “Enhancement of risk informed validation framework for 

external hazard scenario,” Proceedings of the 15th International Conference on Probabilistic 

Safety Assessment and Management (2020). 

[RP.42] S. S. Bodda, H. Sandhu, A. Gupta, and N. Dinh, “Risk Assessment Using Bayesian Approach: 

Risk Informed Validation Framework and Multi-Hazard Risk Assessment,” NARSIS Workshop, 

Training on Probabilistic Safety Assessment for Nuclear Facilities (2019). 

[RP.43] P. Vaishanav, A. Gupta, and N. Dinh, “Scaling of Uncertainty in Validation of Flooding 

Simulations: An Illustrative Case Study,” In Transactions of the 25th International Conference on 

Structural Mechanics in Reactor Technology (2019). 

[RP.44] C FORT, E FLOROU, M HABUKAWA, MA ANDRE, and PM BARDET. Towards 

experimental measurement of interfacial shear stress in a turbulent liquid-air layer, 33rd 

Symposium on Naval Hydrodynamics, Osaka, Japan, 31 May- 5 June. 6, 2020. 

[RP.45] Philippe Bardet, Matthieu Andre. Validation of SPH Code NEUTRINO, SMIRT 25, Charlotte, 

NC, Aug. 5-9 2019.  

[RP.46] Emerald Ryan, Philippe Bardet, Ramprasad Sampath, Niels Montanari, Steven Prescott, Matthieu 

Andre. Validation and Determination of Significant Simulation  Parameters Using the SPH Code 

NEUTRINO, SMIRT 25, Charlotte, NC, Aug. 5-9 2019.  

[RP.47] M Andre, PM Bardet, Ram Sampath, Niels Montanari, Linyu Lin, Steven Prescott, Emerald D. 

Ryan. Validation of Risk-Informed Safety Margin Characterization for Flooding of Nuclear 

Power Plants, NURETH 18, Portland, OR, Aug. 18-23 2019.  

 

1.5.3. Presentations (invited lectures, keynotes) 

  

1. S. S. Bodda, “Risk-informed validation,” Workshop on Flooding Risk Assessment: Validation, 

Application, and Experimental Studies, 25th International Conference on Structural Mechanics in 

Reactor Technology (SMiRT) (2019). 

2. A. Gupta, “Multihazard Bayesian Analysis: PSA,” Invited Talk and Panel Member at NARSIS 

Workshop on Probabilistic Safety Assessment, European Commission, Warsaw, Poland, 

September 2 – 5 (2019). 

3. A. Gupta, “Probabilistic Risk Assessment Based Model Validation Methods using a Bayesian 

Network,” Invited Presentation at 2017 Pacific Rim Forum on Earthquake Resiliency of Nuclear 

Facilities, UC Berkeley, Berkeley, CA, January (2017).  

4. “High resolution simulation of reactor flows”, I.A. Bolotnov, Politecnico di Milano, Milan, Italy, 

December 5th, 2019. 

5. “Two-phase flow simulations of turbulent nuclear reactor flows”, I.A. Bolotnov, PSI, Zurich, 

Switzerland, October 31st, 2019. 

6. “Interface Tracking Simulations of Two-phase Flows”, I.A. Bolotnov, TU-Dresden, Dresden, 

Germany, October 28th, 2019. 

7. “High resolution simulation of two-phase flows to support model development”, I.A. Bolotnov, 

University of Leeds, Leeds, UK, October 10th, 2019. 

8. “High resolution simulation of reactor flows”, I.A. Bolotnov, Nuclear Energy Agency (NEA), 

Paris, France, September 20th, 2019. 

9. “Well-resolved two-phase flow simulations of turbulent nuclear reactor flows”, I.A. Bolotnov, 

CEA, Paris, France, September 19th, 2019. 
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10. “How DNS can help understand multiphase flow behavior?”, I.A. Bolotnov, Presentation at the 

Institute for Fluid Dynamics seminar, HZDR – Helmholtz-Zentrum Dresden-Rossendorf, Dresden, 

Germany, August 29th, 2019. 

11. Hany S. Abdel-Khalik , Wuhan University, China, Short Course on “Data Mining in Engineering”, 

July 2018.  

12. Hany S. Abdel-Khalik, Chalk River Laboratories, Canada, ZED-2 Summer School, “Uncertainty 

Methods in Reactor Physics,” May 2018 

13. Hany S. Abdel-Khalik, Karlsruhe University, Germany, “Methods of uncertainty assessment and 

propagation,” The 2017 Frédéric Joliot/Otto Hahn Summer School, Karlsruhe, Germany, August 

2017 

14. R. Sampath, S. Prescott, E. Ryan, “Applying Flood Simulations” SMiRT 25, August 6 2019 

15. E. Ryan, R. Sampath, S. Prescott,  “Validation and Determination of Significant Simulation 

Parameters using the Smoothed Particle Hydrodynamic Code Neutrino” SMiRT 25, August 6 2019 

16. Y. Liu, Design of Validation Experiments for Model Improvement of Dispersed Flow Film Boiling 

in COBRA-TF, Presentation, ANS Winter Meeting & Expo, November 15, 2018, Orlando, FL. 

17. John Baugh, The role of Alloy in developing scientific software. Workshop on the Future of Alloy, 

MIT, Cambridge, MA, April 30–May 1, 2018 

18. John Baugh, Formal methods in scientific computing. Johns Hopkins University Applied Physics 

Laboratory, invited lecture, December 2019 

19. John Baugh, Lightweight formal methods in scientific computing. Logic for Systems, Brown 

University, invited lecture, February 2020  

20. Philippe Bardet, “Molecular Tagging Velocimetry: Pushing the limits of velocimetry,” CEA-

Saclay, Saclay, France, 2019/10/14.  

21. Philippe Bardet, “Molecular Tagging Velocimetry: Pushing the limits of velocimetry,” KTH, 

Physics department, Stockholm, Sweden, 2019/10/04. 

22. Philippe Bardet, “Molecular Tagging Velocimetry: Pushing the limits of velocimetry,” Technical 

Plenary Session, NURETH 18 conference, Portland, 2019/08/18-23. 

23. Philippe Bardet, “Progress in Thermo-Fluids Lab,” COE CFD Center of Excellence, Chicago, IL, 

2019/06/26.  

24. Philippe Bardet, “Molecular Tagging Velocimetry - MTV,” Rencontre Technique and Scientifique, 

CEA Cadarache, France, 2018/06/04.  

25. Philippe Bardet, “Advanced laser diagnostics development for Thermal Hydraulics,” Paul Scherrer 

Institute, Switzerland, 2018/10/16. 

 

1.5.4. Dissertations/Theses 

  

1. S. S. Bodda, “Risk Informed Validation Framework Using Bayesian Approach,” PhD Thesis, North 

Carolina State University (2019). 

2. A. R. Dubey, “Seismic Fragility of Piping Systems: Consideration of Cyclic Behavior and Closed-

Form Relationship,” PhD Thesis, North Carolina State University (2019). 

3. Linyu Lin, “Development and Assessment of Smoothed Particle Hydrodynamics Method for 

Analysis of External Hazards”, PhD Dissertation in Nuclear Engineering, North Carolina State 

University, December 2018  

4. Yangmo Zhu, “Development and Assessment of a Data-Driven Approach for Turbulence 

Modeling”, PhD Dissertation in Nuclear Engineering, North Carolina State University, December 

2019 

5. Mengnan Li, “High Resolution Boiling Simulation using Interface Tracking Method”, PhD 

Dissertation, NCSU, 2019 

6. Nadish Saini, “High-fidelity Interface Capturing Simulations of the post-LOCA Dispersed Flow 

Film Boiling Regime in a Pressurized Water Reactor Sub-channel”, PhD Dissertation, NCSU, 2020 
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7. Shrey Satpathy, “Development of high-resolution computational fluid dynamics capabilities for 

LWR accident analysis”. MNE Report, NCSU, 2017 

8. Xiaoqin Zhang, “Experimental Investigation and Data Uncertainty Analysis of Synthetic Dispersed 

Flow Film Boiling”, PhD Dissertation, University of Michigan, 2020 

9. Dongli Huang, Efficient Uncertainty Characterization Framework In Neutronics Core Simulation 

With Application To Thermal-Spectrum Reactor Systems, PhD Dissertation, Purdue University, 

2020 

10. Emerald Ryan, “Determination, Development, and Validation of a Fluid Height Analysis Method 

and Particle Spacing Protocol for the Smoothed Particle Hydrodynamic Code Neutrino”, PhD 

Dissertation, Idaho State University, 2019    

      [*] Work supported by INL Research Fellowship, in collaboration with IRP researchers. 
11. Fatima Bukhari, “Performance Evaluation of Subdomain Modeling and Operational Enhancements 

for Large-Scale Storm Surge Simulations”, PhD Dissertation, NC State University, April 2020. 

12. Andrew Dyer, “Lightweight Formal Methods in Scientific Computing”, PhD Dissertation,  NC 

State University, June 2020. 

 

 

1.5.5. Technologies or Techniques 

 

• Developed a novel technique to quantitatively assess the system-level validation by connecting 

individual validation events through a probabilistic risk assessment (PRA) informed validation 

framework. The framework utilizes the power of Bayesian statistics to include uncertainty in both 

simulation and experimental models. In this technique, the system-level validation and the 

identification of critical events are evaluated based on fragility estimates. To improve the overall 

validation, it requires enhancement of simulation models of events along the critical path or 

collection of additional field data until the adequacy of the system-level validation is satisfied. This 

process helps in allocating the resources efficiently thereby reducing the effort to conduct high-

fidelity simulations and large-scale experiments. 

• Enhanced the proposed framework by developing a new set of validation metrics (overlapping 

coefficient and consistency index) and an additional attribute (Code adequacy) for making the 

framework more robust. The concept of overlapping coefficient (OC) is used to quantify the degree 

of validation within the context of uncertainty. OC is calculated by evaluating the percentage of 

overlapping area between simulation and experimental (data-driven) fragility curves. Consistency 

index (δ) ensures that the simulation and data-driven fragilities correspond to the same set of critical 

events. The interpretation of consistency index in the risk informed framework is illustrated for 

various cases of seismic and flooding scenarios. The concept of maturity levels are utilized to assess 

the decision regarding the adequacy of a simulation code for an intended application. 

• Integrated the proposed risk informed validation framework with USNRC’s Evaluation Model 

Development and Assessment Process (EMDAP) framework. This allows transformation of 

EMDAP into a risk-informed EMDAP. The applicability of the proposed framework is evaluated 

by application to a real life like flooding scenario of a sunny day dam failure. Application to the 

realistic scenario illustrates that the credibility of flooding simulations can be assessed using formal 

quantification which is otherwise not possible in the existing EMDAP framework. The integrated 

framework formalizes the validation process by quantifying the expert knowledge and making it 

less heuristic. 

• Developed a methodology which examines reduced scale experiments at multiple scales to infer 

the effect of scaling. Several advanced simulation tools used for studying real world flooding 

scenarios are validated through smaller scale laboratory experiments. An implicit extrapolation is 

performed on the reduced scale data generally beyond the domain of validation when these 

simulation tools are used for real-world applications. This leads to scale distortion and uncertainty 

in prediction. Such issues are often only resolved by professional experts. Hence, the current 
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methodology is an attempt to understand scaling phenomenon to enhance and support the scaling 

extrapolation and reduce the reliance on expert data analysis. 

• Sterling, a web-based visualizer for Alloy, enables modeling of scientific software using 

lightweight formal methods by providing advanced visualization tools that address shortcomings 

of the existing Alloy visualizations. These tools focus particularly on the ability to express the types 

of dynamic and spatial relationships that are embedded throughout models of scientific software. 

• As a part of her PhD dissertation work, Fatima Bukhari demonstrates the appreciable computational 

savings provided by Subdomain Modeling for storm surge simulation, while maintaining solution 

integrity. Additionally, a one-way coupling methodology has been developed that allows for 

coupling between the large-scale finite element model, ADCIRC, and the small-scale smoothed 

particle hydrodynamics code, Neutrino. This work facilitates simulation of storms and their effects 

at ‘facility level’ scales, in turn enabling the quantitative assessment of the resilience of critical 

(nuclear) infrastructure to storm-induced flooding. 

• (PU) The project has matured the physics-guided coverage mapping methodology to effectively 

and rigorously map biases between two sets of modeling conditions, representing experimental and 

application domain or high and low fidelity models. The developed technology provides a solution 

to a key challenge in existing regulatory/licensing framework, that is how to transition from heavy 

reliance on experiments to a science-based risk-informed validation strategy capable of leveraging 

advances in predictive science, information theory, and data analytics to develop transformational 

approaches for the evaluation of biases and uncertainties when limited experimental data exist. 

Addressing this challenge is critically needed to support the expected adoption of advanced reactor 

technologies, which require scientifically-defendable analysis capabilities for model validation of 

first-of-a-kind reactor technologies. The proposed helped develop the basic algorithms required to 

realize this vision. 

• (GWU) The project developed a new experimental diagnostics to measure the interface of rough 

water waves in 3D + time. 

• (UM) The project developed ParticleMaster Integrated Optical Imaging System Data Acquirement 

Procedures. 

  

 

1.5.6. Inventions, Patent Applications, and/or Licenses 

 

• Hany Abdel-Khalik and Ugur Mertyurek, “A Novel Capability to Support Nuclear Model 

Validation and Mapping of Biases and Uncertainties,” August 2019, Invention Disclosure. Given 

interest in this technology, the co-PI has initiated collaborative discussions with various researchers 

in the DOE complex. Based on a recently executed inter-institution agreement between Purdue and 

ORNL, the co-PI is working with both institutions to file for a provisional patent regarding this 

technology and is currently working on a licensing agreement to help commercialize this 

technology. A startup company by the co-PI has been formed in 2018, and will be leveraged to 

apply for future funding opportunities in support of technology further development and adaption 

to nuclear industry needs.  

 

 

1.5.7. Other products, notable achievements 

 

• The work on risk informed validation framework got Saran Bodda recognized as one of the three 

winners of the Shibata Early Career Award at SMiRT 25 Conference, 2019. 

• Saran Bodda and Ankit Dubey were awarded Zia Graduate Fellowship for their research 

contributions at NC State University. 

• Yangmo Zhu is recipient of Student Paper Award at NURETH-17 (2017) 

• Chih-Wei Chang receives Best Paper Award at NURETH-18 (2019) 
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1.5.8. Opportunities for training and professional development 

 

• Conference attendance supported through the project by graduate students and faculty have 

contributed to the professional development. 

• Students Saran Bodda and Pragya Vaishnav worked closely with industry collaborators on the 

project. 

• Students Saran Bodda and Ankit Dubey spent a summer as interns at Idaho National Lab and getting 

familiar with MOOSE and related modules. 

• Saran Bodda also developed codes for PRA that have been incorporated into MASTODON which 

is part of MOOSE.  

• Ankit Dubey worked closely with INL researchers for simulating a scenario of internal flooding 

risk assessment at a nuclear plant.  

• Internships for participating students: 

o Innovative Systems Software: Basic RELAP/SCDAPSIM Training June-July 2017 

o Idaho National Lab: RAVEN Training and RAVEN-CTF Coupling June-July 2018 

• The development of Sterling led to an invited lecture opportunity for PhD student Tristan Dyer, 

who has secured a postdoctoral research position at Brown University to continue its development 

for use as the primary visualization tool for Forge, a language built for teaching formal methods 

and model checking. 

• The demonstration of the applicability of Subdomain Modeling as a tool that affords appreciable 

computational savings while maintaining solution quality led to an internship with US Army Corps 

of Engineers - Engineering Research and Development Center (USACE-ERDC) for former PhD 

Student Fatima Bukhari. Upon completion of her degree, this internship was converted to a full-

time employment opportunity as a Research Civil Engineer.  

• At GWU, the project has supported a postdoctoral fellow, one doctoral student part time, one MS 

student, and served as capstone design for 5 undergraduate students at GWU.  The postdoctoral 

fellow designed the experimental facility, which required significant structural analysis, an area in 

which he was not trained (he is an experimentalist in fluid dynamics). He managed to leverage the 

excellent and challenging work and is now doing structural testing for SpaceX Dragon capsule that 

brought back US astronauts to space in 2020! 

• At Purdue University, the material developed has been the basis for two internships, one in the 

summer of 2019 for then-PhD candidate, Ms. Dongli Huang, who has graduated in May 2020, and 

another in the fall of 2019 for PhD candidate, Ms. Yeni Li, who is expected to graduate in December 

2020. The material developed has contributed to a new course on data mining in Engineering, which 

was taught in TU-DELFT, Netherlands, 2018. 

• At University of Michigan, the project created opportunity for facility design and construction 

training; experiment quality control training; LaVision ParticleMaster system package training. 
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2. Risk Informed Validation Framework Using Bayesian Approach 
 

2.1. Summary 

Safety of nuclear plants against external flooding has gained significant attention following the accident at 

Fukushima Daiichi nuclear power station. In United States, Oyster Creek nuclear plant was safely shutdown 

when high storm surge during hurricane Sandy caused a potential flooding threat. Subsequently, the nuclear 

energy industry experienced a significant activity in Probabilistic Risk Assessment (PRA) for external 

flooding. Past few decades have seen a rapid growth in the availability of computational power and that 

induces continually reducing cost of simulation. This rapidly changing scenario together with availability 

of high precision and large-scale experimental data has enabled development of high fidelity simulation 

tools capable of simulating multi-physics multi-scale phenomena. Increasingly, methods of computational 

fluid dynamics including advanced simulation codes are being considered to evaluate the sequence of 

events during different scenarios of flooding at a plant. One of the key limitations in validation is the lack 

of relevant experimental data at system-level. This limitation leads to a decrease in the confidence of 

system-level risk predictions. Therefore, a robust validation framework is needed to formalize the 

confidence in predictive capability of advanced simulation results.  

In this project, we propose a formal validation approach that provides a basis to quantify credibility 

of risk assessments that are based on advanced simulation codes. The efficiency of the risk informed 

validation approach lies in the identification of critical structures, systems, and components (SSCs) that 

contribute to the system-level risk using Bayesian statistics. The validation methodology employs a data-

driven approach to quantify the quality of data that is used to evaluate experimental fragilities for flooding 

failures. As the fragility assessment of a flooding scenario suffers from large epistemic uncertainties, the 

credibility of system-level validation is expressed using probabilistic distribution and maturity levels. To 

ensure that the system-level validation is complete and consistent, an additional validation index called 

consistency index is introduced. The risk informed validation approach is integrated with USNRC’s 

Evaluation Model Development and Assessment Process (EMDAP) framework for a complete and wider 

applicability of the framework. 

 

2.2. Introduction 

Given the events at Fukushima-Daiichi nuclear power plant, there is an increased emphasis on using high 

fidelity simulation tools to evaluate the vulnerability of nuclear facilities subjected to external hazards. 

Availability of sophisticated computer models capable of simulating multi-physics multi-scale phenomena 

has increased the need for verification and validation of such high fidelity simulations. In this report, we 

aim to develop and demonstrate a comprehensive risk informed decision-oriented methodology for 

validation of advanced computer models used in nuclear power plant safety analysis. Specifically, the 

advanced computer models are those in the toolkit developed to support risk-informed safety margin 

characterization (RISMC), an integrated deterministic/probabilistic safety analysis methodology developed 

in the Department of Energy’s Light Water Reactor Sustainability (LWR-S) program. The project 

investigated a decision oriented framework for quantification of validity with a probabilistic criterion for 

adequate level of validation. 

 The two primary challenges encountered in this project are: (1) lack of relevant plant-level data 

needed for validation of high-fidelity simulations, and (2) non-availability of a rational, consistent, and 

quantitative approach for validation. While first item above is essential in any validation effort, it is usually 

restricted by high cost of collecting such data and in some cases inability to conduct large-scale 

experiments. The confidence in high-fidelity simulations decreases due to excessive reliance on expert 

opinion for establishing the acceptability of high simulation models. The uncertainties due to inherent 

randomness and lack of knowledge about real physical complex systems as well as natural hazards pose 

significant challenges to the model validation assessment. Fidelity of a system-level computer simulation 
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model is difficult to assess even though a model for each component of the system can be individually 

validated with available component-level data. The system-level validation process involves a validation at 

component level, determine a relationship between component-level and system-level performance, and 

finally establish an inference of the degree of validation at system-level. The validation goal is difficult to 

achieve particularly in a quantitative sense because of the uncertainties in the relationship between different 

levels as well as in the parameters used for characterizing the performance at both the component and 

system levels. Consequently, six key aspects in this process are: 

1. Validation metric: Characterization of appropriate validation indices for quantitative comparison 

of simulation and test data 

2. Inference on the degree of validation at system-level 

3. Ranking of Components and Subsystems: Any component or subsystem on the critical path would 

be considered most significant and assigned a higher priority 

4. Confidence Bands: The component-level validation metric can be combined with the failure 

probabilities for a specific risk-scenario to develop confidence bands 

5. Acceptability/Hypothesis Testing: Probabilistic criteria can be used to evaluate the acceptability 

of the validation for a particular component or simulation of an event in the given scenario 

6. Identification of Validation Gaps: The prioritization described above would then help identifying 

appropriate validation gaps and allocating resources for data collection to reduce these gaps. 

This research explored the development of a novel performance-based risk-informed validation 

approach that is rational, efficient, and quantitative in nature. A framework based on Bayesian statistics is 

proposed in validation of RISMC Models (Task 1 - Methodology Development) to implement and explore 

the proposed validation data plan (IRP-RC-1, 2016). The intent of the proposed approach is to provide a 

quantitative assessment of validation for a system-level simulation model based on component-level 

validation information. It uses performance-based criteria to judge the efficacy of a particular validation 

and a risk-informed framework to determine whether additional validation of a certain component or 

subsystem is needed or not. The specific steps of Bayesian framework are: The applicability and 

effectiveness of the proposed approach is explored in the context of a synthetic example of an accident 

sequence in nuclear plant subjected to storm surge, for which sources of errors and uncertainties and 

predictive capability gaps are identified. The proposed validation framework developed in this research is 

described in detail in Bodda (2020). 

 

2.3. Scope of Work 

The project goal is to develop and demonstrate a comprehensive risk-informed decision-oriented 

methodology for the validation of RISMC models (1.3.1 Project Scope, IRP-RC-1, 2016). In this project, 

we pursued a simulation-aided uncertainty-guided data-driven approach to enable effective implementation 

of the EMDAP elements and we investigated: 

• Risk-informed approaches for collection and characterization of evidence. 

• Decision-oriented framework for quantification of “validity” (or “maturity”), with a probabilistic 

criterion for adequate level of validation. 

• Illustration and quantification of uncertainty in scaling phenomenon. 

• Methods for data-driven model development and assessment process that effectively utilizes data 

from physical and numerical experiments. 

To accomplish the work, our team has performed following subtasks corresponding to the major 

Task 1: Validation of RISMC Models (Methodology Development) and Task 2: Validation of Flood 

Simulation Capability for Plant Safety Analysis. 

• Task 1.1: RISMC model applications and validation requirements 

• Task 1.2: RISMC model validation methodology 

• Task 1.3. Predictive capability maturity quantification 

• Task 1.4. Simulation-based scaling 



   

43 
 

• Task 1.6. Data-driven multi-scale modeling 

• Task 1.7. Validation data plan 

• Task 2.1. Perform RISMC analysis of storm surge flood scenarios 

• Task 2.2: Define flooding validation data plan 

The specific information (technical approach and assumptions) required to carry out the validation of 

advanced simulation codes using the proposed validation framework is listed below (Bodda et al. 2020b): 

• It is assumed that the event and fault trees needed as the first step in implementation of the proposed 

approach are available which is generally true for a major engineering facility or project. If not, 

then one would need to start by creating the logic tree and accident sequences. Subsequent mapping 

of this information into a Bayesian network does not require any additional input. 

• A logic tree based risk assessment approach requires fragility curves for basic events. These are in 

general the simulation-based fragilities for a specific implementation. Therefore, it is assumed that 

these are available. 

• The biggest challenge in implementing the proposed approach lies in developing the data-driven 

fragility curves that are used for validation. The data could come from experiments, experience, or 

high fidelity simulations. This aspect also involves establishing the grade levels for Relevance, 

Scaling, and Data Uncertainty (R/S/U) for the data used (Dinh, 2012).  

• In the initial implementation of risk informed validation methodology, it is possible that the 

development of data-driven fragility for a certain event might not be available.  This is similar to 

initial implementation of PRA in 1970s when there was not much information available on 

fragilities of components. The initial implementation of PRA relied significantly on expert opinion. 

Similar expert-based knowledge can be used for the initial implementation of the data-driven 

fragilities for such events. The initial implementation of the framework can then be used to 

determine the specific events that contribute more to the overall validation and therefore ideal 

candidates for collecting more data.  As more information becomes available either through high 

fidelity simulations or experiments, the complete validation process can be updated. 

• If the data-driven fragility cannot be generated for a certain event, then one can assume the data-

driven fragilities to be same as the simulation-based fragilities in the initial implementation. These 

can then be updated as additional information become available. 

• It is assumed that Fussell-Vesely importance measures can be used to identify the critical path for 

the entire system. 

• In the context of overlapping coefficient as the validation metric, alternative validation metrics such 

as KL Divergence, Mutual Information, and Bayes Factor can be potential candidates. 

• In order to quantify the adequacy of the various simulation codes used for generating the simulation 

fragility curves, it would be required to assess a maturity level for each simulation code. 

• Finally, stakeholders would need to agree on an acceptance criterion for evaluating the degree of 

validation at the system-level. 

2.4. Key Findings 

Technical Findings 

• Developed a novel technique to quantitatively assess the system-level validation by connecting 

individual validation events through a probabilistic risk assessment (PRA) informed validation 

framework (Bodda et al. 2020a). The framework utilizes the power of Bayesian statistics to include 

uncertainty in both simulation and experimental models. In this technique, the system-level 

validation and the identification of critical events are evaluated based on fragility estimates. To 

improve the overall validation, it requires enhancement of simulation models of events along the 

critical path or collection of additional field data until the adequacy of the system-level validation 
is satisfied. This process helps in allocating the resources efficiently thereby reducing the effort to 

conduct high-fidelity simulations and large-scale experiments. Addresses Tasks 1.1, 1.2, 1.7, 2.1, 

2.2. 
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• Developed a data-driven approach to incorporate the quality of experimental data quantitatively in 

experimental fragility or data-driven fragility (Bodda et al. 2020a). The quality of experimental 

data is graded by three attributes: Relevance, Scaling, and Data Uncertainty (R/S/U). Relevance 

reflects the degree of applicability of experimental data from existing studies to the current 

application. Scaling uncertainty incorporates both geometric and physics scaling uncertainties. 

Data uncertainty reflects the uncertainty in the measured data. In the absence of appropriate 

experimental data, one could use experience data (given in terms of failure rates) or even high 

fidelity simulations to develop the data-driven fragilities especially if high fidelity simulations have 

been validated against experiments. The uncertainties due to each of these three attributes are 

quantified by assigning grades on a 4-point scale (from 1 to 4 with 1 being poor and 4 being 

excellent) based on the quality of data. Partially addresses Task 1.6 

• Proposed a new set of validation metrics (overlapping coefficient and consistency index) and an 

additional attribute (Code adequacy) for making the risk informed validation framework more 

robust (Bodda et al. 2020b). The concept of overlapping coefficient (OC) is used to quantify the 

degree of validation within the context of uncertainty. OC is calculated by evaluating the percentage 

of overlapping area between simulation and experimental (data-driven) fragility curves (Figure 

2.1). Consistency index (δ) ensures that the simulation and data-driven fragilities correspond to the 

same set of critical events. The interpretation of consistency index in the risk informed framework 

is illustrated for various cases of seismic and flooding scenarios. The concept of maturity levels are 

utilized to assess the decision regarding the adequacy of a simulation code for an intended 

application. Addresses Tasks 1.1, 1.2, 1.3 

 

 
 

Figure 2.1. Overlapping Coefficient (Kwag et al. 2018) 

• Integrated the proposed risk informed validation framework with USNRC’s Evaluation Model 

Development and Assessment Process (EMDAP) framework as shown in Figure 2.2 (Bodda et al. 

2020c). This allows transformation of EMDAP into a risk-informed EMDAP. The applicability of 

the proposed framework is evaluated by application to a real life like flooding scenario of a sunny 

day dam failure. Application to the realistic scenario illustrates that the credibility of flooding 

simulations can be assessed using formal quantification which is otherwise not possible in the 

existing EMDAP framework. The integrated framework formalizes the validation process by 

quantifying the expert knowledge and making it less heuristic. Addresses Tasks 1.1, 1.2, 1.3, 1.7, 

2.1, 2.2. 
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Figure 2.2. Integrated Risk informed EMDAP framework (Bodda et al. 2020c) 

 

• Developed a methodology which examines reduced scale experiments at multiple scales to infer 

the effect of scaling (Vaishanav et al. 2019). Several advanced simulation tools used for studying 

real world flooding scenarios are validated through smaller scale laboratory experiments. An 

implicit extrapolation is performed on the reduced scale data generally beyond the domain of 

validation when these simulation tools are used for real-world applications. This leads to scale 

distortion and uncertainty in prediction. Such issues are often only resolved by professional experts. 

Hence, the proposed methodology is an attempt to understand scaling phenomenon to enhance and 

support the scaling extrapolation and reduce the reliance on expert data analysis. Addresses Tasks 

1.4, 1.6 

 

Highlights of technical innovations 

• Risk informed methodology for system-level validation within the context of uncertainty. 

• Quantitative validation to assess credibility of system-level estimates. 

• Bayesian approach for system-level validation. 

• Grade quality of experimental data for quantitative representation of uncertainty. 

• Incorporate the quality of experimental data quantitatively by adopting a data-driven approach. 

• Identification of events critical for improving system-level validation. 

• Concept of overlapping coefficient as validation index. 

• Propose consistency index to ensure system-level validation is complete. 

• Adequacy of a simulation code for an application is characterized by maturity level. 
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• Integration of risk informed validation approach with USNRC’s Evaluation Model Development 

and Assessment Process (EMDAP) framework. 

• Examination of reduced scale experiments at multiple scales to infer the effect of scaling. 

2.5. Path Forward 

Some of the key challenges and the recommendations for future work are discussed below. In practice, 

computational cost of the proposed approach can be a challenge. This is particularly true for generating 

multiple simulation-based fragility curves due to a large number of simulations that may be needed to 

account for uncertainties within a Monte Carlo approach. This challenge can be addressed to a certain 

degree by employing statistical inference for fragility estimates while minimizing the number of 

computationally intensive simulations. Another challenge relates to generation of data-driven fragility 

curves especially for all the basic events in the Bayesian network. The impact of this aspect is reduced in 

the proposed approach by recommending the development of assessment base for only the critical events 

first. Then, the non-critical events can be considered in the subsequent steps. In the absence of experimental 

data, one can use either experience data or high fidelity simulations to generate the data-driven fragilities.  

In the absence of any of these potential options, one could use expert judgment to come up with an initial 

estimate of data-driven fragilities and if that is also not desired for any specific event under certain extreme 

circumstances then it would be appropriate to use simulation-based fragility curve as a substitute for data-

driven fragility for that specific event (indicating a perfect validation for this event). This can be updated 

in future as additional information becomes available. Another way could be to consider two different 

options for this event, that of perfect validation as well as no validation, and evaluate the impact on the 

overall system level validation. However, this aspect is not considered in this study and is a good candidate 

for future studies. This concept can also be extended to study the cliff-edge effect that is often observed in 

real life fragility estimates for certain events. An event with cliff-edge fragility could be considered using 

the two potential options of perfect validation as well as no validation. It is recommended to consider this 

aspect in future studies. The case studies considered in this manuscript do not include common cause 

failures (CCF). However, CCF events can be incorporated into the validation framework using Bayesian 

approaches (Mi et al., 2012; Li et al., 2019; Nguyen et al., 2020), and it does not require special attention. 

In this methodology, the non-critical paths in the Bayesian network are ignored for the system-level 

validation. Therefore, this assumption may cause some impact on the system-level code adequacy. For 

future work, the effect of assumption can be treated as a model uncertainty or incompleteness uncertainty 

and should be analyzed as part of uncertainty analysis in PRA (Drouin et al., 2017). The computational cost 

of Bayesian analysis is a limitation of using Bayesian approach in itself but availability of increasing 

computational resources have helped overcome this limitation in recent years. 

 

2.6. Conclusions 

The key conclusions of this study are summarized as follows: 

• The risk informed methodology is mapped into four elements of the EMDAP framework to enable 

consistency and completeness in the validation process. 

• The proposed integrated risk informed EMDAP framework enables us to quantify the validation 

for a realistic flooding scenario. 

• It is also illustrated that the proposed framework allows implementation of Bayesian inference to 

identify the critical events for which collecting additional data would reduce the uncertainty and 

improve the validation of overall risk estimates. 

• The integrated framework formalizes the validation process by quantifying the expert knowledge 

and making it less heuristic. 

• The non-physical events in the PRA model are identified and treated as either completely safe or 
fail in the validation process. 
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• The data-driven fragilities are generated only for critical events. For non-critical events, the data-

driven fragilities are considered to be same as simulation-based fragilities. 

• The critical path in a Bayesian network is identified by using extended definition of 

• Fussell-Vesely (FV) Importance measure for Bayesian networks. 

• Introduced the concept of consistency index (δ) in the validation metric which ensures that the 

simulation and data-driven fragilities correspond to the same set of critical events. 

• Overlapping coefficient is used as the standardized validation metric. 

• The quality of experimental data used in the validation study is quantified and incorporated in the 

data-driven fragility curves. 

• Multiple fragility curves are evaluated using different confidence levels instead of just the mean 

fragility curves. 

• The robustness of the modified framework is illustrated by enabling clarity, consistency, and 

completeness for a synthetic and realistic examples of flooding scenario. 

The performed project reinforced its potential for broader impacts as follows: 

• The proposed framework will provide a better understanding of uncertainty in safety margins, and 

subsequently, help identify vulnerability and risk of nuclear systems. From the perspective of the 

nuclear industry, this understanding is central to a more efficient design, operation, and emergency 

management, of current and future NPPs.  

• Presently, most of the regulators around the world as well as organizations developing codes and 

standards (ANS, ASME, USNRC, IAEA, etc.) are in the process of developing regulatory 

guidelines for probabilistic flooding risk assessment particularly for advanced reactors. Therefore, 

the scenario-based RISMC applications proposed in this project can be used as an assessment tool 

to evaluate the value of new frameworks. 

• Historically, the nuclear industry has not been effective in communicating the risks to public and 

media. Effective communication of risk requires an extremely simple characterization and powerful 

simulation/visualization of scenarios, which can then be used as a confidence builder through 

public’s understanding of the extensive defense-in-depth measures followed by the industry 

experts. RISMC toolkit can be quite powerful in simplifying and in enabling the visualization of 

defense-in-depth measures for appropriate communication to the public and the media. 
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3. Data-Driven Methodology for Validation of RISMC Models 
 

3.1. Summary 

 

Risk-Informed Safety Margin Characterization (RISMC) is a modern methodology for Nuclear Power 

Plant safety analysis that combines a dynamic probabilistic risk assessment (PRA) and “best estimate plus 

uncertainty” realization of the RISMC mechanistic models. Controlled by probabilistic tools with initial 

and boundary conditions, multiple simulations are performed with mechanistic tools to identify the safety 

margin and vulnerability of the reactor. Since the result of RISMC is used to inform and support the decision 

regarding design, operation, and safety of nuclear power plant, a mathematically defendable and robust 

approach is needed for the validation of the simulation tools, such that a confident and effective decision 

can be made regarding the high-consequence nuclear safety. Due to the lack of prototypical data and 

deficiencies of the simulation model, a framework is needed to guide the validation of RISMC Modeling 

& Simulation (M&S) tools in three major aspects: generating & gathering direct all related evidence, 

integrating evidence into a claim regarding the model credibility/uncertainty, and making confident and 

robust decision for the model credibility/uncertainty. Also, since RISMC requires a large number of 

simulations for every external event, it’s sometimes inefficient to pursue high-order-accuracy M&S tools, 

where the facilities’ margins are enormous compared to code uncertainty. As a result, the sufficiency of 

simulation accuracy depends on the characteristics of the scenario and validation that adapts such a concept 

is known as the risk-informed validation. The objective is to advise the safety management group on how 

to make a best and effective assessment for the model uncertainty, given the research goal and the scenario 

information. Although many validation frameworks have been developed, none of them explicitly adapts 

the risk-informed concept. Moreover, many elements are performed as black boxes due to the inherent 

limitations and challenges. When the system becomes large and complex, the uncertainties induced by these 

limitations could grow up and accumulate. Without proper investigations, such issues can be easily 

overlooked and the user may experience a loss of confidence on the validation decision. As a result, a risk-

informed validation framework is needed for assessing the credibility/uncertainty of RISMC M&S tools. 

At the same time, new methodologies/technologies are needed to resolve the major issues and challenges 

of traditional validation methodologies. 

 

In the project of “Development and Application of a Data-Driven Methodology for Validation of Risk-

Informed Safety Margin Characterization Models”, a validation framework, named Risk-informed 

Evaluation Model Development and Assessment Process (REMDAP), is proposed for the validation of 

RISMC M&S tools. REMDAP is designed based on the framework of Evaluation Model Development and 

Assessment Process (EMDAP) and the methodology of Code Scaling Applicability, and Uncertainty 

(CSAU). By incorporating data-driven and risk-inform concept, REMDAP aims to present a significant 

shift from the current approach for expert-determined validation to the data-driven approach. In this study, 

a concept of sufficient accuracy is developed and adapted in the REMDAP framework to account for the 

unfrozen model forms, parameters and computational resources in the RISMC analysis. A tentative 

workflow is prepared based on the currently developing methodologies/technologies. Next, the progress of 

developing key methodologies in the REMDAP framework, including the data-driven closure development, 

data-driven uncertainty quantification, and Predictive Capability Maturity Quantification & Bayesian 

Network (PCMQBN) are demonstrated. Presently, this study demonstrates some initial developments of 

classifying methodologies based on assumptions and conditions, the objective is to identify the feature and 

create an initial proof-of-concept for applying Data Driven Modeling (DDM) in the model development 

and validation process. The application of REMDAP to sophisticated RISMC tools, including Cobra-TF 

and NEUTRINO-SPH, is still under development. 

 

First, a data-driven closure development methodology is under initial development and the available 

data-driven methods are classified into two types. The parametric model is built upon the fixed model form 

that relies on human knowledge, while the nonparametric model solely depends the data. Illustrative 
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examples are prepared for both types of model development methods and observations are analyzed. 

Second, a data-driven uncertainty quantification (UQ) methodology is developed and the present methods 

are classified into two types: global data-driven UQ and local data-driven UQ. The global approach targets 

at system code like Cobra-TF by assuming that the model has been well-verified and closures are the major 

source of uncertainties. The local approach uses Physics-Informed Machine Learning (PIML) to construct 

a surrogate between the simulation error and the input physical features. It’s designed for the coarse-grid 

CFD like NEUTRINO-SPH, where error of each computing element is characterized with PIML. 

Illustrative examples are prepared for both types of data-driven UQ methods and observations are analyzed.  

 

Another major challenge of RISMC M&S tools validation is the decision-making process under 

uncertainty. Traditional validation relies heavily on expert judgments and the process is obscure and 

heuristic. In this study, a decision-theoretic methodology PCMQBN is under development. The objective 

is to construct a transparent, consistent and improvable validation process with mathematical languages and 

effectively make decisions on model credibility with adequate confidence based on a set of uncertain beliefs 

and a set of utilities. Guidance is constructed for the uncertainty grade of the R/S/U 

(Relevance/Scaling/Uncertainty) grading system. Illustrative examples are prepared to demonstrate the 

guidance and major findings. In addition, a framework of Bayesian sensitivity study is proposed for 

PCMQBN and the objective is to improve the robustness of the PCMQBN’s result. 

 

3.2. Introduction 

 

This chapter aims to demonstrate the motivation of developing a new validation framework for the 

RISMC M&S tools from the perspective of practical challenges/gaps. 

 

3.2.1. Risk-Informed Reactor Safety Analysis 

 

Risk-Informed Safety Margins Characterization (RISMC) Pathway is conducting research and 

development for advanced methods and tools to support Nuclear Power Plant (NPP) safety assessments and 

management [1]. Presently, RISMC is applied to address the NPP safety margin during external hazards, 

including flooding, high winds and so on. Because the RISMC approach explicitly couples probabilistic 

approaches (the “scenario”) with phenomenological representations (the “physics”) through a modeling-

and-simulation-based approach, it is ideally suited to serve as a framework to address the interactions of 

external hazards on NPPs and their potential impacts on the NPP safety. Figure 3.3 shows a simple 

representation of load and capability in both traditional safety analysis (left) and RISMC (right). Originally, 

the load and capability on the Structures Systems Components (SSCs) are calculated deterministically by 

the system code with less uncertainty information. In RISMC analysis, uncertainty of the load and capability 

are considered, and the safety margin is characterized by the region where the load exceeds the capacity.  

 

  
Figure 3.3: Simple representation of load and capability in traditional safety analysis (left) and RISMC 

(right) analysis. The shaded region in the right plot is where the load exceeds the capacity, exhibiting 

potential failure risk. 
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Usually, the capacity distribution does not vary too much from one scenario to another since they 

are determined by the physical designs and material properties or regulatory safety limits. But distributions 

of the load will depend on scenarios and RISMC simulation tools are needed to determine the time and 

scenario-dependent outcomes for a family of accident scenarios. Figure 3.4 shows an example for a family 

of load and capacity distributions under different accident scenarios. The plot is extracted from the RISMC 

document by C. Smith et al, 2015 (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins 

Characterization (RISMC) Path Technical Program Plan, 2015). 

 

 
 

Figure 3.4: Family of load and capacity distributions for different accident scenarios. This plot is 

extracted from figure 2-4 of RISMC document (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed 

Safety Margins Characterization (RISMC) Path Technical Program Plan, 2015). 

 

In recent works (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins 

Characterization (RISMC) Path Technical Program Plan, 2015) [3] [4], RISMC has been applied to analyze 

the risk induced by flooding hazards, and Figure 3.5 shows the corresponding flowchart for tsunami events. 

RAVEN (Risk Analysis in a Virtual Control Environment) is the statistical package that samples, executes, 

and evaluates the simulation with uncertain parameters. NEUTRINO, one of the Smoothed Particle 

Hydrodynamics (SPH) software packages, is applied as the Computational Fluid Dynamics (CFD) tool for 

simulating the flooding generation, propagation, and interaction with NPP sites. RELAP-7 is the system 

code designed for the reactor thermal-hydraulics simulation. For the CFD simulation, three-dimensional 

terrains and building models are constructed by SPH particles for the entire NPP site. Next, multiple full-

size and real-time fluid simulations with various initial conditions characterized by RAVEN are performed 

with NEUTRINO. Event sequences and plant responses, including the dynamic water height, force acting 

on a certain SSC, and so on, can be extracted for tsunami events. Reference document (Smith C. , Rabiti, 

Martineau, & Szilard, Risk-Informed Safety Margins Characterization (RISMC) Path Technical Program 

Plan, 2015) has demonstrated detailed procedures and findings.  
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Figure 3.5: Flowchart of applying RISMC in external flooding analysis by C. Smith, et al. (Smith C. , 

Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins Characterization (RISMC) Path Technical 

Program Plan, 2015). 

 

 
 

Figure 3.6: NEUTRINO simulation for the tsunami event [5]. 

 

Figure 3.6 shows a snapshot of tsunami simulation using NEUTRINO with a ¼ slice of the nuclear 

facility. The impact of the tsunami, whose wave height ranges from 14 to 38 meter, are determined based 

on the SPH simulation. Based on the information from NEUTRINO, the system code can predict the 

thermal-hydraulic status inside the reactor core. The scenario-based and risk-informed safety margin can 

be obtained for the reactor and facilities using the statistical analysis. Reference document [6] shows the 

safety margins risk for a Pressurized Water Reactor during the tsunami event. Though NEUTRINO has 

shown great capability in performing the large-scale fluid simulation, the simulation’s credibility or 

uncertainty remains to be a problem. Some initial assessments have been performed for SPH and 

NEUTRINO (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins Characterization 

(RISMC) Path Technical Program Plan, 2015), however, due to the complexity of physics and phenomenon, 

a comprehensive validation is still needed to accurately characterize the uncertainty of simulations. What’s 

more, although SPH can be treated as a DNS software, whose accuracy can be improved by refining 

particles, it is not realistic to perform RISMC analysis with DNS configurations. In addition, for facilities 

that have much more margins than the code uncertainty, it is not effective to keep pursuing high accuracy. 
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Therefore, the accuracy of characterized M&S credibility/uncertainty needs to be sufficient but also 

practical.  

 

3.2.2.  Model Validation Framework  

 

This section aims to review the previous standards and methodologies for the M&S credibility 

assessment in the nuclear discipline, including their features, limitations and applications.  

 

CSAU/EMDAP 

 

Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology is introduced in 

1989 [7] to accommodate the revised rule on the acceptance of Emergency Core Cooling System (ECCS) 

entitled “Emergency Core Cooling System; Revision to Acceptance Criteria”. The objective is to provide 

a practical engineering approach that can quantify the code reliabilities and uncertainties. It’s mainly 

composed by three elements [8]: (1) requirements and code capability; (2) assessment and ranging of 

parameters; (3) sensitivity and uncertainty analysis; The first element aims to identify the code applicability 

and potential code limitations for the particular scenarios. This is usually achieved with a phenomenon 

identification and ranking process, (e.g., Phenomenon Identification and Ranking Table (PIRT) [9]), such 

that the assessment process can be sufficient and efficient. The product of the first element is a hierarchy 

of relevant tests for the code validation, including the separate effect tests (SETs), mixing effect tests 

(METs), and integral effects tests (IETs). The second element aims to assess the capability of the code by 

comparing simulation results against experimental data. The scaling methodology is needed in this element 

to guide the development of simulation codes and assess the code scale-up capability. The third element 

aims to assess the uncertainty due to the code limitations, scaling distortions, data quality, and so on. 

Usually, the second and third element are performed at the same time and the ultimate product is a simple 

and direct statement of the code uncertainty or credibility in the primary safety criteria (e.g. the Peak 

Cladding Temperature (PCT)). For obvious and inevitable limitations in knowledge, a conservative margin 

is added to compensate for the effect of epistemic uncertainty.  

 

Evaluation Model Development and Assessment Process (EMDAP) is a regulatory guide 

developed by U.S. NRC [10] for code development and assessment. The objective is to describe an 

acceptable process of developing and assessing the evaluation models that are used to analyze transient and 

accident behavior within the design basis of a nuclear power plant. The principle of EMDAP is developed 

based on the CSAU methodology, while EMDAP has formal and explicit descriptions for most of the 

assessment process, including the PIRT, evaluation model, assessment base, scaling analysis, and so on. 

After the validation, the system code will be “frozen” and applied to accident scenario for reactor transient 

and risk analysis. Though CSAU and EMDAP have a logical and comprehensive structure, the decision 

process for the adequacy is not explicitly specified, and the judgment is made based on experts’ opinion. 

Therefore, for an individual researcher, it’s difficult to conduct EMDAP independently and transparently, 

and the epistemic uncertainty are easily overlooked. For a group of researchers, problems of expert 

elicitation become serious and challenging. In addition, though CSAU/EMDAP emphasizes the importance 

of VUQ, they have a vague classification between the verification and validation. CSAU has been 

successfully applied to the RELAP-5 simulation code for the Small Break Loss-of-Coolant Accidents of 

AP600 [11], while EMDAP has not been widely applied.  

 

Predictive Capability Maturity Model 

 

Predictive Capability Maturity Model (PCMM) [12] is developed by Sandia National Laboratory 

and it aims to assess the credibility of M&S tools based on the decision consequence. Comparing to 

CSAU/EMDAP, PCMM explicitly treats the model credibility/uncertainty assessment as a decision-making 

process with explicit structures. First, a specific application and the corresponding model is selected. Also, 
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based on the nature and consequence of the application, requirements and targets can be designated. Next, 

for the chosen scenario, six attributes are designed and assessed separately: representation and geometric 

fidelity; physics and material model fidelity, code variation, solution verification, model validation, and 

uncertainty quantification and sensitivity analysis. At the same time, a qualitative assessment for each 

attribute is performed based on a PCMM matrix, and it characterizes each attribute with maturity levels. 

Finally, the model’s achieved level is compared against the target level and the decision of validation 

adequacy can be made. Since the final decision can either be made based on a stringent requirement or a 

trade-off between the fulfillment and limitation, PCMM can effectively guide the development and 

validation of M&S tools. In addition, PCMM presents a formal definition for credibility assessment using 

the maturity level and it also explicitly distinguishes the difference between verification and validation. 

Though the maturity descriptor of PCMM includes statements of IETs and SETs, the scaling analysis and 

the hierarchical structure are not explicitly discussed. As a result, the capability of PCMM is limited in 

validating complex systems with multiple scales, physics, and phenomenon. In 2013, PCMM has been 

specifically discussed in the report by U.S. NRC [13], which emphasizes the use of maturity for the model 

credibility assessment. CASL also adopts PCMM for assessing Multiphysics computational tools [14].  

 

In general, previous validation frameworks either do not have a formalized decision model or do 

not have the capability of scaling. Also, none of them is built on the risk-informed concept. As a result, a 

new risk-informed framework is needed to better validate the RISMC M&S tools. What’s more, the 

proposed framework should be built based on the best-existing knowledge and show the capability of 

evolution with new data, information, and knowledge.  

 

3.2.3. Data-Driven Modeling and Application 

 

This section aims to review the development of Data-Driven Modeling (DDM), and in fact, the 

concept of data-driven modeling is not new to the nuclear discipline. For a complicated physical process 

that has not been fully understood, the classical data-driven approach aims to gain insights and mechanistic 

understanding of the physics through the data analysis and mining process. Figure 3.7 shows a classical 

cycle of the modeling process. The cycle usually starts from a specific application, where requirements and 

specifications are designated for each scenario. At the same time, the prediction made based on the 

knowledge base is compared against the observation from the application. If the inconsistency is not 

acceptable, the database will be renewed with more data collection. Next, the data will be “formatted” to 

information that is valuable and meaningful to the human being for understanding a subject [15] and form 

an information base. Next, knowledge is extracted from the information based on people’s understandings, 

beliefs, and assumptions, such that a theory/model can be designed for the application purpose. Next, the 

model prediction from the compact theory/model is again compared to the observation and the consistency 

is against evaluated. This cycle is repeated until the consistency is acceptable and it usually takes decades 

to develop a satisfactory model. Moreover, the modeling evolution of this cycle is driven by human’s 

knowledge and capability. Sometimes, data analysis and mining are employed in addition to human efforts 

for information collection and knowledge abstraction.  
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Figure 3.7: Classical cycle of modeling process 

In the last few decades, with the rapid growth of computational powers and data availability from 

high-resolution experiments and high-fidelity simulation, the role of data analysis and data mining becomes 

more important. Techniques, including calibration and statistical inference, are widely applied for 

estimating the parameters of deterministic models. Domingos [16] has classified data-driven methods into 

five tribes based on their learning algorithm and targeting problem (Table 3.).  

 

Table 3.1: Five tribes of data-driven techniques [16].  

Tribe Targeting Problem Origins Master Algorithm 

Symbolistic Knowledge Composition Logic, philosophy Inverse deduction 

Evolutionaries Structure Discovery Evolutionary biology Genetic programming 

Analogizers Similarity Psychology Kernel machines  

Connectionists Credit Assignment Neuroscience Backpropagation  

Bayesians Uncertainty Statistics Probabilistic inference 

 

At the same time, as the statistical inference algorithms become more sophisticated and feasible, it 

is possible to assimilate and extract information from the large amount of data, like those generated by DNS 

simulations. In recent years, with the advancement of machine learning, DDM shows potential in extracting 

and learning knowledge without being explicitly programmed. In a word, the development of statistical 

inference and machine learning show potential of carrying one or more modeling steps and the reliance on 

human knowledge is getting less. Depending on the level of involvement for the DDM and human 

knowledge, a DDM hierarchy structure for the modeling process can be developed based on the data-

information-knowledge-wisdom hierarchy by Ackoff [17] and Rowley [18].  
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Figure 3.8: DDM hierarchy system modified according to Ackoff [17] and Rowley [18]. 

In the present nuclear discipline, DDM is mainly used for extracting information from data, including 

the uncertainty, similarity, and so on. Attempts have been made in the thermal fluid area, especially in the 

turbulence modeling and the Nuclear System Thermal Hydraulics (NSTH). For turbulence modeling, 

efforts have been made to accelerate the calculation speed [19] and to improve the accuracy [20] [21]. For 

the NSTH development, initial works have been performed for classifying the DDM application [22]. 

Besides, some efforts have been made to recognize and recover the underlying physics from a large amount 

of data, including constructing the governing equation [23] and closure relations [24] [25]. Although DDM 

shows excellent potential in information abstraction and knowledge abstraction, the problem of data 

collection limits its application. In one hand, the quality of nuclear data is not properly guaranteed, where 

information of experimental setups and uncertainty are poorly recorded. In another hand, the amount of 

nuclear data is far less than the requirements for “big data” and data gaps are commonly seen in nuclear 

studies. Therefore, to properly apply DDM in the nuclear discipline, a data collection system with proper 

requirements on data quality, data amount, and data coverage is needed in addition to the system of data 

analysis and mining.  

 

One major challenge in validation of nuclear discipline is the data gap. Previously, validation relies 

on human judgment to bridge the gap and improve confidence. However, such expert-determined process 

is highly heuristic and takes decades to develop and validate a model. Nowadays, with the rapid growth of 

computer powers and experimental instruments, a large amount of data is generated by both the high-

fidelity simulations and advanced experiments. Also, data analysis and mining are getting more 

sophisticated and tools like Bayesian inference and machine learning have proven to be successful in many 

areas. It has become possible to improve the use that we make of data we have (or can obtain) and present 

a significant shift from the previous expert-determined model development/validation to a new data-driven 

path. As a result, this study aims to investigate the DDM and its application to model development and 

validation in the nuclear discipline, especially the Nuclear System Thermal Hydraulics and coarse-grid 

Computational Fluid Dynamics (CFD). 

 

3.2.4. Remarks 
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This chapter first describes the RISMC technology and its application in the reactor safety analysis, 

where both accuracy and sufficiency are required. It’s claimed that a comprehensive validation is needed 

to characterize the uncertainty of RISMC M&Ss. The objective is to ensure the reliability of RISMC results, 

meanwhile, to maintain the M&S efficiency to the best extent. Next, this chapter describes the state of art 

for the present model validation framework in nuclear discipline, including CSAU/EMDAP and PCMM. 

By comparing the requirement of risk-informed technology against the capability of existing validation 

methodologies, it’s found that the practical gaps/challenges are too large to apply conventional validations. 

Next, the recent development and applications of DDM for the M&S in the nuclear discipline. To properly 

assess the uncertainty/credibility of the RISMC M&S tool, a new validation framework is needed based on 

the current best knowledge, including the decision theory, scaling analysis and DDM. In addition, risk-

informed technology should be incorporated into the proposed validation framework.  

 

3.3. Technical Developments 

 

This chapter aims to demonstrate the development of Risk-Informed Evaluation Model Development 

and Assessment Process framework, including the central concept, present progress of key 

technologies/methodologies, and recommendations from the expert group.  

 

3.3.1. Concept of Sufficient Accuracy 

 

To validate selected RISMC simulation tools, a validation framework is needed for uncertainty 

quantification and scaling. In the EMDAP framework, the M&S is “frozen” for the specific scenario after 

the validation. However, model forms and parameters of RISMC tools are subject to change since efficiency 

is another important consideration in addition to accuracy. Moreover, since RISMC analysis aims to 

evaluate the reactor’s safety margin during external hazards, the uncertainty is significant and the result is 

subjective. Under such conditions, the way that traditional frameworks validate the M&S by characterizing 

one single error number is not very meaningful. Indeed, reducing the number of error implies better 

accuracy, but the work becomes more complicated and less scrutable. Even though the simulation error 

appears to be acceptable or far less than the criteria for a specific large-scale scenario, the credibility of the 

M&S remains suspicious. As a result, this study proposes the concept of sufficient accuracy that aims to 

adapts the accuracy requirements according to scenarios and tools’ limitations. In this study, the “accuracy” 

of a simulation result is represented by the maturity level that is characterized by errors and the “sufficient” 

is characterized by the utility on the M&S maturity. The utility on the model maturity is assessed based on 

the expect rewards by multiplying the reward function by subjective beliefs. The rewards function depends 

on the consequence and human preference on each level, while the subjective belief is assessed with 

validation metrics and expert elicitations. Note that the concept of sufficient accuracy has many commons 

with the risk-informed or risk-oriented concept. Therefore, validation adopting such concept can be claimed 

as a risk-informed validation. Further, to ensure the reliability and avoid confusion, it’s required that the 

sufficient accuracy and its analysis are transparent, complete, consistent and improvable.  

 

Table 3.2: Example of reward levels and their meaning. The reward function ranges from 0 to 1. 

Expected Rewards Characteristics 

0.9 The uncertainty of M&S is well characterized and successfully maintained at a 

very low level for the application purpose.  

0.5 The uncertainty of M&S is partially characterized and successfully maintained at 

a reasonable level for the application purpose. 

0.1 The uncertainty of M&S is poorly characterized and likely to amplify for the 

application purpose. 
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Sufficient accuracy has two sub-attributes: acceptance domain and bounded error. The acceptance 

domain is assessed by on the scenario and requirement, while the bounded error is characterized based on 

the discrepancy between the model prediction and the true value. Table  shows their definition and features. 

 

Table 3.3: Definition and notation for sufficient accuracy, acceptance domain and bounded error.  

Terminology Definition Notation 

Sufficient 

Accuracy 

A risk-informed concept for 

M&S validations by 

adapting the accuracy 

requirements according to 

scenarios and tools’ 

limitation  

The sufficient accuracy is the theoretical basis for the 

risk-informed validation framework. It is designated for 

situations where the effect of uncertainties are 

dominant. The “sufficient” is measured by the utility on 

the model accuracy. It requires the validation to be 

transparent, complete, consistent and improvable.  

Acceptance 

Domain 

An accuracy requirement for 
simulating the generation, 

propagation, and interaction 

of accident scenarios 

The acceptance domain is inherited from the concept of 
sufficient accuracy and arisen from the application 

requirements. Other than the practical consideration, no 

explicit restriction is placed on the acceptance domain. 

Bounded 

Error 

An error analysis for the 

M&S based on the 

discrepancy between the 

model prediction and the true 

value 

The bounded error is inherited from the concept of 

sufficient accuracy and estimated by comparing the 

model prediction against the true value or high-fidelity 

data. The bounded error has to be consistent, therefore, 

the analyzing process should be transparent, complete 

and robust.  

 

Comparing to the accuracy concept in traditional validations, the sufficient accuracy has three major 

differences. First, it aims to establish that the belief is high enough to regard the M&S as a tool of certain 

maturity rather than seeking the precise error. Though such concept appears to be trivial when conservative 

treatment is available, it avoids the excess conservatism while maintains convincing. This conservatism 

suggests that sufficient accuracy has to be transparent, while the convincement suggests that the analysis 

(of both logical and evidential) towards the sufficient accuracy should be complete. Second, it clearly 

separates the aspects of well-posed error/discrepancy calculation and the aspects of human confidence that 

are subject to large variations. The former aspect can be classified as a “causal relation” that is deterministic 

and obtained by direct comparisons. The latter one is “intangible” that is probabilistic depending on the 

scenario and human articulates. As a result, this requires a properly document for human articulates. Also, 

a robust and consistent process is needed for making confident decision regarding the M&S accuracy. Third, 

the concept of sufficient accuracy focuses on the area where large uncertainties exist. Instead of 

qualitatively defining the model credibility, the sufficient accuracy aims to bound the uncertainty. 

Therefore, as uncertainties being reduced, the process guided by sufficient accuracy should be improved. 

In conclusion, this study proposes a risk-informed validation framework that is transparent, complete, 

consistent, and improvable. To ensure the logical completeness and consistency, the framework is 

suggested to be built upon the existing studies.  

 

3.3.2. RISMC Model Validation Methodology 

 

Risk-Informed Evaluation Model Development and Assessment Process (REMDAP) is a validation 

framework first proposed by Dr. N. Dinh, et al. [26] in the project of “Development and Application of a 

Data-Driven Methodology for Validation of Risk-Informed Safety Margin Characterization Models.” The 

objective is to “provide a mathematically defendable basis for calculating biases and their uncertainties for 

a wide range of operating conditions that represent the intended range of model application” by combining 
the CSAU/EMDAP methodology with advanced DDM methods, including Reduce Order Modeling (ROM) 

[27], Simulation-Based Scaling (SBS) [28], Validation Data Planning (VDP) [29], and Validation Data 
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Management System (VDMS) [30]. Figure 3.9 shows the advanced methods and tools to facilitate the 

implementation of already demanding EMDAP in a risk-informed application. Orange boxes represent 

methodologies that will be developed in this project and their task number.  

 

 
Figure 3.9: Risk-informed Evaluation Model Development and Assessment Process. Orange boxes denote 

developments in the project and indicate EMDAP elements where the advances are expected to impact 

[26]. 

The present section discusses and demonstrates the progress of Task 1.3, Task 1.6, and Task 1.7. 

Details of Task 1.3 and Task 1.7 have been initially addressed in a previous milestone report [31], this study 

will further develop the PCMQBN framework by constructing guidance for the R/S/U 

(Relevance/Scaling/Uncertainty) grading system. Also, this study will discuss the present development on 

the robustness of PCMQBN. Task 1.6 DDM is the most critical and challenging problem since it presents 

a significant shift from the current approach of expert-driven to data-driven analysis and this project aims 

to prove its feasibility. Presently, the DDM is applied to two elements: closure development and uncertainty 

quantification. The data-driven closure development aims to construct or calibrate closure models with 

data-driven techniques, while the data-driven UQ seek s to evaluate the uncertainty of simulation. 

Furthermore, the data-driven UQ has two approaches: the global approach aims to evaluate the uncertainty 

of NSTH codes like Cobra-TF, where closures and correlations are assumed to be the major uncertainty 

source; the local approach aims to evaluate the uncertainty of Coarse-Grid CFD code like NEUTRINO, 

where each element is the source of uncertainties. Presently, this study demonstrates some initial 

developments of classifying methodologies based on assumptions and conditions, the objective is to 

identify the feature and create an initial proof-of-concept for applying Data Driven Modeling (DDM) in the 

model development and validation process. 
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Figure 3.10 shows a tentative structure of the REMDAP framework according to the present 

methodology development. Elements #1 - #4 are inherited from the EMDAP framework, while new 

components, including data-driven closure development, data-driven validation and PCMQBN are 

developed and included. Element 1 and 2 are the same as EMDAP process, and a similar procedure should 

be followed. For element 3, the data-driven closure development is incorporated. Techniques, including 

machine learning and statistical inference, are used for the model construction. At the same time, the data-

driven concept is also employed in the model assessment process by quantifying the simulation uncertainty, 

and two approaches are developed for the system code and coarse-grid CFD separately. If models are 

consistent and uncertainties are bounded by an acceptable range. The uncertainty information will be fed 

into the PCMQBN framework for the model maturity analysis. The code adequacy, represented by the 

probabilistic maturity level, will guide the M&S credibility decision. If the achieved credibility has reached 

the target level, a robustness test will be performed to ensure the robustness of the validation process. Next, 

the similar validation process will be performed multiple times with different combination of model forms, 

model parameters, and computational resources. Finally, a function of the M&S credibility against model 

forms, model parameters, and computational costs will be constructed, based on which model suggestions 

will be made for the full-scale safety analysis. For cases that fail to satisfy the criteria or has a major issue 

like model inconsistency or unbounded error, information will be fed to the validation data plan and guide 

the update of validation database and evaluation models.  

 

 
Figure 3.10: Schematic flowchart of REMDAP framework (tentative). The innovative 

methodologies/techniques are bolded. 
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Comparing to the EMDAP process, the information flow and element 1 & 2 are maintained. Element 

3 and 4 have been greatly simplified and only essential components that have data-driven concept are 

included since the project aims to demonstrate the feasibility of the data-driven and risk-informed concept 

in the validation. Scaling analysis is not explicitly discussed, but it’s performed as part of the data-driven 

UQ. The adequacy decision of EMDAP has been rebuilt into a new decision-making element. Moreover, 

in addition to the model credibility decision, REMDAP also requires a sensitivity study for the decision-

making such that the final decision can be robust.  

 

3.3.3. Progress of the Key Technology/Methodology 

 

This section aims to demonstrate the progress of crucial methodologies in the present REMDAP 

framework. For each methodology, assumptions, objective, technical approach and illustrative examples 

are provided.  

 

Data-Driven Closure Development 

 

With the rapid growth of computer powers, data-driven techniques, especially statistical inference and 

machine learning, have been continuously gaining success in the computer vision and healthcare. Machine 

learning, especially the deep learning technique, has shown to be more capable than human contestants in 

the area of image processing, pattern recognition, and so on. Inspired by such successes, researchers have 

been trying to apply machine learning in closure model developments. The expectation is that machine 

learning can help researcher identify the essential physical features from the data, and thus shorten the 

model development cycle. Recently, general guidance for machine-learning-based data-driven closure 

development has been developed by Chang et al [22] for the NSTH. Figure 3.11 shows his schematic 

workflow for the NSTH closure development using supervised machine learning. 𝑿 represents the input 

flow features, 𝒀 represents the targets associated with the input flow features, 𝑘 represents the 𝑘𝑡ℎ 

measurement for a single flow feature point. Both inputs and targets will be fed into the machine-learning 

engine. After sufficient training, a NSTH closure will be developed.  

 
Figure 3.11: Schematic workflow of data driven NSTH closure development using machine learning by 

Chang et al. [22] 

Detailed information for each type can be found in the reference document [22]. Until now, machine-

learning-based data-driven closure development has been used in constructing single-phase turbulence 

models [20] [21] and simple two-fluid models [24] [25]. Ling et al. [32] evaluates the predictive capability 
of different machine learning algorithms for predicting the averaged Navier-Stoke uncertainty in a high 

Reynolds region. 
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The present study mainly investigates the application of statistical inference and machine learning 

algorithm in data-driven closure development process. To adapt the concept of sufficient accuracy and 

investigate the feature of various types of development process, this study classifies the present closure 

development methods into two types. Table  shows a summary of two types of methods, including their 

assumptions and master algorithms. Compared to the parametric model, the nonparametric model makes 

fewer assumptions and requires no priori information [33]. Therefore, the nonparametric model is more 

robust and simpler, however, it requires a large amount of data to draw a confident conclusion. In many 

application, the parametric and nonparametric form are mixed [34] but mathematically transferring them 

from one to another remains challenging.  

 

Table 3.4: Summary of closure development techniques 

Closure Development  Assumption Master Algorithm 

Parametric 

1. Fixed model form, 
2. The errors are normally distributed, 

3. Random variables are independent and 

identically distributed.  

Maximum Likelihood 

Estimation. 

Bayesian Inference. 

Nonparametric 
Two unspecified continuous distributions are 

identical 

Neural Network. 

Gaussian Process. 

 

An illustrative example is prepared to demonstrate the feature and difference between two types of 

methods. This example assumes that the closure is a correlation for the Nusselt number with respect to 

Reynold and Prandtl number. It’s also assumed that the data from Petukhov correlation [35] is high-fidelity 

and they will be used as the training data. By employing a deterministic correlation as the training data 

source, the effect of data amount and data bias on the closure quality can be illustrated. For the parametric 

method, a fixed form of Dittus-Boelter correlation is employed, while for nonparametric method, the neural 

network is used. Since neural network randomly generates the initial weight and bias, which will be updated 

by the optimizer, multiple (100 times) training is performed with a sequence of random number and a mean 

value of all training results is used. This example uses Mean Squared Error (MSE) to measure the quality 

of model prediction. Figure 3.12 shows the plot of MSE for closures constructed by both methods. As more 

data is used for training and calibration, the MSE value reaches the asymptotic range for all types of 

methods. It’s also found that a similar error is obtained from the Bayesian Inference and Least Squared 

Error since the closure’s quality is limited by the fixed model form. In addition, the MSE from the neural 

network can be reduced to a very small value (10−3). What’s more, both closures are sensitive to the amount 

of data. However, when the data amount is small, the neural network tends to have larger error than the 

parametric error. In the appendix document (Appendix B) by Zachry Inc., it’s also suggested that machine 

learning algorithm like neural network has the problem of overfitting.  



   

63 
 

 
Figure 3.12: Mean Squared Error (MSE) of closures constructed by parametric and nonparametric 

methods. 

 

Data-Driven Uncertainty Quantification 

 

This session demonstrates the study of data-driven Uncertainty Quantification (UQ), and the objective 

is to accurately quantify and propagate the simulation error. This study classifies the data-driven UQ 

methods into two types: the global data-driven UQ and the local data-driven UQ. Table  shows the summary 

of two types of methods that are underdeveloped.  

 

Table 3.5: Summary of data driven UQ 

Data-Driven 

UQ 
Assumption Targeting Problem Master Technique 

Global 

Approach 

Closure models are the major 

source of uncertainty 

Model Form and 

Parameter Error 
Forward/Inverse UQ 

Local 

Approach 
 

Discretization Error, 

Model Form, and 

Parameter Error. 

Physics-Informed 

Machine Learning 

 

Although Data-Driven UQ aims to propagate/predict the simulation uncertainty, it’s more 

straightforward and feasible to compare the corrected simulation result against the real result rather than 

comparing the predicted uncertainty against real uncertainty. In addition, most of the present validation 

metric is designed for estimating the credibility/uncertainty of simulation result rather than the 

credibility/uncertainty of uncertainty. Therefore, the quantified uncertainty will be substituted back to the 

simulation and the corrected result will be compared against the real value to test the applicability of 

proposed methods.  

 

Global Data-Driven Uncertainty Quantification 

 

By assuming closure models are the major source of uncertainty, the global data-driven UQ aims to 

quantity the uncertainty induced by the closure model. The simulation is assumed to be well-verified before 

this process. Therefore, the capability of global approach is limited to the model error quantification, 

including the model form and model parameters. In this study, the global approach is designed for the 

system code of Cobra-TF. Figure 3.19 shows workflows for the inverse UQ component of the global 

approach. Note that the global approach calibrates the model based on the quantity of interest, therefore, 
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the field data from the CFD or system code simulation needs additional processing. In addition, the result 

of uncertainty quantification depends on the selection of validation metrics. In addition, since inverse UQ 

usually requires a sampling process, to save computational resources in complex problems, methodology 

of Reduced Order Modeling (ROM) is used to construct a surrogate model for the solver. As another major 

methodology developed by the data-driven project, detailed discussions will be prepared in a separate 

report. After the inverse UQ, uncertainties of model parameters and forms will be propagated by perturbing 

their values according to the known distribution.  

 
Figure 3.13: Schematic workflow for the global approach of data driven UQ. 

 

To demonstrate the application of global approach, an illustrative example is prepared and the objective 

is to quantify the parameter uncertainty of Dittus-Boelter correlation. Also, the uncertainty of a machine-

learning-based model is analyzed. This example assumes that the data from Petukhov correlation is high-

fidelity and Bayesian inference is used for quantifying the parameter uncertainties based on data from 

validation domain. Next, the quantified uncertainty will be propagated to the application domain. Figure 

3.14 shows the coverage mapping of model inputs variables, including the Reynolds (Re) and Prandtl (Pr) 

number. The red region represents the validation domain, while the region with blue diagonal stripes 

represents the application domain. In addition, the application domain fully covers the validation domain.  

 
Figure 3.14: Coverage mapping of input variables. 

 

Figure 3.15 shows the plot of MSE for the Dittus-Boelter correlation and the machine-learning-based 

closure in the application domain. It’s found that the error reaches the asymptotic range in the application 

and increasing the number of training data will not change the error. However, comparing to the error in 

the validation domain (Figure 3.12), uncertainties of both parametric and nonparametric methods are 
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amplified in the application domain. And the amplification turns to be much higher for the machine-

learning-based closure (nonparametric method) than the Bayesian inference or least square error 

(parametric method). As a result, the problem of data gap remains challenging even with sophisticated data-

driven closure development and pursuing high accuracy is very likely to induce large scaling distortion.  

 
 

Figure 3.15: MSE of Dittus-Boelter correlation and machine-learning-based closure in the application 

domain. 

 

Moreover, this study performs the same example with the metric of confidence interval and the closure 

quality is measured by the percentage of real values being bounded by the 95% confidence range of closure 

predictions. Figure 3.16 shows the plot of bounded percentage for closure constructed by both types of data-

driven methods. Comparing to the MSE, a similar trend of converge is found. However, the confidence 

ranges from Bayesian Inference bounded more real data points than the one from Neural Network. The 

reason is that the uncertainty from Bayesian inference is much larger than the one form Neural Network 

(refer to Figure 3.12). Such finding again indicates that pursing higher accuracy is likely to result in large 

distortion when there is a data gap.  

 
 

Figure 3.16: Percentage of real values being bounded by the 95% confidence range of model prediction in 

the application domain. 
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The effect of data bias is also investigated by introducing constant error to the high-fidelity data. 

In this study, the error is introduced in two ways: total fractional error by adding a constant fractional error 

to the high-fidelity output (Nu); parameter fractional error by adding a constant fractional error to the high-

fidelity input (Re, Pr). Figure 3.17 shows how data bias influences the model quality and it’s found that as 

more bias is introduced, the model quality keeps deteriorating. Although the data bias has a significant 

effect on the closure quality, there is rarely an effective way of analyzing or avoiding the bias. However, 

it’s important that the information of high-fidelity data, especially the uncertainty information, needs to be 

properly characterized and recorded. Otherwise, a poorly documented low-quality data can induce terrible 

and irreversible effect on the quality of closures and simulations.   

 
 

Figure 3.17: Effect of data bias on the percentage of real values being bounded by the 95% confidence 

range of model prediction in the application domain. 

 

Another successful application of global approach for complex problems is the Total Data 

Modeling Integration (TDMI). In addition to the data-driven UQ, TDMI also has the component of 

surrogate construction, sensitivity study and closure evaluation. Figure 3.18 shows its complete workflow 

for the multiphase CFD application. It is first proposed by Bui et al [36] and the objective is to calibrate 

models of multiscale and multi-physics phenomena in thermal hydraulics. The master methodology of 

TDMI is inverse UQ, where uncertainties of model are inferred according to experimental measurements. 

Compared to the traditional method, TDMI is based on a strategy of model-data integration, where all 

models are simultaneously analyzed and calibrated using multiple sets of data from various scales. In 

addition to the model parameters, recent developments also aim to characterize and calibrate the model 

form error [37] [38]. Figure 3.18 shows Liu’s schematic workflow of TDMI for validating a MCFD code.  
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Figure 3.18: Schematic workflow of TDMI framework for validating the Multiphase CFD (MCFD) by 

Liu [34]. 

Local Data-Driven Uncertainty Quantification 

 

For the local approach, since no explicit assumptions are made for the uncertainty source, it shows more 

capabilities than the global approach. Figure 3.19 shows the schematic workflow for the local approach of 

data-driven UQ. Different from the global data-driven UQ, the local approach targets at the field data 

directly and objective is to estimate the simulation uncertainty of field data. Therefore, the data from each 

calculation element will be extracted and analyzed.  

 
Figure 3.19: Schematic workflow for the local approach of data-driven UQ 

In this study, the method of Physics-Informed Machine Learning (PIML) is used for the local approach 

and it is mainly designed for the coarse-grid SPH simulation. PIML has first been proposed for 

characterizing the simulation error of each computing element that is induced by turbulence models [20] 

[21]. The objective is to construct a surrogate model between the simulation error and the physical features.  

 
𝜀𝑑,𝑉𝑖(𝒗⃗⃗ 𝑖) = 𝒗⃗⃗ 𝑖(𝐻𝐹) − 𝒗⃗⃗ 𝑖(𝐿𝐹) 

Eq. 3.1 

 

In the previous work, it is assumed that the targeting simulation has reached the grid convergence range. 

However, since it is challenging to ensure grid convergence for large-scale simulations, especially when 
there are additional closures, the grid assumption is not employed in this study. Since the local approach 

targets at coarse-grid SPH simulations, one challenge is that the high-fidelity data is obtained from mesh-
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based simulation. A mapping method is needed to transfer the field data (pressure, velocity, energy) from 

Eulerian method to Lagrangian method. In this study, a simple averaging method is used by assuming that 

each particle has a stable size the properties in the particle volumes are approximately the same.  

To demonstrate the application of the local approach, an illustrative example is prepared, and the 

objective is to demonstrate how PIML predicting the uncertainty of SPH in simulating the velocity field. A 

lid-driven simulation is constructed with LAMMPS-SPH and OpenFOAM, where OpenFOAM is used as 

the source of high-fidelity data. Multiple simulations with different configuration are constructed and Table  

shows the ID and setups for each simulation. Currently, only the dynamic viscosity is changed, therefore, 

the Reynolds number is used to characterize each case. To test the applicability of PIML, it will be trained 

with selected cases, named as training sets, and applied to other cases, named as application sets.  

 

Table 3.6: Summary of simulation ID and configurations. Dynamic viscosity is currently the only variables 

being changed. 

ID 𝜹𝒓 𝝂 𝑹𝒆 

dp1 0.02 10−3 1000 

dp8 0.02 5 × 10−4 2000 

dp4  0.02 2 × 10−4 5000 

dp6  0.02 10−4 10000 

 

First, the high-fidelity mesh-based simulation data need to be mapped to the SPH simulation. A simple 

averaging method is used and Figure 3.20 shows the velocity comparison for the original SPH, mapped 

SPH and the reference simulation by STARCCM. After the mapping, the target variables are calculated by 

Eq. 3.1. 

 
 

Figure 3.20: Comparison of 𝑉𝑥 at the vertical centerline. 

 

Next, based on the SPH equation for velocity calculation and the theoretical analysis for the truncation 

and discretization error, five physical features are selected as the input variables (Eq. 3.2) of PIML. For a 

two-dimensional simulation, each physical feature is propagated to two direction and there will be ten 

features in total.  
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(𝐹 𝑝)𝑖; (𝐹
 
𝑣)𝑖; 𝒗⃗⃗ 

(𝒓𝑖)∑𝑤ℎ(𝒓𝑖 − 𝒓𝑗)𝑉𝑗
𝑗

; 𝛻𝒗⃗⃗ (𝒓𝑖)∑𝑤ℎ(𝒓𝑖 − 𝒓𝑗) ∙ (𝒓𝑖 − 𝒓𝑗)𝑉𝑗
𝑏

; 𝒓𝒊𝑤𝑎𝑙𝑙 
Eq. 3.2 

 

Next, both input features and target variables are fed into the machine-learning engine and the 

simulation error of velocity is predicted for each particle. To characterize the accuracy of PIML for SPH 

application, the SPH’s velocity field is corrected based on the predicted error by substituting the error into 

Eq. 3.1. The corrected velocity is then compared against the high-fidelity data and L2 relative error norm 

is used as the comparing metric. As a result, if the corrected L2 error is less than the original simulation, it 

can be claimed that PIML can predict the simulation error of velocity. Table  shows a summary of all cases, 

including their training datasets, application datasets, error of corrected velocity field based on the PIML 

result, and error of original SPH velocity field. For both case studies, it can be found that except for the 

PIML trained by the first training set, which has the most distant Reynolds number from the application 

dataset, all other PIMLs successfully predict the error of field data. It is also found that as more datasets are 

used for training, the error of corrected fields becomes smaller. For case study #2, as the Re of training set 

becomes closer to the application set, the error of corrected field gets smaller.  

In addition to the random forest machine-learning engine, this study also tests the neural network 

engine. It turns out that random forest is faster and more robust than the neural network, however, the error 

reduction with respect to the data amount is more obvious for the neural network.  

 

Table 3.7: Summary of PIML results with Random Forest as the machine-learning engine. 

Case 

Study 
Training Set Re 

Application Set 

Re 

Error of Corrected 

Fields 

Error of Original 

Fields 

#1 

10000 

5000 

4.54 × 10−4 

4.31 × 10−4 
1000+10000 3.23 × 10−4 

2000+10000 3.44 × 10−4 

1000+2000+10000 3.23 × 10−4 

#2 

1000 

10000 

6.10 × 10−4 

5.37 × 10−4 

2000 4.88 × 10−4 

5000 3.99 × 10−4 

1000+2000 4.44 × 10−4 

1000+5000 4.18 × 10−4 

2000+5000 3.74 × 10−4 

1000+2000+5000 4.00 × 10−4 

 

Predictive Capability Maturity Quantification & Bayesian Network 

Predictive Capability Maturity Quantification Bayesian Network (PCMQBN) is a decision framework 

that can quantitatively measure the model credibility with maturity level and subjective belief. Next, with 

a synthetic reward function, the decision regarding the selection of models and parameters can be made by 

maximizing the expected rewards. The conceptual development has been included in a separate report [31]. 

This study aims to demonstrate the new development on the R/S/U grade and Bayesian sensitivity study.  

 

R/S/U Grade 

 

In PCMQ framework, data attribute of data applicability is determined based on the qualitative 

Relevance/Scaling/Uncertainty grade, where the uncertainty (U) measures the data uncertainty due to 
instrumentation errors and limited resolution of measurement instruments. However, there is no explicit 

guidance for evaluating and assigning the grading number to each attribute. As suggested by the previous 

study on the effect of data bias (Figure 3.17), a proper document of data is crucial to the development and 
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quality of closures. Therefore, recent developments have focused on designing a guidance for the 

uncertainty (U) grade, while the other two attributes remain to be investigated. Table  shows the present 

guidance of specifying uncertainty grade.  

 

Table 3.8: Guidance for specifying the uncertainty grade in the R/S/U grade system. 

Data 

Type 

Uncertainty 

Grade 
Description 

Type I <U>=1 Largely biased data 

Type II <U>=2 No uncertainty information 

Type III <U>=3 
Either the model prediction or the high-fidelity data has uncertainty 

information 

Type IV <U>=4 
Both the model prediction and the high-fidelity data have uncertainty 

information 

 

To better use the data uncertainty information, various validation metrics are needed. Table  summarizes 

most of the popular validation metrics in the engineering discipline.  

 

Table 3.9: Summary of validation metrics and their applicability to each type of data. 

Validation Metric Type II Type III Type IV Range 

Deterministic Metric 

Root Mean Square Error ✔   [0,∞) 

Euclidean Distance ✔   [0,∞) 

Normalized Euclidean Metric  ✔  [0,∞) 

Mahalanobis Distance  ✔ ✔ [0,∞) 

Probability-based Metrics 

Confidence Interval  ✔  
 

Kullback-Leibler Divergence   ✔ [0,∞) 

Symmetrized Divergence   ✔ [0,∞) 

Jensen-Shannon Divergence   ✔ [0, ln 2] 

Hellinger Metric   ✔ [0,1] 

Hypothesis Testing 

Kolmogorov-Smirnov Test  ✔ ✔ [0,1] 

Total Variation Distance   ✔ [0,1] 

 

To demonstrate the applicability of this grading system, the illustrative example of section 2.3.2 is 

prepared with a simple PCMQBN structure (shown in Figure 3.21). The goal is to estimate the model 

credibility in the application domain in Figure 3.14 based on the result in the validation domain. The 

maturity level of validation result is estimated according to the MSE from machine-learning based closure 
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(Figure 3.15) in the validation domain, while the maturity level of code adequacy is measured according to 

the MSE in the application domain.  

 
 

Figure 3.21: Illustrative example with a simple PCMQBN structure. 

 

Table  shows the range of outputs from validation metrics that corresponds to each maturity level of 

the validation result attribute. A fabricated reward for each maturity level of code adequacy is also included. 

The expected reward is obtained by multiplying the belief by the reward of each level, based on which 

decision of the model credibility can be made.  

 

Table 3.10: Summary of maturity levels with their corresponding MSE ranges and maturity rewards. 

Maturity Level Validation Metrics Output Reward of Maturity Level for Code Adequacy 

VL [103, ∞) −$100 

L [102, 103) −$50 

M [1,100) $50 

H [0,1) $100 

 

Table  shows the summary of the estimated probabilistic maturity, expected rewards and real rewards 

for the code adequacy. In addition, to better use the data uncertainty information, various validation metrics 

are employed. As more uncertainty information becomes available, both the probabilistic maturity level 

and expected rewards are getting closer to the real value.  
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Table 3.11: Summary of the estimated probabilistic maturity, expected rewards and real rewards for the 

code adequacy. 

Uncertainty 

Grade 
Validation Metric 

Probabilistic Maturity Rewards 

PCMQ 

Estimate 

Real 
Expected Real 

2/Type II Mean Squared Error 

VL 0% 100% 

$66.75 -$100 
L 16.67% 0% 

M 16.67% 0% 

H 66.66% 0% 

3/ Type III 
Normalized Euclidean 

Distance 

VL 0% 0% 

$83.34 -$50 
L 0% 100% 

M 33.33% 0% 

H 66.67% 0% 

4/Type IV Symmetric Divergence 

VL 0% 0% 

$57.8 $73.39 
L 0% 0% 

M 53.22% 53.22% 

H 46.78% 46.78% 

 

Bayesian Sensitivity Analysis for PCMQBN 

 

To ensure the robustness of the credibility assessment from the validation framework, a sensitivity 

study is needed to ensure the uncertainty has been maximumly reduced based on the present knowledge 

and data. As a quantified credibility assessment and decision-making framework, PCMQBN supports 

sensitivity study in a more feasible manner, where mathematical analysis can be performed by perturbing 

the parameters of each component. PCMQBN has three major components: prior belief on maturity level, 

update rule and utility/reward of each maturity level. Figure 3.22 shows the scheme of validation decision 

process and the Bayesian sensitivity analysis for the entire loop. The objective is to reach a consistent result 

or an interval of results. The present study focuses on the sensitivity study of the prior belief estimation, 

especially the prior belief on the maturity of validation result. Presently, the sensitivity study is still under 

investigation.  
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Figure 3.22: Scheme of validation decision and the performance of Bayesian Sensitivity Study 

 

3.3.4. Remarks 

 

This chapter first describes concept of sufficient accuracy. Next, a tentative REMDAP framework is 

constructed based on the concept sufficient accuracy and DDM. The progress of key 

technologies/methodologies is introduced, including the data-driven closure development, data-driven 

uncertainty quantification and PCMQBN. In addition, illustrative examples are prepared for each 

methodology. Recommendations for the data-driven validation have been provided by researchers in 

Zachry Inc. and the document is attached in Appendix B.  

 

3.4. Summary and Outlook 

 

In this study, a novel data-driven concept is incorporated into the model validation process to help 

shorten the closure development and validation process. The concept of sufficient accuracy is developed 

based on the risk-informed concept to guide the validation of RISMC simulation tool, which has a 

significant portion of uncertainties and intangibles. Based on the data-driven concept and sufficient 

accuracy, a validation framework named Risk-Informed Evaluation Model Development and Assessment 

Process (REMDAP) is proposed and under development. A tentative workflow is prepared based on the 

currently developing methodologies/technologies. Next, the progress of developing key methodologies in 

the REMDAP framework, including the data-driven closure development, data-driven uncertainty 

quantification, and Predictive Capability Maturity Quantification & Bayesian Network (PCMQBN) are 

demonstrated. Presently, this study demonstrates some initial developments of classifying methodologies 

based on assumptions and conditions, the objective is to identify the feature and create an initial proof-of-

concept for applying Data Driven Modeling (DDM) in the model development and validation process. 

 

For the data-driven closure development, the present study classifies it into two types. The parametric 

method assumes a fixed model form that relies on human knowledge, while the nonparametric method uses 

nonparametric forms that solely depend on the data. From the condition of illustrative examples, it’s 

observed that as more data is used for training and calibration, the error will reach an asymptotic range for 

all types of methods. Also, it is observed that a similar error is obtained from the Bayesian Inference and 

Least Squared Error since the closure’s quality is limited by the fixed model form. Moreover, the error from 

the nonparametric form can be reduced to a very small value (10−3). In addition, both types are sensitive 

to the amount of data, however, when the data amount is small, the nonparametric model tends to have 

larger error than the parametric error. 
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For the data-driven uncertainty quantification (UQ) methodology, the present study classifies them 

into two types: global data-driven UQ and local data-driven UQ. Schematic workflows are constructed for 

both approaches. The global approach targets at system code like Cobra-TF by assuming that the model has 

been well-verified, and closures are the major source of uncertainties. The illustrative examples show that 

the error reaches the asymptotic range in the application domain and increasing the number of training data 

will not change the error. When the UQ is performed for both parametric and nonparametric closure 

development methods, errors are amplified when the closure of both types is used in the application domain. 

And the amplification turns to be much higher for the machine-learning-based closure (nonparametric 

method) than the Bayesian inference or least square error (parametric method). As a result, the problem of 

data gap remains challenging even with sophisticated data-driven closure development and pursuing high 

accuracy is very likely to induce large scaling distortion. A same procedure is performed with a difference 

validation metric of confidence interval, where the closure quality is measured by the percentage of real 

values being bounded by the 95% confidence range of closure predictions. In addition to the similar finding 

of error amplification, the confidence ranges from Bayesian Inference bounds more real data points than 

the one from Neural Network, because the uncertainty of Bayesian inference is much larger than the one of 

Neural Network. This suggests that though the parametric model with fixed model form limits the model 

quality in the validation domain, however, when there is a data gap, it also helps to restrain the error 

amplification in the application domain due to the failure of capturing the correct pattern with the 

nonparametric model. The effect of data bias is also investigated by introducing constant error to the high-

fidelity data. From the illustrative examples, it’s observed that as more bias is introduced, the model quality 

keeps deteriorating. Although the data bias has a significant effect on the closure quality, there is rarely an 

effective way of analyzing or avoiding the bias. However, it’s important that the information of high-fidelity 

data, especially the uncertainty information, needs to be properly characterized and recorded. Otherwise, a 

poorly documented low-quality data can induce significant and irreversible effect on the quality of closures 

and simulations.  

 

As for the local data-driven approach, Physics-Informed Machine Learning (PIML) is employed to 

construct a surrogate between the simulation error and the input physical features. It is designed for the 

coarse-grid computational fluid dynamics like NEUTRINO-SPH, where the error of each computing 

element is characterized with PIML. Since there is no validation metric available to characterize the 

accuracy of error prediction, this study substitutes the estimated error from PIML back to the original 

simulation and measures the capability of PIML by comparing the corrected data against the high-fidelity 

data. In the conditions of the illustrative example, it is observable that the error of corrected field data by 

PIML is lower than the original SPH simulation, except for the one trained by data with the furthest fluid 

characteristics to application dataset. It is also found that as more datasets are used for training, the error of 

corrected fields becomes smaller. In addition, as the fluid characteristics of training set becomes closer to 

the application set, the error of corrected field gets smaller. In addition to the random forest machine-

learning engine, the same process is performed with the neural network engine. The result suggests that 

random forest is faster and more robust than the neural network, however, the error reduction with respect 

to the data amount is more obvious for the neural network.  

 

Finally, further developments are made for the decision-theoretic methodology of PCMQBN. 

Guidance is constructed for qualitatively evaluating the uncertainty grade in the R/S/U 

(Relevance/Scaling/Uncertainty) grading system. It’s found from the illustrative example that as more 

uncertainty information becomes available; both the probabilistic maturity level and expected rewards are 

getting closer to the real value. Furthermore, a framework of Bayesian sensitivity study is proposed for 

PCMQBN and the objective is to improve the robustness of the PCMQBN’s result, which is presently under 

investigation. 
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4. Predictive Capability Maturity Quantification using Bayesian Network 
 

4.1. Introduction 

 

Nowadays, an increasing amount of research has been conducted for developing and applying 

advanced modeling and simulation (M&S) tools in nuclear discipline. In risk-informed safety analysis [1] 

[2], M&S tools are used to investigate the effects of uncertain scenarios, simulate accident progressions, 

characterize the reactor safety margin, improve the operational procedures, locate design vulnerabilities, 

etc. Compared to classical risk analysis, the risk-informed analysis aims to address both aleatory and 

epistemic uncertainty within a well-defined issue space, rather than trying to work with arbitrarily defined 

point values of load and capacity. Meanwhile, in complex systems like Nuclear Power Plants (NPPs), since 

the interactions among systems, components, and external events can be highly nonlinear, risk-informed 

safety analysis uses advanced simulations to fully represent the generations, progressions, and interactions 

of accident scenarios with the NPPs. However, the classical risk-informed approach does not consider the 

impacts of simulation adequacy [3] [4], which includes model parameter uncertainty, model form 

uncertainty, numerical approximations, scaling errors, etc. As a result, a validation framework is needed to 

not only determine whether the M&S code is adequate for representing the issue spaces but also to be 

directly used in the risk-informed safety analysis.  

 

Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology was introduced in 1989 

[5] to demonstrate a method that “can be used to quantify uncertainties as required by the best-estimate 

option described in the U.S. Nuclear Regulatory Commission (NRC) 1988 revision to the ECCS Rule (10 

CFR 50.46) [6]”. A Regulatory Guide (RG 1.203), Evaluation Model Development and Assessment Process 

(EMDAP), is developed at 2005 to “describe a process that the U.S. NRC considers acceptable for use in 

developing and assessing evaluation models that may be used to analyze transient and accident behavior 

that is within the design basis of a nuclear power plant [7].” In the CSAU/EMDAP framework, the 

complexity of physics and phenomena is emphasized, and scaling analysis is suggested to resolve the lack 

of data issues. The objective is to ensure both the sufficiency and necessity of validation data, modeling, 

and simulation, such that the simulation can adequately describe the scenarios investigated. Although the 

evidence involved is objective, the assessment process requires subjective information, including 

phenomena ranking and identification, decisions regarding data applicability, selection of validation 

metrics, etc. In CSAU/EMDAP, such subjective evidence is treated implicitly, and it causes the validation 

process to lack transparency. Meanwhile, due to a lack of formalized treatment, it becomes hard for analysts 

and decision makers to ensure the consistency of elicitation and processing of subjective information. 

Therefore, a decision model is needed for integrating all sources of evidence and determining final 

simulation adequacy. Meanwhile, the decision model needs to be practical, transparent, and consistent, such 

that the simulation adequacy results can be used with sufficient confidence.  

 

The Predictive Capability Maturity Model (PCMM) (Oberkampf, Pilch, & Trucano, Predictive 

Capability Maturity Model for computational modeling and simulation (SAND2007-5948), 2007) was 

developed by W.L. Oberkampf et al. in 2007. As a decision model for Verification, Validation, and 

Uncertainty Quantification (VVUQ), PCMM explicitly treats the model credibility/uncertainty assessment 

as a decision-making process. For designated scenarios, six attributes are designed and assessed 

qualitatively based on a PCMM matrix, which is designed according to the context and consequence of 

applications. Since the final decisions are informed by requirements and consequences, PCMM can 

effectively guide the development and validation of M&S tools. However, since the PCMM matrix is 

constructed using descriptive statements, the representations of performance standards can be obscure and 

suggest inconsistent criteria. Meanwhile, although validation and uncertainty quantification are discussed 

as major attributes, other critical components, including scaling analysis, data applicability, data quality, 

etc., are not explicitly discussed. As a result, when there are data gaps induced by differences between the 
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prototypical and experimental systems, such implicitness could suggest results in inconsistent maturity 

levels. 

 

Other frameworks include “Guide for Verification and Validation in Computational Solid Mechanics 

(VV10)” [9] and “Standard for Verification and Validation in Computational Fluid Dynamics and Heat 

Transfer (VV20)” [10] by ASME for quantifying the degree of accuracy to consider the errors and 

uncertainties in both the solution and the data. Since the adequacy results are used to support nuclear risk 

analysis, while VV10 and VV20 are designed as a general guidance for the V&V of computational model, 

CSAU/EMDAP and PCMM are more appropriate and relevant to the context of this study. 

 

In this paper, a new decision model named Predictive Capability Maturity Quantification using 

Bayesian network (PCMQBN) is presented. Developed based on argumentation theory and Bayes’ theorem, 

PCMQBN aims to formalize the decision-making for assessing simulation adequacy assessment such that 

the process is transparent, consistent, and improvable with new evidence. This paper is organized as follows 

(Figure 4.1): section 2 limits the scope of this study by introducing assumptions, conditions, and limitations 

of proposed framework. Section 3 formalizes the interpretation of simulation adequacy based on the nature 

of validation. Section 4 introduces PCMQBN, where the first two subsections describe technical basis that 

characterizes and integrates evidence based on the argumentation theory and Bayes’ theorem; the last two 

subsections evaluate the behavior of this framework. Section 5 illustrates the application of PCMQBN in 

evaluating the adequacy of a Smoothed Particle Hydrodynamic simulation for predicting the hydrodynamic 

forces onto static structures during an external flooding scenario.  

 

 
 

Figure 4.23: The schematic structure for this chapter. 

 

4.2. Assumption, Condition, and Limitation 

 

To properly identify the scope of this study, important conditions and assumptions are listed in Table 

4.1. Category A aims to define the scope and application of this study; category B lists the assumptions in 

PCMQBN for formalizing the decision-making process in validations; category C suggests the conditions 

and assumptions used in case studies. 
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Table 4.1: Important conditions and assumptions with respect to aspects of investigation. 

ID Conditions/Assumptions 

A Investigation Scope 

A1 
Current work only focuses on validation activities to support the risk-informed 

safety analysis  

A2 There are data gaps between the validation databases and target applications 

A3 The SPH-based computer code is assumed to be verified 

B Validation Formalization 

B1 Formalism can reduce the uncertainty 

B2 
Decision makings in validation is a structured argument process supported by a 

body of evidence; 

B3 Risks due to model uncertainty are characterized by expected losses 

C Case Study 

C1 If simulation is not adequate, it can predict the QoIs with maximum 100% errors 

C2 If simulation is adequate, it can predict the QoIs with maximum 20% errors 

C3 
If simulation adequacy is uncertain, QoIs are assembled according to predictions 

and beliefs at each adequacy level 

C4 
Preference over different simulation-adequacy levels can be characterized by the 

magnitude of expected loss 

 

Assumption A1 limits the application to risk-informed safety analysis, and the objective is to determine 

the error distribution of the quantity of interest predicted by M&S. More specifically, this study focuses on 

situations with data gaps. As a result, to better characterize adequacy of M&Ss and to avoid unreliable 

expert judgments, this study aims to reduce the uncertainty in estimating the simulation adequacy and 

corresponding risks induced by such uncertainty. Assumption A3 mainly assumes that the code verification 

has been performed. The confidence on such assumption is built on the theory manual of NEUTRINO [11], 

together with code and solution verifications from various literature (Lin L. , Assessment of the smoothed 

particle hydrodynamics method for nuclear thermal-hydraulic applications, 2016) [13] [14]. 

 

Assumption B1 suggests the formal methods to improve the reliability and robustness of the validation 

decision-making process. Formal methods have continuously proven its success in financial, computer 

system, etc. in reducing major losses due to unverified errors [15]. It is argued that the formal methods do 

not obviate the need for testing, experiments, and other assertion techniques, it is mainly designed to help 

identify errors in reasoning which could be overlooked or left unverified. Assumption B2 aims to formalize 

the validation process as an argument process and to further represent the validation argument with Bayes’ 

theorem. However, it has been suggested that the prior probability and likelihood cannot be known precisely 

[16] [17]. In this study, a sensitivity analysis is suggested by performing standard Bayesian analysis with a 

class of prior and likelihood functions. Next, all important parameters, which have high impacts on the 

results, are carefully examined. If no significant discrepancy is witnessed, the result is claimed to be robust. 

Assumption B3 aims to suggest expected losses for representing the risks of adopting code predictions to 
risk-informed safety analysis. Since M&Ss are mainly used to support safety decisions and alternatives in 

designated applications, the corresponding “adequacy” should be defined based on the consequence of 

adopting the predicted QoIs. This study makes a table of synthetic monetary loss for each possible 

consequence, and the expected losses are calculated based on the simulation adequacy result.  

 

Assumptions 1, 2 and 3 in category C are made to define the error distributions of QoIs in the case 

study based on the simulation adequacy results. It is criticized that the current assembly of simulation 

adequacy and model predictions is arbitrary. Therefore, the claim that the proposed framework can reduce 
uncertainty in simulation adequacy results is questionable [18]. However, at the initial developmental 

phase, it is acceptable to have a crude ensemble method for demonstration purposes. It is stressed that the 

parameters in the proposed framework are not fixed. As more evidence is gathered, the parameters need to 
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be calibrated and refined. Moreover, since formal methods are designed to avoid or reduce unverified errors, 

it is argued that the validity of this claim should not be greatly deteriorated by assumptions for simplification 

purposes. Assumption 4 suggests a rational agent who prefers to have fewer expected monetary losses. It 

is criticized in [19] that the expected value cannot fully represent the agents’ choices, where subjective and 

psychological impacts are neglected. It is argued that this study is at the scoping stage, and the objective is 

to formalize the decision-making process. In the future developmental stage, different decision analysis 

models can be tested and optimized for validation purposes.  

 

4.3. Simulation adequacy Interpretation 

 

To formalize the decision-making process in simulation-adequacy assessment, a consistent and 

transparent interpretation is needed for “simulation adequacy” as a theorical basis of the proposed 

framework. This section first reviews definitions from relevant works and identifies requirements for 

interpreting simulation adequacy. Next, the simulation adequacy is interpreted as a triplet set by answering 

three key questions. Meanwhile, examples are given for illustrating each of the three elements.  

 

In validation, simulation adequacy is usually defined as the degree to which a simulation can 

adequately represent the system quantities of interest from the perspective of the intended uses [20]. In 

works by P. Athe et al. [21] and J.S. Kaizer et al. [22], the simulation adequacy is represented by a binary 

term “credibility – the determination that an object (in this particular instance, a model) can be trusted for 

its intended purpose.” Furthermore, the concept of assurance case is adopted in the definition of credibility, 

and a “validation case” is developed for arguing the trustworthiness of a model to the decision maker for 

certain applications. This definition emphasizes the effects of expert belief and connections between 

simulation adequacy and the consequences of application. However, as an argument process, the assessment 

process heavily relies on expert opinions in claiming, reasoning, justifying, and reaching final goals. It 

could also become expensive to reach agreements when a group of experts with different backgrounds and 

knowledge is presented. Although the decision-making has been formalized in [22], it is suggested here 

that the process should be further quantified for better transparency and for reducing uncertainties due to 

inconsistent assessment results. In works by S. Mahadevan et al. [23], simulation adequacy is quantified by 

Probability Density Function (PDF) of model predictions or their uncertainty. The Bayes’ theorem is used 

for either testing the hypothesis about model uncertainty or estimating the probability that model predictions 

represent the target phenomena. The uncertainty distribution definition emphasizes mathematical 

representations of uncertainty such that the reliability or probability of success of the model can be 

measured in a direct, objective, and quantitative manner. Although such interpretations are consistent and 

rigorous in mathematics, its applicability is greatly limited by assumptions in the assessment process. For 

example, the uncertainty distribution and likelihood function are assumed to have explicit forms and 

parameters [24], such that they can be determined by probabilistic inference. Moreover, these distributions 

are assumed to be fixed in different scenarios and applications. However, for situations with a lack of 

prototypical data, the uncertainty can be seriously distorted when it is propagated across different scales. 

Meanwhile, when there are multiple scales and phenomena involved in application scenarios, the inference 

of uncertainty distributions relies heavily on the quality of multi-physics and multi-scale models. If the 

multi-physics and multi-scale interactions are poorly captured, results from uncertainty inference can be 

misleading (Liu & Dinh, Validation and uncertainty quantification for wall boiling closure relations in 

multiphase-CFD solver, 2018). Meanwhile, these models are usually developed based on reduced-scale and 

separate-effect databases. Therefore, when the data are not fully applicable to the target applications due to 

scaling distortions, uncertainty due to model forms can hardly be characterized, and results from uncertainty 

inference can be further distorted. Besides, the quality of data also affects the results from uncertainty 

inference, however, the uncertainty inference can hardly capture its impacts without an informative prior 

[26]. As a result, although the simulation adequacy assessment needs to be quantified, the framework is 

suggested to have more flexible forms and adaptable structures than PDF-based distributions in uncertainty 

inference. At last, in the CSAU/EMDAP framework, simulation adequacy is defined by both accuracy 
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information of model predictions and the applicability of the validation database [27]. Such a definition is 

more comprehensive and flexible since it not only considers the effect of scale gaps in assessing data 

applicability but also the uncertainty distributions of model predictions. In the present study, the 

interpretation of simulation adequacy will be made based on that from CSAU/EMDAP. Moreover, the 

impacts of scenarios and applications are also considered.  

 

As a result, this study describes simulation adequacy as the degree to which M&S tools can adequately 

represent the system quantities of interest in the target applications. The objective is not only to determine 

if an M&S is good or bad but also to describe the uncertainty in the real application, especially when it is 

understood from non-prototypical data. In this study, simulation adequacy is suggested to be composed of 

three components: scenario, uncertainty/predictive capability levels, and beliefs. Note the purpose of this 

interpretation is not to resolve fundamental issues of uncertainty classifications through a sophisticated 

interpretation. Instead, this study focuses on practical resolutions for deciding simulation adequacy in 

complex engineering problems with a transparent and consistent framework. In the context of nuclear 

engineering, the term “transparent” requires a formalized interpretation and representation for simulation 

adequacy; the term “consistent” requires the formalization to have a mathematical basis, and allow for 

assumptions that cannot be violated in real applications; the term “practical” requires that the formalized 

simulation adequacy assessment should be easily applied to risk analysis. Eq.  4.1 shows a representation 

of simulation adequacy as a triplet set: scenarios, beliefs, and levels of uncertainty or predictive capability 

for M&S.  

 

 Simulation adequacy = {scenario, belief, predictive capability} Eq.  4.1 

 

The structure of interpretation in this study is similar to the triplet by Kaplan and Garrick [28] for 

probabilistic risk analysis. The definition for simulation adequacy aims to answer three questions:  

 

1. What scenario does the M&S apply to? 

 

In the nuclear accident and transient analysis, results of M&S are used to support system designs and 

risk management within a range of issue spaces. Meanwhile, since risk-informed safety analysis aims to 

address the scenario uncertainty, a scenario set 𝑆 = [𝑆1, … , 𝑆𝑖 , … ] is defined, and each element corresponds 

to one sampled scenario 𝑆𝑖 according to designated distributions. Therefore, the selections of computational 

methods and simulations naturally depend on the investigated scenario. Moreover, in scenarios with minor 

impacts, the reactor systems can be robust enough to withstand much higher loads than those being exerted. 

In this circumstance, safety decisions do not heavily rely on M&S results, requirements on model predictive 

capability and confidence do not need to be high. Similarly, when scenarios loads are likely to exceed 

system capacities and the uncertainty of M&S results could alter the safety decisions, the requirements on 

the predictive capability and confidence will be strict.  

 

2. What is the predictive capability of M&S? 

 

The “Predictive Capability” refers to the capability of M&Ss in predicting QoIs during accident and 

transient scenarios. As a major product of classical validation methods, the capability is quantified by errors 

between simulation results and observations. Such techniques, as validation metrics, statistical analysis, etc. 

are usually used. Meanwhile, Oberkampf et al. [20] represent the model’s predictive capability by maturity 

levels, which are further explained by sub-attributes and descriptive terms. In this case, argumentation 

theory and corresponding techniques, including Goal Structure Notation (GSN), Claim, Argument, and 

Evidence notation (CAE), etc. are used.  
 

3. What is the belief in the M&S predictive capability? 
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Due to imperfect knowledge and insufficient data, predictive capability cannot be precisely estimated, 

and belief is used to describe a state of knowledge regarding estimations. Although belief is represented by 

probability, it does not refer to the frequency or statistics in the sense that it does not represent a property 

of the ‘real’ world. Rather, belief describes our state of knowledge and discusses its effects on decisions. 

Table 4.2 shows an example of belief scales in probabilities together with their characteristics. This scale 

provides the definition of unreasonable model maturity levels as involving the independent combination of 

an end-of-spectrum condition with a condition that is expected to be outside the main body of the spectrum 

but cannot be positively excluded. The spectrum in this study refers to the spectrum of physics, scales, data 

applicability, and prediction errors. For example, when a solid-mechanistic code is applied to simulate fluid 

dynamics, its prediction errors for certain QoIs can occasionally be small at certain locations. However, the 

belief that this simulation generally has low prediction errors and high maturity should be low since the 

physics in solid mechanics are outside the spectrum of fluid dynamics; when experimental data for 

validating a simulation in kilometer-scale and multi-physics scenarios is collected from a centimeter facility 

that focuses on one of the involving phenomena, the belief that the experimental data are applicable to the 

target scenarios should be low since the scale are different and phenomena are separate. However, such 

reduced scale and separate-effect data cannot be positively excluded from the main body of the spectrum 

in target applications since the involving physics and phenomena are in the spectrum of target scenarios.  

 

Table 4.2: Assignment of screening probability with characteristics and examples. 

Belief scales in 

Probabilities 
Characteristics 

Examples 

Validation Result Data Applicability 

1 

Corresponding levels are well-

known and obtainable on the 

major spectrum 

Applying CFD-based 

M&S with very fine 

grids (DNS scales) 

High-quality validation 

databases are collected from 

prototypical systems for the 

directly relevant phenomena 

0.1 

Corresponding levels are 

known but obtainable only at 

the edge of spectrum 

Applying CFD-based 

M&S with coarser 

grids (Asymptotic 

range or outside) 

Validation databases are 

collected from reduced-

scale systems for the highly 

relevant phenomena 

0.01 

Corresponding levels cannot 

be excluded, but it is outside 

the spectrum of reason 

Applying CFD-like 

or correlation-based 

M&S 

Validation databases are 

collected from low-quality 

and reduced-scale systems 

with the poorly relevant 

phenomena 

0.001 

Corresponding levels are 

unreasonable and violates 

well-known reality. Its 

occurrence can be argued 

against positively 

Applying solid 

mechanistic M&S 

Validation databases are 

collected from low-quality 

and reduced-scale systems 

with irrelevant phenomena 

 

As a result, the objective is to find the belief 𝑃𝑖(𝑙𝑒𝑣𝑒𝑙𝑗), represented by probabilities, such that Eq.  

4.2 can be satisfied for any investigated scenarios 𝑆𝑖 within the designated scenario set or issue space 𝑆 =
[𝑆1, … , 𝑆𝑖 , … ]; 𝑃𝑠  is the screening probability for beliefs in simulation’s validation result, data applicability, 

and simulation adequacy for a given set of scenarios. It is to ensure consistent belief assignments across the 

entire issue space in the risk-informed safety analysis. Similar definitions can also be found in the Risk-

Oriented Accident Analysis Methodology by T.G. Theofanous [2], which focuses on the scenarios spectrum 

and aims to distinguish unreasonable and small-probability events. 

 

 𝑃𝑖(𝑙𝑒𝑣𝑒𝑙𝑗) < 𝑃𝑠  for all 𝑆𝑖 Eq.  4.2 
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Table 4.2 shows an example of screening probability assigned by expert knowledge. Examples are 

also provided assuming that an M&S simulation is applied to predict the generation and progression of 

surface waves in the flooding scenarios. Validation Result (VR) is assessed by comparing simulation 

predictions against validation databases, while Data Applicability (DA) is assessed by the scale of facilities, 

relevancy of phenomena, and quality of data.  

 

The probability values 𝑃𝑖(𝑙𝑒𝑣𝑒𝑙𝑗) are computed from the probabilistic framework that represents a 

map of parameters in the causal relationships {𝑑𝑖}, prior knowledge {𝑝𝑖}, and decision parameters {𝑘𝑖}: 
 

 𝑃𝑖(𝑙𝑒𝑣𝑒𝑙𝑗) = 𝐹(𝑑1, 𝑑2,… , 𝑝1, 𝑝2,… , 𝑘1, 𝑘2, … ) Eq.  4.3 

 

The prior knowledge {𝑝𝑖} and corresponding uncertainties are distributions and can be quantified 

according to the probability scale in Table 4.2. Causal relationships and decision parameters should not 

violate well-known physics and laws, and a synthetic model can be developed to support the value 

assignment. Meanwhile, they are assumed to be well-posed problems in the sense that they are not subject 

to major discontinuities and the uncertainty can be reduced to the parameter level without major modeling 

uncertainty. It is argued that the three questions above are sufficient for guiding validation activities and 

adequacy assessment. However, since simulation results are usually applied in risk analysis and safety 

decisions, the preferences and consequences of accepting certain simulation adequacy results need to be 

evaluated, especially when results contain uncertainties. Although such topics are beyond the scope, for 

completeness, this study briefly discusses a fourth attribute of simulation adequacy as an additional concern. 

Meanwhile, a synthetic model, together with a review of other sophisticated options, is included regarding 

the application of simulation adequacy results.  

 

Since the simulation adequacy results are mostly applied to support safety-related decisions or 

alternatives, the adequacy should be judged not only based on model predictions and validation databases, 

but it should also consider the target decisions. For example, in scenarios with severe consequences, 

requirements on belief and M&S’s predictive capability levels should be more stringent than for those with 

less severe consequences. In the risk-informed analysis, the predictive capability level and belief should be 

higher for regions where loads distributions and capacity distributions overlap. If the adequacy result 

satisfies the requirements, a cost-benefit analysis is performed based on the consequence of simulation’s 

uncertainty and risk. If the adequacy of results does not satisfy the requirements or it is net beneficial for 

improving the predictive capability level and belief, additional iteration will be conducted to either continue 

developing new models, collecting new data, or updating the validation techniques. By adding risk and 

performance measurement results, the validation process becomes risk-informed in the sense that the 

acceptance criteria of simulation adequacy are informed by risks of target applications, which are caused 

by both model and scenario uncertainty.  

 

4.4. Predictive Capability Maturity Quantification using Bayesian Network 

 

To avoid expert biases and unreliable judgement within an implicit decision scheme, this study 

proposes a quantitative decision-making framework, named Predictive Capability Maturity Quantification 

using Bayesian Network (PCMQBN) to formalize the assessment of simulation adequacy. Considering the 

similarity between assurance case to simulation validation, the simulation adequacy assessment can be 

described as a “confidence argument” supported by evidence that justifies the claim that simulation 

provides reliable prediction in the domain of application. The evidence is collected from the validation 

framework and characterized mathematically such that it is consistent with the interpretation of simulation 

adequacy. Moreover, such an argument process can be further quantified by probabilities and maturity 

levels, and further represented graphically by Bayesian networks. In this framework, all evidence is 
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integrated by probabilistic inferences and can be further represented graphically by a Bayesian network. At 

the same time, to integrate evidence from various sources, a synthetic decision model is suggested for 

determining the relative weights and conditional probabilities in Bayesian networks. Figure 4.24 shows the 

scheme for assessing and applying simulation adequacy by PCMQBN. Evidence of validation result and 

data applicability are firstly collected from validation activities guided by validation frameworks like 

CSAU/EMDAP. Sub-section 4.4.1 discusses in detail how evidence is collected and characterized 

consistently based on the maturity level assignment (4.1.1) and belief assignment (4.1.2). Next, the 

characterized evidence, together with decision parameters regarding the conditional dependencies among 

different evidence and attributes, are integrated for simulation adequacy results. Sub-section 4.4.2 discusses 

details of how evidence is integrated based on the argumentation theory and further quantified by 

probabilistic inference. To evaluate the sensitivity of decision parameters, sub-section 4.4.3 suggests a 

sensitivity analysis for the simulation adequacy result with the same set of evidence. At last, the simulation 

adequacy result is applied to safety analysis by assembling the predictions by Modeling and Simulation 

(M&S) and beliefs. At the same time, the parameter assignment and integration structures are subject to 

refinement. Sub-section 4.4.4 discusses different phases of simulation adequacy assessment based on 

qualities of each step.  

 
Figure 4.24: Scheme for the assessment and application of simulation adequacy by PCMQBN. 

4.4.1. Evidence Characterization 

 

During a validation process like CSAU/EMDAP, different activities and materials, including validation 

databases, scaling analysis of experimental databases, simulation assessment results, phenomenon 

identification and ranking process, etc., are used to support the adequacy assessment of a simulation. To 

make better use of these materials, this study characterizes all related evidence based on the argumentation 

theory and the triplet definition for simulation adequacy. The characterization is required to be transparent, 

practical, and consistent. The term “transparency” requires a clear representation of evidence by 

mathematical forms such that the meaning and substance of evidence are maintained and visible. The term 

“practice” requires all related evidence to be effective for practical purposes and easily obtainable. In the 

context of nuclear safety analysis, the evidence should be characterized such that it can be directly used to 
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support safety-related decisions. The term “consistency” requires the characterizations to be theoretically 

defendable, mathematically sound, and consistent with common knowledge and well-known rules.  

 

There are various ways of characterizing evidence. Sun [29] categorizes evidence as direct evidence, 

backing evidence or counter evidence, based on its association with confidence. In the context of assurance 

case that focuses on safety [30], the evidence is defined as “the information that serves as the grounds and 

starting point of (safety) arguments, based on which the degree of truth of the claims in arguments can be 

established, challenged and contextualized”. Furthermore, in Toulmin’s argument model [31], the evidence 

is classified into six groups: claim, data, warrant, backing, qualifier, and rebuttal. Since validation shares 

many common features with the assurance case, Table 4.3 shows examples in simulation adequacy 

assessment for each element based on the Toulmin’s argument model. In this study, information including 

simulation predictive capability, validation data, scaling results, data relevance, data uncertainty, 

assumptions, and conditions, are considered as evidence for assessing simulation adequacy. In addition, 

although indirect evidence, including process quality assurance, use history, M&S management, etc. [32], 

will affect the adequacy assessment for M&S, this study mainly investigates direct evidence for validation. 

 

Table 4.3: Elements of Toulmin’s Argument model with simulation adequacy example. 

Claims The statement we wish to justify 
e.g., Simulation predictive capability for an 

intended reactor application 

Data 

The fact we appeal to, the grounds or 

information on which our claim is 

based 

e.g., Validation data and results collected from 

experiments, observations, and knowledge 

Warrant  
A statement authorizing the step from 

data to claim is true; an inference rule 

e.g., Results from the scaling analysis that infer 

system behaviors in prototypical conditions based 

on validation data in reduced-scale conditions 

Backing A reason for trusting the warrant 

e.g., Argument that authorizes the relevance of 

investigated phenomena and processes for the 

target applications 

Qualifier 

A term or phrase reflecting the degree 

to which the data support the claims, 

e.g. generally, probably  

e.g., Argument that evaluates the uncertainty of 

data and experiment 

Rebuttal 

Specific circumstances in which the 

argument will fail to support the claims 

as exceptions 

e.g., Assumptions and conditions about validation 

data, model, and adequacy assessment 

 

Since simulation adequacy is to estimate the degree that model predictions represent the real values, 

the errors, referred to as validation result, between model predictions and the validation data should be used 

to support the adequacy assessment. In some validation methods, simulation adequacy is interpreted as 

uncertainty distributions of model predictions [23]. However, it is argued that in nuclear applications, the 

difficulties, and costs in collecting data under prototypical conditions are so high that only data from small-

scale facilities and separate (or mixed) effect tests are practically obtainable. Therefore, the uncertainty 

distribution estimated by validation data on different scales can be significantly distorted. To avoid the 

problem of scaling distortion, it becomes necessary to evaluate the applicability of validation data to the 

target applications, referred to as data applicability, in addition to the validation result. As a result, the top 

claim of simulation adequacy is supported by sub-claims of validation result and data applicability. The 

validation result is to determine the errors between simulation results and the validation data, while the data 

applicability is to determine the applicability of validation data from reduced scales and experimental 

conditions in the context of applications. Next, the corresponding evidence is collected and evaluated.  
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The following sections discuss how evidence for validation results and data applicability are 

characterized. Specifically, the predictive capability is described by maturity levels, while the belief is 

represented by probability. 

 

Maturity Level Assignment 

 

There have been a lot of research performed to quantitatively measure the level of predictive capability 

for an M&S tool. Harmon and Youngblood [33]suggested a five-point maturity ranking scale based on the 

concept of credibility, objectivity, and sufficiency of accuracy for the intended use. Long and Nitta [34] 

suggested a 10-point scale by the concepts of completeness, credibility, and sufficiency of accuracy for the 

intended use. Pilch et al. [35] suggested a four-point scale dominated by the level of formality, the degree 

of risk in the decision based on the M&S effort, the importance of the decision to which the M&S effort 

contributes, and sufficiency of accuracy for the intended use. It is discussed by Pilch et al. that the maturity 

level of each element should be made based on the risk tolerance of the decision maker. NASA suggested 

a four-point scale based on the level of believability, formality, and credibility [36]. It was suggested by 

NASA that the credibility assessment should be separated from the requirements for a given application of 

M&S. In this study, the maturity level by W.L. Oberkampf (Oberkampf, Pilch, & Trucano, Predictive 

Capability Maturity Model for computational modeling and simulation (SAND2007-5948), 2007) is used 

to represent and rank the predictive capability of M&Ss. It is believed that the maturity assessment and 

adequacy assessment should be dealt with independently as much as possible to reduce misunderstandings 

or misuse of an M&S maturity assessment. As a result, the maturity level in this study is defined by the 

intrinsic and fundamental attributes in the M&S validation and decision-making process. The objective is 

to objectively track all intellectual artifacts obtained during all related validation activities.  

 

Validation Result 

 

In this study, the “validation result” is defined as the comparisons between the model predictions and 

validation data. Based on the comparisons, maturity levels can be further defined by descriptive terms in 

Predictive Capability Maturity Model (Oberkampf, Pilch, & Trucano, Predictive Capability Maturity Model 

for computational modeling and simulation (SAND2007-5948), 2007), value bounds from probabilistic or 

distance metrics, confidence interval, or hypothesis testing. The results from different validation metrics 

are in different ranges, and the corresponding interpretations can be distinct. Maupin et al. [37] has reviewed 

and tested a class of validation metrics with a synthetic example, it is found that the selection of metrics is 

problem dependent. For example, when both the experimental measurement uncertainty and model 

uncertainty is available, probabilistic metrics are more preferred than distance metrics. Otherwise, for 

results from deterministic models, the distance metrics are more appropriate. The descriptive terms are 

composed of two elements: model accuracy and performance standards. Performance standards are criteria 

for measuring “acceptability” of simulation accuracy, and they are defined according to applications and 

scenarios. These number are not fixed such that the upper and lower bounds can be floating in a single 

application, especially when multiple phenomena and databases are available. At the same time, it is 

suggested that the designation of value bounds should be consistent with the meaning of metrics outputs. 

For example, if hypothesis testing is used, higher values suggest a higher confidence level, and the 

corresponding level should be higher; if distance metrics are used, higher values usually suggest larger 

error, and the corresponding levels should be smaller. 

 

When validation data is collected directly from the prototypical system, the validation result can 

directly support the argument of simulation adequacy. However, when the data is collected from reduced-

scale facilities or separate effect tests, additional evidence is needed for assessing the simulation adequacy 
in target applications. Different from the maturity level definitions in PCMM, attributes of data applicability 

and scaling analysis are not included in the validation result. Rather, a separate evidence characterization, 
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data applicability, is prepared to account for the effect of data relevance, scaling analysis, and data 

uncertainty. Meanwhile, the involvements of expert knowledge and judgment in selecting metrics and 

designing acceptance criteria are not included, and they will be discussed separately in the belief 

assessment.  

 

Data Applicability  
 

In addition to the levels from validation results, evidence of data applicability is also needed when the 

data is collected from reduced-scale facilities, Separate Effect Tests (SETs) or Integral Effect Tests (IETs), 

etc. The “data applicability” is defined by the similarity between validation facilities and reactor 

prototypical conditions. In this study, the maturity level of data applicability is characterized by a R/S/U 

grading system. The R/S/U is firstly developed by N. Dinh’s works in 2013 [38] and has been used in [39] 

to evaluate the quality of validation data. The R/S/U system categorizes evidence of data applicability into 

three sub-attributes: [R]elevance, [S]caling, and [U]ncertainty, and each of them is designed according to 

their intrinsic properties. In this study, focuses have been put on extreme cases with binary grades for 

relevance and scaling attributes. In practical applications, intermediate grades can be introduced with higher 

resolutions. The relevance grade [R] is determined according to relationships of phenomenon and physics 

between application and reduced-scale validation databases. For example, the flow data collected from a 

curved tube is irrelevant to those in a straight tube since the phenomena are different; and the channel flows 

with 𝑅𝑒 around 100 is irrelevant from those around 5000 since the dominating physics is different. The 

relevance grade is mostly determined by expert opinions. PIRT [40] and the corresponding quantitative 

version QPIRT [41] are strategies for identifying and ranking the relevance between validation databases 

and applications. The (physics) scaling grade [S] measures the degree of similarity between phenomena in 

the prototypical systems and reduced-scale experiments on the basis of physics scaling. At the same time, 

the scaling grade aims to determine if the validation databases are sufficient to justify extending the 

experimental model assessment results to applications. A formalized scaling analysis can be found in [5], 

and a recent review on scaling methodology can be found in [42]. In classical scaling analysis [27], 

dimensionless parameters are used for measuring the similarity between prototypical systems and reduced-

scale facilities. If the dimensionless space of the validation databases covers the space of application, 

scaling analysis is claimed to be sufficient. Meanwhile, the database is claimed to be capable of representing 

behaviors and phenomena in the designated scenarios. For example, it is assumed that the lid-driven cavity 

flow can be sufficiently characterized by the Reynolds number (𝑅𝑒). It is also assumed that behaviors in 

the prototypical system can be represented by reduced-scale lid-driven cavity flow, while geometries, 

driven velocity, and fluid properties are different. As a result, the scaling grade for the validation databases 

can be decided by comparing the range of 𝑅𝑒 for the reduced-scale database against the range under 

prototypical conditions. If the 𝑅𝑒 range of validation databases covers that in prototypical systems, the 

scaling is graded as 1. Otherwise, scaling is graded as 0. In addition, scaling grade equals to 1 only if and 

only if the relevance [R] is not 0. Moreover, considering the effects of measurement errors, the uncertainty 

grade [U] is suggested for measuring the data uncertainty due to instrumentation errors and limited 

resolution.  

 

For example, the data applicability assessment is performed when the target application is a channel 

flow, and the quantities of interest are the averaged flow velocity 𝑣0. It is assumed that the flow can be fully 

characterized by Reynolds number (𝑅𝑒), and the target Re equals to 5 × 103. Meanwhile, it is required that 

the uncertainty, quantified by L1 relative error norm 𝜀𝑄𝑜𝐼 , in measuring 𝑣0 is less than 50% of the 

characterized velocity 𝑣0. It is further assumed that four databases are available from four different 

experiments. The experiment #1 is performed in a curved pipe with 𝑅𝑒 ∈ [102 , 104] and measurement error 

𝜀𝑄𝑜𝐼 = ±0.1𝑣0. The experiments #2, #3, and #4 are performed in straight pipes. Experiment #2 has 𝑅𝑒 ∈

[10, 103] and 𝜀𝑄𝑜𝐼 = ±0.1𝑣0; Both experiment #3 and #4 have 𝑅𝑒 ∈ [102, 104], while experiment #4 has 

higher measurement errors 𝜀𝑄𝑜𝐼 = ±2𝑣0. For experiment #1, since the phenomena in the curved pipe (case 

#1) is different from those in the straight pipe, the collected data is not relevant to the target application 
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even though the Reynolds number and data uncertainty satisfies the target conditions. Databases of case #3 

and #4 are sufficient since the physical characterization (𝑅𝑒) of validation database covers the same 

characterization in the target application. However, case #2 does not cover the target application. Therefore, 

the scaling attribute of case #3 and #4 is rated as 1, while case #2 is rated as 0. The uncertainty of case #4 

in measuring quantities of interest 𝜀𝑄𝑜𝐼  is higher than the acceptance criteria, and the corresponding attribute 

is rated as 0. Uncertainty of case 2 and 3 satisfies the criteria and rated to be at least 1. As a result, case #3 

is found to be applicable.  

 

Beliefs Assessment 

 

In addition to the maturity, belief in levels of validation results and data applicability needs to be 

assessed based on the prior knowledge. Considering the subjective and intangible nature of beliefs, a table 

of belief scales is prepared for the temporary quantification of intangibles, and the results are rendered in 

qualitative terms by applying this scale in reverse. Table 4.2 provides an example with an arbitrary 

assignment of probabilistic values; more sophisticated evaluations might be made by different sources and 

groups. The objective is to reach an agreement on a single or a class of scales, and the defense in depth is 

assured with better scrutability and communicability [2]. Also, beliefs can be estimated by metrics, 

including confidence interval, probability boxes, etc. [16] [37]However, their results cannot violate Eq.  4.2 

such that an adequate margin can be ensured. Meanwhile, the belief can also be assessed based on expert 

opinions and represented by splinter probabilities. The value assignment in this study is arbitrary, and it is 

also suggested that the values are problem dependent. For scenarios with severe consequences and small 

margins, the belief assessment and the belief scales can be more stringent.  

 

It is suggested that the attributes of data applicability and validation result are not independent. For 

example, it has been pointed out by [37] that the selection of validation metrics depends on the uncertainty 

grades. It is also suggested by [27] that the gradings for scaling and relevance are also correlated. 

Meanwhile, the assessment for data applicability and selection of validation metrics relies on expert 

opinions. Considering the objective nature of maturity level and R/S/U grades by their definitions, an 

evidence integration process is needed for integrating intercorrelations and dependencies among attributes, 

subjective and objective information to the final simulation adequacy. Although GSN provides structural 

representations of validation arguments, no quantitative result can be obtained. To better support risk 

analysis and guide model selections, additional techniques are needed to quantify evidence and to transform 

validation arguments into computable networks.  

 

4.4.2.  Evidence Integration 

 

To integrate evidence in a transparent and consistent manner, many studies have employed Goal 

Structuring Notation (GSN) to integrate evidence to final simulation adequacy with the diagrammatic 

notation [43]. Based on the evidence characterization, the claim of overall simulation adequacy is supported 

by sub-claims of validation result and data applicability, which is further argued based on the R/S/U grade. 

Error! Reference source not found. depicts the network of simulation adequacy assessment by GSN [44] 

and defines principal components in GSN. The top objective (Goal #1) is to assess the adequacy of M&S 

for a designated scenario, and it is argued based on sub-claims of validation results and data applicability. 

Furthermore, the data applicability is argued based on three sub-claims: relevance, scaling, and uncertainty 

(R/S/U). The goals at bottom levels are solved by corresponding evidence and corresponding 

characterizations.  
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Figure 4.25: Decision model for simulation adequacy assessment in a designated scenario. Principal 

components and their descriptions in global structure notation (GSN). 

 

To quantify the validation argument with mathematical languages, this work uses probabilities and 

connects them with logic for quantitative reasoning. Comparing to the classical logics with rigid and binary 

characters, probabilistic approaches soften the constraints of Boolean logic and allow truth values to be 

measured on a belief scale [45]. According to Eq.  4.3, the belief is represented as a function of causal 

relationships {𝑑𝑖}, prior knowledge {𝑝𝑖}, and decision parameters {𝑘𝑖}. The prior knowledge, represented 

by probability, has been estimated as belief and collected from the validation framework, together with the 

evidence of validation result and data applicability. Causal relationship includes direct and indirect 

dependency among all attributes. Since the dependence can be uncertain, the dependence becomes 

conditional to all possible states of attributes or intermediate variables. Such a process enables reasoning 

“by assumption” and decompose the reasoning task into a set of independent subtasks. It also allows us to 

use local chunks of information taken from diverse domains and fit them together to form a global 

interference in stages, using simple, local vector operations. Since the quantification of conditional 

dependency relies on conceptual relationships and expert opinions, decision models are needed for 

assessing conditional probabilities. A validation knowledge base is constructed by quantifying components 

{𝑑𝑖}, {𝑝𝑖}, and {𝑘𝑖}. In addition to different evidence characterizations, PCMQBN also aims to integrate 
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evidence from different databases, and a synthetic model is needed for assessing the conditional 

probabilities according to their levels in relevancy, scaling, data uncertainty, data applicability, and 

validation results. 

 

For better visualizations, this study uses the Bayesian network to represent the statistical relationships 

between different evidence and attributes. A Bayesian Network (BN) is a directed acyclic graph (DAG) 

that is created by using the nodes represented by circles, arrows, and the conditional probability table. Each 

node defines either a discrete or a continuous random variable. An intermediate node serves as a parent as 

well as a child node. The nodes which have arrows directed to other nodes are parent nodes and nodes that 

have arrows coming from other nodes are called child nodes A node that does not have any arrow coming 

from another node is called as the root node, and it does not have any parent node. Arrows represent direct 

relationships between interconnected parent and child nodes. The conditional probability table assigned to 

each node describes the quantitative relationships between interconnected nodes. A BN analysis is 

performed based on the conditional probability as in Eq.  4.4 and the conditional independence assumption, 

i.e. 𝑃(𝑥, 𝑦|𝑧) = 𝑃(𝑥|𝑧)𝑃(𝑦|𝑧) if and only if 𝑥 ⊥ 𝑦|𝑧. The joint probability distributions can be described 

by conditional probability as:  

 

 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|𝑋1, … , 𝑋𝑖−1)

𝑛

𝑖=1

 Eq.  4.4 

The conditional independence assumption simplifies Eq.  4.4 further as:  

 

 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) =∏𝑃(𝑋𝑖|Parent (𝑋𝑖)) Eq.  4.5 

 

Parent (𝑋𝑖) is parent nodes for 𝑋𝑖 ; 𝑃(𝑋𝑖|Parent (𝑋𝑖)) is the conditional probability table of 𝑋𝑖 ; 𝑛 is the 

number of nodes in the network. A Bayesian network can also be used as an inference tool to evaluate 

beliefs of events when evidence becomes available. For evidence 𝑒, the joint probability of all the nodes 

can be inferred as: 

 

 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛|𝑒) =
𝑃(𝑋1, 𝑋2, … , 𝑋𝑛 , 𝑒)

𝑃(𝑒)
 

                                                   =
𝑃(𝑋1, 𝑋2, … , 𝑋𝑛 , 𝑒)

∑ 𝑃(𝑋1, 𝑋2, … , 𝑋𝑛 , 𝑒)𝑋1,…,𝑋𝑛

 

Eq.  4.6 

 

In this study, node 𝑋𝑖  includes Simulation Adequacy (SA), Validation Result (VR), Data Applicability 

(DA), Relevancy [R], Scaling [S], and Uncertainty [U], and each node is further characterized by maturity 

levels. Based on Eq.  4.4 and Eq.  4.5, the joint probability distributions are calculated as a product of 

probability distributions of each of the variable’s conditional on other variables. The conditional probability 

table is determined based on expert knowledge in casual relationships and dependencies among different 

nodes. Table 4.4 shows an example of assigning conditional probabilities when the data applicability is 

assessed based on evidence from R/S/U grades. First of all, it is 0% confident that corresponding data is 

applicable if the phenomena and involving physics are 100% not relevant; Meanwhile, the data is applicable 

with 100% confidence only if the data is relevant, scaling is sufficient, and data uncertainty is acceptable 

with 100% confidence [27]. Second, the confidence level of having applicable data drops to 60% if the data 

uncertainty becomes unacceptable; the level drops to 20% if the scaling becomes insufficient; the level 

further drops to 5% if both scaling and uncertainty are not acceptable. These number are required to be less 

than 100% based on findings by D’ Auria [46] such that insufficient scaling and low-quality data are 
expected to have negative impacts on simulation adequacy assessment. However, the values are arbitrarily 

assigned to quantify the relative impacts due to different root causes, and it is assumed in this study that the 

negative impact due to insufficient scaling is higher than that due to low-quality data. Similar techniques 
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also apply to the conditional probabilities for simulation adequacy assessment. The simulation is 100% 

adequate if the data is applicable and the validation result satisfies the acceptance criteria. Moreover, it 

becomes 30% or less confident that the simulation is adequate if either validation result or data applicability 

does not satisfy the criteria.   

 

Table 4.4. Example of conditional probabilities based on expert knowledge on causal relationships and 

dependencies among different evidence characterizations. 

Conditional Probability Value 

P(Yes-Applicable data | No-relevant data) 0 

P(Yes-Applicable data | Yes-relevant & Yes-scaling & Yes-uncertainty) 1 

P(Yes-Applicable data | Yes-relevant & Yes-scaling & No-uncertainty) 0.6 

P(Yes-Applicable data | Yes-relevant & No-scaling & Yes-uncertainty) 0.2 

P(Yes-Applicable data | Yes-relevant & No-scaling & No-uncertainty) 0.05 

P(Yes-Adequate simulation | Yes-Applicable data & Yes-Validation result) 1 

P(Yes-Adequate simulation | Yes-Applicable data & No-Validation result) 0.3 

P(Yes-Adequate simulation | No-Applicable data & Yes-Validation result) 0.25 

 

Error! Reference source not found. shows examples of the Bayesian network with the conditional 

probabilistic prepared with GeNie [47]. Although the data is relevant and has good quality, the confidence 

for applicable validation data is 20% since the dimensionless space of validation data does not cover the 

space of the target application. Meanwhile, since the confidence of getting an adequate simulation given an 

acceptable validation and not applicable data is 0.25. the confidence for an adequate simulation is 40% even 

the simulation predictions have good accuracy in predicting the validation data.  

 

 
 

Figure 4.26: Example of Bayesian network for simulation adequacy assessments with designed 

conditional probability table by expert knowledge. 
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In practice, since multiple databases are usually used in the validation process, the overall simulation 

adequacy should account for impacts from multiple nodes that represent the simulation adequacy result 

from each database. In this study, a synthetic integration model is designed to determine the conditional 

probability based on the Reactor Prototypicality Parameter (RPP) and Experimental Measurement 

Uncertainty (EMU).  

 

The concept of validation cubic was first suggested in [38], and the objective is to measure how close 

the given test conditions are to the reactor conditions in scenario of interest to the application. The term 

“cubic” refers to three-dimensional and normalized space, which is filled by a body of validation evidence 

from validation experiments. At the same time, each “dimension” is normalized to the range of 0 to 1 such 

that each face has a square shape. Three dimensions include Reactor Prototypicality Parameter (RPP), 

system decomposition, and physics models. RPP, Reactor Prototypicality Parameter, is defined as the 

significance of certain evidence in supporting claims in reactor conditions. In this study, a numerical value 

equal to 1 stands for highly significant evidence, in the sense that the data from validation experiments are 

relevant, sufficient, and high-quality. 0 means insignificant evidence where the data can be irrelevant, 

insufficient or low-quality. System decomposition represents the separation of target scenarios into sub-

phenomena and sub-physics. As a result, the validation experiments can be classified into separate or mixed 

effect tests, where separate phenomena and physics are investigated in different facilities. Physics models 

refer to the micro-scale closures, equation sets, and macro-scale effective-field model for simulating the 

prototypical system. Figure 4.27 shows an example of a validation cubic. A body of evidence (𝐸1, … , 𝐸𝑖 , …) 

is collected from experiments with different system decomposition, i.e. Separate Effect Test (SET), Mixed 

Effect Test (MET), Small-Scale Integral Effect Test (SS-IET), and Large-Scale Integral Effect Test (LS-

SET). Meanwhile, each evidence 𝐸𝑖 is to develop the model and to support the validation over a range of 

models from sub-grid-scale models (closures) to macroscale Effective-Field Model (EFM). In this study, 

the RPP value is proposed to integrate the dimension of system decomposition and physics model, and it 

represents the relative importance of each evidence from the perspective of the physics model and system 

decomposition. Also, it is found that the status of evidence collection and simulation adequacy support is 

correlated with the filling of the Cubic’s upper layer (RPP->1) across physics and system decomposition 

dimensions.  

 
Figure 4.27: Validation Cubic for a body of evidence for validating sub-grid-scale models (closures) to 

macroscale effective-field model EFM. Evidence included (E1, … , Ei, …) is notational and they are 

collected from different experiments or databases with different levels of system decompositions. The 

relative importance of evidence is represented by RPP values. The status of validation evidence and 
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simulation adequacy support is correlated with filling of the Cubic’s upper layer (RPP->1) across physics 

and system decomposition dimensions. 

 

 

This study suggests a synthetic model for determining the RPP values based on the ratio of scaling 

parameters (Sc) in the experiments [𝑆𝑐𝑀𝑜𝑑𝐾]𝐸𝑋𝑃
 and in the applications[𝑆𝑐𝑀𝑜𝑑𝐾]𝐴𝑃𝑃

:  

 

 𝑅𝑃𝑃 = [𝑆𝑐𝑀𝑜𝑑𝐾]𝐸𝑋𝑃
/[𝑆𝑐𝑀𝑜𝑑𝐾]𝐴𝑃𝑃

 Eq. 4.7 

 

The 𝑀𝑜𝑑𝐾 represents the physical process 𝐾 calculated from test/experimental conditions, which is 

also a high-ranked physics in the application conditions. [𝑆𝑐𝑀𝑜𝑑𝐾]𝐸𝑋𝑃
 represents the scaling parameters of 

𝑀𝑜𝑑𝐾 in experimental conditions, while [𝑆𝑐𝑀𝑜𝑑𝐾]𝐴𝑃𝑃
 is the scaling parameters in the application’s 

conditions. In fluid mechanics, 𝑆𝑐𝑀𝑜𝑑𝐾 can be quantified by dimensionless parameters, like Reynolds 

number and Mach number, which describe the relative magnitude of fluid and physical system 

characteristics, such as density, viscosity, speed of sound, flow speed, etc. To determine the conditional 

probability, a weight factor  𝜓𝐸𝑖  for each evidence 𝐸𝑖 is first calculated by Eq. 4.8 based on the EMU and 

RPP. in the validation cubic model [38]. 

 

 𝜓𝐸𝑘~𝑚 ∙ 𝐸𝑀𝑈𝐽 + 𝑛 ∙ 𝑅𝑃𝑃𝐾,𝐽 Eq. 4.8 

 

EMU is Experimental Measurement Uncertainty that measures the uncertainty of a certain experiment, 

and it is determined based on the level of uncertainty characterizations of experimental measurements. A 

similar characterization for uncertainty levels can be found in [37]. 𝑚 and 𝑛 are grades that represent the 

significance of experiment 𝐽 and the physics 𝐾. The experimental significance is affected by the quality 

and relevance of a given experiment, while the physical significance is ranked according to the PIRT 

process, where highly ranked phenomena and their corresponding physics should have high a significance 

factor 𝑛. Table 4.5 provides an example of parameter selections and their definitions in the validation cubic 

decision model.  

 

Table 4.5. Summary of parameters in the validation cubic decision model. 

Experimental Measurement Uncertainty (EMU) for a given experiment 𝐽 

[0, 1] 

EMU = 0.001 ⇔ Level 0: Experimental uncertainties are unknown or largely biased 

EMU = 0.01 ⇔ Leve 1: Experimental uncertainties are qualitatively analyzed only 

EMU = 0.1 ⇔ Level 2: Experimental uncertainties are well characterized for most important 

measurements, but some remains poorly known 

EMU = 1 ⇔ Level 3: Experimental uncertainties are well characterized for all tests 

Significance factor for a given experiment 𝐽: 𝑚 

[0, 1] Value ranging from 0 to 1. 0 represents insignificant experiments due to low relevance or low 

quality. 1 means highly significant experiments that are directly relevant to the applications, 

and the experimental quality is great.  

Significance factor for a given physics 𝐾: 𝑛 

[0, 1] Value ranging from 0 to 1. 0 represents low-ranked phenomena and physics, while 1 means 

high-ranked ones based on PIRT results 

Governing scaling parameters for model [𝑆𝑐𝑀𝑜𝑑𝐾]𝐸𝑋𝑃
 and application [𝑆𝑐𝑀𝑜𝑑𝐾]𝐴𝑃𝑃

 

[0, ∞) Dimensionless quantities that measure the system invariance according to the model 
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Figure 4.28 illustrates both 2D and 3D views of the validation cubic. To demonstrate the effects of 

significance factors, ranges of weight factors against the EMU values are made with three arbitrarily 

assigned values for 𝑚 and 𝑛. The minimum bound is obtained with RPP equals 0, while the maximum 

bound is obtained with RPP equals 1. It is emphasized that the current formulation is to illustrate the 

qualitative correlations between important decision parameters, i.e., the weight of evidence, and validation 

evidence, including scaling parameters, experimental VUQ qualities, etc.  

 
Figure 4.28: Illustration of validation cubic: left: 3D surface plot for weight factor 𝜓𝐸𝑖 given 𝑚 = 𝑛 =1; 

right: ranges (minimum and maximum) of weight factors 𝜓𝐸𝑖 with three arbitrary values of 𝑚 and 𝑛. The 

uncertainty is introduced by samples of RPP values. 

 

After determining the weight factor 𝜓𝐸𝑖 for each evidence 𝐸𝑖, they are normalized to 𝜓̃𝐸𝑖 according to 

Eq.  4.9 and used as the conditional probabilities between overall simulation adequacy 𝐶𝐴 and individual 

simulation adequacy from separate databases. 

 

 𝑃(𝑆𝐴|𝑆𝐴𝐸𝑖) = 𝜓𝐸𝑖/∑ 𝜓𝐸𝑖
𝑛
𝑖=1   Eq.  4.9 

 

Considering the previous discussion on validation result and data applicability, the general standards 

for simulation adequacy can be identified as:  

 

Adequate – For the high-rank phenomena, the accuracy in predicting the quantity of interest is acceptable. 

The simulation can also be confidently used in similar applications with relevant, scaling, and high-quality 

validation databases (high R/S/U grades or answer yes). The accuracy in predicting corresponding 

quantities of interest should also be acceptable. 

 

Inadequate – For the high-rank phenomena, the accuracy in predicting the quantity of interest is 

unacceptable. The simulation cannot be confidently used in similar applications with irrelevant, insufficient, 

or low-quality validation databases (low R/S/U grades or answer no). 

The inadequacy can be caused by reasons including unacceptable validation result, irrelevant, low-quality 

data insufficient validation data. In classical validations, the simulation is inadequate if one of these 

conditions is satisfied. In the PCMQBN framework, the simulation becomes “partial” inadequate, and the 

degree is defined based on beliefs in probability.  

 

4.4.3. Sensitivity Analysis 

 

Sensitivity analysis is the study of how the uncertainty in the output of a system can be divided and 

allocated to different sources of uncertainty in its inputs [48]. In Bayesian-network applications, sensitivity 
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analysis investigates the effect of small changes in numerical parameters (prior probability, conditional 

probability) on the output parameters (posterior probabilities). Since the design and parameter selection of 

PCMQBN requires expert inputs, it is necessary to evaluate that induced uncertainty in the PCMQBN 

framework. A list of uncertain parameters is designed, including beliefs on the levels of evidence, 

conditional probability, and evidence integration structures. Next, a sensitivity analysis is performed to 

assess the impact of each parameter on any target nodes. In this study, an algorithm by Kjaerulff and van 

der Gaag [49] is used for calculating a complete set of derivatives of the posterior probability distributions 

over the target nodes over each of the uncertain parameters. Figure 4.29 shows an example of a tornado 

plot for the Bayesian network in Error! Reference source not found.. Twelve variables are sampled, 

including the belief in the evidence of validation result is acceptable (VR=Yes), validation data is relevant 

(DA_R=Yes), validation data is sufficient for scaling (DA_S=Yes), the probability of having an adequate 

simulation given that the data is applicable and validation result is acceptable (SA=Yes|DA=Yes, VR=No). 

All parameters are sampled from 0 to 1, and the width of each bar represents the range of belief values on 

the target attribute (Simulation adequacy = Yes). It can be found that evidence of validation result has the 

most significant impact on simulation adequacy. This is reasonable since the comparison between model 

predictions and experimental data directly represents the simulation’s degree of accuracy. The conditional 

dependencies of simulation adequacy on data applicability and validation result have more impacts on the 

target belief than other dependencies.  

 
 

Figure 4.29: Example of tornado sensitivity plot. All listed evidence and conditional probabilities are 

sampled by 40% of their current values, the colored bar shows the maximally reachable ranges for the 

final simulation adequacy results. These ranges are arranged based on their widths, while the number 

indicates their ranks of importance to the simulation adequacy. 

Sensitivity analysis is a unique feature enabled by formalizing and quantifying the decision-making 

process. It improves the robustness of the assessment results for simulation adequacy in the presence of 

uncertainty. It also helps the understanding of correlations between different attributes in the validation 
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decision-making process such that the structure can be continuously refined. Moreover, by identifying the 

most sensitive attribute, simulation adequacy can be improved by collecting evidence of specific 

phenomena, improving the model performance for local predictions, and refining the conditional-

dependency parameters. In addition, the sensitivity analysis offers a simple strategy against the imprecision 

issue in classical Bayesian analysis, where the uncertainty is required to be measured by a single (additive) 

probability, and values can be measured by a precise utility function [16]. However, such an assumption is 

very hard to achieve in validation since the data is too few to make precise estimates on the probability and 

the distribution. By performing a sensitivity study on various sources of uncertainty, the standard analysis 

is applied to all possible combinations of the decision including parameters, evidence, integration structure, 

etc. Next, a class of simulation adequacy is determined, and if the class of decisions is approximately the 

same, it can be claimed that a robust result is obtained. Otherwise, the range can be taken as an expression 

of confidence from the analysis. As a “convenient” approach against the imprecision issue, this method is 

also known “Robust Bayes” or “Bayesian sensitivity study” [50] [51].  

 

4.4.4. Phase of Simulation Adequacy Assessment 

 

To manage the progress of validation activities, PCMQBN adequacy assessment, sensitivity analysis, 

and applications, this study defines three phases of development for grading the quality and confidence in 

the simulation adequacy results based on the sources and levels of uncertainties. Error! Reference source 

not found. defines the phases of development based on the sources and levels of uncertainties in simulation 

adequacy assessment by PCMQBN. At each stage, evidence needs to be collected and characterized 

accordingly. Meanwhile, the uncertainty in each evidence, parameter, integration structure, and the final 

simulation adequacy need to be evaluated. Complete documentation and review of this process mark the 

completion of each phase. Phase 1 is designed for initial adequacy assessment. Although the uncertainty in 

final adequacy is large, the objective is to agree on the evidence selection, conditional dependencies, 

acceptance criteria, and qualitative impacts on the target applications. Meanwhile, it serves as the 

foundation for phase 2. Most validation activities and decision-making efforts will be conducted in Phase 

2, and the objective is to have an adequate simulation that can support designated decisions with confidence. 

The quality assurance for the simulation is also required to prevent defects and issues in software products. 

Phase 3 involves licensing and regulatory activities, and the objective is to provide confirmatory results and 

define a defense-in-depth in evaluation.  

 

Table 4.6. Definition of phases of development. 

Phase #  Sources of Uncertainty Levels of Uncertainty 

1 Scoping 

Largely uncertain conditional 

dependency with unknown bounds. 

Insufficient evidence or imprecise 

beliefs on evidence with uncertain 

bounds. 

Unverified or low-quality evidence. 

Uncertainty in the final simulation 

adequacy is so large that 

preliminary sensitivity analysis 

shows that the uncertainty will alter 

the decisions in designated 

scenarios and applications. 

2 Refinement 

Uncertain conditional dependency with 

known bounds. 

Sufficient evidence with imprecise 

beliefs but known bounds. 

Uncertainty in the final simulation 

adequacy has known ranges or 

distributions with confidence levels. 

The uncertainty can alter the 

decisions only at the edge of 

scenario spectrum 

3 Maturation 

Conditional dependency with precisely 

known distributions. 

Sufficient evidence with beliefs on 

evidence and precisely known 

distributions. 

Uncertainty in the final simulation 

adequacy is precisely characterized, 

and they are not likely to alter the 

decisions. 
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To illustrate the process and help the understanding, a case study is prepared for assessing the 

simulation adequacy for Smoothed Particle Hydrodynamics (SPH) methods in external-flooding scenarios. 

A validation process has been performed and discussed in [52]. The current case study is at the scoping 

stage, and the decision parameters are subject to sensitivity analysis.  

 

4.5. Adequacy Assessment for SPH Methods by PCMQBN 

 

To demonstrate the capability of PCMQBN in assessing the adequacy of simulation results, this study 

assesses the adequacy of SPH simulations in predicting the impact forces during an external-flooding 

scenario. Evidence is collected from the CSAU/EMDAP framework, which is performed and explained in 

detail by a separate work [53]. Sub-section 5.1 describes the assessment process for simulation adequacy. 

Sub-section 5.2 evaluates the sensitivity of simulation-adequacy results by sampling decision parameters 

and evidence characterizations. Sub-section 5.3 describes the application of simulation adequacy from 

PCMQBN results.  

There are different types of flooding scenarios evaluated by the nuclear industry, and each may have 

multiple criteria for adequacy acceptance. For this external-flooding example, the analysis purpose is to 

assess if the simulation adequacy of SPH to model impact forces when simulating the scenario of “floods 

damage the building structures, enter the room, and cause diesel generator (DG) malfunctioning” is 

acceptable. The validation framework CSAU and its regulatory guide EMDAP is used for qualitative 

adequacy assessment. Figure 4.30 shows the scheme of the CSAU-guide validation process, and results 

from all activities lead to a qualitative decision of simulation adequacy for SPH methods in designated 

applications. The SPH methods and the simulation code, Neutrino, are explained in [53].  

 

 
 

Figure 4.30: Demonstration of adequacy assessment based on CSAU/EMDAP. 

 

The corresponding QoIs include the response time and the structural loads on Systems, Structures, and 

Components (SSCs) by floods. The response time is the time for the external floods to reach the DG 

building and to potentially fail the DGs, while the structural loads are the pressure forces acting on the 
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nuclear SSCs by the floods. This study focuses on the adequacy assessment of SPH methods in predicting 

the structural loads. An SPH-based software, Neutrino [11], is used to simulate an external-flooding 

scenario. 

  

A PIRT process is performed to rank the importance of separate phenomena for evaluating the 

simulation adequacy in the designated scenarios. To estimate the structural loads with sufficient accuracy, 

the adequacy of SPH methods in simulating the hydrodynamic forces on stationary structures is highly 

important. As a result, a validation database is constructed with a list of numerical benchmarks, and 

evidence of simulation accuracy (validation result) is collected by comparing simulation predictions against 

measurements from each benchmark. At the same time, a scaling analysis is performed to evaluate the 

applicability of all databases. Table  shows a list of benchmarks together with qualitative results for each 

assessment. In both benchmarks, the peak pressure forces are selected as the quantity of interest, and SPH 

simulations are performed with different simulation parameters for complete uncertainty quantification. 

Next, simulation results are compared against the experimental measurements, and an L1 metric (L1 

relative error norm) described in Eq.  4.10 is used to evaluate the accuracy of SPH’s performance. The 

accuracy is acceptable if 𝐿1 is less than 20%.  

 

 𝐿1 = |
𝑄𝑜𝐼𝑝𝑟𝑒𝑑𝑠 − 𝑄𝑜𝐼𝑚𝑒𝑎𝑠

𝑄𝑜𝐼𝑚𝑒𝑎𝑠
| Eq.  4.10 

 

where 𝑄𝑜𝐼𝑝𝑟𝑒𝑑𝑠 represents the predicted quantity of interest by Neutrino, while 𝑄𝑜𝐼𝑚𝑒𝑎𝑠 represents the 

measurements from experiments. More details about the accident scenario, PIRT process, performance 

measurement standards, accuracy and scaling analysis can be found in [52].  

 

Table 4.7. Validation results for SPH methods in simulating hydrodynamic forces on stationary structures 

in the external-flooding scenario. 

Benchmark 
Simulation 

Adequacy 

Accuracy 

(L1 error) 

Data Applicability 

Relevancy Scaling Data Quality 

Dam Break Adequate 
Acceptable 

(𝐿1=3.6%) 
Yes Yes High 

Moving Solids in 

Fluid 
Inadequate 

Falling: Acceptable 

(𝐿1=5.52%) 
Yes No High 

Floating: Acceptable 

(𝐿1=4.41%) 

 

It is found from the dam break benchmark that the SPH method can adequately predict the hydrodynamic 

forces on the stational object with acceptable accuracy and applicable databases. At the same time, an 

opposite conclusion is obtained from the moving solids in fluid benchmark since the experimental scale is 

too small to cover the application scenarios. Therefore, based on the collected databases, it is hard to decide 

whether SPH methods can predict the hydrodynamic force on solid objects with acceptable accuracy since 

claims from two benchmarks seem to be contradictory. To reduce uncertainty, PCMQBN is applied to 

assess the simulation adequacy with the validation cubic model.  

 

4.5.1. PCMQBN Adequacy Assessment 

 

Since evidence from two experimental databases is used, the weight factor needs to be calculated, and 

Table 4.8 shows the assignment of decision parameters based on validation activities from CSAU/EMDAP. 

Parameter 𝑚 represents the significance of dam-break and moving-solid-in-fluid experiments. It ranges 

from 0 to 3, and it is mainly determined by the quality of experiment and collected data. Since the dam 

break data is collected by extracting graphical points from literatures, its experimental significance is rated 

as low (=1). The moving solid data is collected directly from experimental facilities, and repeated runs are 
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performed to quantify the experimental uncertainties from sensors, equipment, operating conditions, etc. 

Therefore, the moving-solid experiment is rated as high (=3). Parameter 𝑛 represents the significance of 

physics in two experiments, and it is rated according to the PIRT process. Since both experiments are 

investigating the phenomenon of hydrodynamic forces on stationary structures, they are rated as high, and 

the corresponding value is 3. [𝑆𝑐𝑀𝑜𝑑𝐾]𝐸𝑋𝑃
 and [𝑆𝑐𝑀𝑜𝑑𝐾]𝐴𝑃𝑃

 are scaling parameters in experimental and 

prototypical conditions respectively. A scaling analysis has been performed and discussed in [52]. A 

dimensionless number 𝑥∗ is suggested for the dam break benchmark according to Eq. 8.50. 𝐿 is the distance 

between the gate and the solid object, ℎ is the initial depth of surface wave.  

 

 𝑥∗ = ℎ/𝐿 Eq. 4.11 

 

Table 4.8: A list of decision parameters in validation cubic model. The value is assigned based on author’s 

knowledge. 

Decision  

Parameters 
Dam Break Moving Solid in Fluid 

𝑚 1 (Low) 3 (High) 

𝑛 3 (High) 3 (High) 

[𝑆𝑐𝑀𝑜𝑑_𝐾]𝐸𝑋𝑃  0.1~0.26 (𝑥∗ EXP) 0.017 (𝑥∗ EXP) 

[𝑆𝑐𝑀𝑜𝑑_𝐾]𝐴𝑃𝑃  0.1 (𝑥∗ APP) 0.1 (𝑥∗ APP) 

𝑅𝑃𝑃 1 0.17 

𝐸𝑀𝑈 0.1 (Level 1) 0.01 (Level 2) 

𝜓𝐸𝑖 0.43 0.16 

𝜓𝐸𝑖
̅̅ ̅̅  0.73 0.27 

 

For the moving-solid benchmark, the scaling analysis shows that the accuracy in predicting the 

buoyance force depends on the particle intensity around the solid object. Therefore, for the moving object 

calculation, the cube density ratio (𝜌∗ defined in Eq. 4.12) and the ratio between cube volume and average 

particle volume (𝑉∗ defined in Eq. 4.13), are selected as the dimensionless parameters. 𝑉̅𝑑𝑝 is the average 

particle volume defined by Eq. 4.14 [54], and 𝑑 is the initial particle diameter. 

 

 𝜌∗ = 𝜌𝑐𝑢𝑏𝑒/𝜌𝑓𝑙𝑢𝑖𝑑  Eq. 4.12 

 𝑉∗ = 𝑉𝑐𝑢𝑏𝑒/𝑉̅𝑑𝑝 Eq. 4.13 

 𝑉̅𝑑𝑝 = 𝑑
3 Eq. 4.14 

 

Based on the scaling parameters, the RPP can be determined according to Eq. 4.7. The dam break 

has RPP equal to 1 since the range of dimensionless parameters in validation databases covers those in the 

application scenario. The EMU is rated according to the characterization of experimental uncertainties 

(Table 4.5). Since the dam break data does not have any uncertainty information, the uncertainty level is 

rated as level 1 (EMU=0.1). The uncertainty of moving solid measurements is quantified by repeated runs 

and rated as level 2 (EMU=0.01). At last, all parameters are substituted into Eq. 4.8, and the weight factor 
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𝜓𝐸𝑖 for each benchmark can be determined. They are further normalized to 𝜓𝐸𝑖
̅̅ ̅̅  such that they can be further 

used in PCMQBN for calculating the conditional probabilities.  

 

Figure 4.31 shows the Bayesian network for simulation adequacy assessment based on evidence and 

decision parameters for two numerical benchmarks. It is found that the belief level on the claim that the 

SPH method is adequate in predicting the hydrodynamic force is 100% when the simulation adequacy is 

estimated solely by evidence from the dam break benchmark. This finding is consistent with the qualitative 

result given the simulation accuracy and data applicability for the dam break benchmark. Meanwhile, the 

belief level on the same claim becomes 36% when the simulation adequacy is estimated by evidence from 

the moving-solid experiment. This result is similar to the qualitative results where the simulation is not 

adequate in simulating pressures in the moving-solid benchmarks. Furthermore, it is found that the belief 

level for an adequate SPH simulation is 83% when evidence from both benchmarks is used. Compared to 

the qualitative results, there is higher confidence that the SPH simulation is adequate for the designated 

purposes based on available evidence. Also, the uncertainty of simulation adequacy is less than that from 

the qualitative assessment since the contradictory results suggest a non-informative adequacy distribution. 

 

 

Figure 4.31: Simulation adequacy estimated by the evidence from two benchmarks and weight factors 

estimated by the listed decision parameters. 

 

4.5.2. Sensitivity Analysis 
 

Considering the uncertainty of assigning decision parameters, a sensitivity study is performed by 

sampling all conditional probabilities by 10% of their current values. Figure 4.32 shows the sensitivity 

tornado, and it turns out that the relative importance of two validation databases, i.e. 

P(SA=Adequate|SA_DAM = Adequate, SA_Moving = Inadequate), has the highest impact on the final 

simulation adequacy. When the conditional probability is sampled from 0.438 to 1 (currently at 0.73 based 

on the RPP model), the probability of having an adequate simulation range from 0.64 to 1.  
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Figure 4.32: Sensitivity plot for the simulation adequacy assessment with uncertain scaling grade and 

uncertain conditional probabilities. All conditional probabilities are sampled by 40% of their current 

values, the maximally reachable belief in an adequate simulation range from 0.63 to 0.8. 

 

At the scoping stage, the evidence of scaling grade can be unverified. Thus, another sensitivity 

analysis is performed by excluding the evidence on scaling grade and setting the belief in 

sufficient/insufficient scaling as 50%/50%. The belief in an adequate simulation has reduced to 71%. Figure 

4.32 shows the sensitivity tornado of simulation adequacy result with uncertain scaling grade and 

conditional probability. It is found that the scaling analysis for the dam break benchmark has the highest 

impact on the simulation adequacy result. When the parameter is sampled from 0.3 to 0.7 (currently at 0.5), 

the simulation adequacy ranges from 0.63 to 0.8. Meanwhile, the relative importance of two validation 

databases, i.e. P(SA=Adequate|SA_DAM = Adequate, SA_Moving = Inadequate), still has a high impact. 

Therefore, it is recommended that the sufficiency analysis (scaling grade) for validation databases needs to 

be verified and ensured with high confidence levels. At the same time, the relative weights of two evidence 

from the RPP model need to be carefully examined. However, in both cases, where scaling grade and 

conditional probabilities are uncertain, the beliefs on an adequate simulation are higher than 50%, and it 

suggests a more informative distribution than the qualitative decision analysis.  

 

4.5.3. Application of PCMQBN Adequacy Results 

 

To further demonstrate how PCMQBN results can be used in risk-informed validation (Figure 4.24), 

a risk-informed safety analysis is performed to evaluate potential damages to SSCs of NPPs by water waves. 

SPH simulations are performed to determine the structural loads by a wave for 60 cycles. The cycle is 

defined based on the frequency of hydrodynamic pressures by the surface-wave. Figure 4.33 shows the 

predicted time transient of hydrodynamic pressure 𝑃𝑟(𝑡) and impulse, and 1 cycle lasts for 9.09sec. The 

impulse is calculated by:  
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 𝐼𝑚(𝑡) = ∫ 𝑃𝑟(𝑡) 𝑑𝑡
𝑇0+𝑡

𝑇0

 Eq. 4.15 

 

 
Figure 4.33: Predicted time transient of hydrodynamic pressures (left) and impulse (right) onto the 

structure by water surface waves. 

To evaluate damages from structural loads in each wave cycle, the pressure-impulse (P-I) diagram 

is calculated for each cycle. The pressure-impulse diagram is determined by finding the maximum pressure 

and maximum impulse in each cycle. In structural engineering, the P-I diagram is used to describe a 

structure’s response to blast load. Depending on the P-I values in each cycle, damages to the structure by 

surface waves can be characterized by 4 damage levels as in Figure 4.34. This study uses the P-I diagrams 

for Reinforced Concrete (RC) structures, and the curve of damage levels is made based on experimental 

data from [55].  

 
Figure 4.34: Logarithm plot of damage levels. Four levels of damage are defined based on the P-I values. 

Based on the adequacy definition, the accuracy is acceptable when the L1 error in predicting 

hydrodynamic pressure is less than 20%. It is further assumed that when the simulation is not adequate, 

either due to unacceptable error or inapplicable data, the prediction will have maximally 100% L1 errors. 

As a result, error bands are added to the SPH predictions by:  

 

 𝑦 = 𝑌𝑝𝑟𝑑 + 𝜀𝑟𝑌𝑝𝑟𝑑 Eq. 4.16 

𝑌𝑝𝑟𝑑 is the SPH prediction for the hydrodynamic pressure and impulse, 𝜀𝑟 is the maximum L1 error by the 

requirements: 𝜀𝑟 equals to 20% when the simulation is adequate, and the accuracy is acceptable; 𝜀𝑟 equals 
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to 100% when the simulation is not adequate. When the simulation adequacy is uncertain, the prediction is 

linearly assembled based on the confidence:  

 𝑦𝑒𝑛 = 𝑃(𝑎𝑑𝑞) ∙ 𝑦𝑎𝑑𝑞 + (1 − 𝑃(𝑎𝑑𝑞)) ∙ 𝑦𝑖𝑛𝑎𝑑𝑞 Eq. 4.17 

 

𝑦𝑒𝑛 is the ensembled predictions; 𝑃(𝑎𝑑𝑞) is the confidence in the claim that the simulation is adequate; 

𝑦𝑎𝑑𝑞 is the SPH predictions with error bands when the simulation is adequate (𝜀𝑟 = 20%); 𝑦𝑖𝑛𝑎𝑑𝑞 is the 

predictions with error bands when simulation is not adequate (𝜀𝑟 = 100%). Figure 3.35 shows the 

distribution of P-I values onto the damage-level plots for all 60 cycles in four conditions: (1) the simulation 

is 100% adequate; (2) the simulation is 100% inadequate; (3) the simulation is 50% adequate and 50% 

inadequate; (4) the simulation is 83% adequate and 17% inadequate.  

 

Figure 3.35: Distribution of P-I values onto the damage levels for all 60 cycles when the simulation is 

100% adequate or 100% inadequate (left) and when the simulation is 50% adequate or 83% adequate 

(right). 

The number of cycles in each different damage levels can be found with different simulation 

adequacy results. Table 4.9 shows the number of cycles in each damage level for four distributions of P-I 

values based on the simulation adequacy results. If no validation decision is made, on one hand, when the 

simulation is presumably 100% inadequate, all damages are predicted to be severe; on the other hand, when 

the simulation is presumably 100% adequate, there are no severe damages, and 21 out of 60 cycles result 

in light damages. If validation activities are performed, and when a qualitative validation decision is made 

with 50/50 adequacy results, 26 out of 60 cycles (43.3%) turn to be severe. However, when a quantitative 

validation decision is made 83/17 adequacy results based on the PCMQBN framework, all cycles turn to 

be moderate.  

 

Table 4.9. Number of cycles in each damage levels for four different simulation adequacy results. 

Damage 

Level (DL) 
Loss (C) 

Probability of Occurrence 𝑃𝐷𝐿  among 60 cycles 

100% 

Adequate 

100% 

Inadequacy 

Ensembled 

50/50 

Ensembled 

83/17 

No 0 0/60 0/60 0/60 0/60 

Light $10 21/60 0/60 0/60 0/60 

Moderate $50 39/60 0/60 34/60 60/60 

Severe $100 0/60 60/60 26/60 0/60 
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To further demonstrate how these predictions affect the safety analysis, an expected loss ⟨𝐶⟩ is 

calculated based on a table of synthetic monetary loss and the probability of each damage levels.  

 ⟨𝐶⟩ = ∫𝑃𝐷𝐿 ⋅ 𝐶𝑑𝐶 =∑𝑃𝐷𝐿(𝑖) ⋅ 𝐶𝐷𝐿(𝑖)

4

𝑖=1

 Eq. 4.18 

𝐶𝐷𝐿(𝑖) is the consequence in monetary losses for the damage level 𝑖, and a synthetic value is assigned in 

Table 4.9; 𝑃𝐷𝐿(𝑖) is the chances that the predicted cycles will fall into the damage level 𝑖, and it is determined 

in Table 4.9. 𝑖 ranges from 1 to 4 and it represents four damage levels from no damage to severe damage. 

Table 4.10 shows the value of expected loss ⟨𝐶⟩ based on Eq. 4.18 and corresponding values in Table 4.9.  

 

Table 4.10. Expected losses for four simulation adequacy results. 

Decision Analysis Expected Loss ⟨𝑪⟩ 

Qualitative and Implicit framework 

(Ensembled 50/50) 

$71.67 

PCMQBN decision framework 

(Ensembled 83/17) 

$50 

Optimistic decision maker 

(100% Adequate) 

$36 

Conservative decision maker 

(100% Inadequate) 

$100 

 

It is found that if the decision maker is willing to accept potential risks by the simulation errors and 

completely trust the simulation with 100% simulation adequacy, the expected loss is the smallest, which 

suggests an optimistic attitude to the simulation prediction errors. However, if the decision maker is not 

willing to accept any risks by simulation errors, the expected loss is greatest, which suggests a conservative 

attribute to the simulation and its prediction errors. Meanwhile, it is found that with simulation adequacy 

result assessed by PCMQBN (83/17), the expected loss is reduced by 30% compared to the qualitative and 

implicit decision framework (50/50) in classical validations. Assuming our goal is to make the expected 

loss less than $60. The currently available evidence is sufficient to achieve this target. However, with the 

qualitative decision framework, we need additional validation efforts to further improve our confidence in 

simulation adequacy. Therefore, it is found that compared to the qualitative decision analysis, the PCMQBN 

framework is able to reduce costs by effectively conducting and planning validation activities. 

 

4.6. Conclusion 

 

In this study, a framework of PCMQBN is developed to formalize and quantify the validation decision-

making process with mathematical languages. The objective is to support the decision-making process for 

simulation adequacy in a transparent, consistent, and improvable manner. PCMQBN first formalizes the 

mathematical representation of simulation adequacy as a triplet of scenario, predictive capability level, and 

belief. Next, argumentation theory is employed to formalize the decision-making process in validation as 

an argument for simulation adequacy that is based on evidence from the validation frameworks and 

activities. In this process, all related evidence is characterized such that its representation is consistent with 

the definition of simulation adequacy. Next, all evidence is quantified where the predictive capability is 

represented by maturity levels and the belief is quantified by probabilities. Next, Bayes’ theorem is used to 

integrate the quantified evidence, and the Bayesian network is used to represent this integration by directed 

acyclic graphs. To ensure the consistency of network connections and causal dependence on well-known 

physics, rules, and knowledge, a synthetic model is also suggested for evaluating the conditional probability 
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among all nodes in the network by calculating the Reactor Prototypicality Parameter. A sensitivity analysis 

is performed to evaluate the impact of conditional probability and decision parameters. It is found that the 

conditional dependency between simulation adequacy and validation result has higher impacts on those 

between [R]elevancy/[S]caling/[U]ncertainty grade and data applicability. It is also found that relative 

weights of evidence from different databases have large impacts on the final data adequacy. Therefore, 

during a validation decision-making process, the correlations and dependencies among different databases 

and attributes need to be evaluated more carefully than accuracy assessments and scaling analysis for 

separate models and databases. Based on the sources and levels of uncertainty, three phases of development 

are defined for documenting and grading the quality of the assessment process and simulation adequacy 

results.  

To demonstrate the capability of PCMQBN, a case study is performed to assess the adequacy of SPH 

methods in simulating the scenario of “floods damage the building structures, enter the room, and cause 

diesel generator (DG) malfunctioning”. The validation framework CSAU and its regulatory guide EMDAP 

is used for collecting evidence and qualitative adequacy assessment. Details about SPH simulations and 

evidence collection are discussed in [52]. Since opposite conclusions are obtained from two numerical 

benchmarks, the PCMQBN framework is used to further refine the adequacy assessment with quantitative 

results. For separate benchmarks, it is found that the belief level on the adequacy claim for the SPH method 

is consistent with the qualitative results from CSAU/EMDAP. Meanwhile, it is found that the belief level 

for an adequate SPH simulation is 83% when evidence from both benchmarks are used. Comparing to the 

qualitative result, there is higher confidence that the SPH simulation is adequate for the designated purposes 

based on available evidence. Also, the uncertainty of simulation adequacy is less than that from the 

qualitative assessment since the contradictory results suggest a non-informative adequacy distribution. To 

further demonstrate how PCMQBN results can be used in risk-informed validation, a risk-informed safety 

analysis is performed to evaluate potential damages to SSCs of NPPs by water waves. SPH simulations are 

performed to determine the structural loads by a wave for 60 cycles. Based on a synthetic ensemble model, 

distributions of SPH predictions and corresponding consequences are made based on the simulation 

adequacy results. It turns out that the expected loss determined based on the PCMQBN results is 30% less 

than that loss from the qualitative assessment. As a result, the formalized PCMQBN framework is able to 

reduce the uncertainty in simulation adequacy assessment and the expected losses in the risk-informed 

analysis due to that uncertainty.  
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5. Reduced Order Modeling Techniques and Physics-guided Coverage 

Mapping Methodology 
 

5.1. Summary 

 

         This project investigation has focused on further development of reduced order modeling (ROM) 

techniques and physics-guided coverage mapping (PCM) methodology to support the validation of 

computerized physics models employed in support of engineering calculations. Two challenges are targeted 

by these developments. First, how to take advantage of high-fidelity software tools in a manner that is 

computationally feasible. High fidelity tools are sought because they are believed to enable better 

predictions of complex physics phenomena. Engineering analyses however require numerous executions 

of such tools to achieve engineering objectives such as design optimization, propagation of uncertainties, 

integration of measurements from separate effects of integral effects experiments, etc. The cost of running 

this analysis is prohibitively large, forcing analysts to revert back to lower-fidelity models. To address this 

challenge, reduced order modeling techniques with error preserving bounds are sought in this project. The 

project has started with recent advances in reduced order modeling techniques that rely on the use of 

randomization to seek optimum reduction conditions for a given model. The project has further developed 

a number of algorithms to enable reduction across multiple physics models and has integrated the use of 

neural networks with previously developed randomized reduction algorithms. The outcome is an advanced 

set of reduction algorithms suitable for reducing complexity of multi-physics models for both transient and 

steady state calculations, with mathematically rigorous upper-bounds on the maximum errors resulting from 

the reduction. For the second challenge tackled by this project segment, the goal is to answer a recurring 

question in validation exercises, that is, why and how could analyst rely on experimental data, often 

collected in idealized conditions, to validate modeling results for other conditions, for which no 

experimental data exist, representing the envisaged domain of model application. To address this challenge, 

investments in a new methodology, called physics-guided coverage mapping has been made. The idea is to 

rely on high fidelity modeling tools to identify in a non-parametric fashion the relationship between 

experimental and application conditions. The non-parametric description implies that no assumptions are 

made about the functional form relating application responses to experimental responses. Instead, 

information theory principles are employed directly to find the best joint PDF relating the experimental 

responses and the application responses. Going beyond this initial rendition of physics-guided coverage 

mapping methodology, the project has invested into further developing this methodology to account for 

modeling errors and constraints that might be present, which if not respected, would lead to incorrect 

mapping results. Examples include constraints on the input model parameters that must be respected when 

the parameters are perturbed. Also, in many situations, model parameters are pre-calculated by other 

computer codes, and the model is validated along with these parameters. In principle, any perturbations to 

these parameters would result in additional modeling errors that are yet to be validated. Hence, algorithms 

have been developed to ensure no additional errors are introduced due to parameters perturbations. This is 

achieved via a constrained sensitivity analysis exercise to ensure zero sensitivities of the modeling errors 

to parameter perturbations.  

 

5.2. Introduction 

 

First, we discuss work related to reduced order modeling. Despite the explosive growth in computer 

power enabling scientists to model systems at unprecedented levels of accuracy, the resulting high-fidelity 

models are too expensive for routine engineering analyses at the production level, which often require many 

repeated model executions for applications such as design optimization, uncertainty quantification, 

inference, etc. These engineering activities are needed to demonstrate the safety basis of advanced nuclear 

reactor designs with sufficient characterization of system performance as per modern regulatory 

frameworks. To address this challenge, a need exists for a formal approach that establishes a rigorous basis 

for reducing the complexity of high-fidelity models in order to enable fast turn-around times for routine 
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executions with acceptable and known accuracy. Reduced order modeling (ROM) refers to a wide class of 

methods designed to achieve this goal. ROM approaches may be classified into three categories, physics-

based, pattern-based, and regression-based. The first category, physics-based, refers to approaches that rely 

on reducing the modeling complexity by incorporating assumptions and approximations to simplify the 

representation of the physics operator used to describe the system behavior. Examples of this include the 

use of RANS (Reynolds-averaged Navier-Stokes) models or LES (Large Eddy simulation) instead of direct 

numerical simulation (DNS) methods. The specific example employed in our recent work is the physics-

based simulation of the protected and unprotected Shut Down Heat Removal Tests (SHRT-17 and SHRT-

45R) for the Experimental Breeder Reactor II (EBR-II), modeled using the System Analysis Module 

(SAM), developed at Argonne National Laboratory for advanced non-LWR safety analysis. The physics-

based reduction approach, while based on intuitive physical principles, cannot credibly estimate the 

uncertainties resulting from the various introduced assumptions and approximations, which is referred to 

as modeling uncertainties over the model validation domain. The validation domain refers to the range of 

conditions over which the modeling accuracy is assumed to be acceptable. Practitioners often resort to code-

to-code comparisons and/or complicated scaling studies to justify the use of the model over the range of 

conditions envisaged for code use. In principle, one can estimate modeling uncertainties if one could 

execute both the high fidelity and reduced order model. This is however not practical, especially when 

considering the wide range of conditions expected during normal or abnormal operation. If the cost were 

acceptable, one would not need the reduced order model. The idea however is to use few executions of the 

high-fidelity model to estimate the modeling uncertainties, and then based on scaling arguments augmented 

by expert-judgment-based recipes, the uncertainties are mapped to other conditions for which no high 

fidelity model predictions exist. If high fidelity models are not available, one would resort to experiments 

to estimate modeling uncertainties, but this is outside the scope of the paper, as the focus is on how to 

reduce the complexity of simulation-based models. Thus, physics-based reduction is challenged by the lack 

of a rigorous approach to quantify the modeling uncertainties resulting from the reduction. Different from 

physics-based reduction, the basic idea for pattern-based methods is to construct a low-rank approximation 

to the model variables whose physics correlations are not explicitly available. Pattern-based methods rely 

on finding recurring patterns in the variability of the various model interfaces described by the input 

variables, representing measured or design independent variables i.e., model input parameters such as 

thermal conductivity, heat transfer coefficients, flow conditions, etc.; the state variables, e.g., the 

temperature distribution; and the output variables, representing performance metrics, e.g., peak fuel and 

clad temperatures. The state variables represent the solution of the physics equations, with the output 

variables being functions thereof. Specifically, pattern-based methods employ unsupervised methods such 

as principal component analysis (PCA), singular value decomposition (SVD), and proper orthogonal 

decomposition-type techniques to identify dominant behavior over the range of variations for the various 

model variables. The dominant behavior is described using few degrees of freedom, referred to as active 

degrees of freedom (DOFs), designed to capture a large percentage of the variability. Unlike physics-based 

reduction, these methods require no physics insights or intimate knowledge of the models being reduced 

but only nonintrusive access to allow multiple executions to generate training data, i.e., snapshots. The 

reduction errors have been conventionally estimated using a trial-and-error approach, where the number of 

active DOFs is changed until the error resulting from the reduction meets user tolerance. This however does 

not guarantee the reduction errors will be bounded over the range of conditions envisaged for model 

application, i.e., the model validation domain. In the recent past, randomized linear algebra techniques have 

resurfaced, offering a theoretical basis for estimating upper-bounded on the reduced models using pattern-

based methods. One typical approach for achieving this is the randomized range finding algorithm, whose 

theoretical development allows one to estimate a realistic, i.e., non-conservative, upper-bound on the 

reduction error that is met with very high probability. Regarding the third category, regression-based, the 

basic idea is to try to regress one set of variables, referred to as responses, to other set of variables, called 

regressors. To regress, by definition, is to explain the cause of responses. In doing so, the relationship 

between the regressors and responses, referred to as response surface or a surrogate model, is often based 

on trial and error until an acceptable surface is identified which minimizes the regression errors. Some of 
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the notable choices for the surrogate model include linear/polynomial functions, artificial neural network-

based functions, Gaussian process models, etc. The selection of a certain surrogate model is often guided 

by the nature of the physics model or phenomena being analyzed, and hence is generally a subjective 

process. Thus, it is not surprising that multiple surrogates could be developed with essentially similar 

accuracy. In our work, both linear regression and artificial neural network (ANN) based reduction are 

employed to construct surrogate models in terms of the active DOFs generated using pattern-based 

reduction. The construction of regression-based surrogate models represents the ultimate goal of any 

complexity reduction exercise, as it provides an inexpensive tool for repeated model executions for 

applications like sensitivity analysis, uncertainty quantification, and probability risk assessment. The key 

challenge however is that it is not clear how to estimate the reliability of the surrogate model for all 

conditions in the validation domain. This challenge is not addressed in the current work. 

 

Second, we discuss work related to physics-guided coverage mapping. This project has laid the 

foundations for the development of a new methodology for the integrated use of uncertainties -- including 

parameters and modeling uncertainties and experimentally determined biases/uncertainties -- to support a 

recurring theme in a number of DOE’s programs, that is how to improve modeling predictability via an 

optimized use of minimal targeted experiments and high-fidelity modeling and simulation tools. This vision 

recognizes the huge investments made by DOE in modeling and simulation over the past two decades, the 

climbing cost and challenges of first-of-a-kind measurements. This theme -- of increased reliance on 

modeling and simulation to guide the experimental activities and identify data needs -- represents an 

umbrella vision for a wide range of nuclear reactor and non-reactor applications, such as material testing, 

and advanced reactors/fuel concepts, etc. Realizing this vision will have far reaching implications for a 

wide range of nuclear systems, achieved via effective inference of the dominant sources of uncertainties, 

thus leading to better designs, more informed regulatory process, and ultimately to better economy for the 

associated systems. This project has developed and implemented a recently emerging methodology denoted 

by physics-guided coverage mapping (PCM) that employs data analytics, information theory, and high-

fidelity simulation to develop novel computational capabilities that would be instrumental in meeting this 

vision. These capabilities include novel mathematical kernels capable of transferring biases/uncertainties 

between two generic user-specified domains, referred to hereinafter as the experimental domain and 

application domain. The experimental domain is considered small as it represents conditions which are 

difficult to obtain, realize, or measure, e.g., conducting a real experiment to analyze rare events or new 

evaluations of nuclear data, execution of computationally expensive high-fidelity model at few conditions 

when one is interested in replacing a high-fidelity model by a low-order model for routine calculations. The 

application domain is much bigger as it represents all conditions at which predictions are sought, e.g., 

design of experiments for fundamental research to support new reactor concepts and/or advanced fuel 

design, predicting reactor hot full power operating conditions for at normal and off-normal conditions, etc.  

The PCM methodology exploits uncertainties in a non-traditional manner which is primarily concerned 

with inferring the best possible correlations between the application’s quantities of interest and the 

experimental responses. These relationships can be identified mathematically without making any adhoc 

assumptions by minimizing entropy-based measures, referred to as the mutual information. The implication 

is that even if the propagated uncertainties are high, one can find relationships -- via mathematical search 

through the uncertainty analysis results -- between the experimental responses and the application’s 

quantities of interest which allow for an effective mapping of experimental biases. To ensure mathematical 

rigor of the PCM mapping kernels, both parameter and modeling uncertainties are simultaneously 

characterized in both the application and experimental domains based on high fidelity simulation, which 

represents the key contribution of this project, beyond what was done previously. This methodology departs 

markedly from the existing predictive modeling and validation methods which essentially decouple 

predictive simulation from uncertainty analysis -- sometimes performing the former and completely 

forgoing the need for the latter -- and basing model validation on expert-based customized recipes for bias 

mapping between the experimental and the application conditions. In doing so, the code-based uncertainty 

analysis -- in which known sources of uncertainties are propagated through the simulation -- may be 



   

113 
 

completely skipped and deemed unnecessary because the associated uncertainties are too high to be realistic 

for operation; instead, they are estimated via direct comparisons between experimental measurements and 

code predictions, referred to as “biases”. To make up for the analyst’s lack of knowledge on the exact 

mapping of these biases between the experimental and the application conditions, several system-specific 

recipes have been developed by practitioners.  

 

5.3. Scope of Work 

 

Regarding Reduced Order Modeling, as detailed in one of the listed papers (to be published; see sub-

section 5.5), our goal is two-fold; first, to explore the reducibility of the SAM code using pattern-based 

techniques which are used to identify a small number of active DOFs for time-varying responses, e.g., fuel 

temperature, and model input parameters. In tandem with that, the reduction errors are rigorously 

quantified; second, regression-based reduction is used to regress the responses’ active DOFs to input 

parameters active DOFs. Different regression surfaces are employed to explore best scenarios for SAM 

reducibility. In doing so, we recognize that it is difficult to assess the errors resulting from SAM’s own 

physics-based reduction and regression-based reduction, which remain as open research topics for future 

work. The scope of work is directly related to the IRP objectives, as it provides an enabling tool for fast-

execution of accuracy-preserving tools to enable scientific validation of computer models. Specifically, the 

goal here is to explore the reducibility of the SAM code using pattern-based and surrogate-based reduction 

techniques. The overarching goal here is to determine whether additional reducibility can be incorporated 

into the SAM physics model, based on the range of its intended application, thereby providing an efficient 

solver capable of performing computationally intensive analyses such as uncertainty quantification, 

inference, etc., especially when the number of model parameters is significantly increased. A representative 

model with 25 input model parameters expected to directly influence key performance metrics (fuel, clad, 

and coolant temperatures) is employed. The training snapshot are generated based on 1000 model 

executions, each randomizing the input parameters within their prior uncertainties. Each execution records 

the model responses and the associated state. The time-dependent fuel temperature is selected as the state 

variable, while the peak temperature over the transient time is selected as the model response. The goal is 

to create a reliable ROM model relating input parameter variations to both the state and response variations 

over the range of uncertainties for the model parameters. The transient time is selected to be 900 seconds, 

which corresponds to benign termination of the transient. The details can be found in the attached paper.  

 

For PCM, the focus has been on the design of the noted mapping kernel and its associated enabling 

algorithms -- representing the key contribution of this project -- as it provides a mathematical construct in 

the form of a joint probability distribution function (PDF) which encodes all possible variations for the 

application’s quantities of interest and the experimental responses. One key distinction of this work is the 

ability to include both parameter and modeling errors when performing the PCM analysis. Specifically, a 

neutronic model was used for demonstrating how modeling errors could interact with parameter 

uncertainties, leading to incorrect results, if modeling errors are ignored. Representative lattice physics 

models and core-wide models are employed wherein nuclear parameters, e.g., cross-sections, uncertainties 

are propagated using two different models, one representing a high fidelity and the other a low fidelity 

models, to assess the impact of modeling errors on the propagated uncertainties. A constrained sensitivity 

analysis algorithm is developed to identify all parameter perturbations that impact the modeling errors and 

are thus removed when performing the PCM or uncertainty analysis. Two attached papers describe the 

details of the new algorithms. These algorithms are expected to have many follow-up applications in 

support of data-driven validation of software tools. For example, they can be used to quantify the modeling 

errors based on few numbers of high-to-low fidelity models comparisons and employ PCM to estimate the 

modeling errors using the low-fidelity models at conditions for which the high-fidelity model predictions 
are considered computationally expensive. These algorithms can also be employed to estimate both 

modeling and parameters uncertainties, in a manner than ensures modeling errors are not stretching the low-

fidelity models outside their validation domain.  
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5.4. Conclusions and Path Forward 

 

This work has explored the reducibility of the SAM model using both pattern-based and regression-

based methods. The two reduction methods are applied for two representative transient benchmark models, 

the EBR-II SHRT-17 and SHRT-45R tests. The pattern-based methods are capable of reducing the effective 

dimensionality of the model variables in a manner that establishes realistic upper-bounds on the reduction 

errors that are met with high probability. The reduced dimensions are referred to as the active degrees of 

freedom (DOF). The implication is that model responses of interest, despite their nominal high 

dimensionality, can be well-approximated by a much smaller number of DOFs. Next, regression-based 

methods are employed to functionalize model responses of interest in terms of the active DOFs as the 

regressor variables instead of the original number of model variables, which is typically much higher than 

the number of active DOFs. Although regression-based methods suffer from their lack of a rigorous 

approach for bounding their prediction errors, their performance is typically improved when the number of 

regressor variables is significantly reduced. These encouraging results are expected to lay the foundation 

for future work focused on devising new methods for incorporating the active DOFs directly into the 

numerical solver of the SAM code to allow for a faster execution by constraining the search for the solution 

along the active subspaces. Further, when straightforward application of ANN is not adequate, hybrid 

methods relying on physics-based reduced order modeling techniques will be employed to guide the 

construction of the ANN-based surrogate models. Overall, these results are expected to drive future work 

of more sophisticated application-targeting reduced order modeling techniques with superior computational 

efficiency and accuracy-preserving capability to help realize the value of high-fidelity modeling and 

simulation tools, in which a great deal of investments have been made by DOE over the past two decades.  

 

With regard to PCM, the contributed methodology paves the way for a philosophy shift in the value 

of traditional uncertainty analysis in support of predictive model validation, shifting from a conventional 

measure of confidence in the calculated results to a mathematically-rigorous -- rooted in information theory 

-- approach by which experimental evidence, i.e., rare or expensive measurements, could be integrated with 

high fidelity simulation to directly produce inference on the quantities of interest, i.e., quantities that are 

costly to measure, cannot be directly measured, or computationally expensive to calculate on a routine 

basis. The work has upgraded previous PCM developments to take into account the impact of modeling 

errors on the inference analysis, typically ignored in previous work. The work has highlighted the key 

dependencies between modeling errors and parameter uncertainties for representative neutronic models and 

how modeling errors could have a significant impact on propagated parameter uncertainties. An algorithm 

to ensure non-contamination of parameter uncertainties by modeling errors has been presented and applied 

to a representative steady state and transient reactor models. Results indicate that one must carefully remove 

the modeling errors before propagating uncertainties. Future work will focus on the implication of these 

results for inference studies and bias calculations in support of model validation for first-of-a-kind reactor 

systems. Going beyond neutronics, it is important to note that modeling errors from other physics, e.g., 

thermal hydraulics, could feedback into neutronic modeling errors, expected to occur in a multi-physics 

simulation of core-wide performance. In this case, one must take into account the impact of other physics 

on neutronic errors. Algorithms, similar in function, to the ones proposed here could be envisioned, where 

one employs both a high and low fidelity multi-physics solver to estimate the modeling discrepancies for 

the responses of interest and ensure their insensitivity to the parameter perturbations. 

 

5.5. Peer-Reviewed Documented Work 

 

The following 5 peer-reviewed articles document the key aspects of the work performed under this contract.  
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1. Jeongwon Seo, Hany S. Abdel-Khalik, and Zoltán Perkó, “Addressing Ambiguities in Constrained 

Sensitivity Analysis for Reactor Physics Problems,” Nuclear Technology, March 2020. This paper 

discusses a key enabling algorithm for PCM to ensure all parameter perturbations respect established 

constraints, prior to application of PCM 

2. Dongli Huang and Hany Abdel-Khalik, “Modeling Errors-Preserving Constrained Sensitivity 

Analysis,” Nuclear Engineering and Design, June 2020. This paper discusses how modeling errors 

could be integrated under the PCM framework with neutronics as example. 

 

3. Dongli Huang and Hany S. Abdel-Khalik, “Nuclear Data Uncertainty Propagation and Modeling 

Uncertainty Impact Evaluation in Neutronics Core Simulation,” Progress in Nuclear Energy, under 

review. This paper discusses our initial work on assessing the impact of modeling errors on uncertainty 

analysis studies used in support of model validation. This paper is still under review.  

 

4. Yeni Li, Acacia Brunett, Elise Jennings, and Hany S. Abdel-Khalik, “ROM-based Surrogate Modeling 

of EBR-II benchmark using ANL’s SAM Code,” to be submitted, currently under internal review at 

ANL. This paper discusses ROM developments hybridizing both pattern-based and regression-based 

methods for reduction. 

 

5. Dongli Huang, Ugur Mertyurek, and Hany S. Abdel-Khalik, “Verification of the sensitivity and 

uncertainty-based criticality safety validation techniques: ORNL’s SCALE case study,” Nuclear 

Engineering and Design, pp.110571, 2020. This paper is byproduct of our research on forward-based 

methods for sensitivity analysis.  
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6. Approaches to Implementation and Evaluation of Coupling of Codes 
 

While having the potential to threaten nuclear infrastructure, external flooding hazards are often 

qualitatively assessed as risk-insignificant and excluded from detailed quantitative evaluation (Ma et al., 

2017). However, lessons learned from Fort Calhoun (2011), the accident at Arkansas Nuclear One (2013), 

and the flooding of Vermont Yankee (2013) and St. Lucie (2014) have underscored the need for quantitative 

simulations to evaluate the risk of flooding to nuclear power plants. 

 

6.1. Summary 

 

Coastal flood hazard studies rely on many hundreds of design storm events, both historical and 

synthetic, to inform more comprehensive risk-based analyses, giving rise to the need for fast, deterministic 

simulations.  As a part of the broader Integrated Research Project (IRP), we develop a methodology that 

supports probabilistic, risk-based design and decision-making by making deterministic, large-scale 

simulations more practical and efficient.  

 

Events such as the flooding around the Fort Calhoun (2011), Vermont Yankee (2013), and St. Lucie 

(2014) nuclear power plants have highlighted the need for accurate simulations to determine the risk of 

flooding at these and other facilities around the country.   However, plant response to flooding due to 

hurricane storm surge involves multiple spatiotemporal scales. While ocean circulation models can simulate 

large-scale storm surge events, assessment of the resilience of critical infrastructure to storm-induced 

flooding require much smaller scales that are more appropriate for fluid solvers, which can resolve finer 

scale processes.  Therefore, bridging the gap between these simulation approaches is essential, and calls for 

the conception, development, and evaluation of a multi-scale methodology that can accommodate the 

substantial differences in scales.   

 

We describe a modeling framework that incorporates the larger scale finite element (FE) model, 

ADCIRC, along with the smaller scale smoothed particle hydrodynamics (SPH) code, Neutrino, to provide 

finer level resolution for complex geometries.  ADCIRC is an ocean circulation model that solves the 

shallow water equations over a mesh of nodes and triangular elements. The use of unstructured grids with 

varying element sizes means that a mesh can be gradually refined in areas that require greater levels of 

topographic detail. While these refinements can reach the meter scale, shallow water equations are not 

suitable for simulating the hydrodynamic processes that occur beneath that scale and that must account for 

the complex geometries of, for example, a nuclear power plant. Such simulations require smaller-scale 

models like the mesh-free fluid solver, Neutrino. 

 

Our approach draws on a methodology called subdomain modeling, which allows local changes in a 

finite element model to be accommodated with less computational effort than would be required by re-

running the entire simulation. Provided a subdomain is large enough to contain the altered hydrodynamics, 

changes can be made—such as refinements in spatial resolution and the addition of flood protection 

measures—and simulations performed on a subdomain without the need to calculate new boundary values.   

Objectives of the project include enhanced spatial resolution of subdomain meshes to get finite element 

simulations closer to facility-scale features and topography; data libraries and reuse to curtail the need for 

large, ocean-scale simulations, allowing modelers to instead start from the subdomain scale; ADCIRC-

Neutrino coupling to facilitate subdomain-to-facility scale interactions; and verification and validation to 

ensure the correctness of computer implementations. 

 

Results are based on datasets obtained from and through collaboration with the United States Army 

Corps of Engineers (USACE), and include (1) refinement and evaluation of subdomain modeling for its 

computational benefit and solution quality in actual, real-world applications that consider a range of 

USACE engineering design scenarios, (2) development of a post-processing approach that facilitates the 
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use of spatially and temporally coarse datasets from USACE as boundary conditions for subdomain 

modeling, allowing us to adopt a library of states (LOS) perspective so that simulation results from a variety 

of historical and synthetic storms are available for reuse—this allows us to recover boundary conditions of 

a quality comparable to datasets with a much finer temporal resolution, (3) a prototype coupling approach 

using subdomain modeling to combine the larger scale finite element model, ADCIRC, with the smaller 

scale smoothed particle hydrodynamics code, Neutrino, to provide finer level resolution for complex 

geometries. 

 

In this report, we elaborate on these objectives, technical approaches, and results, describing their 

relationship with other components of the project, summarizing key findings, and presenting highlights of 

the technical innovations and implications of our work, as well as paths forward. 

 

6.2. Technical Background 

 

Flooding risk from hurricane storm surge is a multi-scale issue. Hurricanes develop and evolve over a 

period of weeks at spatial scales of hundreds of miles as they progress across the deep ocean and move onto 

the continental shelf and coastal floodplains. While numerical ocean circulation models can simulate storms 

and their flooding effects, they operate on spatiotemporal scales that are too coarse for evaluating the 

resilience of coastal infrastructure. Conversely, fluid solvers can resolve complex hydrodynamic processes 

beneath the meter scale but are incapable of simulating the large-scale processes that lead up to these more 

localized events. 

 

Therefore, bridging the gap between these simulation approaches is essential, and calls for the 

conception, development, and evaluation of a multi-scale methodology that can accommodate the 

substantial differences in scales.  In this study, we address practical needs identified through interactions 

with the Department of Energy (DOE), the United States Army Corps of Engineers (USACE), and other 

stakeholders by (1) refining and evaluating a subdomain modeling approach for its computational benefit 

and solution quality in actual, real-world applications that consider a range of USACE engineering design 

scenarios, (2) developing tools that facilitate the use of spatially and temporally coarse datasets from 

USACE as boundary conditions for subdomain modeling, and (3) prototyping a coupling approach using 

subdomain modeling to combine the larger scale finite element (FE) model, ADCIRC, with the smaller 

scale smoothed particle hydrodynamics (SPH) code, Neutrino, to provide finer level resolution for complex 

geometries, which we introduce below. 

 

ADCIRC (Luettich et al., 1992; Luettich and Westerink, 2004; Westerink et al., 2008) is an ocean 

circulation model that uses finite element methods to solve the shallow water equations over a mesh of 

nodes and triangular elements. The use of unstructured grids with varying element sizes means that a mesh 

can be gradually refined in areas that require greater levels of topographic detail. While these refinements 

can reach the meter scale, shallow water equations are not suitable for simulating the hydrodynamic 

processes that occur beneath that scale and that must account for the complex geometries of, for example, 

a nuclear power plant. Such simulations require smaller-scale models like the mesh-free fluid solver, 

Neutrino. 

 

Neutrino is a smoothed-particle hydrodynamics (SPH) model developed by the Neutrino Dynamics 

Initiative (Sampath et al., 2016; Sampath, 2018).  It solves continuous fluid flow equations through the use 

of discrete moving particles (Liu and Liu, 2010) and simulates single-phase, isothermal, incompressible, 

Newtonian fluid flows with viscosity assumed to be constant with respect to space, and surface tension 

forces neglected. Discontinuities of physical quantities occurring at boundaries, such as densities and non-

physical pressure forces, are generally challenging for SPH codes. Neutrino uses frozen particles to 

accommodate multiple bodies and circumvent underestimation of physical quantities at the boundaries. 
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6.3. Previous Work 

 

Bridging the gap in modeling scales and coupling codes as diverse as ADCIRC and Neutrino present 

a technical challenge.  There is some precedent, however, for nesting and coupling strategies that facilitate 

model integration across smaller differences in scales. A substantial body of work in both ocean and 

atmospheric modeling addresses both one-way and two-way nesting strategies (Spall and Robinson, 1989; 

Debreu and Blayo, 2008). As-Salek and Yasuda (1995) develop and employ a one-way nesting technique 

using flow velocities and water surface elevations as boundary conditions to drive finer, local meshes in 

their investigation of the effects of storm surge in the Bay of Bengal. Their results demonstrate that solutions 

from the nested model agree better with observed data than those from the coarser large-scale model alone. 

 

Hubbert et al. (1990) compare large-grid non-nested models with nested models using water surface 

elevations as boundary conditions and demonstrate that the nested model outperforms the large-scale non-

nested model. Fox and Maskell (1995) compare one-way and two-way nesting models and show that two-

way nesting is advantageous when there are concerns about noise being generated at the interface of the 

nested domain and the larger domain. Similarly, Sheng et al. (2005) describe a two-way nesting method 

that obtains accurate results compared to large-scale outer models with one-way nesting. Debreu and Blayo 

(2008) review several two-way nesting techniques and conclude that the choice of technique involves trade-

offs between conservation properties, accuracy, robustness, and coding challenges. 

 

With respect to coupling between ADCIRC models, Baugh et al. (2015) present an approach for 

simulating storm surge and tides called subdomain modeling that allows local changes in a subdomain to 

be accommodated with less computational effort than would be required by re-running the full domain. 

Provided a subdomain is large enough to contain the altered hydrodynamics, changes can be made—such 

as refinements in spatial resolution and the addition of flood protection measures—and simulations 

performed on a subdomain without the need to calculate new boundary values.  Using subdomain modeling, 

a library of states (LOS) perspective can therefore be adopted so that simulation results from a variety of 

historical and synthetic storms are available for reuse. 

 

6.4. Relevant Methods  

 

Analysis of plant response to external flooding requires a methodology and workflow that can 

accommodate the broad range of spatiotemporal scales involved.  We begin by defining three modeling 

scales and two points of interaction between them. These scales are: (1) ocean scale (kilometers) in 

ADCIRC, (2) subdomain scale (tens of meters) in ADCIRC, and (3) facility scale (meter-level and below) 

in Neutrino, which have the following points of interaction: 

 

• Ocean-to-subdomain scale – the interface between full domain and subdomain ADCIRC models, 

which differ in scale and resolution, using the subdomain modeling extension of ADCIRC. 

 

• Subdomain-to-facility scale – the interface between a subdomain ADCIRC model to a Neutrino 

model, using a one-way handoff of data from ADCIRC to Neutrino. 

 

Below we describe the modeling scales they entail and the coupling approaches at both of these points 

of interaction. We also introduce general verification and validation issues that are further explored in 

subsequent sections. 

 

Ocean scale: well-validated ADCIRC simulations, test cases, and meshes composed of elements graduated 

in size with the largest elements over the deep ocean, smaller ones to resolve finer scale processes, and still 

smaller ones next to the coastline. 
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Subdomain scale: areas around a nuclear power plant facility selected from large-scale meshes using 

strategically placed boundaries to define a region of interest, and within which a variety of flood protection 

measures can be modeled and evaluated using ADCIRC. 

 

Facility scale: local simulations using Neutrino, who’s initial and boundary conditions are informed by and 

generated from subdomain scale simulations in ADCIRC. 

 

In the workflow we advance, full domain simulations are performed that generate boundary conditions 

and initial conditions for subdomains in the form of time histories of water surface elevations, depth 

averaged velocities, and wet/dry states of nodes. Subdomain simulations are then performed at increased 

spatiotemporal resolutions without the need for additional full domain simulations.  

 

With respect to coupling, because of the complexity involved in combining a mesh-based FE ocean 

circulation model and a mesh-free SPH model, our initial prototypes rely on a one-way handoff of output 

data from ADCIRC subdomains to the Neutrino domain. This requires: (1) geographical overlapping of the 

Neutrino domain with the ADCIRC subdomain, and (2) the ADCIRC subdomain to model local 

hydrodynamic behavior with sufficient fidelity so that boundary conditions around the peripheries of the 

Neutrino domain are meaningful. That is, subdomain simulations should behave as if a facility is present 

by matching topography and by including roughness coefficients to account for local hydrodynamic 

behavior.  

 

This in turn requires that spatiotemporal gaps be bridged between the respective models and—since 

ADCIRC grids are typically resolved locally at larger scales than those of Neutrino—enhanced spatial 

resolution in ADCIRC subdomain simulations to account for protective structures, the facility itself, and 

any other finer topographic features. Temporal refinement is also required in combination with the spatial 

refinements in order to satisfy the Courant-Friedrichs-Lewy (CFL) condition. 

 

6.5. Technical Objectives 

 

As a part of the broader Integrated Research Project (IRP), we develop a methodology that supports 

probabilistic, risk-based design and decision-making by making deterministic, large-scale simulations more 

practical and efficient. 

 

Technical objectives, approach, and relationship within the overall project are presented below. 

Additional details can be found in the doctoral dissertations of Bukhari (2020) on enhanced spatial 

resolution of subdomain meshes, data libraries and reuse, and ADCIRC-Neutrino coupling, and Dyer 

(2020) on verification and validation. 

 

Coastal flood hazard studies rely on many hundreds of design storm events, both historical and 

synthetic, in their efforts to quantify larger risk-based goals, giving rise to the need for fast, deterministic 

simulations.  In this project, we develop a modeling framework that includes a) enhanced spatial resolution 

of subdomain meshes – to get finite element simulations closer to facility-scale features and topography, b) 

data libraries and reuse – to curtail the need for large, ocean-scale simulations, allowing modelers to instead 

start from the subdomain scale, c) ADCIRC-Neutrino coupling – to facilitate subdomain-to-facility scale 

interactions, and d) verification and validation – to ensure the correctness of computer implementations.  

We describe these objectives below. 

 

Enhanced spatial resolution of subdomain meshes.  While subdomain modeling preserves the 

accuracy of solutions obtained from full domain simulations, its ability to accommodate ex post facto 

refinements of a subdomain have not been attempted or evaluated, particularly within the context of actual 

coastal projects that could benefit from such enhanced resolution.  Our work here is with actual projects 
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obtained from and in coordination with the US Army Corps of Engineers (USACE) and their Engineering 

Research and Development Center (ERDC) in Vicksburg, MS.  For each case study and project alternative 

defined, we determine whether and to what extent hydrodynamic effects remain local in subdomains, 

subsequent to mesh refinements and modifications; how sensitive subdomain solutions are to boundary 

locality, and placement; and how spatial mesh refinements for real world scenarios affect boundary 

conditions for subdomains when combined with variations in project configurations. 

 

Data libraries and reuse.  Existing datasets of historical and synthetic storm results—such as those 

developed and maintained at USACE, NOAA, and other agencies and oceanographic institutes—are widely 

available, providing a rich set of storm surge data that could in principle be used in combination with 

subdomain modeling in the design of coastal protective structures.  Because the necessary output is 

commonly stored at intervals of as much as 5 to 15 minutes, however, we consider the role of higher order 

interpolation and smoothing of those results based on the following intuition: when results are infrequently 

recorded, since they represent points along a relatively smooth solution to the shallow water equations, it 

may be possible to recover any peaks that were inadvertently clipped—as the result of coarse-resolution 

temporal output—using cubic splines, Fourier analysis, and other numerical techniques. We develop an 

effective approach in the form of a post-processing step that can be applied to existing ADCIRC files before 

subdomain modeling is attempted on those existing datasets. 

 

ADCIRC-Neutrino coupling.  Interactions between ADCIRC and Neutrino can be realized through 

a one-way data handoff, proceeding from the kind of observable data produced by a shallow-water model 

like ADCIRC, and then made available to an SPH code like Neutrino through its available types of boundary 

conditions.  Beyond the mechanics of the exchange, we consider modeling and scale differences in both 

space and time that require, for instance, working with parameters, terminology, and assumptions that vary 

between diverse modeling approaches and their respective communities, e.g., local and latitude-longitude 

coordinates and their transformations, devising an approach for finding and extracting small, appropriately-

placed time windows from larger-scale output, and other differences between localized hydrodynamic and 

large-scale ocean circulation models.  Our scope includes a) the details of the computer formats and 

requirements for data exchange, b) consideration of the modeling assumptions made between two diverse 

scientific areas with distinct paradigms, c) development of a series of coupling test cases, from simpler to 

more complex and with more realism, and their comparative evaluation, and d) observations and 

recommendations for continued development. 

 

Verification and validation. Given the nature of the coupling approach being developed and its likely 

applications, it is particularly important that the software does what it is intended to do. Two key aspects 

of this determination, in the vernacular of the software engineering community, are verification and 

validation, where verification asks, "Is the product right?" and validation asks, "Is it the right product?" 

Verification, then, is concerned with whether an implementation satisfies its specification, i.e., is bug-free.  

Beyond traditional testing and code reviews, we develop static program verification techniques, which are 

based on providing a formal, or mathematical, specification of functional behavior and showing that an 

implementation satisfies the specification. This process involves concepts from mathematical theorem 

proving, and thus relies on modeling or manipulating computer programs instead of executing them, hence 

the term static. Doing so allows one to make strong correctness claims since coverage is more complete 

than can be obtained via testing alone. 

 

6.6. Technical Approach 

 

In this and the following sections, we lay out our technical approach for each of the above objectives, 

describe the relationship between our study and other components of the project, summarize key findings, 

present highlights of technical innovations and the implications of our work, and finish with a discussion 

on paths forward and conclusions. 
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Enhanced spatial resolution of subdomain meshes.  To narrow the gap between large-scale storm 

surge simulations and more local facility-scale simulations, we address subdomain scale models and mesh 

refinements that are intended to capture a finer level of land surface detail than has previously been 

attempted.  Three extensive case studies on the US Gulf and Atlantic coastlines—each with differing 

characteristics—have been developed and evaluated with respect to both computational benefits of the 

approach and its accuracy, at the following three sites: 

 

(1) Dyke Marsh Wildlife Preserve, located between Mount Vernon and Alexandria, VA, along the west 

bank of the Potomac River, with project alternatives on the order of several miles long, which seek to restore 

a natural promontory structure and the surrounding area to its pre-1940s and ‘50s conditions, prevent further 

loss of the marsh, and potentially expand and protect the wetland and its delicate ecosystem. 

 

(2) Ike Dike, located at Galveston Bay, TX, with project alternatives on the order of tens of miles long, 

which would enhance and extend the Galveston Seawall and provide further protection for an area at 

significant risk from storm-induced flooding, such as the damage resulting from Hurricane Ike.  As part of 

a larger “coastal spine,” the concept includes a gated coastal barrier that would limit inflow of hurricane 

storm surge into the bay and thus provide additional protection for Galveston Bay, the Bolivar Peninsula, 

Houston, and other surrounding communities. 

 

(3) New York-New Jersey Harbor and Tributaries (HATS), an area affected by Hurricane Sandy and 

identified by USACE as one of nine high-risk, focus areas on the North Atlantic Coast that is most 

susceptible to storm-induced flooding.  For this project, several flood control structures have been proposed 

to reduce costs and risks associated with storm events, and to support overall resilience and sustainability 

of coastal communities.  Alternatives include the Throg’s Neck barrier, a 1-mile flood control barrier, and 

a 13-mile flood control system referred to as the Jamaica Bay barrier. Each case study incorporates a full, 

base mesh along with several refined with-project alternatives. 

 

Data libraries and reuse.  To take advantage of existing datasets of historical and synthetic storm 

results, techniques have been developed to reuse existing datasets as boundary conditions for subdomain 

modeling. The original datasets may have the necessary output but are recorded at temporal resolutions of 

15 to 30 minutes, which is too coarse for meaningful subdomain boundary conditions. We consider the role 

of higher order interpolation and smoothing of those results based on the following intuition: when results 

are infrequently recorded, since they represent points along a relatively smooth solution to the shallow 

water equations, it may be possible to recover any peaks that were inadvertently clipped—as the result of 

coarse-resolution temporal output—using cubic splines, Fourier analysis, and/or other numerical 

techniques. 

 

Collectively, we consider four different interpolation approaches. The simplest of the approaches is one 

that leaves wet-dry states unforced, but that is otherwise equivalent to subdomain modeling, an approach 

we call SSM, or simplified subdomain modeling. Such an approach relies on linear interpolation of the time 

histories of water surface elevations and velocities. As a variation on the SSM approach, we also include 

results from SML+, a technique we define that uses linear interpolation, but that also adds points of 

maximum water surface elevation into those time series. Of the higher order approaches, the simplest cubic 

spline method, SMC, does not make use of the recorded maximum water surface elevation, whereas SMC+ 

does by inserting it into the time series. We compare the accuracy of subdomain solutions that make use of 

each of the SSM, SML+, SMC, and SMC+ approaches. 

 

For our case studies, we utilize two example problems forced by tides that are taken from the official 

ADCIRC website, and two problems forced by winds that use the NC FEMA Mesh Version 9.98 as a large-

scale domain.  These include: 1) Idealized inlet with tidal forcing (adcirc.org, 2019a), 2) Shinnecock Inlet, 
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NY, with tidal forcing (adcirc.org, 2019b), 3) Cape Fear, NC, forced by Hurricane Fran (1996), and 4) Cape 

Hatteras, NC, forced by Hurricane Isabel (2003).  In each case, subdomains of three different sizes are 

defined: small (S), medium (M), and large (L).  Results of the simulations are evaluated by comparing the 

water surface elevations of a subdomain at each node to that of the full domain at every output time step. 

We present the cumulative distribution function (CDF) of the averaged error (AE) and maximum error 

(ME) of the water surface elevations for storm surge and tidal cases. 

 

ADCIRC-Neutrino coupling.  We have developed, as a proof of concept, a methodology that 

facilitates communication between the large-scale FE model, ADCIRC, and the small-scale SPH model, 

Neutrino. Both models simulate propagation of a flooding front, either over a broad area of interest 

(ADCIRC) or at the facility scale (Neutrino). While both models operate on distinctly different 

spatiotemporal scales, they can interact meaningfully by having ADCIRC provide boundary conditions for 

Neutrino runs. To do so requires bridging the gap between them in spatiotemporal scales, a disparity we 

have addressed by improving the local spatial resolution of large-scale ADCIRC meshes within a 

subdomain.   

 

With respect to coupling, two case studies have been developed and used to evaluate the approach: 

 

(1) Pseudo One-Dimensional Test Case, a highly idealized problem previously reported in the literature 

and used to evaluate the fidelity of the movement of the wetting and drying fronts produced by large-scale 

ocean circulation models. 

 

(2) Alligator River National Wildlife Refuge, a more realistic study area located on North Carolina coast, 

with surrounding topography that is relatively smooth and vulnerable to flooding. 

 

Though local in the context of this study, the results at the Alligator River site were produced by large-

scale storm surge simulations on validated finite element meshes, in this case NC FEMA Mesh Version 

9.98, produced through the North Carolina floodplain mapping program by the ADCIRC development 

group. This particular mesh, for instance, models a domain that encompasses the western North Atlantic 

Ocean, the Caribbean Sea, and the Gulf of Mexico. It consists of 620,089 nodes and 1,224,714 elements 

and has a steady open ocean boundary condition along its eastern edge. 

 

With respect to data exchange between models, we have developed and implemented Python scripts 

that make use of ADCIRC solution outputs to produce inputs for Neutrino.  A one-way handoff between 

the two models allows for the ADCIRC (subdomain) simulation to be run to completion before beginning 

the Neutrino simulation. Considering the difference between the formats of ADCIRC outputs and Neutrino 

inputs, ADCIRC solutions are mechanically translated into a format that is compatible with Neutrino inputs 

(see Appendix A). 

 

Verification and validation.  Coupling between a full domain and subdomain in ADCIRC is shown 

to be mathematically equivalent to ADCIRC itself through a combination of informal proofs (Baugh et al., 

2015) and a static verification technique using state-based formal methods (Baugh and Altuntas, 2018; 

Baugh and Dyer, 2018). To explore implementation choices and ensure soundness, we made use of Alloy 

(Jackson, 2012), a declarative modeling language with tool support and an automatic form of analysis 

performed within a bounded scope using a SAT solver. Using Alloy, we have modeled finite element 

domains and simulations on them so we can experiment with and reason about the type of boundary 

conditions that might be imposed on subdomain runs. The approach allows us to draw useful conclusions 

about implementation choices and guarantees about the subdomain modeling extensions, that it is 

equivalence preserving. 

 



   

123 
 

6.7. Relationship within the Overall Project 

 

ADCIRC models can produce highly accurate simulations, but they are computationally expensive, 

making them impractical for iterative design scenarios that seek to evaluate a range of hypothetical 

engineering design and failure scenarios of levees and other protective structures.  As a result, and to support 

other components of the IRP project, it is particularly important to have accurate and efficient deterministic 

simulation approaches that can inform and feed into probabilistic risk assessments. 

 

At the broadest level, deterministic simulations of this type are essential components in probabilistic 

frameworks like JPM-OS (Joint Probability Method with Optimal Sampling) that consider the full range 

and overall impacts of  potential flooding scenarios by including variations in storm parameters such as 

track, size, forward speed, and intensity (USACE, 2007).  At a more local level, these deterministic 

simulations are necessary if meaningful simulations of flooding are to be carried out at a nuclear power 

plant facility. 

 

Neutrino is an impressive tool, and one that is especially capable of this type of facility-scale 

assessment, and yet it must be informed by a larger context. Our work aims to provide boundary conditions 

for Neutrino from large-scale ADCIRC models to make Neutrino’s facility-level simulations more 

meaningful.  As a result, we have been working closely with Centroid Lab, and we are continuing to do so, 

in order to provide perspective and appropriate data for loading into Neutrino so that simulations can be 

carried out by their lab. 

 

6.8. Technical Findings 

 

We present a summary of our technical findings, highlights of our technical innovations, and 

implications of the work with respect to our objectives of enhanced spatial resolution of subdomain meshes, 

data libraries and reuse, ADCIRC-Neutrino coupling, and verification and validation. 

 

6.8.1. Enhanced Spatial Resolution of Subdomain Meshes 

 

Results of our three USACE case studies at Dyke Marsh Wildlife Preserve, Ike Dike, and New York-

New Jersey Harbor and Tributaries show that subdomain modeling provides computational savings of as 

much as 83 percent, depending on the site and the size of the subdomain used.  To compare subdomain 

(SD) solutions with equivalent full domain (FD) solutions in cost and accuracy, without-project full domain 

meshes (spatially unrefined and refined versions) are used to obtain boundary conditions using a simulation 

time step of 50 seconds. This interval is selected to satisfy the recommendation that, for subdomain models, 

boundary conditions should be recorded at intervals of around or less than one minute in time. This output 

is used to enforce the boundaries of subdomains generated from refined with-project full domains. ADCIRC 

solutions are then generated for these subdomains and compared against corresponding full domain 

solutions (see Figure 6.1).  
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Figure 6.1: (1a) use unrefined without-project full domain or (1b) refined with-project full domain to (2) 

generate subdomain boundary conditions at a user defined interval of less than one minute (in our case 50 

seconds), (3) the subdomain simulation is performed and compared against corresponding full domain 

solutions. 

 

These comparisons indicate that, for studies without multiple, spatially distributed flood control 

structures, subdomain modeling can produce solutions within model tolerance levels of 15 to 30 cm. For 

studies incorporating more than a single flood control measure, subdomains must be generated that are large 

enough to encompass all structures, along with several layers of elements between the structures and the 

subdomain boundaries. These larger subdomains result in a decrease in computational savings unless flood 

control structures are spatially close enough together to be accommodated in smaller subdomains and still 

result in solutions within model tolerance levels. 

  

In general, our results support the use of the smallest possible size of subdomain for case studies such 

as the Dyke Marsh, which are geographically isolated and incorporate relatively small project alternatives, 

e.g., on the order of several miles.  Where possible, smaller subdomains produce results that are more 

accurate and with greater reductions in computational effort, a savings of at least 50 percent when compared 

with the standard ADCIRC workflow. There is only an incremental benefit in solution quality when starting 

from the refined without-project full domain to generate subdomain boundary conditions, as opposed to 

starting from the unrefined without-project full domain. This benefit, though small, is likely a result of the 

refined without-project full domain a) having enough resolution so there is less changed when a project is 

inserted, and b) incorporating the higher resolution bathymetry data used in subsequent subdomain runs. 

For larger project alternatives, e.g., those on the order of tens of miles, such as those incorporated in the Ike 

Dike case study, our results show that the most effective subdomain is one that encompasses the project 

with a distance between the subdomain boundary and project site of at least one-and-a-half times the span 

of the project itself.  The largest sized subdomain used in the Ike Dike case study produces solutions that 

are accurate within model tolerance levels and have a computational savings of about 36 percent, compared 

with the standard ADCIRC workflow. 

  

On problems like the NY-NJ HATS case study, which incorporate multiple, spatially distributed flood 

control structures, solution quality is well outside of model tolerance levels. Since the largest subdomain 

considered in this case study is smaller than the smallest subdomain in the Ike Dike case study, choosing a 

larger subdomain size could prove beneficial, though at the cost of a further reduction in the computational 

benefit, which we estimate to be about 36 to 39 percent.  Even on these more challenging problems, 
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however, subdomain modeling could be used as a screening tool for eliminating project alternatives from 

further consideration, and their full domain simulations, since they provide sufficient accuracy to determine 

whether or not project alternatives are able to meet performance objectives. In addition, subdomain 

modeling could be used in such cases as a means of analyzing the interaction of various flood control 

measures with each other. 

  

Our results show that subdomain modeling can be a beneficial tool that substantially reduces 

computational cost, and that ex post facto refinements to subdomains can be made to bring modeling results 

closer to the facility scale needed by tools like Neutrino.  Its use, however, requires engineering judgment, 

and projects with multiple, spatially diverse protection measures over a large area see less computational 

benefit, though these are more typical of regional flood control strategies, in contrast with more local ones 

developed around nuclear power plant facilities. 

  

Guidelines for Computational Benefits and Subdomain Sizing 

  

Informed by these case studies above, we have developed a simple model for predicting the 

computational benefit achievable by subdomain modeling, based on the number of project alternatives 

considered, the number of nodes in a subdomain mesh, and the number of nodes in a full domain mesh. 

Development of such a relationship for automatically determining subdomain size and placement, however, 

is a more challenging issue. An a priori approach for subdomain sizing based on case study characteristics, 

e.g., bathymetry, project size, and storm features, would require a more concentrated effort that looks at a 

larger range of case studies to develop empirical guidelines, potentially using machine learning techniques. 

  

Until such a study is conducted, however, it is nevertheless practical to generate subdomains of a variety 

of sizes, simultaneously, without any additional computational cost. As demonstrated by the current study, 

selection of multiple subdomains would only result in an incremental increase in data produced by an 

already low-cost workflow. This approach results in the user having a range of subdomain sizes, such that 

the user can force the selected domains with data from the first storm event, and then converge on the most 

appropriate subdomain size before forcing other subdomains with data from the remainder of the storm 

events. 

 

6.8.2. Data Libraries and Reuse 

 

Our approach to storm surge simulation introduces three modeling scales with one-way interactions 

between them: ocean, subdomain, and facility scales. At the subdomain scale, boundaries are defined far 

enough away from a nuclear power plant facility to be hydrodynamically independent of any design or 

failure scenarios, but close enough to reduce computational effort by eliminating substantial parts of the 

ocean domain from each subdomain simulation. Doing so enables the creation of validated datasets, 

libraries consisting of spatially varying time series of water surface elevations, depth-averaged velocities, 

and wet/dry status along subdomain boundaries. 

 

The approaches we consider are based on a cubic spline interpolation of water surface elevations and 

velocities. As an example of possible approaches, Figure 6.2 shows an actual, high resolution time history 

of elevations, η(t), for a two-hour period (in red), with standard ADCIRC output produced on the half-hour 

(black dots). The corresponding node is located near shore, and superimposed on the hydrograph is a 

shallower, higher frequency component with a period of about 30 minutes.  

 

We note that a straightforward use of the available output with linear interpolation would mean that, 

between sample points A and B, the most substantial portion of the elevation forcing would be “clipped”, 

resulting in an under-prediction of its surge effects, when used as a subdomain boundary condition. If the 

maximum water surface elevation η(t*) is available (the open dot), however, it can be inserted into the time 
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series. Three possible cubic spline interpolation functions S are shown. Of the three, the best fit is obtained 

when η(t*) is inserted, so long as a condition S′(t∗) = 0 is also added (in black). By way of contrast, if the 

derivative at t* is not forced to be zero (in blue dots), the actual maximum is exceeded by spline S, and if 

the maximum η(t*) is not inserted at all (in green dashes), the elevation forcing is still under-predicted, but 

is nevertheless a modest improvement over linear interpolation. We also note that using the recommended 

post-processing approach, we are able to recover boundary conditions that would be available from data 

with a temporal resolution of 5 minutes as opposed to 30 minutes. 

 

 
 

Figure 6.2: Water surface elevation forcing on a boundary node using different interpolation techniques. 

The cubic spline hydrographs are interpolated from water surface elevations that are sampled every half 

hour, with and without maximum elevation. 

 

In comparing the best cubic and linear approaches, SMC+ and SML+, we find that in all cases cubic 

interpolation substantially outperforms linear interpolation. However, the absolute performance of the 

SMC+ approach still depends on the nature of the problem being simulated, whether simple or more 

complex, and whether boundary or meteorological forcing is used. In the idealized inlet case, the CDF 

curves for water surface elevation are nearly the same for the cubic approaches, and likewise for the linear 

ones, whether or not the maximum surface elevations are inserted; this is because the M2 tidal constituent 

is the only boundary forcing and the bathymetry is simple, with no wetting and drying involved, and this 

results in simpler hydrographs that are easier to recover without making use of the maximum water surface 

elevations. 

 

For more complex situations, the performance of the SMC+ approach is affected by other factors, 

such as oscillations due to edge waves and ADCIRC’s wetting and drying algorithm. The Cape Hatteras 

case is an example in which the process of edge waves form over a four-hour period at 30-minute intervals. 

The long gravity waves imposed by the atmospheric pressure system propagate to the coastal area and are 

trapped by the bathymetry, at which point they degenerate into a series of smaller scale longshore edge 

waves. This process starts early on and lasts until the hurricane makes landfall. By extending subdomain 

boundaries further out into the ocean, the effects of the edge waves can be contained, resulting in better 

performance of the SMC+ approach. Although the expansion of the subdomain area requires more 

computational resources, the use of oblong or other specially shaped subdomains can effectively reduce the 

demand on computing resources. By positioning more boundary nodes further from the coastline, better 

results can be obtained within the same computation time. 
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6.8.3. ADCIRC-Neutrino coupling 

 

With respect to prototype development and coupled simulations, our approach starts simply, 

beginning with relatively smooth terrains, with the expectation that future work will draw on the lessons 

learned here to develop more complex case studies, potentially adding topographic variety, protective 

structures, and additional realism to capture hydrodynamic behavior around nuclear power plant facilities. 

 

Pseudo One-Dimensional Test Case.  This case study follows Luettich and Westerink (1995) and 

subsequently Dietrich et al. (2004) and is chosen as a simple test case with linear bathymetry before moving 

on to more complex test cases with complicated bathymetric profiles. In their study, Dietrich et al. (2004) 

develop and present a nearly frictionless version of the true 1D test case simulated in their 1D 

implementation of ADCIRC. Without access to a stable 1D implementation of ADCIRC, we follow 

Dietrich et al. (2004) by developing a pseudo-one-dimensional test case that can be simulated in the 

standard 2D implementation of ADCIRC.  

 

Following Dietrich et al. (2004), the problem has the following parameters: a linear slope, a width of 

10 m, an undisturbed length of 24 km, a bathymetric depth at the open ocean boundary of 5 m, a grid 

spacing of 10 m, a time step of 0.5 s, and a tidal forcing amplitude of 0.25. The bottom friction parameter 

cftau and the continuity equation parameter G are set to 0.001, and the wetting and drying parameters Hmin 

and Umin are set to 0.01. Flow is imposed only in the x-direction, and an 80-m subdomain is selected 

toward the shallow end of the full domain. Elevation and velocity time series at relevant stations/gauges 

that are output every 10 s for a duration of 10 min. These outputs are passed through Python scripts that 

translate data into a format suitable for Neutrino to use as inputs. A second mesh is developed with all 

parameters left constant except for an increase in mesh resolution from 10 m to 5 m. 

 

Alligator River National Wildlife Refuge.  The study area features a smooth terrain located in 

eastern North Carolina along the Atlantic Coast (Figure 6.3a). We select an area of 103 m x 116 m to refine 

to a grid spacing of 10 m. This area of interest is located near the Alligator River National Wildlife Refuge 

in a low-lying part of the domain that is vulnerable to flooding (Figure 6.3b) and forced by meteorological 

input data from Hurricane Isabel (2003). We define 48 boundary nodes at about 10 m apart around an area 

where the Neutrino domain is to be located. The area starts dry and floods in a 2-day simulation, from which 

we extract 90 s of output data for Neutrino at 5 s intervals. These data values are passed through the Python 

script and converted to a format suitable for use as input for Neutrino.  

 

 
 

Figure 6.3: (a) Location of Alligator River National Wildlife Refuge and (b) a finite element mesh refined 

and laid over an area of interest located near the Alligator River National Wildlife Refuge 
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Together, these case studies provide a basis for a methodology of one-way coupling between ADCIRC 

and Neutrino that can inform additional, more complex, case studies in the future. 

 

Results and Observations.  Presented here are results from our efforts to implement and validate a 

coupling methodology for ADCIRC with Neutrino. In what follows, we provide both quantitative and 

qualitative comparisons between results from ADCIRC simulations and results from corresponding 

Neutrino solutions. 

 

We begin with the Alligator River case study, and show side-by-side qualitative comparisons between 

ADCIRC solutions and Neutrino solutions. Figures 4 through 6 represent the status of the flooding front at 

particular snapshots in time in ADCIRC (left) and Neutrino (right). 

 

At a point 20 s into the simulation (Figure 6.4), ADCIRC has inundated more of the domain, in 

comparison with Neutrino, where a faint flooding front can be seen aligned along its boundaries below and 

to the right.  In ADCIRC, the flooding front is moving diagonally from the southeast to the northwest; in 

Neutrino, the shape of the front is clearly affected by the shape of its boundary, presumably indicating a 

problem with the way in which boundary conditions are being imposed in the smoothed particle 

hydrodynamics code. 

 

 
 

Figure 6.36: ADCIRC output (left) and Neutrino output (right) 20 seconds into the simulation.  The 

ADCIRC image includes velocity direction (black arrows) and boundary input (red dots) used by the 

Neutrino domain. 

 

At about 30 s into the simulation (Figure 6.5), the ADCIRC domain is about halfway inundated and 

continues to maintain a nearly linear wetting front, whereas about a third of the Neutrino domain is 

inundated; its wetting front continues to reflect the shape of its domain.  At about 65 s into the simulation 

(Figure 6.6), the ADCIRC is nearly fully inundated, and the Neutrino front continues to lag a bit. 
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Figure 6.37: ADCIRC output (left) and Neutrino output (right) 30 seconds into the simulation. 

 

Figure 6.38: ADCIRC output (left) and Neutrino output (right) 65 seconds into the simulation. 

 

In each of the snapshots, Neutrino shows a flooding front entering the domain from the southern and 

eastern boundaries in a way that seems to reflect the shape of the domain.  Further into the simulation, it 

also seems to create an unusual artifact, an oblong build-up of water on a diagonal from the southeast corner 

of the domain to the northwest corner of the domain, which does not appear in ADCIRC output. In order 

to better understand the reason behind these discrepancies, we take a step back to the simpler pseudo-one-

dimensional case study. 

 

In the pseudo-one-dimensional case study, similar to Dietrich et al. (2004), the ADCIRC tides-only 

simulation on this domain results in minimums in water surface elevation (of about -0.3 m) when the wetting 

and drying front is 18.7 km into the domain. These results agree with Dietrich et al., which report the same 

minimum elevations and movement into the domain, though with marginally different timing, probably as 

a result of the respective differences in the models used.  Similarly, maximum elevations (of about +0.3 m) 

occur when the wetting and drying front is 21.2 km into the domain. These results are again in agreement 

with Dietrich et al., with marginal differences in timing. 
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The discrepancies in the times to reach minimum and maximum elevations between our results and 

those of Dietrich et al. may be due to (1) the fact that we are capturing two-dimensional physics in our use 

of the production version of ADCIRC, as opposed to the simplified 1D model used by Dietrich et al., and 

(2) the selection of the lateral eddy viscosity parameter. The lateral eddy viscosity parameter plays a crucial 

role in 2D ADCIRC by allowing either slower or more rapid inundation, depending upon the selected value, 

and its relationship with similar parameters in Neutrino requires further study to see if better agreement 

may be had by doing so, either on the ADCIRC or the Neutrino side. 

 

Continuing with the pseudo-one-dimensional case study, when comparing ADCIRC solutions with 

Neutrino at a particular time step (Figure 6.7), water surface elevations in Neutrino are about 28 percent 

lower earlier in the domain, and the gap between ADCIRC solutions and Neutrino increases progressively 

from about 54 percent lower at 20.55 km into the domain, to 98 percent at 20.56 km, and finally to 100 

percent at 20.57 km. 

 

 

 
Figure 6.7: Comparison of ADCIRC and Neutrino water surface elevations at various points in pseudo-

one-dimensional case study. 

 

Discrepancies between ADCIRC and Neutrino in the pseudo-one-dimensional case study indicate the 

need to better understand the quantitative relationships between the modeling parameters used in Neutrino 

and ADCIRC (e.g., lateral eddy viscosity, bottom friction, and tidal amplitude).  In addition, the notion of 

state captured in shallow-water models like ADCIRC is not easily transferred as boundary conditions to a 

smoothed particle hydrodynamics code, which is being asked to handle arbitrary flow behavior along its 

boundaries.  Like most SPH solvers, Neutrino only handles the creation of fluid particles on one side of a 

boundary and does not have the ability to handle arbitrary backflows, time dependent changes in the 

magnitude and direction of velocities along its boundaries, and so on. Further work may be needed to 

advance the state of the art in handling arbitrary boundary conditions in SPH codes. 

 

6.9. Highlights of Technical Innovations 

 

Beyond the broader innovations already described, we note the following concrete contributions made 

during this project. 
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A priori predication of computational benefits of subdomain modeling. We develop an empirical 

relationship for percent reduction in computational cost achievable by subdomain modeling based on 

comparisons of computational costs associated with the standard ADCIRC workflow and those associated 

with the subdomain modeling workflow. The relationship is a function of the number of alternatives being 

considered (𝑁), the number of full domain nodes (𝑛𝑓), and the number of subdomain nodes (𝑛𝑠). With this, 

the percent reduction achievable by subdomain modeling can be obtained. 

 

Internal weirs in subdomains. ADCIRC supports several types of internal and external boundary 

conditions types. Prior to this research effort, subdomain modeling lacked the capability to accommodate 

island boundary conditions and internal weir boundary conditions. These boundary condition types are 

regularly used (in the case of the island boundary condition type) to denote islands, and (in the case of 

internal weirs) to represent project alternatives considered by United States Army Corps of Engineers 

(USACE). Prior to this research effort, when generating subdomains, island boundary conditions or internal 

weir boundary conditions would result in an error rather than a successful simulation.  This research effort 

involved enhancing and refining subdomain modeling scripts to incorporate island and internal weir 

boundary condition types.  

 

Smoothing and interpolation for subdomain modeling. Prior to this research effort, subdomain 

modeling could not accommodate reuse of existing full simulation datasets, which are only available at 15- 

or 30-min intervals, where subdomain simulations traditionally require boundary conditions at an interval 

of about one minute or less.  This research effort resulted in the improvement of subdomain modeling 

scripts to include the recommended cubic spline interpolation with maximum surface elevation to generate, 

from existing archived full simulation solutions, subdomain boundary conditions using this interpolation 

technique. 

 

Scripts for converting ADCIRC output to Neutrino input. ADCIRC deals with large-scale finite 

element simulations where domains are in geographic coordinates and simulation run times are on the order 

of several days. On the other hand, Neutrino deals with mesh-free simulations at facility-level scales where 

domains are in cartesian coordinates and simulation run times are on the order of several minutes. 

Considering the difference between the formats of ADCIRC outputs and Neutrino inputs, we have 

developed a Python script as a method of communication between two different models with two different 

paradigms. This script serves to take ADCIRC outputs and convert them to a format suitable for use as 

input for Neutrino. 

 

Validation of correctness models. To support the verification of scientific software, we developed a 

web-based visualizer for state-based formal methods called Sterling.  As an interface for lightweight tools 

like Alloy, it provides advanced visualization capabilities that address the shortcomings of existing 

approaches and includes the ability to visualize the types of dynamic and spatial relationships that are 

needed for modeling scientific software.  

 

6.10. Implications of the Work 

 

The demonstrated ability of subdomain modeling to reduce computational cost led initially to an 

internship opportunity and ultimately to a staff research position for PhD student Fatima Bukhari with the 

US Army Corps of Engineers at its Engineering Research and Development Center (USACE-ERDC).  Her 

position with USACE-ERDC is based on this work, which she is now presenting to others at the center via 

team talks and other collaborations within the center. 

 

In addition, beyond this personal recognition, USACE is now undertaking an initiative to incorporate 

our subdomain modeling approach in its regular workflow so that computational resources can be reduced 
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while maintaining solution quality.  In USACE’s current workflow, project alternatives are defined by 

large-scale ADCIRC grids that differ locally in a geographic region of interest. These project domains are 

forced by thousands of selected storms, and individual ADCIRC simulations are performed on each of 

them. This results in thousands of full domain ADCIRC simulations per project alternative, after which the 

results are analyzed and archived on a server. The running and archiving of these simulations results in a 

significant burden on computational resources, which are expected to be reduced by incorporating 

subdomain modeling and its approach to reuse in the workflow. 

 

With respect to software verification, our Sterling tool has been adopted as the primary visualization 

interface for Forge, a language built for teaching formal methods and model checking. Forge and Sterling 

were used as the primary teaching tools in the Spring 2020 Logic for Systems undergraduate course in the 

Computer Science department at Brown University. 

 

6.11. Path Forward 

 

We describe future directions with respect to our objectives of enhanced spatial resolution of 

subdomain meshes, data libraries and reuse, ADCIRC-Neutrino coupling, and verification and validation. 

 

Enhanced spatial resolution of subdomain meshes. In all test cases, a sampling interval of 50 

seconds is used for recording boundary conditions for subdomain simulations. Conducting similar 

experiments with a broader range of sampling intervals, both smaller and larger than 50 seconds, would aid 

in providing a clearer relationship between computational savings and quality of subdomain solutions. A 

repetition of these experiments with additional variety of subdomains could also prove fruitful. In addition, 

future studies might benefit from a wider variety of real-world test cases, from which a wider range of 

subdomain sizes could be generated and subjected to a broader range of sampling intervals for recording 

subdomain boundary conditions. This would provide the tools necessary to develop an empirical 

relationship for subdomain sizing based on case study characteristics. Finally, further exploration is 

warranted for case studies with multiple flood control structures that are close together and case studies 

with multiple flood control structures that are spatially separate. 

 

In addition, in depth evaluation of subdomain modeling indicates that it produces solutions within 

model tolerance levels and has resulted in the development of an empirical formula for the computational 

benefit achievable by subdomain modeling. However, further investigation is necessary to develop 

guidelines for subdomain sizing based upon case study characteristics. 

 

Data libraries and reuse. The results of our smoothing approach for reusing large-scale datasets are 

representative in the sense that subdomain boundaries are sized and placed without consideration given to 

the hydrodynamic particulars of nodes appearing on subdomain boundaries. Additional improvements in 

accuracy, however, could be obtained by treating the creation of subdomains as a modeling exercise, 

looking for boundary placements that avoid regions with more complex hydrodynamics and higher 

frequency components. Because such assessments can be made a priori, future work could focus on an 

additional post-processing step that optimizes subdomain boundary placement. 

 

ADCIRC-Neutrino coupling.  A prototype approach for handing off data between ADCIRC and 

Neutrino has been developed but needs further work. Preliminary models and a comparison of results 

suggests a follow up study that would look more carefully at the physical parameters and types of boundary 

conditions employed by SPH solvers to better match anticipated coastal flooding scenarios.  In addition, 

because our experiments began by focusing on relatively smooth terrains and simplified domains, future 

work might successively add complexity by including more topographic variety; protective structures, such 

as levees or dune systems; variations in storm parameters such as track, size, forward speed, intensity; and 

finally, additional realism to mimic hydrodynamic behavior around nuclear power plant facilities. 
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Verification and Validation. As we have noted, subdomain modeling has been shown to be 

mathematically equivalent to ADCIRC through a combination of informal proofs and static verification 

techniques using state-based formal methods, but much additional work remains on the topic of software 

quality in scientific arenas.  Despite broad and recognized impacts, meeting quality and reproducibility 

standards is a growing concern, as is productivity.  Not merely anecdotes, numerous empirical studies of 

software thwarting attempts at repetition or reproduction of scientific results have been cataloged, along 

with their concomitant effects, including a widespread inability to reproduce results and subsequent 

retractions of papers in scientific journals.  

 

6.12. Conclusions 

 

Assessing the vulnerability of nuclear infrastructure to hurricane storm surge requires both high-

fidelity simulations and a methodology that accommodates the spatiotemporal scales over which hurricanes 

operate. Our approach introduces three modeling scales with one-way interactions between them: ocean, 

subdomain, and facility scales.  For ocean and subdomain scales, we make use of the parallel, unstructured-

grid finite-element hydrodynamic code, ADCIRC, and for the facility scale, the mesh-free SPH model, 

Neutrino. 

 

We address both modeling and data exchange concerns, as well as the gap in resolution between 

typically the coarsest Neutrino and finest ADCIRC models.  The need for spatial—and therefore temporal—

refinement of large-scale ADCIRC simulations is made practical through the use of subdomain modeling.  

These questions are explored within the context of three real-world case studies provided by the USACE 

Engineering Research and Development Center (ERDC) in Vicksburg, MS.  The sites are located along the 

Atlantic and Gulf coastlines of the United States, and each has differing characteristics, with project 

alternatives varying in size from on the order of several miles long to tens of miles long, and with both 

single and multiple, simultaneous project alternatives considered. Our study shows that subdomain 

modeling can in fact accommodate enhanced ex post facto refinements, and thereby reduce computational 

effort substantially, making more practical the use of large-scale storm surge models in an iterative design 

scenario. 

 

In cases where the need for subdomain modeling is unanticipated at the time simulations are originally 

performed, a post-processing step in the workflow has been developed so that existing, archived results can 

be reused.  We show that the coarse output ordinarily produced by ADCIRC still allows for subsequent 

localized simulations of high quality when the datasets are post-processed using the techniques we describe. 

Of those considered and evaluated, cubic spline interpolation works best at recovering water surface 

elevations and velocity time histories, and modest additional improvements can be had when maximum 

water surface elevations are available, as they typically are in ADCIRC output.  Such an approach results 

in the recovery of boundary conditions with a quality comparable to those obtained from temporally more 

refined datasets.  The approach enables a workflow that accommodates the construction, maintenance, and 

reuse of large-scale simulation libraries.   

 

Our coupling approach is based on a one-way handoff of data from ADCIRC to Neutrino, and tested 

within the context of a pseudo one-dimensional problem and a more realistic case study at the Alligator 

River National Wildlife Refuge.  These studies start from validated, large-scale ADCIRC simulations, 

which produce results that are then converted to a suitable format for Neutrino using a Python script for 

data exchange.  Preliminary datasets from both case studies have been developed and provided to the 

Centroid Lab, which has successfully loaded them into Neutrino and performed the corresponding 

simulations. Comparisons between the ADCIRC and Neutrino solutions indicate a need for further scrutiny 

and study of the quantitative relationships between ADCIRC and Neutrino modeling parameters.  Further 
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sensitivity studies are suggested for exploring these relationships and the nature of the boundary conditions 

supported by SPH solvers like Neutrino. 
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7. Flooding Model Validation Experiment 
 

7.1. Introduction 

 

The safe production of power from nuclear facilities has always been a concern. In 1975 the NRC was 

established to protect public health and safety relating to nuclear energy.  One of the risk areas addressed 

by the NRC is that of flooding. Several guides and evaluation methods have been published over time by 

NRC to assist commercial nuclear facilities in verifying and improving flood safety. In 2008 the Regulatory 

Guide 1.200 (https://www.nrc.gov/docs/ML0904/ML090410014.pdf) describes methods to meet technical 

adequacy for PRA models, including internal and external flooding. Just before the Fukushima Tsunami 

event of 2011 NRC published “Design-Basis Flood Estimation for Site Characterization at Nuclear Power 

Plants in the United States of America.” (https://www.nrc.gov/docs/ML1132/ML11321A195.pdf). This 

NRC document outlines the different types of flooding hazards and the process to evaluate the risk of each. 

After determining the frequency of various events, the effects of those flooding events need to be evaluated. 

The growth in computer power has enabled the development of advanced predictive modeling, referred to 

as high fidelity modeling. The capabilities of high-fidelity modeling ultimately enable engineers develop 

better understanding of the behavior of complex systems, based on multi-scale multi-physics simulation. 

This understanding will translate into evaluating current designs and optimizing protective measures. 

Realizing these benefits however continues to be handicapped by the conventional nature of the validation 

process and how to account for uncertainties.  

7.2. Requirements 

 

There are seven main categories for flooding at nuclear facilities identified by the NRC:  

• Local Intense Precipitation (LIP) 

• Stream & River Rise Flooding 

• Dam Failure 

• Storm Surge 

• Wave (Rouge, Tsunami, Seiche) 

• Pipe Rupture 

• Ice-Induced Flooding 

Each nuclear facility has different items that it is susceptible to and must have assessed each risk. First 

the facility evaluates the likely hood of events in the categories. If the risk is significant, then further analysis 

is performed by developing probable flooding scenarios. Conservative estimates are often used in these 

stages to make sure that uncertainty and other unknowns do not jeopardize the safety of the plant. Because 

of this conservatism, some scenarios may have misleading importance and require mitigation efforts. To 

avoid unnecessary and costly plant modifications, a detailed flooding analysis can be performed using 

several tools available to the utilities. The development of advanced predictive modeling, referred to as 

high fidelity modeling, with high levels of accuracy as compared to legacy codes. The premise of high-

fidelity modeling is that it will ultimately enable engineers develop better understanding of the behavior of 

complex systems, based on multi-scale multi-physics simulation. However, this requires these tools to be 
relevant and validated for the key aspects of the scenarios being evaluated and a methodology for 

determining the confidence level when using multiple tools and crossing different domains. Facilities can 

https://www.nrc.gov/docs/ML0904/ML090410014.pdf
https://www.nrc.gov/docs/ML1132/ML11321A195.pdf
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now evaluate fields such as impact forces, water or wave height, debris flow, and splashing using these 

advanced tools such as the SPH approach used in Neutrino and outlined in this report. 

With these new capabilities available, a good framework for validation and evaluating the uncertainty 

between tools needs to be available as well. Which tools can be used in the different scenarios, what 

confidence level do they provide, and how does the confidence from individual codes or methods combine 

to give and overall confidence level? 

Historically evaluating flooding risk and protection methods involved data gathering and then expert 

judgment. While we will never and should never, fully eliminate the need of human expertise, by following 

a proper methodology and using these maturing technologies, comes the opportunity to minimize errors 

and conflicts in expert judgement. Other modeling and simulation strategies have shown a “Human In The 

Loop” approach is the most effective. In summary, the validation methodology outlined in this report allows 

for the following key capabilities: 

• Site specific adjustments  

• Varied detail level  

• Scaling of validation data and uncertainties  

• Simulation features uncertainty 

• Multi-Stage uncertainty propagation 

 

Figure 7.1 Proposed Validation Pyramid for Flooding Scenarios. 

 

7.3. SPH Simulation Code 

 

While performing validation studies of Neutrino code and the underlying SPH fluid models, we 

obtained insights on key limitations faced by the Neutrino code version currently in use. In this section, we 

describe the main enhancements and developments made during the project implementation to the Neutrino 

code and SPH fluid model, in relation to the modeling of external-flooding scenarios. A large part of the 

investigation and enhancements done were collaborative work with, on fluid-solid interaction capability, 

the COSMER laboratory at the University of Toulon and, on coupling with shallow-water model, the 

Department of Civil, Construction, and Environmental Engineering at North Carolina State University, the 
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Department of Mathematics at Boise State University, and the Idaho National Laboratory. We emphasize 

that most of the simulations run during the project did not benefit from these enhancements. 

7.3.1. Wall boundary handling and fluid-solid interaction 

 

Accurate fluid-solid interaction is crucial to account for debris impact and push further the flooding 

risk assessment. Neutrino code incorporates a rigid-body solver and two-way couples it with the SPH fluid 

solvers. However, we noticed difficulties to simulate floating and sinking bodies in water, especially when 

the density ratio is close to 1, thereby advocating the need to enhance the wall boundary handling and fluid-

solid coupling. 

There are two wall conditions imposed in the SPH fluid model: a slip condition and a pressure 

condition. Correct choices of conditions and proper impositions are important to obtain reliable pressure 

forces and friction forces. Initially, we were imposing a partial-slip condition and, for the pressure field, a 

homogeneous Neumann condition. However, both are problematic. Firstly, the partial-slip condition 

requires tuning a numerical parameter to decide on how much friction is applied to the fluid, and it is not 

clear what would be a suitable default value for this parameter. Secondly, the homogeneous Neumann 

condition on the pressure field neglects the acceleration of the solid body and effects due to all non-pressure 

forces (from gravity and viscosity, in particular). To overcome these limitations, we added a no-slip 

condition, that does not require any numerical parameter and could serve as a default setting, and we 

replaced the pressure wall condition by a non-homogeneous Neumann condition, accounting for the solid-

body acceleration and the non-pressure force effects. 

The way the Neumann boundary conditions are imposed was also problematic. We were using a 

mirroring technique, which is computationally very efficient and consists in, in the SPH particle-particle 

interactions, “mirroring” fields from the fluid particle to the boundary particle. Investigating the impacts 

on particle pressures and pressure forces on a hydrostatic test case, we noticed that this technique yields 

significantly over-estimated fluid pressures near the boundary, and especially at the corner of the fluid-solid 

interface. We decided to implement and use instead an extrapolation technique based on Shepard’s method; 

we observed that the hydrostatic solution is correctly reproduced, while still retaining the computational 

efficiency [Gartner, Montanari, Richier, Hugel, Sampath, 2019]. 

 

Figure 7.2. Evolution of particle pressures over depth for the analytical hydrostatic solution, Neutrino 

with pressure mirroring and homogeneous Neumann boundary condition, and Neutrino with pressure 

extrapolation and non-homogeneous Neumann boundary condition. 
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We tested it further on dynamic test cases, such as a falling sphere in water, to which we derived an 

approximate solution based on added mass and velocity damping [Gartner, Montanari, Richier, Hugel, 

Sampath, 2019]; the results are encouraging but show that attention on numerical-parameter setting (choice 

of smoothing kernel, interaction radius, etc.) is required, at least at coarse resolution, to reproduce the 

expected dynamic behavior. We realized a few other, more minor enhancements, such as: more choices of 

smoothing kernels (quartic B-spline, quantic B-spline, quantic Wendland); and a better time-step 

synchronization between the SPH fluid solver and the rigid-body solver. 

Efforts were also made on handling negative relative pressures (with respect to atmospheric pressure), 

which may occur at the back-side of a solid body past the flow. It is challenging to design a SPH fluid 

model that can deal with negative pressures for, mainly, three reasons: inter-particle pressure forces may 

become attractive instead of repulsive, causing occurrences of the so-called tensile instability; the 

imposition of the dynamical condition on pressure at free-surface, relative pressure = 0, becomes 

challenging; and the matrix of the pressure Poisson equation loses interesting properties, such as the 

diagonal dominance, some of which are requirements for the convergence of the linear-system solver 

implemented in Neutrino. Although we were able to find a partial solution and to obtain encouraging results, 

we have not been able yet to device a suitable method, that solves all three sub-problems simultaneously 

and in a robust and stable manner, to handle the negative pressures. 

 

Figure 7.3. Speed and absolute error over time for the falling sphere in Neutrino against an approximate 

solution based on added mass and velocity damping. We tested two numerical settings, which differ in the 

choice of smoothing kernel (cubic B-spline or quantic B-spline) and the ratio between interaction radius 

and particle size. 
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7.4. Topography and coupling with shallow-water models 

 

Preliminary work has been done on a one-way coupling from shallow-water models to 3D Navier-

Stokes SPH models in Neutrino, resulting on a proof-of-concept of the methodology [Montanari, Sampath, 

Calhoun, Prescott, Smith, 2018]. However, no rigorous validation study had been undertaken and not all 

necessary modeling tools to deploy it in the industry have been implemented yet. 

We implemented a new node, called Rigid Topography in Neutrino code [Montanari, Sampath, 

Calhoun, Prescott, Smith, 2018], that is specifically intended to model the solid surface of the ground or 

sea floor. It can produce a high-quality triangle-mesh of the solid surface from topography data by 

performing a 2D Delaunay triangulation. The triangle mesh is then sampled with boundary particles used 

in the SPH framework to model wall boundaries and impose the pressure wall condition and slip condition. 

We also added a mesh visualization based on the relative elevation.  

Topography data comprises elevations of the ground surface or sea floor at many locations. Similarly, 

simulation output data from shallow-water code consists of the water height and horizontal velocity fields 

sampled at different locations. Generally, these locations of topography data and shallow-water data are 

specified in latitude-longitude-height (LLH) coordinates defined for a given geodetic system, which 

approximates the Earth’s surface as a certain sphere or ellipsoid. We added the support of two widely used 

geodetic systems: the world geodetic system (WGS) 84, defined with respect to the average of stations all 

over the world and used by the global positioning system; and the North American datum (NAD) 83, 

designed to be particularly accurate for points on the North American Plate. Conversely, the much smaller 

scale of the simulation domains in Neutrino is more simply handled using 3D Cartesian geographic 

coordinates. One convenient choice is, for instance, the local north-east-up (NEU) coordinate system, which 

is defined on a local plane tangent to the Earth’s surface. Therefore, to make use of topography data and 

shallow-water data in Neutrino, we enabled converting the locations from an LLH coordinate system to a 

local NEU coordinate system. This conversion is a multi-step process; indeed, it also requires: an 

intermediate conversion to the Earth-centered, Earth-fixed (ECEF) geocentric coordinates, which 

correspond to a Cartesian system that is geocentric instead of being local; and a reference location to define 

the local NEU coordinate system. 
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Figure 7.4. Visualization in Neutrino of a topography mesh generated from topography data after 

geographic coordinate conversion and Delaunay triangulation. The color represents the relative elevation 

of the ground surface and sea floor with respect to the average elevation of the topography. 

We improved the method to couple from shallow-water code to 3D SPH fluid model. There were 

significant deviations between the flow rates prescribed by the shallow-water code and the ones modeled 

through the SPH particle representation in Neutrino, eventually causing large errors in the total mass and 

total volume simulated in Neutrino. The issue comes from the fact that the fluid height at the coupling 

boundary is unavoidably approximated as the closest multiple of particle size. To enforce the right flow 

rate, at each time step we apply an adjustment process in two steps: first, the flow-rate deviation is 

computed; then, the rate of particle emission is adjusted to account for the flow-rate deviation. If, at the 

coupling boundary, the number of fluid particles along the vertical direction is higher than the prescribed 

fluid height, then the rate of particle emission is decreased accordingly; conversely, if the number of fluid 

particles along the vertical direction is lower, then the rate of particle emission is increased by a right 

amount. We tested this coupling-method improvement on a tidal simulation run first using ADCIRC over 

a large domain then refined in Neutrino on a small subdomain and a 10-min time slice. The results show a 

superior behavior after adjustment, without any pseudo-oscillation-like evolution of the accumulated fluid 

volume error anymore. Note that it appears a drift, regardless the adjustment is used or not; the cause has 

not been clearly identified, but it could simply be an artefact coming from the approximations done when 

calculating the reference accumulated fluid volumes. 
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Figure 7.5. Fluid height, flow speed and flow rate over time in the tidal simulation for ADCIRC (input of 

the coupling) and Neutrino (output of the coupling) with and without adjustment. The flow rate, which 

combines fluid height and flow speed, is correctly recovered by adjusting the rate of particle emission 

(governed by the flow speed). 
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Figure 7.6. Absolute and relative accumulated fluid volume errors over time in the tidal simulation for 

Neutrino with and without adjustment. The errors are calculated with respect to the prescribed flow-rate 

time series; the reference accumulated fluid volume is estimated by integrating over time the prescribed 

flow rates and approximating using a Riemann sum with middle point rule. 

7.5. Turbulence modeling 

 

We incorporated a large-eddy simulation (LES) turbulence model to the SPH fluid models. It is a 

simple turbulent modeling based on a spatial filtering of the Navier-Stokes equations; it makes use of the 

mixing-length and turbulent viscosity concepts and is parametrized by the Smagorinsky constant.  

Such SPH-LES fluid models have been used to simulate with satisfactory results in coastal and ocean 

engineering. However, recent research demonstrated that several extra terms appear in the SPH equations 

when adopting the Lagrangian viewpoint (as conventionally done with SPH) and properly applying a spatial 

filtering to the Navier-Stokes equations [Montanari, Sampath, Calhoun, Prescott, Smith, 2018] [Di Mascio, 

Antuono, Colagrossi, Marrone, 2017]. It appears that some of these extra terms significantly affect the 

simulation accuracy, which strongly advocates towards the need to rework our SPH-LES model to account 

for it.  

7.6. Definition of validation experiment 
 

7.6.1. Basic Geometry 
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The experimental facility is based on a rectangular tank mounted on linear bearing to allow forcing 

in the horizontal direction by oscillating the entire tank. It is expected that this configuration will allow 

for many oscillations, thus enabling the acquisition of repeat iterations to obtain statistics of phenomena of 

interest.  This approach should prove more efficient in instrumenting and acquiring validation data than the 

traditional approach of running individual dam break runs (for example). 

The rectangular shape was chosen because this geometry is simpler and easier to build. The tank will 

also be wide enough to allow for significant 3D flows, as encountered in real situations. 

The choice of the forcing type (entire tank) instead of a more traditional wave paddle on one end was 

motivated by the following factors: 

• Better excitation (more control) than wave paddle type. 

• Can impart more energy to the fluid. 

• Could be used for studying seismic effects (on spent fuel pool or liquid metal/salt pool reactor) in 

the future, presenting a better investment of DOE resources. 

 

7.6.2. Principle of operation 
 

Unlike a dam break experiment, waves can be generated continuously by oscillating the whole tank 

as described above. The continuous operation will allow recording many datasets in a single run in order to 

obtain good statistical convergence of the data. This is possible only if the flow has returned to a similar 

initial state between each event. 

The design plans for a relatively long tank so that the 3D effects introduced by the obstacle are 

dissipated and the flow returns to 2D for the next event. Preliminary simulations will also play a key role 

in checking this aspect of the design. 

7.7. Preliminary Design with NEUTRINO 
 

7.7.1. Modeling tools 

 

We aimed to use neutrino in assisting in the design of the facility (determining its optimal dimensions, 

type of motions, etc).  Preliminary work focused on getting the software running and getting familiar with 

its functions. An example of dam break impacting a rigid body was computed following a tutorial: 

 
Figure 7.7. dam break impacting a rigid body configuration. 
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A rectangular tank was then modelled, and an external forcing was implemented. The waveform of the 

forcing is prescribed in Python programming language which allows a wide range of expression, including 

mathematical equation and conditional statements which can be varies as function of time during the 

simulation. For instance the expression:  

prop = vec3f(0,0,0.2*(math.cos(1.15*Scene.ElapsedTime)-1))  

oscillates the tank horizontally following a cosine function with an amplitude of 0.2 m and period of 

2π/1.15=5.464 s. 

 
Figure 7.8. Tank oscillation schematic. 

These first tests allowed checking that the wave phase velocity is in agreement with the theory for 

gravity waves in shallow water, given by the following dispersion equation:  𝜔2 = 𝑔𝑘 𝑇𝑎𝑛ℎ(𝑘ℎ). 

The analytical solution for this type of flow is given below for the free surface profile (Ibrahim 2005): 

 

and the dynamic pressure field (ignoring hydrostatic pressure): 

 

This theory is only for linear (i.e. low amplitude) waves. Such solutions were not used further because 

the present study focuses on large amplitude event, and because of the limited spatial resolution of SPH 

(limited by particle size). A better way to validated Neutrino results is with experiments of more advanced 

non-linear numerical simulations. 

7.7.2. Comparison to experimental data 
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The resulting flow is visualized in Neutrino. Useful data such as velocity and pressure then have to 

be exported and processed with a different software such as Matlab. For an oscillating tank, an example of 

velocity field is shown below: 

 
 

Figure 7.9. Oscillating tank velocity field 

 

The experiment by Faltinsen et al. ("Multidimensional modal analysis of nonlinear sloshing in a 

rectangular tank with finite water depth." Journal of Fluid Mechanics 407 (2000): 201-234) was used as a 

benchmark for investigating large amplitude 2D free surface flows.  

The below figure shows a very good agreement over the first 10 seconds of forcing. After that, the 

Neutrino solution departs from the experimental results in term of amplitude, which is likely due to viscous 

dissipation. The latter is sometimes increased in simulations (artificial viscosity) to help with stability. 

Identifying and improving this aspect is an example of how experiment can help improve simulation 

accuracy. 

Nevertheless, these results are deemed satisfactory to use Neutrino for developing a preliminary 

design of the experimental facility.  

 

 
 

Figure 7.10. Left: Faltinsen’s experimental test section and geometry. Right: Experimental data (black) 

vs. Neutrino data (red) for the free surface elevation at FS3 location. 
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7.8. Design of the Experiment 

 

7.8.1. Neutrino simulation results 

 

A wide range of tank size, water level, object (if any), forcing amplitude and frequency were 

modeled in Neutrino. The following table shows some of the forcing studied in term of period (T), and 

forcing amplitude (X). Of particular interest for the design is to estimate the resulting force required to move 

the tank. 

 T (s) 
Ramp 

(s) 
X (m) V (m/s) a (m/s2) Force (N) 

Design1 4 1 0.06 0.094 0.30 1,777 

Design2 8 1 0.06 0.094 0.30 1,777 

Design3 2 1 0.06 0.094 0.30 1,777 

Design4 1 1 0.06 0.094 0.30 1,777 

Design5 1 1 0.1 0.157 0.49 2,961 

Design6 6 1 0.1 0.157 0.49 2,961 

Design6_1 5 1 0.1 0.157 0.49 2,961 

Design6_2 5 1 0.1 0.157 0.49 2,961 

Design6_3 4.5 1 0.1 0.157 0.49 2,961 

Design6_4 4.5 1 0.1 0.157 0.49 2,961 

Design6_5 4.8 1 0.1 0.157 0.49 2,961 

Design6_6 4.8 1 0.1 0.157 0.49 2,961 

Design6_7 4.7 0.5 0.1 0.314 1.97 20,844 

Design6_7b 4.7 0.5 0.1 0.314 1.97 18,844 

Design6_7c 4.7 0.5 0.1 0.314 1.97 20,844 

Design6_8 4.7 0.3 0.1 0.524 5.48 44,899 

Design7_1 4.7 0.3 0.1 0.524 5.48 32,899 

Design9_3 4 0.6 0.2 0.524 2.74 16,449 

Design9_4b 5 0.6 0.2 0.524 2.74 22,449 

 

Below are shown a few examples of tests, with an object representing a structure to study at various 

locations. The initial tests are coarse and preliminary to keep the processing time short and allow many 

cases to be studied in a reasonable amount of time. As the results are analyzed, the model is refined and 

becomes more complex. 

 
Design 6_1 
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Design 6_7 

 
Design 9_4 

 
Figure 7.11. Design 9_4b (with tank CAD model shown and surface rendering). 

 

For this last case, the impact for on the object (the grey cuboid on the left) was reported for 15 

cycles, and is plotted below: 
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Figure 7.12. Top: Force of the structure (raw/blue smoothed/black) and forcing motion (orange). Left: 

Zoom-in one cycle. Right: Phase averaged mean and RMS. 

 

The reported force on the object is very repeatable from cycle to cycle, which is a necessary condition 

to gather good statistical data from both experiment and simulation. When validating the simulation with 

the experiment, it will be invaluable to have access to not one, but hundreds of events to assess the 

uncertainties due to random error. For the above results, the deviation from the calculated mean force is 

shown as a histogram plot: 

 
Figure 7.13. PDF of the deviation to the mean. Red curve is Gaussian (normal) distribution. 

 

When the experiment is running, similar data will be collected. The correlation between PDFs will 

inform on the agreement between experiment and simulation and will determine to which degree the 

numerical model is validated. 
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The various simulations pointed to a successful tank geometry of 20 feet long by 8 feet wide by 4 feet 

high. This design is shown in the previous figure of design_9_4b. This choice of size was driven by the 

following factors: 

• Maximize the size to match as well as possible the scale of real-world events. 

• Size limited by the area of the available strong floor in Tompkins Hall at GWU. 

• Cost of the actuator limited the maximum force that can be imparted to the tank. 

It is planned to have the nominal water depth at 2 feet, which represents a volume of about 10 m3. 

Various types of forcing were also studied: pure sine wave, rectangular function, sine wave with 

off-times, etc. The behavior of the flow was studied, as well as the required acceleration and speed. For 

instance, a perfectly rectangular function would require unrealistic infinite acceleration.  

Using Fourier analysis, the frequency components of each type of forcing were analyzed to make 

sure the actuator could deliver such forcing. See below an example for the following forcing amplitude 

function: 

 
Figure 7.14. example of forcing amplitude function. 

 

Here is the spectral analysis showing the corresponding acceleration for each frequency component.  

 
Figure 7.15. Acceleration for each frequency component. 

 

In this case, the max frequency is below 8 Hz and the corresponding acceleration is quite low (<0.01 m/s2). 

7.8.2. Components Selection 

 

The experiment is composed of several main components: 
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• Hydraulic actuator and supporting hardware (i.e., pump, controller) 

• Tank 

• Reaction frame supporting the tank and the actuator. 

A few companies selling hydraulic test actuators offer turn-key systems for 1D forcing including hydraulic 

system and reaction frame. The tank would have to be added on top of these systems. The following table 

summarizes two such systems that we considered: 

Manufacturer Size Forcing capacity Price 

MTS 5’ x 5’ 16”, 11 kips, 4,000 lbs payload $450k 

ETS solution 4’ x 4’ 3.5”, 4.4 kips, 660 lbs payload $140k 

 

In fact, we had proposed to buy a turn-key system from ETS solution for the proposal.  However, once 

the funds were awarded and we started sizing the system, the sale representative from ETS solution realized 

that they had made a mistake in the initial quote of $100k and they could not honor it.  This forced back to 

the drawing board.  By leveraging several legacy pieces of equipment left in a new laboratory space that 

we were given to us (controller MTS hydraulic actuator, load cell, worth more than $70k at current list 

price), we realized that we could do a much more capable system for a fraction of the price than any turn-

key system.   

These systems do not match the final size (20’ x 8’) or forcing capacity (10,000 lbs.) of the system we 

designed. The pricing is also prohibitive considering the tank is not included. 

It was therefore chosen to build a custom system. Furthermore, the new laboratory has a strong 

floor and, the tank and the actuator can be directly mounted on the floor, which remove the need for a 

reaction table. The tank would then simply sit of linear rails mounted to the floor.  

Hydraulics 
 

The hydraulic system is the most expensive and arguably the most important component of the 

experiment. We worked with MTS Corporation since we already have a MTS controller and load cell.  We 

selected 22 kips (22,000 lbs.), 10” amplitude actuator with a 30 GPM 3000 psi hydraulic pump. We also 

added an accumulator to take advantage of the forcing off-time for increasing actuator velocity during on-

time. 

 

Figure 7.16. MTS 22 kips actuator 

The actuator was delivered in January 2018. 



   

152 
 

Rails 
 

Rails and linear bearing carriages have been selected based on the required loads and speed and ordered 

from Schneeberger. They arrived in February 2018. Structural I-beams will be used to connect these rails 

to the strong floor. 

 
Figure 7.17. Linear bearing carriage on rails. 

 

Tank 

 

The tank will be built of carbon steel and acrylic. The steel will form a frame to support the 

structural load on the water and forcing, and the acrylic will allow optical access to all sides of the 

experiment. The previous figure of design9_4b showed the steel frame with the acrylic side and bottom 

wall panels.  The tank sits 0.6 m above the linear bearings.  While this complicates the structural design, it 

enables the deployment of optical systems (lasers, cameras, etc) below the tank.  Thus, the facility was 

designed to be modular and allow the deployment of a broad class of diagnostics. 

The steel frame and acrylic panels were designed and dimensioned using a combination of analytical 

and FEM analysis with the software ProE, as described in the next section. 

7.8.3. Structural Design 

 

The frame is subjected to the following loads:  

• Gravity 

• Water weight on the bottom walls 

• Water hydrostatic load on the side walls 

• Horizontal acceleration of 5 m/s2 (max from the design table) 

• Water load (estimated with Neutrino)  on the end wall 

Using an iterative approach, the tank frame design was refined to minimize deflection, while making 

sure the maximum stress (Van Misses) remains well below the elastic limit of carbon steel (250 MPa). 

Below are a few examples of iterations. Maximum stress is typically located where the carriages are 

attached, while maximum deflection can be found in the center of the tank floor, and top of side and end 

walls: 
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Figure 7.18. Version 4. Displacement map (amplitude of displacement is magnified for visualization 

purpose). Max displacement is on the order of 2.5 mm 

 

 
 

Figure 7.19. Version 4. Stress map. Max stress is below 50 MPa (limit is 250 MPa) 
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Figure 7.20. Version 8. Displacement map. Max displacement on the order of 1.2 mm. Structural 

elements have been added to stiffen the end wall assembly without adding too much weight. 

 

 
 

Figure 7.21. Version 15b (final). Displacement map. Max displacement is on the order of 0.85 mm 

(neglecting the rods at the bottom that are made to release load on the linear bearings. 
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Figure 7.22. Version 15b (final). Stress map. Max stress on the order of 50 MPa. Localized higher stress 

is a result of mesh size and singularities at sharp edges. 

 

The acrylic walls will be 1” thick on the side panels, and 1.5” thick at the bottom. Metal threaded 

inserts on the acrylic (on a 6” x 6” pattern) will allow mounting on structures and other objects in the tank. 

7.8.4. Integration and sample tests 

 

 
 

Figure 7.23. Tank installed on rails connected to the strong floor with I-beams. Actuator (red) is also 

connected to the strong floor and to the tank. The overall tank is 8’ high. Manikin shown for scale 
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Figure 7.24. Top view of the experiment. Red lines show the strong floor area. 

 

Drawings were generated for acrylic and metal frame components and sent for fabrication in January 

2018.  The list of drawings was 93 pages long for the frame and 18 pages long for the acrylic panels. We 

approached several companies and ended selecting a supplier we have worked successfully with in the past 

and which was the most competitive. 

 
 

Figure 7.25. Tank side panel welding instructions. 

 

7.9. Assembly of the facility 

 

7.9.1. Tank Frame 

 

The tank frame is composed of 13 main components, weighting up to 1,700 lbs. and up to 20 ft long. 

A team of riggers were hired to bring these parts into the basement of the Engineering building and assemble 

the facility in April 2018. 
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Figure 7.26. Test facility assemble. 

 

Figure 7.27. Test facility assemble. 

The tank frame was carefully aligned to be level (with 1.2 mm) and positioned on the linear rails 

supported by I-beams mounted to the strong floor.  

Precise alignment of all 6 carriages ensured that the tank could move with minimum friction. In fact, 

a single person could move the whole tank (4,000 lbs.) by hand.  

7.9.2. Hydraulics 
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The hydraulic actuator was then fitted to the experiment. MTS performed on-site calibration and 

commissioned the hydraulic system. Some troubleshooting took place to avoid cavitation in the oil line, 

limit oil compressibility oscillations, and maximize the flow rate. Shakedown tests of the hydraulic system 

and tank frame were performed to verify the performances were as expected. This was completed in late 

May 2018, with the final problem (cavitation in the hydraulic return line) resolved by October 2018.  

Cavitation was limiting only the largest forcing and would start acquiring data for smaller forcing. 

 
Figure 7.28. Actuator connected to the tank and strong floor support. 

 
 

Figure 7.29. Examples of shakedown test results 

 

7.9.3. Acrylic Panels 

 

Once the tank framed moved correctly and the actuator performed well, the acrylic panels were 

installed. A special adhesive (Sikaflex 295UV, typically used for marine application) was used to bond the 

acrylic to the steel. Such adhesive also ensures water tightness and form a seal thick enough (1.2 cm) to 

allow some small relative motion between tank and panel (to accommodate for differential thermal 

expansion for example). 
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Figure 7.30. Bottom acrylic panel being prepared for installation. Drainage holes are visible. 

 

 
Figure 7.31. Installation of the side wall panels. 

 

The acrylic installation took place during June 2018. The adhesive then required one month of 

curing time before water could be added in the tank mid-August 2018. A very small leak was identified and 

patched.  The tank has been leak-free since.  
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Figure 7.32. Operational tank with 6” of water (design allows for up to 24” depth) 

 

7.10. Instrumentation 

 

7.10.1. Tank Motion 

 

The computer generates a waveform that is executed by the actuator which is rigidly connected to the 

tank. The displacement control is a closed loop based on LVDT feedback (and force stabilization to damp 

oscillations due to oil compressibility). The LVDT voltage signal is sampled at 2,048 Hz with a 16-bit 

LabView DAQ.  The accuracy in the tank motion is assessed by comparing a perfect input function (pure 

sine wave) to the actual measurement obtained through the LVDT sensor. Any difference between the two 

can be attributed to the control system or to the LVDT. The calibration report of the LVDT indicates 

accuracy better than 0.52 mm (0.41 % of full range). The 16 bit -10V/+10V DAQ results in a 0.3 mV 

digitalization, which translates into a resolution of 0.004 mm, which is negligible. 

The position accuracy is evaluated using 183 cycles of a 4” (101.6 mm) 0.11 Hz sine wave. The 

difference between requested and measured displacements over the entire sequence is as follow: 

• 0.814 mm peak deviation (0.8 % of amplitude) 

• 0.384 mm RMS deviation (0.38% of amplitude) 

 

These results are also consistent with the LVDT accuracy. 

The accuracy on the forcing frequency is evaluated by comparing the time of position zero-crossing 

versus pure sine wave for the same sequence. 

The difference between requested and measured timing over the entire sequence is as follow: 

• ms peak deviation (0.01 % of period) 

• 0.72 ms RMS deviation (0.008% of period) 

These values are consistent with the sampling frequency. 

7.10.2. Surface Elevation 
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Initial profile (water at rest) 

The water in the tank is allowed to come to a rest before each run. The level of disturbances is 

characterized using the RMS of the surface slope. The latter is measured by reflecting a laser beam on the 

surface of the water near the center of the tank. A camera records the reflected beam imaged on a screen. 

The camera resolution is 0.4 mm/pixel, and a subpixel (1/50th) accuracy fit yields a precision of 2×10-4 

degrees on the surface slope. 

 

 

Figure 7.33. Surface slope as function of time: Natural decay of surface disturbances. 

The slope of the disturbances decays exponentially, by a factor of 10 every ~200 seconds. The total 

time to reach a particular level of disturbance depends on the initial level of disturbance (1 degree in the 

above example due to FOV limitations).  After 1000 s, the equivalent amplitude of the surface waves is 

below 10 µm. 

2D Profiles 
 

 This is recorded with a single camera pointing at the long side of the tank, fitted with a wide angle 

lens that allows the entire tank length to fit in the frame. As a result of the large FOV, the spatial resolution 

is limited to ~5 mm/pixel. The surface profile is extracted with an image processing code that locates the 

location of the surface based on the intensity gradient. No subpixel analysis is performed, thanks to temporal 

over-sampling, temporal averaging allows improving the accuracy by a factor of √N, with N the number of 

samples over which the averaging is conducted in a boxcar manner. The final accuracy is estimated at 2 

mm. This is sufficient for a coarse characterization of the evolution of the surface profile at a full tank 

length scale. 
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Figure 7.34. Raw image used for surface profile identification at large scale 

 

 
Figure 7.35. Example of 2D surface elevation map as function of time 

 

7.10.3. Pressure 

 

The pressure at the end wall of the tank is measured at several elevations using the following 

pressure transducers: 

Omega PXM309-0.14G10V (140 mBar gauge range) and Omega PXM309-0.35G10V (350 mBar 

gauge range). The linearity/hysteresis/repeatability (called accuracy in Omega datasheet) is 0.25% of full 

scale (35 Pa and 70 Pa, respectively).  

In the experiments, the reading will depend on the ambient atmospheric pressure. By setting the 

pressure to zero in absence of water at the beginning of a run, we can take advantage of the very good 

linearity/hysteresis/repeatability for our measurements.  

The 16 bit -10V/+10V DAQ results in a 0.3 mV digitalization, which translates into a resolution of 

0.43 Pa and 1.07 Pa, for the respective transducers, which is negligible compared to the sensor accuracy. 

When recording a static signal, the noise level is on the order of 5 Pa RMS and 10 Pa RMS for the 

respective transducers, which is below the static accuracy stated. 

As mentioned earlier, we focus our study on the gauge pressure (relative to ambient). The precision 

of the measurement with respect to ambient pressure is much better and is estimated at 35 Pa for the 140 

mBar sensor and 70 Pa for the 350 mBar sensor. Pressure is sampled by the DAQ at 2,048 Hz, which is 

twice the cut-off frequency (time response) of the sensor. 



   

163 
 

 
 

Figure 7.36. Left: Pressure transducer. Right: Mounting locations on the tank endwall. 

 

7.11. Results 

 

7.11.1. Tank modes 

 

A repeatable flow can be obtained by exciting waves with a frequency that matches the natural 

frequency of water wave in the tank. The phase velocity of a water wave in shallow water defined as follow: 

𝑐 = √
𝑔𝜆

2𝜋
tanh(

2𝜋ℎ

𝜆
) 

with λ the wavelength and h the water depth.  

For a successful amplification, the wavelength is constrained by the tank length: The crest of a wave 

must be at one end of the tank, while the trough of a wave must be at the other end (because on one side 

the tank moves towards the flow, while it moves away at the end side). Therefore, the following relation 

between wavelength and tank length must be satisfied: 

𝐿 = 𝜆𝑛 +
𝜆

2
= 𝜆 (𝑛 +

1

2
) 

With n a positive integer that specifies the mode. At any time, there are 2𝑛 + 1 waves traveling in the 

tank.  To be able to amplify a wave (until breaking for instance), the tank must move towards the wave 

every time a crest impacts the end wall. Therefore, the forcing frequency must match the time it takes for a 

wave to travel back and forth along the tank, multiplied by the number of waves: 

𝑓 =
𝑐

2𝐿
(2𝑛 + 1)  

Combining these equations, the tank frequency becomes 
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𝑓 = √
(2𝑛 + 1)𝑔

4𝜋𝐿
tanh(

(2𝑛 + 1)𝜋ℎ

𝐿
) 

The following figure shows f as function of h for the first 6 modes: 

 

Figure 7.37. Frequency function of height. 

Due to the tank motion, the effective tank length is slightly smaller than the physical length. Because 

the tank moves towards the waves as the crests approaches, the effective length is: 

𝐿𝑒𝑓𝑓 = 𝐿 − 2𝐴 

with A is the forcing amplitude.  

Example of mode 1 (n=0): 
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Figure 7.38. Measured 2D profile evolution (mode 1). 

Example of mode 2 (n=1): 
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Figure 7.39. Measured 2D profile evolution (mode 2). 

7.11.2. Panel Deflection 

 

The effect of tank panel deformation on the pressure measurements was investigated using an 

accelerometer. The main concern was that water impact would induce vibration of the panel that holds the 

transducer, and that the resulting acceleration would lead to spurious reading of the pressure. Another 

important reason for monitoring the panel deformation for the purpose of validation is because the pressure 

resulting from the impact on a compliant structure is significantly lower than that on a rigid structure.  

During a typical wave impact, the panel oscillates at ~120 Hz, with acceleration up to 0.5 g. This 

translates into a deflection of ~9 µm. As shown below the pressure spectrum does not correlate with the 

acceleration spectrum, which means that oscillations of the panel do not induce spurious pressure 

measurements. 

However, the deflection of the panel will still affect the physical pressure during the impact; therefore, 

the deflection must still be monitored.  

Future tests could look into making the panel stiffer (with metal braces for instance) and studying the 

effect on the pressure data. 
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Figure 7.40. Temporal pressure and acceleration profiles (left) and frequency spectrum (right). 

 

7.11.3. Repeatability 

 

Repeatability and sensitivity of the pressure measurement was evaluated for the following conditions: 

• Forcing: 4.000” (101.6 mm), 0.1100 Hz (mode 1) 

• Water depth: 6” (152 mm) 

The flow that develops consists into a breaking wave that goes back and forth along the tank, with 

a period that matches that of the forcing (mode 1). Pressure is collected using the 350 mBar sensor located 

at z=4” (101.6 mm) above the tank bottom (2” below mean water level). The flow is initially 2D, but slowly 

becomes 3D as the breaking event generates 3D structures. Four tests are conducted: 

Run h (mm) f (Hz) A (mm) Comments 

1 152.4 0.11 101.6 Reference run 

2 152.4 0.11 101.6 Identical to Run 1 

3 152.4 0.11 102.108 Change of the forcing amplitude by 1% 

4 153.4 0.11 101.6 Change of the water depth by 1 mm 

 

The change of the water depth by 1.0 mm was done by adding a precisely measured volume of 

water to the tank. The frequency was not modified as the uncertainty analysis showed that this parameter 

is very accurately controlled (better than 0.01 %). 
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Figure 7.41. Time evolution of pressure. 

 

 
Figure 7.42. Ten cycles moving average for the first 10 minutes. 

 

For the first 10 cycles, the difference is on the order of the precision (70 Pa), except for the peak 

pressure. Even for identical condition (runs 1 and 2), the pressure timeline starts diverging after about 20 

cycles, because of turbulence and other chaotic processes. The main findings are as follow: 
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• The comparison between experiment and simulation must be limited to the first 10-20 cycles or 

look at the overall envelop of the pressure during the impact. 

• Over the first 10-20 cycles, modifying an initial condition by an amount similar to the respective 

uncertainty does not affect the repeatability. Therefore, the initial condition are well-enough 

characterized for the purpose of validation and repeatability (for this particular set of tests). 

 
Figure 7.43. Time evolution of the pressure profile for the first 20 cycles of each runs. 

 

7.11.4. Wave Impact Statistics 

 

The four runs presented in the previous section were aggregated, which resulted in 459 single wave 

impact events from which good statistics can be extracted. 

The first metrics to be studied are: the average pressure profile during an impact, the standard deviation 

(RMS), and the minimum and maximum pressure, as plotted below: 

 

Figure 7.43. Average pressure profile during an impact. 
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The variation in the measured profile is mostly due to several factors: random turbulent unsteady bubbly 

flow and 3D waves. The percentile bound are also plotted below. These may be more appropriate for 

studying the spread of data with a non-normal distribution. 

 
Figure 7.44. Percentile bound of pressure profiles. 

The variation in the measured profile is mostly due to several factors: random turbulent, unsteady 

bubbly flow, and 3D waves. These curves show that the pressure evolution is bounded between quantified 

intervals. Compared the percentile graph with the min max graph, one can see that there are a few events 

that largely deviate from the mean values, mostly near the peak pressure. These correspond to event for 

which the wave impact happens exactly at the time of wave breaking. This highlight the need to preforms 

hundreds of cycle to be able to characterize the frequency of occurrence of such rare events. 

The cycle plotted above is discretized in 9 segments of 1 second each, and the distribution of the 

pressure around the mean is plotted as a histogram: 

 
Figure 7.45. Pressure histograms. 
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This highlights the larger (non-Gaussian) distribution of pressure during the impact phase (t=1 to 2 s). 

The distribution of the first and last segment is skewed. This is because the pressure sensor is 

momentarily above the water surface at these times, which causes a bias toward P = 0 Pa.  

7.11.5. Pressure-Impulse 

 

When studying the failure of a structure, the main parameter is the maximum stress (or pressure) that 

can be withstood. However, for short transient, the peak pressure can exceed the static limit for a brief 

moment without causing failure. This is due to the dynamic response of the structure (inertia) which acts 

as a low-pass filter. For such event, the occurrence of failure is better predicted by the impulse, which is 

defined as: 

 

The threshold for failure for a given structure can then be given by a pressure-impulse (P-I) diagram: 

 

Figure 7.46. Pressure-impulse (P-I) diagram. 

From the experimental data, the maximum pressure and impulse are calculated from each cycle, 

see a sample below: 

 

Figure 7.47. Maximum pressure and impulse. 
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It should be noted that while the max pressure shows large fluctuation (as discussed earlier), the 

impulse is remarkably consistent, as noted by Peregrine 2003. These data-points can then be plotted in a P-

I diagram. The failure limit shown in red is arbitrary and for illustrative purposes only.  The few outliers on 

the max pressure are related to breaking modes of waves on the wall.  The physical processes describing 

this will be highlighted in the next section. 

 
Figure 7.48. Maximum pressure versus impulse. 

 

7.11.6. Pressure Peak and Bubble-Induced Pressure Oscillations 

 

The few occurrence of very large peak pressure was investigated. The following figure shows the 

pressure time history for two consecutive waves during run 1: 

 

Figure 7.49. Pressure history. 
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The overall profiles are similar, except for the initial peak Here is a magnified view of that first peak: 

 

Figure 7.50. Zoomed-in pressure history. 

This shows large pressure oscillations at a frequency of 70 Hz. Further tests showed that the large 

pressure peak occurs when the wave break exactly on the wall. This was studied by Chan and Melville 

(1988): 

 

Figure 7.51. Schematic of breaking waves incident on a surface wall. 

However, pressure oscillation and large peak pressure are not correlated; one can occur without the 

other. 

The oscillations are caused by the presence of bubbles in the flow. This was studied using high speed 

imaging. The following image shows the flow in the direct vicinity of a pressure transducer during wave 

impact. 
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Figure 7.52. High speed movie snapshot. Pressure transducer is on the right. For scale, the arrow is 1.25”. 

The effect of bubbles on the pressure oscillations is shown in the following two sets of figures. In 

the first set, oscillations are limited in amplitude. The high speed image shows a few small bubbles. In the 

second set of figures, larger pressure oscillations are recorded, and many larger bubbles are visible near the 

pressure port. This supports the hypothesis that the oscillations are caused by bubbles.  

 

Figure 7.53. Top: Raw image. Bottom: Corresponding pressure plot 
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Figure 7.54. Same as above for a different impact event 

In nearly all the wave impact data acquired so far, the waves become too steep in the tank and spilling 

breakers develops as the wave travels between the walls.  However, in a few cases, the wave reaches the 

wall without breaking first and breaks on the wall directly.  In the first phase of the impact, a large air cavity 

is trapped and its compression by the breaking wave results in the much higher peak pressure observed 

occasionally in our runs. In fact the peak pressure during those events is about 3 times larger than during 

impacts when the wave “spills” on the way to the tank edge.  

7.11.7. Comparison with simulation 

 

The statistical results are used for comparison with the Neutrino simulations. 
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Figure 7.55. Neutrino results overlaid with the experimental data. 

The SPH simulation captures remarkably well the general envelope of the pressure time-history. 

The match is very good for the first 90s (top left panel). The percentile plot and impulse are also presented 

below: 

 

Figure 7.56. Simulation results: pressure and impulse. 

The left plot shows that the simulation results are more consistent from cycle to cycle than in the 

experiment. For instance, the 50% band is narrower in the simulation than in the experiment. This difference 

is explained in part by the 3D effect (spanwise waves, turbulence, bubbly flow, etc.) not being fully captured 

by Neutrino. On the other hand, Neutrino captures well the impulse, with an error of about 4%. 
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Such comparisons between experiment and simulation are extremely useful to identify the limitations 

of a code for real scenarios.  In the context of RISMC, we need to define a way to quantify the performances 

of the code. For multivariable and multidimensional quantities, advanced metrics are being explored. 

 

Figure 7.57. Left: Convergence of the L1 error. Right: Comparison of the pressure distributions at one 

instant in time (blue is simulation, orange is experiment). 

Comparison of the pressure distribution allows computing metrics based on the histogram overlap (K-

L Divergence and Hellinger metrics). 

 

Figure 7.58. K-L divergence. 

This example shows large discrepancy at the beginning and end of the cycle. When looking at the time 

history of the pressure (see figure below), these correspond to the absence of impact, i.e. only hydrostatic 

pressure, which is a region of the pressure time history that is not relevant for validating neutrino in flooding 

scenarios: 
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Figure 7.59. Region of large discrepancy highlighted in red circles. 

The reason for the large discrepancy there is because the relative error is large (~100%). However, 

the absolute error is about 50 Pa, which is on the order of the sensor accuracy, and correspond to a 

hydrostatic head of 0.5 cm, which is smaller than the particle size in the simulation. Therefore, this 

emphasizes the importance of choosing the correct metric(s), and correctly interpreting its results.  

7.11.8. Scaling Analysis  

 

We seek a way to estimate the behavior of the flow at large scale from the data we collect in the 

experiment, in other words, looking for a physics-based argument to extrapolate between validation and 

application domain.  Doing so involves identifying scaling parameters for the impact pressure. In single 

phase regimes (when there is not air entrapment during the impact), the dynamic pressure normalizes the 

pressure, P:  

𝑃∗ =
𝑃

1
2𝜌𝑉

2
 

The characteristic velocity is that of the shallow water wave: 𝑉 = 𝑐 = √𝑔ℎ. The equation becomes: 

𝑃∗ =
𝑃

1
2 𝜌𝑔ℎ

 

The denominator is half the hydrostatic pressure at the bottom of the tank (or the hydrostatic pressure 

at half depth), which means that for shallow water wave, we can use either dynamic pressure or hydrostatic 

pressure for normalizing. 

This result shows that the impact pressure for shallow wave should scale directly with the water depth. 
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Figure 7.60. Max impact pressure distribution at z=0.101 m for h=0.152 m. z is the sensor elevation and h 

the mean surface elevation. 

The mean of max impact is around 1600 Pa. We now double the depth. We would expect the impact 

pressure to double as well.  We conducted tests are twice the depth (0.304 m) and the histogram is shown 

below (the histogram is coarser as we have taken fewer runs): 

 

Figure 7.61. Max impact pressure at z=0.101 m for h=0.304 m. 

The mean is close to 4200 Pa, which is more than double. The main discrepancy appears to be due to 

the sensor location. The physical location is the same is both cases, but what appears to matter is the sensor 

depth relative to the surface elevation. If the latter is different, an offset results due to the difference in 

hydrostatic pressure. When correcting the data above for the hydrostatic pressure, one obtains: 
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Figure 7.62. Max impact pressure at z=0.270 m for h=0.304 m. 

The mean max pressure is ~3200 Pa, or twice that of the 0.152 m depth case when the sensor is at the 

same depth (5 cm below the mean surface elevation) which agrees with the scaling presented above. More 

data will be acquired for h=0.304 m and other depth to confirm scaling. 

7.12. SPH Neutrino benchmark 

 

7.12.1. Experimental setup 

 

A large-scale oscillating tank was designed and constructed at the George Washington University. 

The tank measures 5.951 m long × 1.2 m high × 2.468 m wide. The tank is constructed of a steel frame and 

acrylic walls and bottom. The tank is oscillated through a sine-forcing function using a hydraulic actuator 

capable of amplitudes up to 0.25 m and velocities up to 0.5 m/s. Additionally, a pressure transducer is 

located at the end-wall of the tank, 0.1016 m above the tank bottom, to measure the pressure from wave 

impacts.  

The experiment for the end-wall pressure measurement consisted of a water depth of 0.1524 m. The 

forcing function had a 0.1016 m amplitude, with a 0.11 Hz frequency. The experiment ran for 60 cycles 

and was repeated four times, with minor variations to account for some uncertainties. Two of the runs were 

identical; one run varied the depth by adding a precisely measured volume of water to the tank, and the last 

run varied the forcing function amplitude. Table  shows the variations on the four experimental model runs.  

Table 7.11: Experimental model run variations. 

Run Water Depth (m) Frequency (Hz) Amplitude (m) Variation  

1 0.1524 0.11 0.1016 Reference run 

2 0.1524 0.11 0.1016 Identical to Run 1 

3 0.1524  0.11 0.102108 Change of forcing amplitude by 1% 

4 0.1534 0.11 0.1016 Change of water depth by 1 mm 

 

7.12.2. Smoothed Particle Hydrodynamics 
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The fluid-simulation code Neutrino was investigated and used to numerically reproduce the 

experiment. An incompressible SPH solver was selected, considering its high computational efficiency 

(Sampath et al. 2016). It solves the incompressible Navier-Stokes equations for isothermal, single-phase 

flows in a Lagrangian, velocity-pressure formulation. The water-air mixing and surface-tension effects, 

with air entrainment and formation of bubbles and foam, as occur from wave breaking, are not modelled. 

To avoid excessive complexity, only the water phase is considered, and the air-water interface is 

approximated as a free surface. The SPH method is well suited to simulate violent flows with a highly 

evolving free surface. Thus, it is expected to perform well for water waves and oscillating motions.  

In accordance with the physical properties of water, the fluid is assumed to be Newtonian, with 

viscosity constant in both space and time. The water is discretized into a set of fluid particles, with fixed 

mass and volume that move along with the flow. Because SPH is a mesh-free numerical method, there is 

no explicit inter-particle connectivity. Instead, the spatial-differential operators are approximated by 

modeling inter-particle interactions. Using a Gaussian-like function, smoothing kernel, with compact 

support, the respective contributions of each interacting particle-pair are weighted based on the inter-

particle distances. In this work, the smoothing kernel used is the cubic B-spline.  

7.12.3. Simulation Setup 

 

The Neutrino model was constructed to match the experimental setup as closely as possible. The 

oscillating tank experiment can be characterized as a two-dimensional (2-D) experiment, resulting in the 

simulation tank having the same length and height dimensions, but a smaller width of 0.2 m. By reducing 

the width of the simulation tank, the computational runtime of the simulation is also reduced without 

compromising accuracy. A simulation with a particle size of 0.01 m (181,387 fluid particles total) takes 

about 16.7 hours for 30 cycles using an Intel Xeon central processing unit E5-2683 v3 @ 2.00 GHz with 

28 core and 56 logical processors.  

The simulation tank was filled with particles to the correct fluid depth. The number of fluid particles 

was carefully controlled to ensure that the numerical volume of the fluid simulation corresponds to the 

correct physical fluid depth. A measurement field is used to measure the pressure on the end-wall. This 

measurement field compares to the pressure transducers used in the experimental setup. Figure 9.2.  shows 

the large-scale oscillating tank on the left and a cross-sectional view of the simulation setup on the right. 

 
Figure 7.63. Large-scale oscillating tank at the George Washington University (left) and Neutrino 

simulation setup (right). 

 

Once the simulation setup was complete, the simulation tank and end-wall measurement field 

needed to be oscillated at the same forcing function as the experiment. To create these oscillations, a python 

script for each object was created and added to the position of the object as a dynamic expression. The 

python scripts adjust the position of the items based on Equation 7.9.2. 
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 𝑧(𝑡) = 𝐴 sin (2𝜋𝑓𝑡) (Eq.7.1) 

 

where z is the new position, t is the time, A is the amplitude, and f is the frequency. The amplitude and 

frequency values are set in the python script to match the experimental values, and the time is extracted 

from the simulation. The equation allows for the movement of each object to be continuous and evaluated 

for every time step of the simulation. Without using the equation and, instead, using a dataset of positions, 

the movement of the objects may not shift smoothly with the time step, causing jumps with overlapping 

particles, which results in erratic or explosion-like behavior from the simulation tank impact.  

7.12.4. Validation Simulation Conditions 

 

Several parameters were varied to match the simulation to experimental results. Those parameters 

included particle size and measurement-field size and location. The first parameter that was varied was 

particle size. Three different particle-size values were used to determine the effect of spatial resolution on 

the pressure results. The three values used were 0.03, 0.02, and 0.01 m. Each cycle of the simulation results 

was then sorted and analysed to determine the 90% and 50% bounds (the point at which 90% [or 50%] of 

the data are within that band). Figure  shows the 90% pressure bounds for the different particle sizes on the 

left and the 50% pressure bounds on the right.  

 
 

Figure 7.64. Particle size pressure bounds comparison. 

As shown in the plots in Figure , the pressure bounds shift to the right as the particle size becomes 

larger. The left-most pressure bound using 0.01 m particles matched the experimental results with enough 

accuracy that smaller particles were not tested. Therefore, a particle size of 0.01 m was selected for both 

accuracy and acceptable run times.  

Next, the measurement field size and location were adjusted. A particle size of 0.03 m was used for 

these comparisons to reduce the computational runtime. For changes to the measurement field size, the y-

axis height of the measurement field stayed constant at a value equal to the particle size (0.03 m) because 

the field must be at least the size of the particles. The x-axis width value also stayed constant at 0.15 m 

because the experiment is considered 2-D. The z-axis length of the experiment was adjusted to see the effect 

on the results. Two z-axis length values were used: 0.15 m and 0.1 m.  

For the location changes, only the x-axis position was varied to determine if a slight shift in location 

had an effect though the experiment is considered 2-D, particles are still 3-D in nature, and a shift may 

cause more or less particle interaction on the measurement field. The y-axis position was not adjusted 

because its location is based on the location of the pressure transducer in the experiment. The z-axis location 
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also was not varied because it must stay on the end-wall of the tank. Figure 7.65 shows the measurement 

field length comparison on the left and the measurement field x-axis location comparison between centered 

and shifted 0.015 m on the right. These plots show the last 10 cycles of the 60 cycle simulation averaged 

together.  

 
Figure 7.65. Measurement field size and location pressure comparison. 

Based on the plots above, there is nearly no difference between the varied sizes and locations of the 

measurement field. Therefore, the measurement field was left centered in the simulation tank, and the size 

of the measurement field for the results below was 0.05 m long by 0.05 m wide by 0.01 m high. These 

dimensions were scaled down from the 0.03 m particle size results to a 0.01 m particle size.  

The values selected for each of these parameters were based on a brief parametric study of the 

parameter. More parameters could be adjusted, which might affect the simulation results. The following 

section will discuss these other parameters as well as the methodology for determining their significance.  

7.12.5. Significant parameter determination  

 

Investigated Parameters 

 

 More than 30 parameters or settings are associated with a Neutrino simulation as well as parameters 

associated with the experiment. However, not all of these parameters have an effect on the accuracy of the 

simulation. Table 7.12 shows a list of the parameters and an initial discussion on whether the parameter 

was investigated to determine its significance. Highlights show parameters that were investigated.  

Table 7.12: Parameter discussion table. 

Parameters Importance Discussion  

Time step pressure iteration 

coefficient 

Important, but not investigated because it is expected to be soon 

deprecated after replacing the pressure solver 

Non-static reference frame  Not important because it only affects simulations with fast-moving 

dynamic solid objects  

Stop criterion Important, but not investigated because the default value is known 

to be optimal  

Stop threshold  Important because it affects the level of incompressibility 

enforcement.  
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Minimum number of iterations  Important, but not investigated because the default value is known 

to be optimal  

Maximum number of iterations  Not important because it is only used to prevent occurrence of 

infinite loops due to non-convergence of the pressure solver  

Relaxation factor Not important because default value leads to optimum 

convergence (Sampath et al. 2016) 

Old pressure weight Important, but not investigated because the default value is known 

to be optimal  

Particle shifting  Not important because particles should not be enforced to a 

particular configuration  

Buoyance model  Not important because it only affects simulation of non-isothermal 

flows  

Density computation Important, but not investigated because the default value is known 

to be optimal  

Enable negative pressures  Not important because it only affects the fluid-solver interaction 

with dynamic solid objects  

Enable tensile instability control  Not important because it only affects the fluid-solver interaction 

with dynamic solid objects  

SPH Laplacian for viscosity  Not important because it is known to yield very similar 

simulations  

Wall boundary pressure method  Important, but not investigated because the default value is known 

to be optimal  

Wall boundary extrapolation  Important, but not investigated because the default value is known 

to be optimal  

Wall hydrostatic pressure 

correction  

Important, but not investigated because the default value is known 

to be optimal  

Wall viscous correction  Important, but not investigated because the default value is known 

to be optimal  

Free-surface density correction  Important, but not investigated because the default value is known 

to be optimal  

Free-surface pressure correction Important, but not investigated because the default value is known 

to be optimal  

Near-free-surface identification 

coefficient 

Important, but not investigated because it only affects simulations 

with free-surface correction, which is not used 

Open boundary extrapolation  Not important because there is currently only a single choice and 

would only affect simulations with open boundaries 

CFL number Important, but not investigated because the default value is known 

to be close to optimal  

Time step diffusion coefficient  Not important because it only affects simulations with highly 

viscous flow 

Clamp to multiple of Solid-Solver 

time step 

Not important because it only affects fluid-solver interaction with 

dynamic solid objects  

Adaptive time step  Important, but not investigated because the default value is known 

to be optimal  

SPH kernel  Important, but not investigated since the same methodology can 

used to other smoothing kernels.  

Particle size  Important because it changes the resolution of the simulation. 

Interaction-Radius to Particle-

Size Ratio 

Important because it changes the number of particles influencing 

the particle of interest. 

Fluid settling uncertainty  Important because it effects the fluid depth. 
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Fluid depth uncertainty  Not important because the correct number of particles for a given 

fluid depth can be calculated. 

Fluid properties  Not important because they will match the fluid properties of the 

experiment.  

Measurement field size  Important, but not being investigated due to initial research 

results. 

Dimension uncertainty  Important, but not investigated due to very small uncertainty 

range.  

Forcing function amplitude 

uncertainty 

Important because it effects the forcing function of the simulation.  

Forcing function frequency 

uncertainty 

Important because it effects the forcing function of the simulation.  

Pressure transducer location 

uncertainty  

Important because it effects the measurement field location in the 

simulation.  

 

Based on Table 7.12, 7 of the 37 parameters were investigated to determine their significance. These 

seven parameters were analyzed using the method described below.  

7.12.6. Methodology Using Risk Analysis Virtual Environment (RAVEN) 

 

RAVEN is an Idaho National Laboratory developed analysis software. It can run external codes and 

performing analysis on the results. RAVEN has a wide range of capabilities, a few of which include reduced 

order models, advanced sampling methods, data post-processing, and model parameter optimization (Rabiti 

et al. 2017). The Neutrino and RAVEN coupling was used so that RAVEN would sample parameter values, 

modify the Neutrino’s input file, and run Neutrino continuously without any user need after running the 

RAVEN input file (Ryan and Pope 2019).  

The methodology for determining the significance of parameters consisted of, first, randomly 

sampling across the range of possible values of a single parameter. The values were sampled from a uniform 

distribution across the range of values using a Monte Carlo sampler. The value range for each parameter 

was selected based on previous simulation investigation or the uncertainties associated with the physical 

experiment. The results were then analysed to determine whether the parameter caused a change in the 

results. If the different parameters values did not cause a change in results, then the parameter was 

considered insignificant. Table  shows the range of values for each parameter, as well as the default value 

that was used when other parameters were being sampled. These ranges are all considered uniform although 

many have other distributions.  

Table 7.13: Investigated parameter value ranges and default value. 

Parameters Value Range  Default Value 

Stop threshold  0.0001 to 0.01 0.001 

Particle size  0.007 m to 0.02 m 0.01 m 

Interaction-radius to particle-size ratio 2.0 to 2.4 2.0 

Fluid settling uncertainty  -0.4δr to 0.4δr* 0 

Forcing function amplitude uncertainty 0.1012 m to 0.102 m 0.1016 m 

Forcing function frequency uncertainty 0.1099868 Hz to 0.110011 Hz 0.11 Hz 

Pressure transducer location uncertainty  0.1006 m to 0.1026 m 0.1016 m 

 * where δr is the particle size  

7.13. Results  
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7.13.1. Validation 

 

The 90% and 50% pressure bounds for the experiment and simulation were compared. Additionally, 

the pressure of each cycle was integrated over time to compare the pressure impulse. Figure  shows the 

pressure bound comparison with the 90% bound plot on the left and the 50% bound plot on the right. 

Figure  shows the absolute percentage error plots between the simulation and experiment upper and lower 

bounds for the 90% bounds on the left and the 50% bounds on the right. 

 
Figure 7.66. Pressure bounds comparison plots. 

 
Figure 7.67. Pressure bounds simulation error plots. 

The above plots show that both the 90% and 50% simulation pressure bounds mostly fall within 

the experimental bound. A few exceptions do occur in the low-pressure areas at the very beginning of the 

cycle (~40% difference) and the very end of the cycle (~40% difference); however, these low-pressure 

differences are typically insignificant for applications. The peak pressure tends to have a short but high 

initial peak variation (~75% difference) compared to the experiment. Overall, the simulation results match 

well with the experimental results for most of the time. However, refinement of parameters could possibly 

increase the accuracy of the simulation.  

The simulation impulse pressure was compared to the pressure impulse for each experimental run. 

The absolute percentage difference between the simulation and each experimental run was also computed. 

Figure 8 shows the impulse pressure comparison plot on the left and the absolute percentage difference plot 

on the right.  
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Figure 7.68. Impulse pressure comparison plots. 

The absolute percentage difference plot shows that the pressure impulse of the simulation is within 10% 

of all four experimental runs. However, for two of the runs, the simulation is within 5% of the experiment. 

This shows that the simulation pressure impulse matches the experimental very well.  

7.13.2. Significant Parameters 

 

The parameters and their range of values identified above were sampled five times using RAVEN. 

The pressure results for all five runs were compared to determine whether the parameter is significant. To 

reduce the computational runtime, 30 rather than 60 cycles were simulated. Table  shows the five sampled 

values for each parameter and Figure .69 shows the average pressure plot comparison for the different 

parameters.  

Table 7.14. Sampled values for each parameter. 

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Stop threshold  0.005188 0.009604 0.000482 0.008365 0.004260 

Particle size  0.009004 0.009710 0.018166 0.011869 0.017700 

Interaction-radius to particle-size ratio 2.083384 2.149816 2.013502 2.042695 2.089326 

Fluid settling uncertainty  0.027887 0.920035 -0.922877 0.669684 -0.691674 

Forcing function amplitude uncertainty 0.101436 0.101541 0.101956 0.101291 0.101270 

Forcing function frequency uncertainty 0.110007 0.110008 0.110011 0.109989 0.109992 

Pressure transducer location uncertainty  0.102298 0.102340 0.101516 0.102578 0.101047 
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Figure 39.69. Average pressure comparison plots for each investigated parameter. 

Based on the plots above, all seven parameters influence the simulation results. However, some of 

these parameters seem to be more important based on the amount of fluctuation that occurred between the 

results. For example, the particle size, interaction-radius to particle-size ratio, and fluid settling plots 

showed greater fluctuation than the stop threshold, amplitude, frequency, and pressure transducer location 

plots. This indicates that more research is needed to quantify the significance of each parameter.  

7.14. Conclusions 

 

A large-scale oscillating tank experiment was conducted and then used to validate the SPH code 

Neutrino, as well as determine parameters that affect the simulation results. The 90% and 50% end-wall 

pressure bounds were compared, as was the pressure impulse. The simulation bounds fell mostly within the 

experimental bounds, with exceptions at the beginning of the cycle (~40% difference), at peak pressure 

(~75% difference), and at the end of the cycle (~40% difference). The simulation pressure impulse matched 

the experiments well and was within 10%. Additionally, seven parameters were identified and investigated 

to determine their significance. All seven parameters were identified as significant. However, the particle 

size, interaction-radius to particle-size ratio, and fluid settling seem to have a greater effect due to larger 

fluctuation in their results.  

The next step is to quantify the significance of each parameter. Once this is done, those parameters 

that have the greatest effect on the simulation results can be optimized. The optimization goal would be to 

increase the accuracy of the simulation results while still accounting for the computational runtime of the 

simulation. This optimization will also depend on the scenario and a valid parameter range vs result criteria 

needs to be established. 

7.15. Lessons Learned and Revision of Methodology 

 

7.15.1. Issues and Challenges 

 

First, one challenge of SPH validation is to define validation goals and requirements for all involved 

phenomena, processes, and components from the perspective of risk analysis. In this chapter, for 

clarification, the validation goals of each numerical benchmark are defined by accuracy and calculated by 
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validation or error metrics. Furthermore, they are assumed to be the same for all involved phenomena. 

However, for RISMC applications, the requirement on model accuracy is subject to change given uncertain 

scenarios. For scenarios where facilities have enormous safety margins, the tolerance for simulation 

uncertainties can be much larger than scenarios that have the fragile equipment. In addition, for scenarios 

that have risks with severe consequences, the requirement on model credibility will be more stringent than 

scenarios that have slight effects. Second, for complex scenarios with multiple phenomena, processes, and 

components, the requirements on model accuracy in simulating each separate effect should be inferred 

rigorously according to the requirements for integral behaviors. In CSAU and EMDAP framework, none 

of such connection has been explicitly discussed. Besides, the subjective components of model credibility 

in nuclear safety-related applications cannot be ignored when external hazards are analyzed, and the 

uncertainties are significant. To be specific, the subjective component is mainly introduced by two aspects: 

scaling analysis and physical pattern recognition. The first aspect mainly depends on the similarity 

(sufficiency, relevancy, and distortion) of the validation database to prototypic conditions. The second 

aspect depends on the understanding of all involving physics and their interactions. Both aspects require 

subjective assessments and their criteria for success depend on the subjective confidence level. With the 

same validation goal, scenarios with complex physics require higher confidence in the scaling analysis and 

physical pattern recognition than those with simple phenomena, such that the model can be used for full-

scale applications. However, neither CSAU or EMDAP has formalized or explicitly discussed such 

situations.  

Second, there is no framework or procedure in the previous validation that formalizes the decision-

making process for validation adequacy. Although Error! Reference source not found. shows a schematic 

structure with all inputs, detailed information, like relative importance, dependency, acceptance criterion, 

etc., are not explicitly discussed. At the same time, due to a lack of data from integral facilities under 

prototypic conditions, adequacy of simulation models must be decided according to their performances in 

predicting data from separate phenomena and reduce-scale facilities. Considering the complexity of 

scenarios and the multitude of evidence, human assessments can be heuristic and obscure. As a result, to 

remain convincing, the adequacy decision-making process needs to be formalized and represented 

transparently. At the same time, the formalization needs to be consistent and robust, such that the decision-

making process can be defendable and satisfactory across a wide range of plausible situations. Besides, for 

scenarios that evidence has not been exhaustively collected, the formalized decision-making process should 

be theoretically improvable when new knowledge and data become available.  

Third, SPH methods are found to be insufficient in predicting various high-rank phenomena. Although 

an “excellent” performance is desirable for every phenomenon, it can hardly be achieved for SPH methods 

based on the previous assessments. When an insufficient performance is found for high-rank phenomena, 

SPH methods can still be considered adequate despite the deficiency if (1) the phenomenon can 

subsequently be demonstrated to not have the dominant influence on the course of the application or (2) an 

appropriate method can be demonstrated for quantifying the calculational uncertainty resulting from the 

deficiency, and the uncertainty is acceptable. The database in this study is not sufficient for verifying the 

PIRT, efforts are devoted to the uncertainty quantification of SPH methods. Regular UQ methods require 

separations of total uncertainty with respect to sources and properties and assumes that each source is scale 

invariant. However, all sources of uncertainties, including discretization errors, simulation errors, model 

form errors, and input errors, are tightly coupled, and characterizing each of them by independent error 

distributions is difficult. Besides, it is found that the simulation error of SPH methods depends on the 

characteristics of scales. Moreover, the uncertainties of situations, where the regular UQ methods apply, 

are much smaller than those of external-hazards scenarios. Therefore, new UQ methodologies are needed 

for estimating total simulation uncertainties under large uncertainties. At the same time, the new 

methodologies are expected to propagate (interpolate and extrapolate) the uncertainties from reduce-scales 

to full-scale conditions. 
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7.15.2. RISMC Model Validation Framework 

 

Since the objective of this study is to assess the credibility of NEUTRINO and to improve the EMDAP 

framework. New methodologies discussed in this chapter are incorporated into the EMDAP framework for 

(1) Identifying credibility requirements in validation process; (2) formalizing the decision-making process 

in the validation process (3) quantifying the uncertainty of SPH simulations in a transparent, consistent, and 

robust manner. Figure  shows a schematic flowchart for the improved EMDAP framework. The solid blocks 

(Elements #1 - #4) are inherited from the EMDAP framework, meanwhile, new components in bold fonts, 

including sufficient accuracy, data-driven validation, and PCMQBN are developed and included. The 

dashed blocks are defined with respect to their scopes and requirements.  

 
Figure 7.70. A schematic flowchart of the improved EMDAP framework. The solid blocks are mainly 

inherited from the well-established EMDAP framework, and three of them have been improved with new 

methodologies (in bold font). The definitions and case studies of bold methodologies have been 

demonstrated in this study. The scopes and requirements of dash blocks have been defined for the dashed 

blocks. 

 

 

7.15.3. Revised Blocks 

 

The concept of sufficient accuracy is applied to Element 1. The validation goal, represented by maturity 

level and corresponding subjective beliefs, is determined according to the safety goal, where a critical belief 

and a range of acceptance domain for model credibility are identified. The transparency and consistency of 

this process is ensured by formalized procedures and mathematical derivations. At the same time, by 

admitting the subjective nature of validation and introducing qualitative validation goal, the robustness of 

this process is ensured by achieving a designated level of “credibility” across the validations and 

assumptions that are consistent with known facts. The PCMQBN is applied to the element for adequacy 

decision. The validation decision-making process is first defined as an argument process. Next, aiming at 

three components (evidence, structure, and acceptance criterion) of the validation arguments, PCMQBN 
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further represents the argument process with Bayesian Decision theory: the evidence is characterized 

according to the concept of sufficient accuracy; the argument structure is constructed according to the 

validation cubic model; and the acceptance criterion is made according to the sufficient-accuracy-guided 

validation goal. Again, the transparency and consistency are ensured with formalized procedures and 

mathematical representations. The robustness is ensured by a formalized Bayesian sensitivity analysis, also 

known as Robust Bayes. The Data-Driven Uncertainty Quantification is applied to Element 4. The 

uncertainty of SPH simulations are quantified with techniques of PEML, where a surrogate model is 

constructed between the local physical features and simulation uncertainties. Presently, Random Forest is 

used as the major algorithm for constructing the surrogate model. Meanwhile, the capabilities of constructed 

PEML are tested for both the interpolated and extrapolated scenarios. The transparency is ensured by the 

opensource simulation engines and the open-access validation data management system. Meanwhile, the 

consistency is ensured by treating the surrogate model as a fast data extraction from high-fidelity database. 

The robustness is mainly ensured by the reliability and robustness of modern machine learning algorithms.  

Validation Data Plan (VDP) is “a dynamic planning instrument to guide, and potentially optimize 

activities on data production and acquisition, data analysis and management, and data usage so that they 

enable effective support for development, assessment and application of simulation tools intended for 

challenge problem”. In the flowchart of Figure 7.70, VDP refers to a decision model that (1) integrates 

information from all related validation activities, and (2) prioritizes data activities, based on cost-benefit 

analysis of possible activities. In this study, the cost-benefit analysis is performed based on the value of 

information theory, and a decision tree is used for calculating the expected value of sample information 

(EVSI). The EVSI refers to the expected increase in utility or monetary value that a decision-maker could 

obtain from gaining access to a sample of additional observations before making decision. A synthetic 

example is prepared for demonstrating the procedure of calculating EVSI according to the adequacy 

maturity from PCMQBN and a “postulated” new model. For the vent overflow model that has been 

discussed in previous milestone (M2NU-16-NC-NCSU-030401-153), it is assumed that a postulated model 

is designed such that the maturity level of validation result is improved as in Figure .  
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Figure 7.71. Demonstration of maturity and code adequacy improvement by a “postulated” model. 

 

It is further assumed that the chance of getting such an improvement is 40%, and there is 60% chance 

that a model as bad as the SET-Calibrate model is obtained. A decision tree, shown in Figure , can be built 

for determining the expected increase in monetary value by having an improved model rather than having 

the TDMI-calibrated model. In this scenario, the expected value is found to be negative, and it indicates 

that the efforts devoted to the development of such new model are more than those being already obtained. 

Therefore, the VDP for such a model is not preferred. 
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Figure 7.72. Decision tree for calculating the expected increase in the monetary values by having a 

postulated new model rather than having the IET-calibrated model. 

 

Another block being developed is the error propagation, where the simulation uncertainty will be 

propagated from validation to application scenarios. Data-driven methods are used to construct a correlation 

between local physical features and simulation uncertainties. Detailed works can be found in the previous 

milestone (M2NU-16-NC-NCSU-030401-153). Since the biggest challenge of such propagation comes 

from the scaling analysis, such error propagation is also named as uncertainty scaling. The objective is to 

(1) characterize the applicability of reduce-scale validation to full-scale application. (2) construct a 

mathematical relationship between the simulation error and the characterized applicability. In previous 

section, a qualitative relationship has been constructed between the PEML corrected simulation error and 

the dimensionless number. An initial study has been performed for constructing a mathematical relationship 

between the simulation uncertainty and the similarity index. Presently, for the case study of lid-driven 

cavity, similarity indexes refer to the Reynolds ratio and symmetric Kullback-Leibler Divergence, and their 

goal is to identify the similarity of training and testing scenarios. The Reynold ratio is estimated by the ratio 

of 𝑅𝑒𝜏, while the symmetric Kullback-Leibler Divergence is estimated by probability distributions of local 

physical features. In this study, the Reynold ratio 𝑟∗is defined in Eq.  7.19, while the symmetric Kullback-

Leibler Divergence 𝐷𝐾𝐿  is defined in Eq.  7.21.  

 𝑟∗ = 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡 𝑅𝑒̅̅̅̅ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔⁄  Eq.  7.19 
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 𝑅𝑒̅̅̅̅ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =∑𝑅𝑒𝑖

𝑛

𝑖

/𝑛 Eq.  7.20 

 

 𝐷𝐾𝐿(𝑃, 𝑄) =∑𝑃(𝑖) log (
𝑃(𝑖)

𝑄(𝑖)
) + 𝑄(𝑖) log (

𝑄(𝑖)

𝑃(𝑖)
)

𝑖

 Eq.  7.21 

 𝑃(𝑖) =
1

𝑁ℎ1ℎ2…ℎ𝑑
∑∏𝑘(

𝑥𝑗 − 𝑦𝑖𝑗
ℎ𝑗

)

𝑑

𝑗=1

𝑁

𝑖=1

 Eq.  7.22 

 

where 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡 is the Reynolds number of the target scenario; 𝑅𝑒̅̅̅̅ 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 is the average Reynolds number 

of the training scenarios calculated by Eq.  7.20; 𝑃(𝑖) and 𝑄(𝑖) are the probability density distribution of 

physical features 𝑦 approximated by multivariate kernel distributions; 𝑘(∙) is the one-dimensional kernel 

smoothing function; 𝑥 is the d-dimensional random vector for the physical features. 𝑁 is the number of 

samples drawn from each group of physical features. 7.73 shows the plot of L2 relative error norm for the 

corrected velocity field against the Reynolds ratio 𝑟∗ and symmetric K-L Divergence 𝐷𝐾𝐿  when the target 

scenario has 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡 = 10000. However, no strong mathematical correlation has been found between the 

suggested representation of similarity and the PEML performance.  

 
(a) L2 relative error norm versus Reynold ratio 𝑟∗ for x (upper) and y (lower) directions’ velocity field 
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(b) L2 relative error norm versus symmetric K-L Divergence of all physical features for x (upper) and y 

(lower) directions’ velocity field. 

 

Figure 7.73. Plot of NMSE for the corrected low-fidelity simulation against the Reynolds ratio 𝑟∗ and    

K-L Divergence when the target scenario has 𝑅𝑒𝑡𝑎𝑟𝑔𝑒𝑡 = 10000. 
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8. Adequacy Evaluation of Smoothed Particle Hydrodynamics Methods for 

Simulating the External-Flooding Scenario 
 

8.1. Summary 

 

In modern nuclear risk analysis for external-flooding scenarios, Computational Fluid Dynamics (CFD) 

tools are used to simulate the generation, propagation, and interactions of Nuclear Power Plants (NPPs) 

with the nuclear Systems, Structures, and Components (SSCs). Smoothed Particle Hydrodynamics (SPH), 

as a Lagrangian and mesh-free method, is one of the particle-based CFD methods. Since SPH methods can 

effectively handling large-scale fluid simulations with complex interfacial structures, SPH-based software 

has been used to simulate the impacts of external flood onto nuclear facilities, and the simulation results 

have been used to support nuclear safety analysis. However, previous risk analysis assumes that SPH 

methods and the corresponding simulation packages are applicable to the external-hazards risk analysis, 

and their simulation uncertainties do not affect the confidence of safety decision. Considering the high 

consequences to nuclear safety induced by simulation errors, a systematic and complete validation process 

is needed to evaluate the adequacy of SPH simulations in informing related safety decisions. 

 

In this study, a scoping-stage assessment is performed for SPH’s adequacy in simulating the real-scale 

external flooding scenarios, especially in predicting the surface-wave impacts on SSCs at NPP sites. To 

ensure the completeness and consistency, validation frameworks, Code Scalability Applicability and 

Uncertainty (CSAU), and its regulatory guide, Evaluation Model Development and Assessment Process 

(EMDAP) are followed to guide validation activities and to make final code adequacy assessment. First, an 

external-flooding scenario is designed, and SPH simulations are performed with an SPH-based software 

named Neutrino. A Phenomenon Identification and Ranking Table (PIRT) is created, and the surface-wave 

impacts are identified as one of the high-rank phenomena. At the same time, a performance measurement 

standard is created for measuring the code adequacy in informing safety decisions consistently and 

transparently. At the scoping stage, these criteria are selected based on authors’ knowledge and reviewed 

by researchers in related fields. Next, numerical benchmarks are designed for assessing the code adequacy 

of SPH methods and corresponding software implementations on Neutrino. Next, code accuracy is 

evaluated by comparing simulation results from Neutrino against experimental measurements in each 

benchmark. Meanwhile, a scaling analysis is performed to determine a group of dimensionless number for 

characterizing important physics and to assess the applicability of validation database collected in reduced-

scale facility to the prototypic scenario. Finally, results from all activities are brought together to make an 

adequacy decision. It is found that, based on the current evidence, SPH methods and associated Neutrino 

software can predict the unbroken surface-wave peak pressure onto stationary rigid with reasonable 

accuracy if the suggested sizes of particles are used. However, the available evidence is not sufficient to 

support the decisions of SPH’s adequacy in predicting impacts force on dynamic rigid. 

 

8.2. Introduction 

 

Since the Fukushima accident and other site flooding events in the United States, the risk of NPP due 

to external flooding has drawn attention from both regulatory and research departments. Responding to the 

concerns of NPP safety due to external flooding, U.S. Nuclear Regulatory Commission (NRC) has 

developed recommendations for further regulatory actions in the seismic and flooding designs, and 

emergency preparations. In addition, U.S. NRC also requests a flooding reevaluation at NPP sites from 

power reactor licensees and holders of construction permits. One task of the Risk-Informed Safety Margin 

Characterization (RISMC) methodology is to develop methods for systematically analyzing the risk and 

accurately determining the safety margins. In RISMC, advanced simulations are used for capturing the 

propagation and impact of hazards on NPPs. Meanwhile, validation frameworks, including Code 

Scalability, Applicability, and Uncertainty (CSAU) and Evaluation Model Development and Assessment 
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Process (EMDAP), are needed for assessing the adequacy of selected simulation methods and tools in 

simulating high-ranked phenomena. 

 

Researches on the RISMC methodology were formulated as a pathway in the U.S. Department of 

Energy’s Light Water Reactor Sustainability program in 2008 (Hess, Dinh, Gaertner, & Szilard, Risk-

informed safety margin characterization, 2008), and its application scope has covered a wide range of issues 

in nuclear safety analysis and risk management [2] [3] [4]. RISMC has also been conducting research and 

development for advanced methods and tools to support NPP safety assessments and management. Within 

an identified issue space, RISMC analyzes the system’s Quantities of Interest (QoIs) and the corresponding 

safety margins probabilistically, where a broader range and type of uncertainties are considered. 

Considering the complexity of external flooding, advanced simulation tools are needed for a comprehensive 

analysis of scenario progressions. Because the RISMC approach explicitly couples probabilistic approaches 

(the “scenarios”) with phenomenological representations (the “physics”) through a modeling-and-

simulation-based approach, it is ideally suited to serve as a framework to address the interactions of external 

hazards on NPPs and their potential impacts on the NPP safety. 

 

In previous works [4], RISMC has been applied to analyze the risk induced by flooding hazards, and 

an SPH-based CFD tool named Neutrino is used for simulating the generation, propagation, and interaction 

of floods with NPP sites. Next, based on the information from Neutrino, the system code can predict the 

thermal-hydraulic status inside the reactor core. Next, the scenario-based and risk-informed safety margin 

can be obtained for the reactor and facilities using the statistical analysis. Though Neutrino has shown great 

capability in performing large-scale fluid simulations [5], due to the complexity of involving physics and 

phenomena, the simulation’s adequacy remains unknown. Although SPH, with sufficiently refined 

particles, can be used to perform Direct Numerical Simulation (DNS), the computational cost is too high to 

be practical in the RISMC analysis. As a result, a comprehensive validation is still needed to accurately 

characterize the adequacy of SPH simulations. Meanwhile, it is also necessary to consider the simulation 

efficiency as another important code adequacy criterion. 

 

The Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology was introduced in 

1989 [6] to accommodate the revised rule on the acceptance of the Emergency Core Cooling System 

(ECCS). The objective is to demonstrate a method that “can be used to quantify uncertainties as required 

by the best-estimate option described in the NRC’s 1988 revision to the ECCS Rule (10 CFR 50.46) [6]”. 

Evaluation Model Development and Assessment Process (EMDAP) is a regulatory guide developed by 

U.S. NRC based on CSAU methodology [7]. The objective is to describe an acceptable process of 

developing and assessing the evaluation models that are used to analyze transient and accident behavior 

within the design basis of a nuclear power plant. The CSAU/EMDAP framework is mainly composed by 

five activities:  

• Identify the importance and adequacy of mathematical model, code and data for all related systems, 

components, processes, and phenomena;  

• Establish standards against which code models and adequacy can be measured;  

• Construct code-assessment case studies and database;  

• Perform code assessment by comparing the code results against the standards;  

• Perform scaling analysis for database in terms of their relevance and sufficiency for the intended 

application. 

 

After the implementation of all activities, an adequacy decision will be made, and suggestions on model 

forms and parameters are provided. Next, the simulation code will be “frozen” and applied to the accident 

scenario for reactor transient and risk analysis. CSAU/EMDAP framework has been successfully applied 

to assess the adequacy of RELAP-5 simulation code for the Small Break Loss-of-Coolant Accidents of 

AP600 [8]. In this study, CSAU/EMDAP framework will be followed for the systematic and consistent 

assessment of SPH methods and the corresponding software Neutrino. 
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8.3. Smoothed Particle Hydrodynamics 

 

In 1977, SPH was first invented to deal with astrophysical problems in three-dimensional open space 

[9], and it is found that the collective movement of particles can be used to represents the fluid flow. Since 

then, SPH has advanced tremendously in hydraulics with a large amount of work being performed both 

theoretically and computationally. Though mesh-based methods are still the dominant tools for multi-phase 

simulations, SPH has built its fidelity in simulating fluid problems with complex and irregular interfaces 

[10]. Recently, SPH has grown popular and become an essential part of the numerical arsenal of several 

industrial and laboratory institutions, and its capability has been assessed for high-wind [11], micro-boiling 

[12], etc. For RISMC analysis of flooding hazards, as a Lagrangian method, SPH can predict the particle 

motion through space and time with no requirement for any underlying mesh. This brings some key 

advantages with SPH in the field of long surface-wave production and development [13] [14], sloshing [5], 

floating objects [15] [16], surface-wave impacts and interacting force estimate [17] [18], which is perfectly 

suitable for the RISMC simulation in flooding scenarios. In general, the success of SPH in these fields relies 

on its capabilities in simulating scenarios with nonlinear and multi-scale phenomena. In addition, as 

suggested by D. Violeau and B.D. Rogers, [19]: “SPH has been able to generate results in close agreement 

with reference solutions/data in validation tests, without highly sophisticated algorithms required in mesh-

based schemes.” Since SPH is likely to provide more promising futures in complex free-surface and very 

large-scale flow simulation than mesh-based methods, it is selected as the major simulation tool for RISMC 

analysis in flooding.  

 

In SPH, the elements are represented as particles, while the physical properties are distributed and 

smoothed across a spatial distance (smoothing length) by certain rules (e.g., kernel function). Therefore, 

the physical quantities of any particle can be obtained by summing the relevant properties of all the particles 

lying within the range of kernel. In SPH, the summing of property or function 𝑓 is governed by: 

 

 
𝑓(𝑟 ) ≅ ∫𝑓(𝑟 ′)𝑊(𝑟 − 𝑟 ′, ℎ)𝑑𝑟 ′ 

Eq. 

8.23 

 

where ℎ is the smoothing length; 𝑊(𝑟 − 𝑟 ′, ℎ) is the kernel function. The kernel function assigns weights 

to discretized properties 𝑓(𝑟 ′) at different locations 𝑟 ′ and takes an interval in its supporting length ℎ. The 

objective is to approximate the real function values at location 𝑟 . It is argued that when the kernel function 

becomes a Dirac delta function, the left-hand side and right-hand side of Eq. 8.23 will be equal. The 

smoothing function 𝑊 has a finite range of 𝜅ℎ, where 𝜅 is a constant that defines the support domain of the 

smoothing function. In general, the properties of the weight function can be summarized as:  

 

 
∫𝑊(𝑟 − 𝑟 ′, ℎ)𝑑𝑟 ′ = 1 

Eq. 

8.24 

 lim
ℎ→0

𝑊(𝑟 − 𝑟 ′, ℎ) = 𝛿(𝑟 − 𝑟 ′) Eq. 

8.25 

 𝑊(𝑟 − 𝑟 ′, ℎ) = 0 𝑤ℎ𝑒𝑛 |𝑟 − 𝑟 ′| > 𝜅ℎ Eq. 

8.26 

 

Regarding the properties of kernel functions, Eq. 8.24 represents the normalization property, Eq. 

8.25 represents the Dirac delta function property, and Eq. 8.26 represents the compact condition. If the 

equation is further approximated with particles, which means to represent the problem domain with a set of 

particles and estimate the field variables based on these particles, Eq. 8.23 becomes Eq. 8.27: 
 

 𝑓(𝑟 ) ≅ ∑𝑓(𝑟 𝑏)𝑊(𝑟 − 𝑟 𝑏 , ℎ)

𝑏

∆𝑉𝑏 Eq. 

8.27 
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where b represents any discrete region within the affecting region. If each discrete region has mass, which 

can be represented as 𝜌𝑑𝑉, the equation will then be written as: 

 

 𝑓(𝑟𝑎⃗⃗  ⃗) ≅∑
𝑚𝑏

𝜌𝑏
𝑓(𝑟 𝑏)𝑊(𝑟 𝑎 − 𝑟 𝑏 , ℎ)

𝑏

 Eq. 

8.28 

 

𝑚𝑏 and 𝜌𝑏 represents the mass and density of each particle. Eq. 8.28 is usually referred as “summation 

interpolation”, which is the basis of all SPH formalisms. Since mass and density are introduced during the 

particle approximation, it makes SPH very suitable for hydrodynamic problems where mass need to be 

conserved, like multiphase flow. Similar technique can also be applied for approximating the divergence 

𝛻 ∙ 𝑓(𝑟 ) and gradient 𝛻𝑓(𝑟 ).  
 

 

 
𝛻𝑓(𝑟 ) ≅ 𝜌∑𝑚𝑏[(

𝑓(𝑟 𝑏)

𝜌𝑏
2 ) + (

𝑓(𝑟 )

𝜌2
)] ∙ ∇𝑊(𝑟 − 𝑟 𝑏 , ℎ)

𝑏

 Eq. 

8.29 

 
𝛻 ∙ 𝑓(𝑟 ) ≅ −

1

𝜌
∑𝑚𝑏(𝑓 − 𝑓𝑏) ∙

𝑏

∇𝑊(𝑟 − 𝑟 𝑏 , ℎ) 
Eq. 

8.30 

 

In this work, the cubic B-spline kernel function, as shown in equation Eq. 8.31, is applied, with 𝑞 = 𝑟/ℎ. 

 

 

𝑊(𝑟) =
1

𝜋ℎ3

{
 
 

 
 1 −

3

2
𝑞2 +

3

4
𝑞3, 0 ≤ 𝑞 ≤ 1

1

4
(2 − 𝑞)3, 1 < 𝑞 ≤ 2

0, 2 < 𝑞

 
Eq. 8.31 

 

8.4. IISPH Discretization of the Navier-Stokes Equations 

 

In this study, a single-phase, isothermal, incompressible and Newtonian fluid flow is considered, and 

an Implicit Incompressible Smoothed Particle Hydrodynamic (IISPH) algorithm is used to solve the 

governing fluid equations. Meanwhile, the viscosity is assumed to be constant in space, and the surface 

tension forces are ignored. The Navier-Stokes equations can be written as  

 

 𝑑𝑣 

𝑑𝑡
= −

1

𝜌
∇𝑝 + 𝜐∇2𝑣 + 𝑔  Eq. 8.32 

 𝑑𝜌

𝑑𝑡
= −𝜌∇ ∙ 𝑣  Eq. 8.33 

 

where 𝑣 , 𝑝, 𝜐, 𝑔  represent velocity, pressure, kinetic viscosity, and gravitational acceleration respectively. 
𝑑
𝑑𝑡⁄ = 𝜕 𝜕𝑡⁄ + 𝑣 ∙ ∇ is the Lagrangian derivative. At the preliminary step, the density of all SPH particles 

are calculated based on Eq. 8.34.  

 

 

 𝜌𝑎(𝑡) =∑𝑚𝑏𝑊𝑎𝑏(𝑡)

𝑏

 Eq. 8.34 
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where 𝑡 represents the time, 𝑎 represents the target particle, 𝑏 represent the surrounding particles, 𝑊𝑎𝑏 is 

the kernel function values calculated based on the distance between each pair of particles 𝑎 and 𝑏. Eq. 8.34 

is also a SPH discretization of the continuity equation (Eq. 8.33) with exact time integrations. The pressure-

velocity coupling is solved by splitting the momentum equation Eq. 8.32 into two steps:  

 

(1) The intermediate velocity 𝑣 𝑎
∗ is calculated by solving momentum equation without pressure term. 

The Monaghan artificial viscosity formulation [20] is used for particle discretization, while the 

explicit Euler scheme is used for time integrations.  

 

 𝑣 𝑎
∗ = 𝑣 𝑎(𝑡) + ∆𝑡(−∑𝑚𝑏Π𝑎𝑏∇𝑊𝑎𝑏(𝑡) + 𝑔 

𝑏

) Eq. 8.35 

 
Π𝑎𝑏 = −𝜐

min((𝑣 𝑎(𝑡) − 𝑣 𝑏(𝑡)) ∙ (𝑥 𝑎(𝑡) − 𝑥 𝑏(𝑡)), 0)

|𝑥 𝑎(𝑡) − 𝑥 𝑎(𝑡)|2 + 0.01ℎ2
 Eq. 8.36 

 

where 𝜐 is the viscous factor that equals to 2𝛼ℎ
𝜌𝑎(𝑡) + 𝜌𝑏(𝑡)
⁄ , 𝛼 is the artificial viscosity coefficient. 

Next, the intermediate densities are computed with Eq. 8.33 and the implicit Euler scheme: 

 

 𝜌𝑎
∗ = 𝜌𝑎(𝑡) + ∆𝑡∑𝑚𝑏(𝑣 𝑎

∗ − 𝑣 𝑏
∗)∇𝑊𝑎𝑏(𝑡)

𝑏

 Eq. 8.37 

 

(2) The momentum equation is calculated with only the pressure term, while it is combined with the 

mass equation to ensure the incompressibility condition 
𝑑𝜌

𝑑𝑡
⁄ = 0. The Poisson equation is used 

to solve the pressures 𝑝𝑎: 

 

 
∇2𝑝𝑎(𝑡) =

𝜌0 − 𝜌𝑎
∗

∆𝑡2
 Eq. 8.38 

 

More details of solving the Poisson equation can be found in [5] [21]. At last, the new velocity and 

position are computed with Euler-Cromer scheme for the time integration:  

 

 
𝑣 𝑎(𝑡 + ∆𝑡) = 𝑣 𝑎

∗ + ∆𝑡∑𝑚𝑏(
𝑝𝑎(𝑡)

𝜌𝑎(𝑡)2
+
𝑝𝑏(𝑡)

𝜌𝑏(𝑡)2
)∇𝑊𝑎𝑏(𝑡)

𝑏

 Eq. 8.39 

 𝑥 𝑎(𝑡 + ∆𝑡) = 𝑥 𝑎(𝑡) + ∆𝑡𝑣 𝑎(𝑡 + ∆𝑡) Eq. 8.40 

 

The time step ∆𝑡 is updated based on the Courant-Friedrichs-Lewy (CFL) condition ∆𝑡𝐶𝐹𝐿  and an empirical 

correlation for ∆𝑡𝑚𝑎𝑥, which is designed to avoid unreasonable numbers of iterations in the pressure solver:  

 

 ∆𝑡 = min(∆𝑡𝐶𝐹𝐿 , ∆𝑡𝑚𝑎𝑥) Eq. 8.41 

   

 

∆𝑡𝐶𝐹𝐿 = min(
𝜆𝐶𝐹𝐿ℎ

|𝑣 𝑚𝑎𝑥|
, √
𝜆𝐶𝐹𝐿ℎ

|𝑔 |
)  

   

 
∆𝑡𝑚𝑎𝑥 =

𝜆𝑚𝑎𝑥ℎ

|𝑔 |
  

 

where 𝜆𝐶𝐹𝐿 is the CFL coefficient, 𝜆𝑚𝑎𝑥 is a coefficient for ∆𝑡𝑚𝑎𝑥, and 𝑣 𝑚𝑎𝑥 is the maximum velocity for 

all particles. The calculation of particle properties depends on properties of neighboring particles, and a 
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neighborhood searching algorithm is constructed in Neutrino with a combination of compact hashing and 

Z-curve index sorting. More details can be found in [5].  

 

At the boundaries, the kernel support domain of fluid particles can be insufficiently sampled, and 

it leads to an underestimation of densities. As a result, the neighboring boundary particles are also taken 

into account when densities and forces are calculated for fluid particles. The surface of rigid objects is 

sampled by a single layer of boundary particles, and they are implemented based on the directly analytical 

shapes or the mesh of rigid objects [22]. The spacing of the boundary particle is, wherever possible, 

enforced equal to the rest particle distances of fluid particles. To avoid density peaks because of the 

boundary-particle oversampling, a relative contribution factor 𝛹𝑠 for boundary particles 𝑠 is calculated as: 

 

 𝛹𝑠 =
𝜌0

∑ 𝑊𝑠𝑘(𝑡)𝑘
 Eq. 8.42 

 

where 𝑘 represents boundary particle neighbors. The boundary particles contribute to the densities of fluid 

particles 𝑎 as: 

 

 𝜌𝑎(𝑡) =∑𝑚𝑏𝑊𝑎𝑏(𝑡)

𝑏

+∑𝛹𝑠𝑊𝑎𝑠(𝑡)

𝑠

 Eq. 8.43 

 

Two wall boundary conditions are imposed, constraining the velocity and pressure fields: a partial-

slip condition and a homogeneous Neumann boundary condition, 
𝜕𝑝

𝜕𝑛⃗ 
⁄ = 0, with 𝑛⃗  as the unit vector 

normal to the boundary. As a result, the pressure force 𝐹 𝑎←𝑠
𝑝

 and friction force 𝐹 𝑎←𝑠
𝜈  applied from a boundary 

particle 𝑠 to a fluid particle 𝑎 are expressed as:  

 

 
𝐹 𝑎←𝑠
𝑝 = −𝑚𝑎𝛹𝑠

𝑝𝑖(𝑡)

𝜌𝑖(𝑡)
∇𝑊𝑎𝑠(𝑡) Eq. 8.44 

 𝐹 𝑎←𝑠
𝜈 == −𝑚𝑎𝛹𝑠𝛱𝑎𝑏∇𝑊𝑎𝑠(𝑡) Eq. 8.45 

 

where 𝛱𝑎𝑏  is calculated by Eq. 8.36 with a reformulated viscous factor 𝜐 = 𝜎ℎ 2𝜌𝑎(𝑡)
⁄ . 𝜎 is the fluid-solid 

coefficient, which is tuned for each solid surface to impose a partial-slip condition and account for different 

levels of rugosity, similarly as the Manning coefficient. Moreover, incorporating the fluid-rigid boundary 

handling requires modifications for solving the intermediate velocity 𝑣 𝑎
∗ and density 𝜌𝑎

∗ :  

 

 𝑣 𝑎
∗ = 𝑣 𝑎(𝑡) + ∆𝑡(−∑𝑚𝑏Π𝑎𝑏∇𝑊𝑎𝑏(𝑡) −∑𝛹𝑠𝛱𝑎𝑏∇𝑊𝑎𝑠(𝑡)

𝑠

+ 𝑔 

𝑏

) Eq. 8.46 

 𝜌𝑎
∗ = 𝜌𝑎(𝑡) + ∆𝑡∑𝑚𝑏(𝑣 𝑎

∗ − 𝑣 𝑏
∗)∇𝑊𝑎𝑏(𝑡)

𝑏

+∑𝛹𝑠(𝑣 𝑎
∗ − 𝑣 𝑠)∇𝑊𝑎𝑠(𝑡)

𝑠

 Eq. 8.47 

 

In addition, the fluid-rigid pressure is also considered to update the velocity at 𝑡 + ∆𝑡:  
 

 
𝑣 𝑎(𝑡 + ∆𝑡) = 𝑣 𝑎

∗ + ∆𝑡∑𝑚𝑏 (
𝑝𝑎(𝑡)

𝜌𝑎(𝑡)2
+
𝑝𝑏(𝑡)

𝜌𝑏(𝑡)2
)∇𝑊𝑎𝑏(𝑡)

𝑏

 

 +∑𝛹𝑠
𝑝𝑎(𝑡)

𝜌𝑎(𝑡)2
∇𝑊𝑎𝑠(𝑡)

𝑠

 

Eq. 8.48 
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With the fluid-rigid boundary handling scheme, the SPH software, Neutrino, is able to predict the 

hydrodynamic forces onto solid objects from the surface waves by calculating the pressure Eq. 8.44 and 

friction Eq. 8.45 forces. Moreover, by incorporating a solid-mechanistic solver, Neutrino is able to simulate 

the motion of dynamic objects and solid deformation. More details can be found in [22]. 

 

The free-surface conditions are implicitly imposed without the need of boundary particles. The 

kinematic condition and dynamic condition on the tangential stress are automatically satisfied with, 

respectively, the Lagrangian approach and an appropriate choice of SPH operators [23], while the dynamic 

condition on the pressure is indirectly imposed by:  

(1) Defining the pressure as the relative pressure with respect to the atmospheric pressure, so that when 

the fluid pressure equals to the atmospheric pressure, a zero relative pressure is exerted.  

(2) Clamping all negative pressures to zero due to the incomplete fluid neighborhood at the free-surface 

during the execution of the pressure-solving algorithm.  

 

It can be seen from equation Eq. 8.27 – Eq. 8.48 that the information from neighboring particles is 

crucial to the final results. Theoretical error analysis has been performed for the mathematical formulation 

of SPH methods in [24]. The goal is to identify sources of error for SPH simulations. Meanwhile, the 

numerical error analysis is an important input towards the adequacy assessment of the SPH methods in 

predicting application quantities of interest. It is found that the particle size is the major source of 

uncertainty for SPH methods. Since the properties are assumed to be homogeneous for every single particle 

and smoothed across its neighboring particles, low particle number density will result in significant errors. 

Therefore, the particle size is a major source of uncertainty. It is also found that the continuous Lagrangian 

operator has a second order of accuracy for approximating an arbitrary scale (or vector) field and gradients 

of any order. However, most errors come from the discretization process, and the particle distribution 

deviates from a perfectly regular configuration after simulation starts. As a result, the math to derive the 

error in the general case turns to be more complicated than for mesh-based methods. In [24], a theoretical 

error analysis is performed given that the particles are uniformly distributed, and the second order of 

accuracy can be achieved with SPH approximations. However, it is found from a simple laminar scenario, 

where particle distributions are relatively uniform, that SPH methods with weakly compressible SPH 

formulation have the first order of accuracy. In general, to confidently apply SPH’s simulation results to 

external-flooding simulations and nuclear safety analysis, the adequacy of SPH needs to be analyzed 

systematically for the intended uses. 

 

8.5. SPH Adequacy Assessment with CSAU/EMDAP Framework 

 

To systematically assess the adequacy of SPH methods for the external flooding, the CSAU/EMDAP 

framework is applied, with four key activities. Figure 8.40 shows the scheme of such process, and results 

from all activities lead to the decision for the adequacy of SPH methods in designated applications.  

 

Both the verification by theoretical error analysis and the literature reviews for SPH have been 

performed in [24], and the corresponding software package Neutrino has been verified in [25]. The rest 

components, including target applications, performance measurement standards for code adequacy, code 

assessments, and scaling analysis will be further discussed. Finally, a code adequacy decision will be made 

together with a summary of findings and lessons learned. In addition, Figure 8.40 also suggests that the 

code adequacy assessment is an iterative process, and efforts are continuously required in achieving 

sufficient levels of details, improving models, collecting new data, etc. Error! Reference source not 

found. defines phases of code adequacy assessment based on the sources of uncertainties and their 

consequences in supporting safety-related decisions in applications. This study is currently at the scoping 

stage, and the objective is to qualitatively evaluate the adequacy of SPH methods and the corresponding 

package Neutrino in simulating important phenomena in external flooding. Comparing to the maturation 

stage, the scoping stage potentially has large uncertainties and biases. Regular code assessments usually 
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start with phase #1, and it mainly aims to focus the issues and maximizing effectiveness in addressing them, 

including appropriate research efforts, databases, requirements, decision analysis, and assessment process. 

The completion of phase #2 would take place outside and after sufficient resolutions have been achieved. 

At the same time, the adequacy results are reinforced by target applications. That is, phase #2 can be 

regarded as confirmatory, but can only be judged on a case-by-case basis. 

 
Figure 8.40.  Demonstration of adequacy decision process. 

Table 8.1. Definition of phases of assessment 

 

Phase #  Sources of Uncertainties Consequence 

1 Scoping 

Important phenomena are identified and ranked with 

potentially large uncertainties and biases; 

The assignment of acceptance criteria could be 

uncertain and biased; 

Adequacy decisions are qualitative; 

Validation data and evidence are potentially 

insufficient; 

Uncertainty in the 

final code adequacy 

is large, and it could 

potentially alter the 

decisions in 

applications 

2 Maturation 

Important phenomena are identified and verified 

The assignment of acceptance criteria is verified; 

Verified adequacy decisions with acceptable 

uncertainties; 

Validation data and evidence are sufficient; 

Uncertainty in the 

final code adequacy 

is negligible 

compared to the 

defense-in-depth  

 

8.5.1.  Scenario Description 

 

There are several different types of flooding scenarios evaluated by the nuclear industry, and each may 

have multiple criteria for adequacy acceptance. For this external-flooding example, the analysis purpose is 

to assess if the code adequacy of SPH to model impact forces when simulating the scenario of “floods 

damage the building structures, enter the room, and cause diesel generator (DG) malfunctioning” is 

acceptable. Detailed event progressions are listed as follows: 
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• If there is external flooding after a dam breaching, water overflows the NPP site, and the AC power 

fails immediately.  

• If the water reaches the DG building, and the peak forces acting on the building exceed a limit, 

water starts to penetrate the room.  

 

The corresponding QoIs include the response time and the structural loads on Systems, Structures, and 

Components (SSCs) by floods. In this study, the response time is the time for the external floods to reach 

the DG building and to potentially fail the DGs. The response time is crucial for the nuclear safety analysis, 

including estimating the decay heat, initiating emergency procedures, and determining responses of SSCs, 

etc. The structural loads on stationary SSCs are important for determining the structural integrity and 

operational status of SSCs during external-flooding scenarios. For example, if the load exceeds the 

regulatory limits, certain SSCs need to be shut down; if the force exceeds the operational limits, certain 

SSCs malfunction or fail. Additionally, the structural loads on moving objects are important for the 

flooding-induced debris analysis, including the debris transport and its impacts on SSCs. Figure 8.41 shows 

a postulated scenario of external flooding induced by dam failures. Flooding simulations have been 

performed with Neutrino, and some key configurations for this simulation are listed in Table . 

 

 
 

Figure 8.41. Demonstration for a postulated external flooding scenario induced by dam failures. A full-

scale simulation is prepared with Neutrino software package. 

Table 8.2. Scenario configurations, Neutrino setups, and predicted QoIs 

Scenario Configurations 

Water level at the dam breaching 5m 

Breaching width 10m 

Distance to buildings 20m 

Neutrino Setups 

Particle size 2cm 

CFL number 0.6 

Predicted QoIs 

Response time 20min 



   

206 
 

Peak force 400N 

 

At the scoping stage, this study does not design new facilities, and validation data is collected from 

existing literature. To ensure the data applicability to the application scenarios, a scaling analysis is needed 

to ensure the relevance and sufficiency for all collected data. Error! Reference source not found. shows 

the PIRT high-rank phenomena for the FoMs of response time and structural loads, where the shaded areas 

represent the FoMs. Since SPH has been applied to simulate the violent flow for a long time [19], its model 

and code are adequate for generating the surface wave with a wave generator [26] [27], surface-wave 

propagation, and force estimation on static objects [28]. Comprehensive reviews for SPH methods and 

codes in simulating these phenomena can be found in the reference documents [29]. Therefore, most 

rankings for these phenomena are “High” except for the math model and code adequacy of structural loads. 

SPH methods have shown good agreements in predicting the hydrodynamic forces. Although, the results 

can be unstable and additional smoothing techniques are usually needed, they are ranked as “Medium” 

since these issues are considered moderate. For the phenomenon of vortex shedding, the math model and 

code in SPH is very limited, and they are all ranked as “Low”. To achieve a comparable accuracy to mesh-

based simulations, SPH either needs to refine its particle to DNS scales or to be incorporated by closures. 

However, since the number of neighboring elements (particles) for an SPH element (particle) is typically 

3-4 times more than that for a mesh cell in mesh-based simulations, SPH methods are more computationally 

expensive than mesh-based methods in DNS scales. Besides, since the nature of particle-based methods 

deviates from the mesh-based methods, most well-known closure models in established CFD studies may 

not be perfectly suitable for SPH. Therefore, better SPH closures are still needed for such phenomenon 

from the aspects of math and model adequacy. Finally, the data of full-scale solitary surface wave can be 

obtained analytically, while the data from aerospace engineering for large-scale vortex shedding 

phenomenon are quite adequate. Therefore, the ranking of data adequacy for solitary surface wave and 

vortex shedding is “High”. But for the rest of phenomena, there is a lack of large-scale data.  

 

Table 8.3: PIRT process and lists of numerical benchmarks designed for each phenomenon in external 

flooding scenarios. 

ID Phenomenon Description Imp 

Adequacy 

Math 

Model Code Data 

A Response Time     

 Solitary Surface Wave H H H H 

 Surface-Wave Propagation H H H L 

 Vortex Shedding H L L H 

B Structural Loads     

 
Hydrodynamic Force  

on Stationary Structures 
H M M L 

 
Hydrodynamic Force  

on Moving Structures 
H M M L 

 

Considering the limitation of databases from literature, this study only assesses the adequacy of Neutrino 

in predicting hydrodynamic forces on stationary structures.  

 

8.5.2.  Performance Measurement Standards 

 

To decide if the code is adequate for the specific application, standards need to be established, against 

which code models and adequacy can be measured. In this study, the standards are described as – the code 

is considered adequate for each separate phenomenon or process if: 
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• The code state of the art is known, documented, and acceptable. 

• The code is generally acceptable for simulating each separate phenomenon of the application. 

• The code predicts the high-fidelity data from separate effect tests with acceptable accuracy. 

• The code is acceptable for the scale of the specific target applications. 

 

The code is considered adequate for integral scenarios if: 

• The field equations represent the key processes and phenomena. 

• The code is generally acceptable for simulating the application scenarios with various phenomena 

and processes. 

• The code predicts the behavior of important phenomena as observed in appropriate integral effects 

tests with acceptable accuracy.  

• The code represents the interactions of between phenomena, process, and system components. 

 

To provide a quantitative measure for the term “acceptability,” criteria are needed for assessing the 

code accuracy and quality of the validation database. In this study, the code accuracy is measured by 

simulation errors in predicting selected QoIs, while the quality of the validation database is measured 

according to the attributes of scaling analysis. Error! Reference source not found. shows the accuracy 

standards measured by error (𝐿1 relative error norm) in predicting selected QoI. At the scoping stage, the 

acceptance criteria for code accuracy are made by authors’ knowledge, and they have been reviewed by 

researchers in relevant fields. In the refinement stage, the acceptance criteria will be adjusted based on the 

code adequacy and risk analysis results. The 𝐿1 relative error norm is defined by  

 

 𝐿1 = |
𝑄𝑜𝐼𝑝𝑟𝑒𝑑𝑠 −𝑄𝑜𝐼𝑚𝑒𝑎𝑠

𝑄𝑜𝐼𝑚𝑒𝑎𝑠
| Eq. 8.49 

 

where 𝑄𝑜𝐼𝑝𝑟𝑒𝑑𝑠 and 𝑄𝑜𝐼𝑚𝑒𝑎𝑠 represent the predicted QoI by simulations and measured QoI by experiments. 

Considering the limitations of this study, current error analysis is at preliminary stages with simple 

uncertainty quantification metrics. Advanced metrics and the corresponding quantification methods [30] 

[31] will be evaluated.  

 

Table 8.4. Simulation code accuracy standards measured by error in predicting selected QoIs 

Accuracy Statement 
𝑳𝟏 Relative Error Norm 

in Predicting Selected QoIs 

Excellent Accuracy ≤ 10% 

Reasonable Accuracy ≤ 20% 

Insufficient Accuracy > 20% 

 

A systematic scaling analysis [6] is composed by “top-down” and “bottom-up” analysis. The 

scaling analysis is tightly coupled with the model assessment process. Starting from the Phenomenon 

Ranking and Identification Table (PIRT), the physical characteristics are identified, and the 

interconnections among system components, phenomena, and processes can be understood. Meanwhile, by 

identifying important phenomena, necessary data can be collected with required physical characteristics. In 

this study, the dimensionless groups are used to represent the physical characteristics that governs the 

system responses. Next, the relative importance of the dimensionless groups is investigated through various 

code assessment process until a relationship is developed between the selected phenomena and the 

dimensionless groups. Next, simulations will be validated by comparing results against databases until the 

code adequacy is acceptable. Once validation is finished, it can be claimed that all data involved in this 

process have been “compressed” into the simulation codes. As a result, the scaling process is to find the 

“encodings” for the database, and the model assessment processes can be treated as an adequacy and 

applicability test for the condensed form of data. The adequacy is decided based on collected data and 
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validation results, while the applicability is verified according to the sufficiency of databases. In this study, 

the dimensionless number of experiments are compared to the applications, and the sufficiency is verified 

if the test data envelops the application behavior. In another word, the dimensionless number in applications 

should be covered by the min-max range of dimensionless groups in the database. However, since the PIRT 

process relies on expert knowledge of systems, phenomena, and processes, the selected physical 

characteristics can be only peculiar to the experiments and is not expected in the applications. Such an issue 

is usually known as scaling distortion [6]. To avoid distortions, a relevance analysis is needed for the 

database to ensure that all selected phenomena are also typical under prototypic conditions. At the same 

time, the distortion needs to be evaluated by making model predictions at different spatial and time scales. 

Next, uncertainty analysis is performed with respect to each scale. If the uncertainty of model predictions 

can be bounded, the scale distortion is claimed as acceptable. Error! Reference source not found. shows 

general descriptions of three attributes in scaling analysis and corresponding acceptance criteria. In this 

study, when the code adequacy is evaluated, the acceptance criteria of scaling analysis (Error! Reference 

source not found.) and code accuracy (Error! Reference source not found.) will be considered at the 

same time. Although, scaling and code accuracy are correlated since model is treated as a compact form of 

data, this study assumed them to be independent. Such an assumption is valid under the condition that the 

current SPH model and the software package Neutrino are developed without scaling analysis. However, 

in the later stage, as SPH models become sophisticated during the iterative development and assessment 

process, sophisticated techniques are needed to further improve model accuracy, data sufficiency, 

relevance, and distortion. 

 

Table 8.5. Attributes and criteria of systematic scaling analysis. 

Attribute Criterion 

Sufficiency 
The physical characteristics of database bound those for 

applications.  

Relevance  
The physical characteristics of database are relevant to 

those for applications 

Distortion 
The uncertainty of model predictions can be bounded 

when it is propagated through scales 

 

 

Considering the previous discussion on code accuracy and scaling analysis, the general standards for 

code adequacy can be identified as:  

 

Excellent – For the high-rank phenomena, the accuracy in predicting the quantity of interest is 

excellent. The code can also be confidently used in similar applications, and the accuracy in predicting 

corresponding quantities of interest should also be excellent. 

 

Reasonable – For the high-rank phenomena, the accuracy in predicting the quantity of interest is 

reasonable. The code can also be confidently used in similar applications, and the accuracy in predicting 
corresponding quantities of interest should also be excellent.  

 

Insufficient – For the high-rank phenomena, the accuracy in predicting the quantity of interest is 

insufficient. The errors of most predictions lie outside the uncertainty bounds, and major modifications are 

needed before the code can be used in similar applications with sufficient confidence. 

 

In this study, the minimum standard for acceptable code in terms of code adequacy is “reasonable”. 

Meanwhile, due to a lack of data from integral effect tests, this study focuses on the code adequacy 

assessment of SPH methods for separate phenomena. 
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8.5.3.  Develop Assessment Base and Evaluation Model 

 

To ensure the data applicability to the application scenarios, a scaling analysis is needed to ensure the 

relevance and sufficiency for all collected data. Table  shows the list of related numerical benchmarks for 

all high-rank phenomena collected from various sources, while the QoIs for each benchmark are also listed. 

In this study, not all benchmarks have been demonstrated, but at least one benchmark will be discussed for 

each phenomenon.  

 

Table 8.6. Numerical benchmarks for all high-rank phenomena. Benchmarks in blue and italic fonts are 

investigated but not discussed in this study. 

ID High-Rank Phenomena 
Numerical  

Benchmarks 
QoI 

A Response Time   

 Solitary Surface Wave Wave Piston Machine [26] [32] 
Surface-Wave 

Height 

 Surface-Wave Propagation Dam Break [33] [34] 
Time of Peak 

Force  

 Vortex Shedding Flow around Cylinder [28] Velocity Field 

B Structural Loads   

 
Hydrodynamic Force on 

Stationary Structures 
Dam Break [33] [34] Force Magnitude 

 
Hydrodynamic Force on Moving 

Structures 

Moving Solids in Static Fluid [35]; 

Flow-Induced Motion of Floating Bodies 
with Wave Maker; [36] 

Moving 

Trajectory 

 

8.5.4.  Code Assessment and Scaling Analysis 

 

In flooding scenarios, since the force exerted by the flow to the structures is an important quantity to 

measure, dam break is selected to test the capability of SPH methods in predicting force magnitude and 

flow propagation. The first simulation is designed based on the setups from S.J. Cummins, et al. [33] The 

simulation is one-to-one scale to real experiments and set up as in Figure 8.42 according to Cummins work 

[33]. The scene consists a rectangular tank with 0.61m width, 1.6m length, and 0.75m height; a vertical 

column with a 0.12m squared base; and a planar gate for suddenly releasing water. The rigid column is 

located 0.9m from one of the tank boundaries, and the gate is located at a distance of 0.5m from the rigid 

column. A water column with 0.3 height is initially contained behind the gate. In Neutrino, a gate is first 

put in position and held for 1 sec until all fluid particles are settled down. Then the gate is completely 

opened, and fluid collapses driven by gravity. Figure 8.43 shows the evolution of fluid over the surface. 

The maximum Reynolds number for this case is around 1.68 × 105 with characteristic length equal to the 

width of the dam. The particle size ranges from 5mm to 50 mm, and there are around 64k fluid particles 

when particle size is 10mm. The time stepping parameters 𝜆𝐶𝐹𝐿 and 𝜆𝑚𝑎𝑥 are set to 0.4 and 0.5 respectively.  

 
Figure 8.42. Schematic diagram of the dam geometry from Cummins et al. 2012 [33]. 
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Figure 8.43 shows the evolution of water collapsing and hitting the rigid column. The gate is removed 

at the beginning of the simulation, and a surface wave is induced by gravitational effects. The first (primary) 

surface-wave impact happens at around 0.3s, then, the wave reaches the other end at 0.6s. The surface wave 

is reflected back and hitting the column again at 1.5s. The impact forces for the primary and reflected 

surface waves are measured and compared against the experimental measurements.  

 

 

 
Figure 8.43. Evolution of the water collapse and interaction with the column simulated by Neutrino. (a) 

start of simulation; (b) primary surface wave hitting dam structure; (c) surface wave reflected; (d) 

Reflected surface wave hitting dam structure; 

 

The transient comparison of simulation results again experimental data can be found in previous work 

[28]. The time step is affecting little on the results, as long as the CFL number is lower or equal to 0.5. 

Figure 8.44 shows the convergence plot of particle size in predicting different QoIs, including the maximum 

force of primary and reflected surface wave exerting on the structure, the time of those maximum forces. 

The percentage represents the relative error of simulation results against experimental data. When particle 

size reaches 0.01m, further refinement does not continue to improve the accuracy. Comparing to the force 

magnitude, contacting time of surface-wave propagation is affected more by the particle size.  

 

 
Figure 8.44. Particle size convergence plot for force magnitude and contacting time of primary and 

reflected surface wave. 

 

Figure 8.45 shows the plot of relative error against the computational time. When the particles are 

refined, better results are obtained with more computational time needed. Note that when particle size is 

0.02m, the simulation results are better (70% improvement in magnitude of primary surface-wave impact; 

60% in the time of primary surface-wave impact; 34% improvement in magnitude of reflected surface-

wave impact; 33% improvement in time of reflected surface-wave impact) but consuming less time (5%) 

(a) (b) 

(c) (d) 
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than the one with 0.025m particle size. Because the CFL condition is applied for every time step, the 

simulation with coarse particle size is not as stable as the one with finer size. Therefore, using a finer particle 

size requires smaller time step and longer time to simulate. 

 

 
Figure 8.45. Plot of relative error against computing time for force magnitude and contacting time of 

primary and reflected surface wave. 

 

Table  shows the list of simulation parameters that have the error of simulated QoIs fall into the bounded 

region. The yellow shaded row represents the parameter combination with lowest computational time, 

which is suggested as the optimal simulation parameters for numerical benchmarks.  

 

Table 8.7:  Simulation parameters with 20% bounded absolute relative error for the case of dam break. 

 

Particle Size (m) Simulation Time/Physical Time 
𝑳𝟏 Relative Error Norm (%) 

Max. Force Magnitude Time of Peak force 

0.05 11.96 19.58% 93.55% 

0.025 265.8 16.16% 40% 

0.02 252.4 3.58% 12.73% 

0.01 1929 7.66% 10.53% 

0.005 57364.5 7.26% 11.43% 

 

In addition, a second simulation is performed according to experiments by F. Aureli [34], where forces 

with respect to various water height are measured, and the optimum particle size identified by the previous 

study (0.02m) is used for all simulations. The Aureli’s data can also be used to verify the scaling analysis. 

In this study, it is found that the QoIs, the peak pressure force magnitude, are proportional to the design 

wave heights without exhibiting impulsive breaking wave pressures of high intensities [37]. The design 

wave height refers to the highest wave height expected under the given wave condition. In dam-break 

benchmarks, the design wave height equals to the initial water depth ℎ, which is the highest wave height 

during the transient.  

 

To investigate the sufficiency and distortion of database for dam break, the initial depth ℎ is non-

dimensionalized as 𝑥∗ by Eq. 8.50, where 𝐿 is the distance between the gate and the stationary object. Figure  

shows the comparison of the measured against SPH predicted peak force with different dimensionless ratios 

𝑥∗ (Eq. 8.50). At the same times, linear functions are fitted to both datasets, based on which an error plot is 

made with respect to the dimensionless ratio 𝑥∗.  
 

 𝑥∗ = ℎ/𝐿 Eq. 8.50 
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Figure  shows the plot of error for predicting peak force with respect to the dimensionless ratio 𝑥∗ given 

the same particle size as 0.02m. When the 𝑥∗ is larger than 0.2, the error can be properly bounded and 

reasonably accepted.  

 

 
Figure 8.7. Comparison of the measured against SPH predicted peak force with different dimensionless 

ratio 𝑥∗. 
 

 

.  

Figure 8.8. Plot of 𝐿1 relative error norm for predicting the peak force versus the dimensionless ratio 𝑥∗ 
with particle size as 0.02m. 

 

Considering the effect of particle size and dimensionless ratio, the error in predicting the peak force 

by SPH can be propagated to the application scenario. Assuming that the dimensionless ratio is the major 

physical characteristic that measures the similarity, suggestions of simulation parameters can be made 

according to previous studies on particle size and dimensionless ratio. Table  shows the suggested 

simulation parameters for the application scenario based on the SET analysis. Since this study does not 

have data that has the same dimensionless ratio but different facility sizes, the particle size is suggested to 

be the same as or smaller than 2cm, such that the 𝐿1 relative error norm for the predicted peak force is less 

than 20%.  
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Table 8.7. Simulation parameters that are scaled from numerical benchmarks to a postulated scenario with 

the same dimensionless group. 

 Numerical  

Benchmarks 

Scenario  

Simulation 

Water height 0.1 ~ 0.13m 5m 

Distance to the static structure 0.51m 20m 

Dimensionless ratio 𝑥∗ 0.2 ~ 0.26 0.25 

Suggested particle size 0.02m 0.02m 

Predicted peak force error (𝐿1 relative norm) 5%~20% 3.6% 

Predicted time of peak force error (𝐿1 relative norm) 4%~18% 12.73% 

 

Since this study does not focus on experimental developments, the adequacy of Neutrino is assessed 

only for the phenomenon of hydrodynamic forces on stationary structures. Dam break is selected to test the 

capability of SPH methods in predicting force magnitude and flow propagation. An assessment has been 

performed for Neutrino based on the Cummins [33]’s data. It is found that the accuracy of Neutrino 

prediction for the magnitude of peak force is reasonable when the particle size is 2cm; the accuracy is 

excellent when the particle size is less than or equal to 1cm. Although particle refinements provide better 

accuracy, the computational expenses grow drastically. Considering the minimum acceptance criteria, 

particle size is suggested to be 2cm for better efficiency. 

 

In order to evaluate the accuracy of moving solids in flow, simulations with falling and floating 

block in the fluid are set based on the experiments by T.R. Wu, et al [35]. A rectangular tank with 140mm 

width and 140mm height is used for both simulations, and it is filled by water with density equal to 

997 𝑘𝑔/𝑚3. For the case of falling cube, a cubic block with density equals to 2120 𝑘𝑔/𝑚3 is used. The 

cube is initially held half submerged in the water with depth equal to 131mm. Next, the block is released, 

and it falls to the bottom of the tank. For the floating block, a rectangular wooden block with density equal 

to 800.52 𝑘𝑔/𝑚3 is initially held at the bottom of the tank. The tank is filled by water with depth equal to 

52mm. When simulation starts, the wooden block is released and floated to the water surface. The block 

will oscillate sometimes and finally become stable. For the falling case, the time it takes for the cube to 

reach the bottom is measured; For the floating case, the time it takes for the block to reach maximum height 

is measured. Both quantities are then compared against experimental measurements. Figure 8.46 shows the 

dimensions of the water tank and cube for both the falling and floating experiments. Different particle sizes 

are sampled for both cases, which range from 0.5mm to 6mm. The time stepping parameters 𝜆𝐶𝐹𝐿 and 𝜆𝑚𝑎𝑥 

are set to 0.4 and 0.5 respectively. 
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Figure 8.46. Dimensions of the water tank and cube for both the falling and floating experiments 

 

Figure 8.47 shows the plot of the cube vertical displacement against the time from both Neutrino 

simulation and experiment. Note that both the displacement and time have been non-dimensionalized, 

where t* and z* are defined in Eq. 8.51 and Eq. 8.52. Three different particle sizes are tried with the 

simulation and a good agreement is found when the particles are 2.5mm. In this case, the falling time of the 

cube, defined as the non-dimensional time spent for the heavy cube to reach the bottom of the tank from its 

initial position, is selected as the quantity of interest.  

 

 𝑧∗ = 𝑧/𝐻 Eq. 8.51 

 

𝑡∗ = 𝑡 √
2𝐻

𝑔
⁄  Eq. 8.52 

 

 
Figure 8.47. Comparison of vertical displacement of falling block simulated by LAMMPS and Neutrino 

 

Table  shows the L1 relative error norm by comparing the simulated cube falling non-dimensional time 

against the measured data. Error is decreasing as the particle being refined, and the heavy cube will fall 

slower as the particles get larger. If the particle size is larger than 6mm, the heavy cube will float on top of 

the fluid. Because the mass of cube is constant and the insufficient number of particles will cause high 

simulation error, especially in pressure calculation, large particle size will result in unphysically high 

buoyance forces. 

 

Table 8.9: List of particle sizes in Neutrino simulations for falling cube, and the L1 relative error norm of 

each simulation in predicting the cube falling time. 

 

Particle Size L1 Relative Error Norm (%) 

6mm >100% 

5mm 52.73% 

2.5mm 5.52% 

 

Figure 8.48 shows the time transient of block’s non-dimensional vertical displacements from Neutrino 

with three different particle sizes. However, the oscillations are dampened faster than experiments, since 

the numerical diffusion of SPH simulation tends to be larger than expected. Because a large deviation is 

found between the simulated results and experimental measurement, and the current computing power 

doesn’t allow Neutrino to have more refined particle size, LAMMPS 2D [38] simulation is executed with 

0.5mm particles. 
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Figure 8.48. Comparison of vertical displacement of floating block simulated by LAMMPS and Neutrino 

 

Table  shows the L1 relative error norm by comparing the simulation result against the measured data 

for selected QoI. Error is decreasing as the particle being refined, and a very good agreement is found with 

very refined particles in LAMMPS simulation. 

 

Table 8.10: List of particle sizes in Neutrino simulations for floating cube, and the L1 relative error norm 

of each simulation in predicting the cube floating time and oscillation period. 

 

Particle Size L1 Relative Error Norm (%) 

6mm 54.64% 

5mm 45.57% 

2.5mm 39.67% 

0.5mm (LAMMPS) 4.41% 

 

Both simulations suggest that particle size is crucial to the accuracy of SPH in predicting the falling 

and floating time, which is affected by the force balance between gravity and the buoyance force. The 

accurate prediction of buoyance force depends on the particle intensity around the cube. Therefore, for the 

moving object calculation, the cube density ratio (𝜌∗ defined in Eq. 8.53) and the ratio between cube volume 

and average particle volume (𝑉∗ defined in Eq. 8.54), are selected as the dominant physics. 𝑉̅𝑑𝑝 is the 

average particle volume defined by Eq. 8.55 [39], and 𝑑 is the initial particle diameter: 

 

 𝜌∗ = 𝜌𝑐𝑢𝑏𝑒/𝜌𝑓𝑙𝑢𝑖𝑑  Eq. 8.53 

 𝑉∗ = 𝑉𝑐𝑢𝑏𝑒/𝑉̅𝑑𝑝 Eq. 8.54 

 𝑉̅𝑑𝑝 = 𝑑
3 Eq. 8.55 

 

Suggestion on particle size will be made with these parameters being kept constant. Table  shows the 

suggestion on particle size selection for corresponding scenarios. For the case of falling cube, the simulation 

with 2.5mm particles is selected for scaling, while the simulation with 0.5mm particles is selected for the 

floating cube. However, since there is only one dataset for this phenomenon, the dimensionless group 

cannot be verified, and the dimensionless parameters for application scenarios are assumed to be the same 

as the numerical benchmarks. 
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Table 8.11. Simulation parameters that are scaled from numerical benchmarks to a postulated scenario with 

the same dimensionless group. 

 Numerical Benchmarks Application Scenario 

Falling object 

Cube volume 8000mm3 8m3 

Density 2120kg/m3 2120kg/ m3 

Density ratio 𝜌∗ 2.1 2.1 

Volume ratio 𝑉∗ 512 512 

Suggested particle size  2.5mm 0.25m 

Predicted error 𝐿1relative norm) 5.52% ~5.52% 

Floating object 

Cube volume 56448mm3 451.584m3 

Density 800.52kg/m3 800.52kg/ m3 

Density ratio 𝜌∗ 0.8 0.8 

Volume ratio 𝑉 451584 451584 

Suggested particle size 0.5mm + Equation of State 0.1m 

Predicted error (𝐿1 relative norm) 4.41% ~4.41% 

 

In above sections, simulations of dam break and moving solids have been run, and the results are 

compared against experimental measurements. For both cases, SPH has shown good performances in 

predicting the selected QoIs, including the force magnitude, water propagation speed to dry surface, falling 

and floating time, and the errors are properly bounded. By requiring the predicted QoIs in scenario 

simulations to have less than 20% absolute relative error, simple scaling has been performed for both cases. 

 

For the external-flooding scenario, the FoMs are the response time and structural loads on SSCs. Next, 

according to the PIRT process, all high-rank phenomena are identified, and numerical benchmarks are set 

correspondingly. Next, the accuracy of SPH methods in simulating each scenario is assessed by comparing 

the SPH predicted QoIs against the measured data. Table  shows the assessment results of all numerical 

benchmarks for both scenarios, and their code adequacy is rated by the performance measurement 

standards. 

 

Table 8.12. Comparison of measured and SPH predicted QoIs for high-rank phenomena of external-

flooding scenarios. 

Numerical Benchmarks QoI Accuracy 

Dam break 
Force magnitude; 

Water propagation speed 
Excellent 

Falling cube Falling time Excellent 

Floating cube 
Floating time;  

Oscillation period 
Excellent 

 

8.5.5.  Scaling Analysis 

 

To determine the relevance and sufficiency of database for the intended applications, a scaling 

analysis is needed. A systematic scaling analysis is composed by “top-down” and “bottom-up” analysis. As 

discussed previously, the scaling analysis is tightly coupled with the model assessment process. Starting 

from the PIRT, the identifications of physical characteristics require complicate procedures such that the 

interconnections among system components, phenomena, and processes are well understood. In this study, 

the dimensionless groups are used to represent the physical characteristics that govern the system responses. 

Next, the relative importance of the dimensionless groups is investigated through various code assessment 
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process until a relationship is developed between the selected phenomena and the dimensionless groups. A 

combination of various relationships is usually known as a “workable form”. Next, the workable form will 

be validated by comparing against data until a final form is determined. Until this point, it can be claimed 

that all data involved in this process have been “compressed” into an equation-based workable form. As a 

result, the scaling process is to find the “encodings” for the database, and all the model assessment process 

is to test the applicability of this form. At the same time, scaling also aims to verify that the database is 

sufficient.  

 

When estimating the structural loads exerted by water waves, there are three parts of forces being 

considered: the static pressure, the dynamic pressure, and impulsive forces. When the structure is placed 

such that the incident waves are unbroken, the standing wave will exist seaward of the wall, and only the 

static and dynamic forces will exist. In such situations, the forces can be approximated based on the linear 

wave theory. Tadjbaksh et al. first drived the third order approximation in terms of pressure due to standing 

waves [40], Based on their approximation, Goda [41] extended it to the fourth order approximation. 

Meanwhile, a series of laboratory tests are conducted to calibrate parameters in the model and it is found 

that the pressure forces are proportional to the design wave heights  ℎ [37], and the correlations between 

the peak pressure forces and water wave depth can be simplified into Eq. 8.56 [42]. 

 

 𝑃 = 𝑤0ℎ(𝛼1 + 𝛼2 cos
2 𝛽) Eq. 8.56 

 

where 𝛼1 and 𝛼2 are empirical parameters, 𝛽 is the angle of wave approach, 𝑤0 is a constant as the 

specific weight of the water (9.807kN/m3). Such a relationship has been verified in various scales, including 

experiments with monochromatic waves [43] and field measurements [44]. In the dam-break benchmark, 

the peak pressure force is assumed to be linearly correlated with the initial water depth ℎ, which is non-

dimensionalized by the distance 𝐿 between the gate and the stationary object. It is reasonable to build the 

relationship in small-scale dam break benchmarks and extend it to large-scale water waves.  

 

Next, the dimensionless number of experiments are compared to the applications, and the sufficiency 

can be verified if the test data envelops the application behavior. In another word, the dimensionless number 

of a sufficient validation database should cover those numbers in the application scenarios. Otherwise, the 

selected phenomena can be only peculiar to the experiments and is not expected in the applications. Such 

issue is usually known as the scaling distortion. As a result, a relevance analysis is needed for the database 

to ensure that all selected phenomena are also typical under prototypic conditions. Finally, the model 

predictions are made for the applications, and an uncertainty analysis is performed with respect to each 

evaluated phenomenon. Error! Reference source not found. shows general descriptions for the attributes 

and criteria of scaling analysis.  

 

Table  shows the summary of numerical benchmarks and their physical characteristics for external-

flooding scenarios. Compared to the list of benchmarks in Table , some cases are not discussed due to a 

lack of validation data. It is known that the phenomena of turbulence and vortex shedding are governed by 

the Reynolds number that are differently defined. For the rest phenomena, the dimensionless groups are 

characterized based on author’s best knowledge, and verification is still needed. For phenomena of 

hydrodynamic force on stationary structures, the QoI (peak force) is found to be linearly related to the initial 

height of water column according to Figure . In this study, the initial column height is non-dimensionalized 

by Eq. 8.50 Since the values of dimensionless group in the postulated full-scale scenario are covered by the 

range of experimental database, simulation errors are expected to be less than 10% with particle size equals 

to 0.02m. A similar analogy also applies to the phenomenon of surface-wave propagation, where the time 

of peak force is the QoI. Differently, the simulation errors are expected to be less than 20% with particle 

size of 0.02m. However, more data from facilities with different configurations are still needed to verify 

the scalability of dimensionless group. For the phenomenon of hydrodynamic force on moving structures, 

the density ratio 𝜌∗ (Eq. 8.53) and volume ratio 𝑉∗ (Eq. 8.54) are used, and they are assumed to be same in 



   

218 
 

application and experiment scenarios. However, such a theory is not verified, and more data from different 

facilities and configurations are needed. Furthermore, this study assumes that the values of dimensionless 

group in the postulated full-scale scenario are the same as those from experimental database.  

 

Table 8.13: summary of numerical benchmarks and their physical characteristics for external-flooding 

scenarios 

Phenomenon  

Description 

Numerical  

Benchmarks 

Dimensionless Group 

Symbolic 

Representation 

Validation 

Database 
Application 

Response Time 

Surface-Wave Propagation Dam Break 𝑥∗ (Eq. 8.50) 0.2~0.26 0.25 

Structural Loads 

Hydrodynamic Force on 

Stationary Structures 
Dam Break; 𝑥∗ (Eq. 8.50) 0.2~0.26 0.25 

Hydrodynamic Force on 

Moving Structures 

Falling 

Objects 𝜌∗ (Eq. 8.53) 

𝑉∗ (Eq. 8.54) 

𝜌∗ = 0.8 

𝑉∗ = 512 

𝜌∗ = 0.8 

𝑉∗ = 512 

Floating 

Objects 

𝜌∗ = 2.1 

𝑉∗ = 4.5E5 

𝜌∗ = 2.1 

𝑉∗ = 4.5E5 

 

Based on the criteria in Error! Reference source not found. and the dimensionless group, outputs 

of scaling analysis can be determined. Table  shows qualitative judgements for the sufficiency, relevance, 

and distortion obtained from the scaling analysis.  

 

8.5.6.  Adequacy Decision 

 

To decide the adequacy of SPH methods in simulating the designated external-flooding scenarios, 

results from reviews, theories, assessments, PIRT, and scaling analysis are combined by the scheme in 

Figure 8.40. Since the database is mainly collected from literature, this study focuses on the accuracy 

assessment of separate phenomena, while the integral code adequacy has not been properly measured. 

Although a scaling analysis has been performed, the dimensionless groups and their relationships to QoIs 

are not verified. Table  summarizes the results from various components. Meanwhile, suggestions for 

particle-size selections are included according to the results of accuracy assessments and scaling analysis. 

 

Table 8.14. Validation results for SPH methods in simulating the external-flooding scenario 

Phenomenon  

Description 

Code 

Adequacy 

Accuracy 

(L1 error) 

Scaling Analysis Suggested 

Particle 

Size 
Relevance Sufficiency Distortion 

Response Time 

Surface-Wave 

Propagation 
Reasonable  

Reasonable 

(12.7%) 
Yes Yes Bounded 0.02m 

Structural Loads 

Hydrodynamic 

Force on 

Stationary 

Structures 

Excellent  
Excellent 

(3.6%) 
Yes Yes Bounded 0.02m 

Hydrodynamic 

Force on Moving 

Structures 

Falling – 

Insufficient  

Excellent 

(5.52%) 
Yes No N/A 

Falling – 

0.25m 

Floating – 

Insufficient 

Excellent 

(4.41%) 

Floating – 

0.1m 
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For the scenario of “floods damage the building structures, enter the room, and cause diesel generator 

malfunctioning”, SPH methods can predict the hydrodynamic force on both stationary and moving 

structures with acceptable accuracy. For the phenomena with stationary structures, the present analysis 

suggests that the particle size of Neutrino simulation should be less than or equal to 0.02m. At the same 

time, according to the scaling analysis by dimensionless group 𝑥∗, the database is sufficient for predicting 

a similar phenomenon in full-scale scenarios. However, the present decision is limited to predicting peak 

pressure force under unbroken surface waves. The validity of such conditions in the target application needs 

evidence from larger scales. At the same time, it has been suggested by the independent reviewers that other 

important phenomena, like turbulence, can be critical in predicting the target QoIs in addition to the static 

and dynamic pressures [45]. For the phenomena with moving structures, the suggested particle size for a 

postulated scenario is 0.25m for falling cubes and 0.1m for floating cube. Since there is only one dataset 

for this phenomenon, distortion analysis is not applicable (N/A).  

 

8.6. Conclusion 

 

The present study demonstrates a validation of SPH methods and the corresponding software Neutrino 

in simulating a designated external-flooding scenario. To ensure the consistency and completeness, 

validation frameworks CSAU, and its regulatory guide EMDAP is followed. An external-flooding scenario 

is defined, and a PIRT process is performed, which identifies the surface-wave impacts on rigid structures 

as one of the high-rank phenomena. At the scoping stage, acceptance criteria of 20% is set based on authors’ 

knowledge and reviewed by researchers in relevant fields. Two numerical benchmarks are designed, and 

the simulation results are compared against the experimental measurements. It is found that for all 

benchmarks, SPH methods can predict the hydrodynamic force acting on both stationary and moving 

structures with excellent accuracy, where the 𝐿1 relative error norm is less than 10%. At the same time, for 

the phenomenon of surface-wave propagation, SPH simulation accuracy appears reasonable (𝐿1<20%). For 

each case, suggestions on particle-size selections are also made according to the results of the convergence 

study. Next, a scaling analysis is performed for identifying the sufficiency, relevancy, and distortion of 

validation database from the perspective of the full-scale applications. In addition, dimensionless groups 

are suggested for evaluating the full-scale behaviors based on the existing database. It is found that SPH 

can be used to predict unbroken surface-wave peak-pressure impacts on stationary structures with adequate 

performance, while evidence is not sufficient to justify its adequacy in predicting forces onto moving 

objects. Meanwhile, independent reviews suggest that the validity of major assumptions in target 

applications need to be evaluated with large-scale experiments, and the relevancy of other phenomena like 

turbulence need to be identified with more benchmarks. Consequently, additional validation-grade 

experiments and high-fidelity simulations must be collected for new data. Meanwhile, it is recommended 

that an adequacy decision model is needed to assess code adequacy and to reduce uncertainties due to the 

lack of data and heuristic biases.  
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9. Validation of SPH for Nuclear Power Plant Scenarios using Neutrino 
 

9.1. Summary  

 

The validation of Smoothed Particle Hydrodynamics (SPH) has many different facets such as impact 

forces, wave formation, turbulent flows, etc. Additionally, in the nuclear power industry, there are many 

different types of flooding concerns with different factors affecting the protection features.  The purpose of 

this area of work was to determine applicable or correlated test cases, develop experimental validation 

methods and then perform some validation cases against experimental results on a large scale in order to 

provide data for scalability. 

   

The critical validation factors of SPH for flooding scenarios are Impulse pressure, Duration, Wave 

Height, velocity, and Turbulence. Different validation factors are applicable for varying flood scenarios 

and protection strategies.  This work provides a method for determining those factors so that the correct 

uncertainty factors can be used in the overall data driven methodology for uncertainty.  

 

Historically several validation cases for SPH have been done to both small scale experiments and 

numerical comparison of results vs CFD. The impact validation case of wave impact forces was chosen for 

initial validation. George Washington University constructed the wave tank and performed necessary 

experiments and Neutrino’s SPH code was used for the fluid simulation [3]. 

 

Both experimental and simulation parameter variations can affect the validation results. To minimize 

uncertainty and optimize simulation costs in simulation results, modelers need guidance on parameter 

values. Along with experimental parameters, Neutrino has over 30 different parameters that can be adjusted, 

using expert judgement this was reduced to 7 parameters, to perform importance measures on including: 

• Stop Threshold 

• Particle Size 

• Interaction-Radius to Particle-Size Ratio 

• Fluid Settling uncertainty 

• Forcing function amplitude uncertainty 

• Forcing function frequency uncertainty 

• Pressure transducer location uncertainty  

 

The most significant parameters were particle size, fluid settling, and interaction-radius to particle size 

ratio. 

  

Using the optimal parameter values for computation time and accuracy, the impulse pressure of the 

experiment and simulation results were compared (Figure 9.1).  The simulation results averaged around 3-

4% difference from the experiment results, with a max of less than 10% for the four different experimental 

runs. The experiment results varied 2-3% with a max of 8% variation. This data combined with other 

validation results, including scaling factors can then be used in the overall data driven methodology. 
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Figure 9.1. Experimental and simulation impulse. 

9.2. Introduction  

 

Mitigation efforts are often designed or retrofitted into structure to reduce the damage to critical 

areas—i.e., removable barriers or dikes. Since floods will always be a concern, improvements or new tools 

to optimize the cost of mitigation efforts are always valuable. Simulating flooding events is conducted 

through many different methods and at varying levels of detail. These tools help determine general flooding 

inundation height, down to the specific components or infrastructure that might be damaged. Modelling can 

help guide mitigation efforts to prevent damage from occurring. However, for these simulations to be 

useful, they must match reality, which requires code validation. Because there are many different flooding 

scenarios, from barrier overtopping to debris impact, there are also many different features that need 

validation, and one code could be very effective for simulating overtopping but not work at all for debris. 

The following PIRT style table lays out scenario types and the key factors for validation which can then be 

used for proper uncertainty analysis of that scenario type. 

 

 
 

To develop the methodology and generate initial data, different experiment cases were established using 

the large-scale oscillating designed and constructed at George Washington University. The tank measures 

5.951 m long × 1.2 m high × 2.468 m wide and is constructed of a steel frame and acrylic walls and bottom. 

The adaptive design allows for attaching structures inside the tank and both pressure transducers and high 

imagery cameras measure forces and fluid movement. The tank is oscillated through a sine-forcing function 

using a hydraulic actuator. The first validation case chosen was wave impact force as this is a common case 

and would provide additional data for scaling analysis. 

 

By recreating the physical tank and experiments using SPH we can then determine a few critical aspects 

of the simulation. First, what features of the experiments is the SPH code able to recreate with sufficient 

accuracy and speed. Second, what SPH parameters are critical for good simulation results? To do this a 
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virtual tank was set up using Neutrino, matching the physical model of the tank. A forcing function using 

the same oscillation formula as the physical tank was used to move the virtual tank model, in order to most 

closely match the actual movement.  

 

The results of the experiment vs simulation and parameter importance can then be used to help 

determine the confidence for a specific type of flooding scenario and contribute to the data driven 

validation. 

 

9.3. Scope of Work 

 

The main objective of this work consisted of simulation validation with two test areas. First, the 

comparison of SPH simulation results to experiment results for the wave oscillation tank. Second, the 

importance of specific SPH parameters affecting the accuracy of the simulation. The next objective was the 

application of this validation data in how to correctly apply uncertainty results.  

 

Experiment data was generated by using wall pressure transducers set at a depth of 0.1524m. The 

experiment ran for 60 cycles and was repeated four times with minor variations as shown in Table . Of the 

60 cycles, the last 10 were averaged for the result, to establish a steady state for the results. 

 

Table 9.1. Experimental model run variations. 

Run Water Depth (m) Frequency (Hz) Amplitude (m) Variation  

1 0.1524 0.11 0.1016 Reference run 

2 0.1524 0.11 0.1016 Identical to Run 1 

3 0.1524  0.11 0.102108 Change of forcing amplitude by 1% 

4 0.1534 0.11 0.1016 Change of water depth by 1 mm 

  

The Neutrino model was constructed to match the experimental setup as closely as possible. The 

oscillating tank experiment can be characterized as a two-dimensional (2-D) experiment, resulting in the 

simulation tank having the same length and height dimensions, but a smaller width of 0.2 m. By reducing 

the width of the simulation tank, the computational runtime of the simulation is also reduced without 

compromising accuracy. A simulation with a particle size of 0.01 m (181,387 fluid particles total) takes 

about 16.7 hours for 30 cycles using an Intel Xeon central processing unit E5-2683 v3 @ 2.00 GHz with 

28 core and 56 logical processors.  

  

 The simulation tank was filled with particles to the correct fluid depth. The number of fluid particles 

was carefully controlled to ensure that the numerical volume of the fluid simulation corresponds to the 

correct physical fluid depth. A measurement field is used to measure the pressure on the end-wall. This 

measurement field compares to the pressure transducers used in the experimental setup. Figure 9.2.  shows 

the large-scale oscillating tank on the left and a cross-sectional view of the simulation setup on the right. 

 

 
Figure 9.2. Large-scale oscillating tank at the George Washington University (left) and Neutrino 

simulation setup (right). 
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Once the simulation setup was complete, the simulation tank and end-wall measurement field 

needed to be oscillated at the same forcing function as the experiment. To create these oscillations, a python 

script for each object was created and added to the position of the object as a dynamic expression. The 

python scripts adjust the position of the items based on Equation 9.9.2. 

 

 𝑧(𝑡) = 𝐴 sin (2𝜋𝑓𝑡) (9.2) 

 

where z is the new position, t is the time, A is the amplitude, and f is the frequency. The amplitude and 

frequency values are set in the python script to match the experimental values, and the time is extracted 

from the simulation. The equation allows for the movement of each object to be continuous and evaluated 

for every time step of the simulation. Without using the equation and, instead, using a dataset of positions, 

the movement of the objects may not shift smoothly with the time step, causing jumps with overlapping 

particles, which results in erratic or explosion-like behavior from the simulation tank impact. 

 

The RAVEN software developed at INL [1] along with a coupling module [2] was used for 

performing advanced sampling, parameter optimization, and run the Neutrino simulation and then post-

process results. The methodology for determining the significance of parameters consisted of, first, 

randomly sampling across the range of possible values of a single parameter. The values were sampled 

from a uniform distribution across the range of values using a Monte Carlo sampler. The value range for 

each parameter was selected based on previous simulation investigation or the uncertainties associated with 

the physical experiment. The results were then analysed to determine whether the parameter caused a 

change in the results. If the different parameters values did not cause a change in results, then the parameter 

was considered insignificant. Table  shows the range of values for each parameter, as well as the default 

value that was used when other parameters were being sampled. These ranges are all considered uniform 

although many have other distributions.  

  

Table 9.2. Investigated parameter value ranges and default value.  

 

Parameters Value Range  Default Value 

Stop threshold  0.0001 to 0.01 0.001 

Particle size  0.007 m to 0.02 m 0.01 m 

Interaction-radius to particle-size ratio 2.0 to 2.4 2.0 

Fluid settling uncertainty  -0.4δr to 0.4δr* 0 

Forcing function amplitude uncertainty 0.1012 m to 0.102 m 0.1016 m 

Forcing function frequency uncertainty 0.1099868 Hz to 0.110011 Hz 0.11 Hz 

Pressure transducer location uncertainty  0.1006 m to 0.1026 m 0.1016 m 

 * where δr is the particle size  

  

9.4. Key Findings 

 

The 90% and 50% pressure bounds for the experiment and simulation were compared. Additionally, 

the pressure of each cycle was integrated over time to compare the pressure impulse. Figure  shows the 

pressure bound comparison with the 90% bound plot on the left and the 50% bound plot on the right. 

Figure  shows the absolute percentage error plots between the simulation and experiment upper and lower 

bounds for the 90% bounds on the left and the 50% bounds on the right. 
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Figure 9.3. Pressure bounds comparison plots. 

 

 
 

Figure 9.4. Pressure bounds simulation error plots. 

 

 The above plots show that both the 90% and 50% simulation pressure bounds mostly fall within 

the experimental bound. A few exceptions do occur in the low-pressure areas at the very beginning of the 

cycle (~40% difference) and the very end of the cycle (~40% difference); however, these low-pressure 

differences are typically insignificant for applications. The peak pressure tends to have a short but high 

initial peak variation (~75% difference) compared to the experiment. Overall, the simulation results match 

well with the experimental results for most of the time. However, refinement of parameters could possibly 

increase the accuracy of the simulation.  

 

 The simulation impulse pressure was compared to the pressure impulse for each experimental run. 

The absolute percentage difference between the simulation and each experimental run was also computed. 

Figure  shows the impulse pressure comparison plot on the left and the absolute percentage difference plot 

on the right.  
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Figure 9.5. Impulse pressure comparison plots. 

 

The absolute percentage difference plot shows that the pressure impulse of the simulation is within 10% 

of all four experimental runs. However, for two of the runs, the simulation is within 5% of the experiment. 

This shows that the simulation pressure impulse matches the experimental very well.  

 

The parameters and their range of values identified above were sampled five times using RAVEN. The 

pressure results for all five runs were compared to determine whether the parameter is significant. To reduce 

the computational runtime, 30 rather than 60 cycles were simulated. Table  shows the five sampled values 

for each parameter and Figure  shows the average pressure plot comparison for the different parameters.  

 

Table 9.3. Sampled values for each parameter.  

Parameter Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Stop threshold  0.005188 0.009604 0.000482 0.008365 0.004260 

Particle size  0.009004 0.009710 0.018166 0.011869 0.017700 

Interaction-radius to particle-size ratio 2.083384 2.149816 2.013502 2.042695 2.089326 

Fluid settling uncertainty  0.027887 0.920035 -0.922877 0.669684 -0.691674 

Forcing function amplitude uncertainty 0.101436 0.101541 0.101956 0.101291 0.101270 

Forcing function frequency uncertainty 0.110007 0.110008 0.110011 0.109989 0.109992 

Pressure transducer location uncertainty  0.102298 0.102340 0.101516 0.102578 0.101047 
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Figure 9.6. Average pressure comparison plots for each investigated parameter. 

 

Based on the plots above, all seven parameters influence the simulation results. However, some of these 

parameters seem to be more important based on the amount of fluctuation that occurred between the results. 

For example, the particle size, interaction-radius to particle-size ratio, and fluid settling plots showed greater 

fluctuation than the stop threshold, amplitude, frequency, and pressure transducer location plots. This 

indicates that more research is needed to quantify the significance of each parameter.  

 

These results can then be used for uncertainty in the categories of the PIRT diagram for use by specific 

scenarios feed into the PCMQBN framework. For example, the experiment results show above provide the 

pressure validation this can be used for door failures. Validation data from the experiment could be used as 

a whole, but any data that does not fall into the range of causing a door failure is irrelevant (Figure 9.7). In 

this case the validation attribute of concern is the difference band of the simulation peek pressure or the 

band above a threshold in impulse pressure vs the experiment. If the simulation is significantly different for 

low pressures but accurate for higher pressures, the simulation outcome uncertainty would be very low. 

However, if the simulation were accurate for low pressures, but more inaccurate for higher pressures, using 

the overall uncertainty would indicate the outcome results better than what they are. 
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Figure 9.7. Key validation areas for door failures. 

  

9.5. Conclusions  

 

The validation results of the SPH simulation provided several aspects of data for the data-driven 

methodology: general uncertainty values; data for scaling; and bands of applicable validation data. Through 

varying the SPH parameters it was shown that the particle size, interaction-radius to particle-size ratio, and 

fluid settling are important factors can have a large influence on the uncertainty of the results.  

The process used for this research can be used in developing validation cases against experiments for the 

flooding scenario areas of pressure, duration, max height/splash, and turbulence. The resulting uncertainty 

can then be used in correlation with scenario applicability in the PCMQBN data driven methodology for an 

overall model confidence rating. 
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10. System Thermal-Hydraulics Model Validation Experiment  
 

10.1. Summary 

 

This work is part of an integrated research project (IRP) titled “Development and Application of a 

Data-Driven Methodology for Validation of Risk-Informed Safety Margin Characterization Models” 

supported by the U.S. Department of Energy Office of Nuclear Energy’s Nuclear Energy University 

Program (NEUP) to develop a data-driven validation methodology for risk-informed safety margin 

characterization (RISMC) models. The primary purpose of this study is to demonstrate an application of 

the data-driven validation methodology. The work presented in this report is to establish experimental 

facilities, conduct experiments, and provide data support for the data-driven validation methodology 

development. 

 

Compared to the traditional validation practices, data-driven validation relies on data from experiments 

(and advanced computational analyses) that are specifically designed for the model and use state-of-the-art 

methods to rigorously map and bound the simulation uncertainties in the domain of intended model use.  

Therefore, data-driven validation presents a significant shift from the current validation practices based on 

expert-determined scale distortions. 

 

The work introduced in this report is to design and establish an experimental facility (or facilities), 

conduct experiments, and provide data support for the validation of a system thermal-hydraulics (STH) 

code based on the proposed data-driven validation methodology. RELAP-7 was proposed as the STH code 

of interest in the original proposal.  However, since RELAP-7 is not available for validation, COBRA-TF 

(CTF), a subchannel analysis code, was chosen as the subject of STH code validation. In addition, based 

on the literature and feedback from the STH code validation subgroup, dispersed flow film boiling (DFFB) 

regime, where droplets are dispersed in a continuous superheated vapor phase, was chosen as the 

phenomenon focus of our study. 

 

Three phases for the experimental investigation were proposed. In the first phase (Phase I), an air-

water experiment was to be carried out at room temperature to test necessary optical instrument for droplet 

measurements and to develop proper experimental procedures, which serve as guidelines for elevated-

temperature and pressure experiments. The second and third phase (Phase II/III) experimental work would 

involve modification of the Phase I experimental facility and proper configuration of components, which is 

not included in this report. Data processing was completed using LaVision ParticleMaster package and in-

house computer codes to obtain polydispersed droplets diameter and velocity statistics. Additionally, the 

particle diameter distribution was modeled using a lognormal distribution. The distribution uncertainty was 

used to represent the data uncertainty quantification. Also, the estimated parameters’ confidence interval in 

the distribution model fitting process was provided based on bootstrap resampling and central limit theorem. 

Finally, SMD calculation results based on two approaches, namely data-based and distribution-based, were 

provided. The processed data and quantified uncertainty from Phase I experiments would be valuable to the 

validation process in the data-driven model development. 

 

10.2. Introduction 

 

An integrated research project (IRP) titled “Development and Application of a Data-Driven 

Methodology for Validation of Risk-Informed Safety Margin Characterization Models” was initiated in 

October 2016 under the support of the U.S. Department of Energy Office of Nuclear Energy’s Nuclear 

Energy University Program (NEUP).  The project aims to develop and demonstrate a data-driven 

methodology for validation of advanced computer models for nuclear power plant safety analysis.  

Specifically, the advanced computer models are those in the toolkit developed to support the risk-informed 

safety margin characterization (RISMC), an integrated deterministic/probabilistic safety analysis 
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methodology developed in the Department of Energy’s Light Water Reactor Sustainability (LWR-S) 

program.  

 

One major challenge in model validation is lack of relevant data, including lack of confidence in the 

applicability of models and their supporting data in prototypic reactor conditions.  It is possible to improve 

how we acquire and use the data for model validation.  In particular, a new physics-guided validation 

strategy based on first principles physics will rigorously map and bound the simulation uncertainties in the 

domain of intended model use. To our knowledge, this represents a first-of-a-kind approach for the 

determination of the validation domain in the nuclear engineering community that presents a significant 

shift from the current approach for expert-determined scale distortion uncertainties.  The project team plans 

to apply the developed validation methodology within this project to guide the validation of computer 

models for flooding hazard analysis and for system thermal-hydraulics (STH) analysis.  In the original 

proposal, the RELAP-7 reactor system simulation code that has been under development at the Idaho 

National Laboratory was chosen as the STH code for validation.  However, the code did not appear to be 

at the maturity level for a meaningful validation when this IRP was initiated.  Therefore, COBRA-TF (CTF) 

was then chosen as the STH code of interest in this project. 

  

Nucleate boiling is a highly efficient and desirable cooling mechanism in high power density systems.  

However, it is well known that the heat transfer capacity of a boiling system will be substantially reduced 

when the heat flux on the boiling surface exceeds the heat flux value corresponding to the departure from 

nucleate boiling. Such a critical heat flux (CHF) phenomenon and subsequent post-CHF scenario represent 

major limits for light water reactor (LWR) operation and safety.  Therefore, modeling and prediction of 

post-CHF scenario, and the validation of these models are vital for the reactor safety analysis. 

 

CTF [Salko et al. 2015] uses separate flow models for boiling heat transfer and two-phase flow, which 

consists of three fields, i.e., the liquid droplets, liquid film, and vapor.  Supported by closure relations, CTF 

numerically solves the three sets of conservation equations of mass, momentum, and energy, one for each 

field, to obtain Quantities of Interest (QoI) of a certain scenario.  

 

CTF decomposes a certain flow and heat transfer scenario into multiple flow regimes and heat transfer 

regimes.  Criteria are set up to determine the transition between different regimes.  For a given regime, 

multiple closure relations are incorporated into the conservation equations to make them numerically 

solvable.  In CTF [Salko et al. 2015]  the dispersed flow film boiling (DFFB) heat transfer regime is 

activated when the wall temperature is above both the critical heat flux temperature and the minimum film 

boiling temperature, and when the void fraction is higher than 0.95.  

 

In the DFFB regime the heat transfer is a combination of three major mechanisms: convective heat 

transfer from the heated wall to the vapor phase, radiative heat transfer from the wall to vapor and liquid 

droplets and boiling/evaporative heat transfer when liquid droplets collide with the heated wall.  The 

dynamics of liquid droplets plays a vital role in the DFFB heat transfer as it influences not only the radiative 

heat transfer, but also the boiling heat transfer.  In the current practice of CTF, the radiative heat flux from 

the wall to the liquid droplets is modeled as: 

 

   (Eq. 10.1) 

 

where Fwl is the gray body factor that is determined by the interfacial area, wall emissivity and other 

properties of the liquid droplets.  The determination of Fwl relies on empirical correlations, which generally 

lack a comprehensive validation.  
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The boiling heat transfer flux in DFFB is calculated as the maximum of the CHF  in CTF and the 

droplet de-entrainment heat flux term .  The latter is calculated as: 

 

   (Eq. 10.2) 

 

which is simply the product of the latent heat hfg, a de-entrainment coefficient Cde, and total droplet mass 

flux Gg.  The coefficient Cde also relies on empirical correlations.  

 

Since the modeling of DFFB in CTF still heavily relies on empirical correlations and the correlations 

are not well validated in the current practices; it is vital to design validation experiments that specifically 

aim to demonstrate application of the data-driven validation methodology with the ultimate goal of 

improving the modeling of DFFB in CTF. 

 

Based on the modeling approach of DFFB in CTF, validation experiments are designed to provide 

high-fidelity data with well-quantified uncertainties that cover the major physical parameters that are 

considered sensitive to the QoIs in DFFB predicted by CTF.  Such designs are summarized in the following 

chapters. 

 

10.3. Scope of Work 

 

The validation experiments were performed in a phased approach. Phase I experiments were designed 

to operate newly constructed experimental facility and obtain experimental data under room-temperature 

without heat transfers involved. The experimental facility for Phase I experiment is to use air-water to 

investigate the hydrodynamics of the water droplets in the DFFB flow regime.  This phase of experiment 

is adiabatic in nature to verify the instrumentation for droplet measurements.  There are four major systems 

of components, which are the test section, liquid supply system, air supply system and instrumentation.  In 

the test section the primary data measurement and collection are made with proper instruments.  The first 

three systems are connected with each other through tubing to form a hydraulic loop in the facility.  Since 

no heat transfer is considered, the operating temperature and pressure are ambient conditions in the lab.  A 

schematic of the facility is shown in Figure 10.49. 

 

A platform was made available to accommodate all necessary optical instruments and synchronization 

and data acquirement system called ParticleMaster provided by LaVision. The platform is shown in Figure 

10.50, and the configuration is shown in Figure 10.51. The platform consists of a rail system where all 

equipment is placed, including an LED light source, a high-speed camera with a microscope attached, a 

calibration plate along with a dummy plate, and the test section where the measurement is taken. The rail 

system allows the camera and light source to move in both x and y direction (parallel and perpendicular to 

the camera), which significantly enables physical adjustment of the camera and the light source for 

measurement. On one of the y-direction rail there is a dummy plate which is a piece of acrylic material with 

the same optical properties and thickness as the test section wall. Additionally, the calibration plate is placed 

between the light source and the dummy plate. During the calibration process, the calibration plate is placed 

at the location where the desired focal plane is in the test section flow channel, and the camera is then 

adjusted focused on the calibration plate. The presence of the dummy plate is to ensure the accurate location 

of the focal plane. 
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Figure 10.49. Schematic of the Phase-I experimental facility 

 

 
 

Figure 10.50. Images of the optical instruments and the platform 
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Figure 10.51. The configuration of the platform 

 

10.4. Key Findings 

 

10.4.1. Experimental Data  

 

The objective of Phase I experiments was to obtain experimental data for air-water operating 

conditions. Figure 10.52 illustrates where the measurement was taken. The entire test section is divided into 

multiple areas, which are 4×4 mm square as majority, 4×2 mm in the periphery and 2×2 mm at corners. 

Within the red square are the measurement included in the dataset, as illustrated in Figure 10.52. Some 

measurement out of the red box is also included in the dataset. 

 

 
Figure 10.52. The dataset measurement in the test section (red dashed square) 
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There are several operating conditions in the measurement. Under each operating conditions there are 

three focal planes in Y axis (y = -4 mm, y = 0 mm and y = 4 mm). At each focal planes, there are 4 FOVs 

(the center of each FOV is x = -6 mm, x = -2 mm, x = 2 mm and x = 6 mm). In each FOV, there are three 

measurement sequence, each representing 4 seconds of the flow. Therefore, there are 108 measurements in 

all. The test matrix is shown in Table 10.15. All measurements are only for the polydisperse droplets. The 

nozzle that generates the droplets are slightly off aligned with the very center of the test section, as shown 

in Figure 10.52. The potential negative effect of such situation is unknown and needs further investigation. 

 

Table 10.15. Operating conditions of the measurement (square duct D = 28 mm). 

Item SYMBOL UNIT #1 #2 #3 

Droplet Diameter d mm 0.75 0.75 0.75 

Droplet Velocity ud m/s 5 1 10 

Feedwater Flow Rate Qb mL/min 120 120 145 

Air Reynolds Number Rec n/a 17,785 25,610 17,785 

Air Flow Rate Vair L/min 240 290 240 

Inlet Pressure p psig 11.5 18.0 11.5 

 

Images taken in a typical measurement are no less than 4000, and each image is processed through the 

software with specified data processing parameters. Particles can be detected and recognized by shadow 

areas. Velocity information is automatically calculated through double frames in each image. However, 

since the dispersed flow is confined in a small square channel (28×28 mm) and the light has to go through 

two channel walls (front and rear wall), the droplets attached on the wall may have a negative effect on the 

image. Those unwanted droplets may project a vast grey area on the image as they are out of focus and 

present very blurry with no specific perimeter, which makes them look like part of the background. The 

drops-on-the-wall effect was not eliminated during the measurement, but the problem can be potentially 

solved by implementing heating close to the wall to quickly evaporate the drops or applying special wall 

that prevent drops retention.  

 

Figure 10.53 show two typical example images with detected moving drops, background, interference 

and other complication. The left one shows two moving particles with diameter of 603.6 and 418.0 μm. 

They are very close to the exact focal plane as the shadow areas have sharp rim. Additionally, the 

interference from the drops on the wall is very noticeable as it presents several vast grey areas. One out-of-

focus particle moving across the middle interference area is detected and recognized by the software, and 

the diameter is provided (430.6 μm), which becomes a false detection. Therefore, the presence of 

interference area (grey area) may inadvertently generate false detection and thus alter the detection 

accuracy. The right image shows another complicated situation: an out-of-focus drop moving across the 

camera projects irregular shadow area that presents three falsely detected particles. The reason of the 

irregularity of the shadow area is unclear. It is possible that the background which presents a grey area may 

interfere with the drop’s shadow area. In general, particles that are slightly out of focus must satisfy the set 

criteria in order to be detected. One of the criteria is the minimum slope (which is discussed in the next 
section). As is shown, a particle that is out of focus is detected with diameter of 347.5 μm.  
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Figure 10.53. Example images that are taken in the same flow condition and at the same location but 

different timing. 

 

In addition to particle images, the output data includes a complete list of particles detected with 

information such as diameter, perimeter, centricity, velocity, and statistical weight, etc., a histogram, a table 

of cumulative statistics and scatter plots as wanted (Figure 10.6). The histogram is usually about the 

diameter (or particle size) distribution, where the bin width is adjustable. Scatter plots are created for 

different use, but here it shows the particle detection locations. It is noticeable that the largest interference 

area is deficient in detected particles, which confirms its strong interference. Information provided in the 

cumulative statistics is consistent with the one calculated by the adopted data reduction method. 

  

 
Figure 10.54. Example data including an image from the measurement, a histogram of diameter 

distribution, a scatter plot of particle detection location and cumulative statistics. 
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10.4.2. Uncertainty of Measurement 

 

Measurement uncertainty is defined as the aggregate of all factors that affect the measurement of 

particles on the image deviating from the true dimensional scale. Since there are multiple procedures 

involved in the data collection that inevitably cause the uncertainty of in the measurement, the effect and 

sensitivity need to be further investigated. Some of the identified uncertainty associated with the 

measurement inaccuracy of particles’ diameter include the algorithmic bias of particle detection in the 

image processing, the non-uniform distribution of light source on the image, the interference of both 

neighboring droplets and out-of-focus droplets’ shadows to the measured particle image, the imperfect 

synchronization of the camera and light source, etc. Preliminary study on the calibration plate and its image 

indicates that the dots’ diameters are consistent with a normal distribution, which means an individual 

particle measurement uncertainty (or estimated standard error) can be determined by its standard deviation 

of measurement, i.e., the particle diameter. 

 

10.4.3. Uncertainty of Distribution Fitting  

 

When we mention the uncertainty of droplets distribution, it can refer to the statistical quantities such 

as the mean and variance of one sample. Eventually, the uncertainty of droplets measurement is defined as 

the uncertainty of droplets diameter distribution. Therefore, it is important to determine the distribution 

function. There are two distributions considered in the data processing and analysis: normal distribution 

and log-normal distribution [Johnson et al. 1994], which is shown as follows: 
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The probability density function (pdf) of the distribution is identified as a log-normal distribution based 

on literature review and collected data’s observation. The recommended bin width selection method can be 

described as below: 

 
( )

3
Bin Width 2

IQR x

n
=  , (Eq. 10.5) 

 

where IQR(x) is the interquartile range of the data and n is the number of observations in the sample. The 

statistical distribution fitting is used, which is to model the probability distribution of a single variable. The 

maximum likelihood method is commonly used for most statistical distribution fitting. Figure 10.55 shows 

the distribution comparison in a linear scale. It is shown that the distribution is consistent with different 

operating conditions and different location of measurement for the statistical model method. The 

uncertainties are listed in Table 10.16 
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Figure 10.55. The droplet diameter distribution of 9 selected cases. 

 

 

Table 10.16. The uncertainty analysis of 9 selected cases. 

 

CASE NO. PARAMETER 

µ 

PARAMETER 

Ν 

MEAN VARIANCE RELATIVE 

ERROR 

SAMPLE 

SIZE 

1 4.83 0.91 1.90E+02 4.721E+04 4.98% 525 

2 4.81 0.90 1.84E+02 4.231E+04 3.83% 852 

3 4.94 0.90 2.10E+02 5.535E+04 4.15% 725 

4 4.78 0.86 1.73E+02 3.223E+04 5.10% 416 

5 4.78 0.91 1.79E+02 4.103E+04 4.10% 759 

6 4.87 0.92 1.99E+02 5.325E+04 4.23% 751 

7 5.36 0.75 2.83E+02 6.047E+04 2.06% 1780 

8 5.38 0.75 2.88E+02 6.232E+04 1.51% 3291 

9 5.45 0.75 3.11E+02 7.398E+04 1.99% 1942 

 

A natural question will be how to quantify the uncertainty of the distribution fitting parameters such as 

parameter µ and ν. A statistical method called bootstrap, based on resampling and the central limit theorem, 

is proven to be effective in determining the confidence interval of the parameter’s estimate [DiCiccio et al. 

1996]. This is because the bootstrap method creates a distribution of parameter estimates that follows a 

normal distribution. Due to the affordable computational requirement of the bootstrap method, it is hence 

used to calculate the confidence intervals for the uncertainty analysis.  

 

There are generally two required parameters in bootstrap: the size of the resample from the available 

dataset and the repeated times of the distribution model fitting. Figure 10.56 shows a case study of the effect 
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of resampling size and number of resampling on the parameter estimation. The original dataset has 1,942 

data points. It indicates that the increase of resampling size significantly reduces the estimated standard 

deviation of the parameter estimation distribution, yet the benefit for a better parameter estimate diminishes 

as the mean value of the estimate converges to a certain value. Similarly, a sufficiently large number of 

resamples result in a significantly narrow spread of the parameter estimate, but there exists a balance 

between accuracy and computational cost. Therefore, a sample size equal to 50% of the original dataset 

size and a number of resampling 1,000 is used for the uncertainty analysis. 

 

 
Figure 10.56. (Left) The effect of resample size and (middle) number of resamplings; (right) The 

estimated parameter exp(µ) follows a normal distribution. 

 

There are three distribution parameters to estimate, which can be referred to as: the location, which dictates 

the translation on the variable axis; the scale factor, which is related to the scaling of PDF; and the shape 

factor, which dictates the overall shape. As it is introduced beforehand that the PDF of a lognormal 

distribution, we can have a more general formula according to (Eq. 10.4): 
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This indicates that exp(µ) is the scale factor; Dloc is the location; and σ is the shape factor. With the 

bootstrap method, we can obtain these three parameter distributions, which follow a normal distribution. 

Figure 10.57 shows box plots of the three parameters in nine groups of data. The location and scale factor 

are in µm, whereas the shape factor is in µm-1. The box represents the interquartile range, and the middle 

line shows the sample mean. Additionally, dots represent the outliners. Box plots not only can show the 

overall distribution, but also illustrate the confidence interval range. Case (Group) 1 to Case (Group) 6 

dataset’s location parameters, for instance, has narrow spread, whereas their shape factors have relatively 

large uncertainties.  
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Figure 10.57. Distributions of parameter estimates: (left) location, (middle) scale and (right) shape factor. 

 

The distribution model with the estimated parameters needs to be compared with the histogram that 

visualizes the distribution. Figure 10.58 shows such comparison, which is considered a good match. A more 

commonly used method to determine the goodness-of-fit is through the Kolmogorov-Smirnov test.  

 

The Kolmogorov-Smirnov test can be served as a goodness-of-fit test [Massey 1951]. This is because 

that it is very likely that a distribution model does not perfectly match a real-world dataset. As can be seen 

in Figure 10.58, the q-q plot suggests that the distribution is heavy-tailed, asymptotic to a certain value, 

which makes it extremely right-skewed. This is consistent with the Kolmogorov-Smirnov test results, which 

suggests rejecting the null hypothesis. However, if we only look at the range with theoretical quantiles 

smaller than 2500, which covers most size range of particle diameters, we find that the overall goodness of 

fitting is satisfactory, also substantiated by the additional hypothesis test on that subset of data. The heavy 

tail can be explained by the fact that actual particle diameter has a physical upper bound. Literature [Ishii 

and Hibiki 2011] suggests a critical Weber number being around 12 dictates the upper limit of a liquid 

droplet in a continuous-phase flow. In fact, large droplets tend to disintegrate and become unstable. This is 

consistent with the observation from the available data. On the other hand, the lognormal distribution is a 

sheer mathematical expression of an idealized distribution. Therefore, the fitted distribution model can still 

be used to describe particle population smaller than around 1300 µm. This analysis can be generalized to 

other datasets, which is not shown here due to the length of this paper.  

 

 
Figure 10.58. Distributions of parameter estimates: (left) location, (middle) scale and (right) shape factor. 

 

10.4.4. Uncertainty of Characteristic Diameter  

 

SMD (Sauter Mean Diameter) is selected to be calculated as the characteristic diameter of a DFFB 

flow. There are two available approaches to determine SMD: the calculation based on the dataset, according 

to the following equation [Kowalczuk et al. 2016]: 
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where ni is the number of drops in i th diameter size class, Di is the diameter. and the one based on the 

obtained distribution models. The former approach suffers the potential lack of sample size of the 

population, thus the calculated SMD may not represent the true value; however, the latter one trades with 

the accuracy because of the heavy right-skewness towards large diameter, which is the nature of an idealized 

statistical model. A ‘cutoff’ value is imposed on the fitted distribution for the distribution-based SMD 

calculation to counter the heavy tail effect. The calculated SMD in both methods are presented in Table 

10.17. 

 

Table 10.17. Calculated SMD and nominal flow conditions 

 

Items Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 

SMD/µm 

(dataset) 
439.3 469.7 473.3 380.8 473.7 629.2 548.0 538.4 575.7 

SMD/µm 

(distribution 

model) 

480.3 335.8 398.9 377.8 341.1 423.5 523.9 535.8 562.9 

Air flow 

rate/SLPM 
317 317 317 430 430 430 317 317 317 

Water flow 

rate/mLPM 
120 120 120 120 120 120 145 145 145 

 

10.5. Path Forward 

 

The next step would be the Phase II/III experiment, which would involve modification of the facility 

used in Phase I. The purpose would be to use heating components to study steam-water droplet heat transfer 

mechanisms in DFFB regime. Phase-II and III experiments share most of the facility so the description of 

the facility is essentially the same. The facility shares some of the systems and components used in the 

Phase-I facility. However, due to the nature of heating elements, the majority of piping and tubing will be 

made of stainless steel. Thermal insulation will also be applied. The Phase-II facility consists of five major 

systems of components, four of which are similar to the Phase-I facility, i.e., the test section, liquid supply 

system, steam supply system and instrumentation. The last one is the electric heating system. Similarly, the 

primary data measurement and collection will be made in the test section with proper instruments. The first 

three systems are connected in an open hydraulic loop. There is no pump used in the facility, so the liquid 

and steam supply systems are pressurized to provide required hydraulic driving head. Saturated steam is 

generated in a boiler in the steam supply system. Additional heating elements are installed to heat up the 

steam to appropriate superheated state. The operating pressure ranges from the atmospheric pressure to 200 

psi (14 bar). A schematic of the test facility is shown in Figure 10.59. 
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Figure 10.59. Schematic of Phase II/III experimental facility 

 

10.6. Concluding Remarks 

 

This report presents a major effort to provide procedures and approach for liquid droplets diameter 

and uncertainty analysis at a synthetic DFFB scenario. Key findings from the experimental data were 

summarized. Phase I facility with an optical instrument system was developed to facilitate the imaging 

which contains numerous droplet particle information. Data processing was completed using LaVision 

ParticleMaster package to obtain polydispersed droplets diameter and velocity statistics. Additionally, the 

particle diameter distribution modelling, i.e., the widely used lognormal distribution, was presented with 

discussion on the uncertainty quantification technique. The estimated parameters’ confidence interval in 

the distribution model fitting process is properly quantified based on bootstrap resampling and central limit 

theorem. In the end, SMD calculation results based on two approaches were provided. It is believed that 

the characteristic parameters needed for a validation process include the fitted distribution of the population 

of polydispersed particles, uncertainty of the distribution as well as confidence interval of the distribution 

parameters, and calculated SMD based on the distribution. Also, along with the experimental data and its 

processing and analysis, significant experimental experience was accumulated for the future Phase II and 

III experiment, which would involve heat transfer testing.  

 

10.6.1. Uncertainty quantification for multiphase flow simulations supported by high-resolution 

experiments  

 

As a part of this work, the team (Liu et al., 2018, 2018, 2019, 2021) developed a machine learning-

based Bayesian approach to inversely quantify and reduce the uncertainties of multiphase computational 

fluid dynamics (MCFD) simulations for bubbly flows. The proposed approach is supported by high-
resolution two-phase flow measurements, including those by double-sensor conductivity probes, high-

speed imaging, and particle image velocimetry. Local distributions of key physical quantities of interest 

(QoIs), including the void fraction and phasic velocities, are obtained to support the Bayesian inference. In 
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the process, the epistemic uncertainties of the closure relations are inversely quantified while the aleatory 

uncertainties from stochastic fluctuations of the system are evaluated based on experimental uncertainty 

analysis. The combined uncertainties are then propagated through the MCFD solver to obtain uncertainties 

of the QoIs, based on which probability-boxes are constructed for validation. The proposed approach relies 

on three machine learning methods: feedforward neural networks and principal component analysis for 

surrogate modeling, and Gaussian processes for model form uncertainty modeling. The whole process is 

implemented within the framework of an open-source deep learning library PyTorch with graphics 

processing unit (GPU) acceleration, thus ensuring the efficiency of the computation. The results 

demonstrate that with the support of high-resolution data, the uncertainties of MCFD simulations can be 

significantly reduced. 
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11. High-fidelity Interface Capturing Simulations of the post-LOCA Dispersed 

Flow Film Boiling Regime for a Data-driven Modeling Framework 
 

11.1. Introduction 
 

The objective of developing a data-driven methodology, the focus of the current IRP project, implicitly 

necessitates the generation of a high fidelity, high resolution, and validated data archive, both from 

experiments and simulations.  Recently, Chang et al [1] documented an extensive list of possible 

frameworks for a data-driven modeling approach. Further, to provide examples, several recent 

developments have demonstrated the applicability of machine learning approaches to turbulence modeling 

[2-4], boiling heat transfer prediction [5], mesh optimization [6] and coarse grid CFD error prediction [7]. 

All machine learning applications for model development underscore the demand for high volume of data 

for improving the predictive accuracy of these models.  

 

The rapid advent of technology in the high-performance computing (HPC) arena, resulting in a 

substantial increase of large-scale computation capabilities, has enabled high resolution studies of complex 

flow phenomena which hitherto remained elusive, or prohibitively expensive, to be scrutinized by 

experiments. Direct numerical simulations (DNS) enable resolution of all relevant scales of turbulence 

without resorting to any closure models, thus providing high fidelity computations of the phenomena under 

investigation. Recently, DNS coupled with interface capturing method have been used to simulate multiple 

two-phase flow regimes in pressurized water reactor (PWR) sub-channels [8,9]. The dispersed flow film 

boiling (DFFB) regime, which exists under post loss-of-coolant accident (LOCA) conditions, is of extreme 

significance to safety margin characterization of PWRs [10]. Thus, data-driven closure modeling for system 

thermal hydraulic (STH) codes and turbulence modeling pertinent to DFFB flow conditions were a priori 

identified as the target applications for the demonstration of the RISMC [11] (risk informed safety margin 

characterization) framework under the IRP.  

 

The DFFB regime is inherently transient, characterized by both mechanical and thermal non-

equilibrium [12,13]. Phenomenologically speaking, it is best conceptualized by a mist type flow, with 

polydisperse droplets, corresponding to high void fractions (> 0.8).  Heat transfer in the DFFB regime is a 

convoluted interplay of several different mechanisms. There is not an apparent single dominant heat transfer 

path, which, understandably, renders extreme complexity to the task of modeling/accounting for these 

phenomena in STH codes. As noted by Hochreiter et al [14], these mechanisms include, convection to 

superheated vapor from rod surface, surface radiation from rods to vapor and droplets, interfacial heat 

transfer between droplets and superheated vapor, direct contact heat transfer between the wall and entrained 

liquid (quenching), convective enhancement of the vapor by the entrained droplets and impact of spacer-

grids to heat transfer enhancement due to flow acceleration and droplet break-up. In a recent publication 

Bajorek et al [15] presented their observations from the rod bundle heat transfer (RBHT) facility [16] 

experiments, summarizing key results from almost a decade of experimental tests of the post-LOCA regime. 

They emphasized the predominant effect of spacer-grids on the thermal hydraulics of the DFFB regime.  

All of the tests conducted at the RBHT facility, irrespective of high or low flooding rates, recorded a sharp 

increase in the heat transfer coefficient in the immediate downstream vicinity of the spacer-grid structures, 

contributing a significant proportion to the overall heat transfer of the core. Convective heat transfer 

enhancement was recorded for the initial single-phase experiments by Hochreiter et al [17], based on which 

Miller et al [18] and Riley et al [19] developed empirical correlations to account for the phenomenon in the 

system thermal hydraulic code COBRA-TF (or CTF) [20]. For the DFFB regime, several additional factors 

provide a positive feedback to heat transfer near the spacers, all owing to the droplet interaction with spacer-

grid structures. Note that based on the flooding rate conditions, the phenomenology at the spacer-grids is 

quite different, resulting in different heat transfer mechanisms [21]. For high flooding rates, a film of 

coolant encapsulates the spacer grid structure due to de-entrainment from the bulk flow. For low flooding 

rates, on the other hand, the void fraction in the bulk is too high for a stable water film to develop on the 
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spacer surface. Sharp heat transfer augmentation is observed at the trailing edge of spacers, decaying 

exponentially with respect to the downstream distance [21-23]. The primary contribution comes due to the 

inertial impact of the droplets on the spacer-grid, resulting in breakup or deformation of the droplets and a 

drastic increase in the overall surface area. The heat transfer increase has been correlated with the observed 

decrease in the Sauter mean diameter (SMD) of the droplets. Ratio of the immediate upstream and 

downstream SMD, with respect to the spacer-grids, is an extremely important parameter used in modeling 

of the DFFB regime. A simplified mechanistic model was developed by Cheung et al. [24] to predict the 

downstream SMD of the droplets based on conservation of mass, kinetic and surface energies. A limited 

number of empirical correlations also exist in literature for SMD, subsequently used in modeling the 

interfacial source terms for closure relations in thermal hydraulic codes. 

 

Other components, besides convective enhancement and decreasing SMD, through which the spacer-

grids contribute, directly or indirectly, to the overall heat transfer in the DFFB regime, include direct 

radiation from the fuel rods to the spacer surface, thermal boundary layer separation and re-attachment and 

quenching due to impacting droplets. As a testament to their significance, not accounting for the spacer-

grids in STH codes results in an over-prediction of the cladding temperature [25]. For modelling these 

phenomena or reducing the uncertainty of related models in STH codes, highly detailed insights into the 

droplet and fluid dynamics is imperative. 

 

Thus, the overarching objective of the work documented herein is conducting high-fidelity, single 

phase and interface capturing, representative simulations of the post-LOCA DFFB regime. More 

specifically, large scale simulations are designed to resolve the droplet and fluid dynamics in the vicinity 

of spacer-grids. Large scale simulations are performed, realized by PHASTA [26], a strong scaling finite 

element method based numerical solver for the Navier-Stokes equations, on the Mira supercomputer at 

Argonne National Laboratory (ANL) [27]. Several ad hoc functionalities are implemented in PHASTA to 

make the simulations viable. Further, through the implementation of advanced MPI (message passing 

interface) routines, including MPI sub-communicators and MPI parallel I/O, high fidelity data is collected 

from the simulations enabling unprecedented insight into the flow physics of a PWR subchannel, including 

the effect of mixing vanes on downstream turbulence and anisotropy, the axial evolution of downstream 

SMD and the droplet feedback to turbulence. The data is archived and intended to be used for the 

development of data-driven turbulence and STH models, serving the broader goals of the IRP [28]. 

 

11.2. Scope of Work 

 

Large scale simulations running on massively parallel supercomputers, which constitute the major 

objective of current research, pose several problems for their successful execution and subsequent, or in-

situ, post-processing and data analysis. Major challenges with the simulations performed herein with 

PHASTA were, understandably, of a logistical nature, which required efficient data management code, 

either integrated as subroutines within PHASTA using advanced MPI libraries or developed as separate 

programs capable of handling large volumes of data.  

 

The technical objectives of the large-scale simulations can, thus, be outlined as, 

• Implementing code functionalities in PHASTA to make DFFB simulations feasible. This includes 

suite of tools to assign fully turbulent inflow boundary conditions, droplet injection at the upstream 

spacer-grid location and scalable MPI I/O routines for high data throughput. 

• Single-phase and two-phase simulations on large scale supercomputers for a range of operating 

DFFB conditions, including different flow Reynolds numbers and droplet collision Weber 

numbers. 

• Data collection, post-processing and analysis from single and two-phase simulations.  

o Study of turbulent flow features including mean flow properties, Reynolds stresses and 

turbulent anisotropy to gain insight into the effect of spacer-grids and mixing vanes.  
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o Analysis of the axial evolution of droplet volume, interfacial area and Sauter mean 

diameter, for different Weber numbers, and comparison with existing correlation in the 

STH code COBRA-TF [20] and empirical correlation from prior DFFB experiments, 

conducted at the rod bundle heat transfer facility  

• Data archival to support future developments on data-driven, machine learning based turbulence 

and STH modeling.  

 

This section provides an overview of the setup details for the single and two-phase simulations, 

including the accompanying assumptions. The section also includes a brief discussion on the technical and 

logistical challenges and the functionalities implemented in PHASTA for their resolution, especially the 

code implementations relevant to high resolution data collection, essential for data driven modeling. 

 

11.2.1. Simulation Setup Details and Assumptions 

 

The geometry used for both single and two-phase simulations in this work comprises a PWR sub-

channel with spacer-grids and mixing vanes, shown in Figure 11.60. Fully developed turbulent profile is 

prescribed at the axial cross-section upstream of the spacer-grid structure and natural outflow boundary at 

the opposite longitudinal end. The hydraulic diameter of the sub-channel is 𝐷ℎ = 12.976 𝑚𝑚, while the 

total axial length is 3.08 𝐷ℎ. Periodic boundary conditions are prescribed across the lateral faces precluding 

the modeling any cross-flow, as is the case in realistic PWR conditions. This is the primary assumption of 

the simulations including that the flow is incompressible. The level-set interface capturing method is used 

for modeling the two phases, which allows for a smooth transition of properties across the interface 

informed by a contour field (see Saini [29] for details on numerical method). 

The mesh for single and two-phase simulations consists of 55.8 and 367.5 million tetrahedral elements, 

respectively. It is designed to ensure that all relevant scales of turbulence, based on a priori estimates [30,31] 

made using bulk Reynolds number, are resolved. For two-phase simulations, it is imperative for the 

resolution of droplets and their collision with spacer grid structures to employ a finer mesh with extended 

boundary layer region near the walls. The mesh resolution was ensured to follow prior established 

guidelines for two-phase simulations by Fang et al [32]. Comprehensive details on the mesh design for all 

simulations are presented in Saini [29]. 

 

 

Figure 11.60: PWR sub-channel geometry with spacer-grid and mixing vanes (primary domain). Quasi-

steady turbulent flow in periodic auxiliary domain (right). 
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Table 11.18: Properties for representative DFFB (two-phase) simulations. 

Properties Single phase We55-Air 

Properties @ 30 psi, steam 

superheat 100K 

We40 

(Steam) 

We55 

(Steam) 

We80 

(Steam) 

Density ratio (𝜌𝑙/𝜌𝑔) 

𝜌𝑔
= 1.185 𝑘𝑔
/𝑚3 

1000 1029.59 

Viscosity ratio (𝜇𝑙/𝜇𝑔) 

𝜌𝑔
= 9.1
× 10−6 𝑃𝑎. 𝑠 

48 13.49 

Bulk Reynolds number,  

𝑅𝑒𝑏 = 𝜌𝑔𝑢𝑚𝑒𝑎𝑛
2 𝐷ℎ/𝜇𝑔 

11822 

Friction Reynolds number,  

𝑅𝑒𝜏 = 𝑢𝜏𝐷ℎ𝜌/3𝜇𝑔 
242.539 

Collision Weber number,  

𝑊𝑒𝑐 = 𝜌𝑙𝐷𝑢𝑑
2/𝜎 

- 55 40 55 80 

Aerodynamic Weber number,  

𝑊𝑒𝑎 = 𝜌𝑙𝐷𝑢𝑚𝑒𝑎𝑛
2 /𝜎 

- 0.319 0.253 0.348 0.507 

Injected absolute droplet velocity, 

𝑢𝑑  (𝑚/𝑠) 
 2.05 1.97 

Injected droplet diameter, 

𝐷 (𝑚𝑚) 
- 1.0 

Surface tension coefficient, 𝜎 (𝑁/
𝑚) 

- 0.091 0.118 0.086 0.059 

Gravity, 𝑔 (𝑚/𝑠2) -9.81 

 

Two single-phase simulations are performed for 𝑅𝑒𝑏 = {5000, 11000}, which correspond to the 

near operating limits of the DFFB regime, as described by the experiments by Hochreiter et al [14]. For the 

two-phase simulations, all flow parameters and characteristic dimensionless numbers are listed in Table 

11.18. One simulation was performed for air-water system properties at atmospheric conditions, which has 

higher viscosity ratio, while three other simulations were performed for steam-water system properties at 

system pressure of 30 psi and 100K superheat. The controlled parameters in all two-phase simulations are 

the bulk Reynolds number, 𝑅𝑒𝑏, and the collision Weber number, 𝑊𝑒𝑐, of the injected droplets. To obtain 

a desired 𝑊𝑒𝑐, the surface tension coefficient is varied for different cases. The upstream injected droplets 

are assumed to be monodisperse and spherical, i.e., they all have a diameter, 𝐷 =1𝑚𝑚. Further, the initial 

velocity of the droplets, 𝑢𝑑 , is assumed equal to the terminal velocity, estimated from the drag correlation 

by Morrison [33]. Finally, it is assumed that the droplets do not intersect at their inception point, maintained 

at a distance of 1.5𝐷 from each other and at a minimum distance of 0.75𝐷 from the sub-channel walls. 

These assumptions are informed by prior experimental observations of the flow dynamics in the DFFB 

regime [12,14,16,24,34,35]. Discussion on the rationale for selecting flow properties can be found in Saini 

[29]. 

 

11.2.2. Turbulent Inflow Boundary Conditions 

 

The DNS scale turbulent flow CFD simulations in reactor sub-channels are often performed on 

relatively long domains computational domains with periodic boundary conditions across the axial ends of 

the domain [36] (𝑥/𝐷ℎ  ≫ 1).  With a large enough domain, such that the largest scale eddies are reasonably 

resolved, periodic boundaries can emulate infinitely long sub-channels and generate a fully developed 

turbulent flow profile.  For the ensuing DFFB simulations, however, we are concerned with droplet 
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interactions with the spacer-grids and mixing vane structures (Figure 11.60). The presence of these internal 

structures and axially evolving droplet dynamics compromises longitudinal periodicity of the domain, 

irrespective of the length used for the simulations. 

 

To address the issue of specifying inlet boundary condition we use the, so called, boundary conditions 

transient (BCT) suite of tools, initially developed by Feng [37]. Straightforward conception of the 

application of BCT can be summarized as capturing the fully developed turbulent flow profile on the 

auxiliary flow domain, shown in Figure 11.60, and applying to the inlet cross-section of the primary 

domain. To achieve this, virtual “probes” are placed in the auxiliary domain, which correspond to the exact 

mesh node location of the primary mesh. Thus, a total of 29,389 probes were used to capture the 

instantaneous velocity field, which necessitated writing high volume of data output. This was enabled 

through the implementation of advanced MPI I/O routine in PHASTA, addressed in Section 11.2.3. For 

further details on BCT implementation refer Saini [29]. 

 

11.2.3. MPI Sub-communicators and MPI Parallel I/O 

 

File I/O remains the most expensive operations for large-scale computations. For this reason, the 

simulation restart files are, often, sparingly written to the disk [38]. This imposes constraints on the post-

processing analysis and the meaningful information that can be extracted from the simulations. In order to 

capture the turbulent velocity profile without loss of spatial resolution, as discussed in the previous section, 

all the computational nodes at the inlet cross-section of the primary mesh are used as velocity capturing 

probes on the auxiliary mesh, resulting in very large I/O buffers to be written to the disk at each simulation 

time step, which severely affects code performance.  

 

Advanced MPI libraries were, therefore, implemented in PHASTA to greatly enhance the speed of 

write operations. The implementation involves a combination of MPI Sub-communicators and MPI parallel 

I/O. Details of the I/O algorithm are included in Saini [29]. Table 11.19 provides details on the PHASTA 

speed enhancement obtained from the MPI routines on the Cetus supercomputer at ANL, with a simulation 

running on 256 nodes and mesh split into 16,384 partitions. Comparison of number of simulation time steps 

with different number of probes, for collecting data, are made against single phase simulation without any 

data output. It is evident that without MPI enabled write operations, the penalty imposed on PHASTA by a 

single processor output made the simulation infeasible. This functionality not only made it possible to 

impose turbulent inflow boundary condition, but also enabled high resolution data collection, which is 

indispensable for data-driven modeling. 

 

Table 11.19: Number of time steps performed during 1 hour of wall-clock time on Cetus. 

 Single Processor 171 Processors  

Number of probes Time steps Penalty factor Time steps Penalty factor Speed up ratio 

0 (No recording) 2887 

5000 1267 2.28 2027 1.42 1.6 

10000 75 38.5 1920 1.5 25.6 

29839 9 320.78 1440 2.0 160.0 

 

11.3. Key Findings 

 

11.3.1. Single-phase Simulations 

 

Single-phase steam experiments performed at the RBHT facility have demonstrated the effect of 

mixing vanes on enhancing the downstream turbulent kinetic energy [17], which serves as a strong 

component in augmenting heat transfer coefficient. Based on these experiments, Miller et al [18] and Riley 
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et al [19] developed empirical correlations to account for the phenomenon in CTF. Motivated by 

experimental findings, DNS simulations were conducted for 𝑅𝑒𝑏 = {5000, 11000} (or 𝑅𝑒𝜏 = {110, 230}) 
and a large volume of data, from probes shown in Figure 11.61, was collected to gain further insight into 

the turbulent flow features in the primary domain. 

 

 

Figure 11.61. Probe configuration for data collection on a plane (left). All planes, along axial length, 

shown on right, totaling 84,908 probes. 

 

11.3.2. Comparison with existing DNS Data 

 

For comparison with existing DNS data, we focus on the results obtained for the plane at the inlet 

of the primary domain. Most widely used benchmark DNS data in literature is provided by Lee et al [39] 

for a typical flow channel. To enable a direct comparison with this data, the coordinate system is rotated, 

for each probe location, as shown in Figure 11.61, from 𝑦 − 𝑧 to 𝑡 − 𝑛, (rod) wall tangential-normal 

direction, with the normal pointing into the sub-channel. 

 

 

Figure 11.62. Comparison of normalized mean streamwise and TKE profile with DNS data for a sub-

channel by Fang et al [40] and channel data by Lee et al [41]. 

 

Figure 11.62 shows the comparison of normalized mean streamwise velocity (𝑈+ = 𝑈/𝑢𝜏) and 

turbulence kinetic energy (𝑇𝐾𝐸+ =  𝑢𝑖
′𝑢𝑖
′̅̅ ̅̅ ̅̅ /2𝑢𝜏

2 ) with that of flow between parallel plates [39] and sub-

channel [40], albeit for different 𝑅𝑒𝜏 values. Excellent agreement is obtained near the wall (𝑦+ < 5) for 

both cases with existing DNS data, ensuring that the mesh resolution and selected probe resolution captures 

the essential viscous sub-layer profile. The sub-channel results show the same trend of a decrease in the 𝑈+ 

value with increasing Reynolds number as that of channel data in the log-layer region (30 < 𝑦+ < 100). 

For the linear log law of the wall, 𝜅 = 0.44 and 0.43 was obtained for 𝑅𝑒𝜏=110 and 230, respectively, 

which are close to the widely accepted parameter, as given by Pope [42]. More relevant to the present study, 
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Fang et al [40] provided 𝜅 = 0.43 and 0.42, while 𝐵 = 6.7, for their simulations in a PWR sub-channel 

with similar dimensions, for 𝑅𝑒𝑏 = 29,079 (𝑅𝑒𝜏 = 530) and 80,774 (𝑅𝑒𝜏 = 1300), respectively. The 

normalized principal Reynolds stresses in the streamwise and tangential directions are shown in Figure 

11.63, compared with the results of Lee et al [39]. Although a direct comparison is not feasible due to 

difference in geometry and 𝑅𝑒𝜏 values, the TKE and Reynolds stress profiles reveal important trend 

similarities, especially in the near wall region with channel simulations. Similar to a simple channel, most 

of the energy for the sub-channel geometry is contained in the streamwise fluctuations. Further, the TKE 

and 𝑅𝑥𝑥 values peak at approximately the same wall distance, (10 < 𝑦+ < 15), and then decline through 

the log-layer region. The log-layer trend for the tangential component 𝑅𝑡𝑡 is also very similar to the channel 

data, with a peak obtained at 𝑦+ ∼ 40 for both geometries. However, the 𝑅𝑡𝑡 profile plateaus towards the 

outer layers for the sub-channel more rapidly as compared to the channel data. 

 

 

Figure 11.63. Comparison of normalized streamwise and tangential Reynolds stress profile with DNS 

data channel data by Lee et al [41]. 

 

11.3.3. Effect of Mixing Vanes on Downstream Turbulence 

 

From the perspective of modeling the effects of spacer grids and mixing vanes on the convective heat 

transfer enhancement, it is imperative to understand their effect on the downstream dynamics of the flow. 

Figure 11.64 shows the normalized mean streamwise and tangential velocity profiles at two upstream 

(including the inlet) and six successive downstream locations. Note that the trailing edge of the mixing vane 

is located at the dimensionless axial distance of 𝑥/𝐷ℎ = 1.4. Evidently, the mixing vanes transfer a 

significant amount of axial momentum of the flow to tangential components. The change in the streamwise 

velocity profile is not significant in the near wall region (y+ < 30), however, it is significantly reduced in 

the immediate wake of the mixing vanes. The axial momentum is recovered to some extent as we move 

further downstream from the trailing edge. There is a distinct transition in the lateral velocity profile at a 

half distance, 𝑦+ ≈ 100, from the wall. The tangential velocity witnesses a very sharp increase in the near 

wall region (𝑦+ < 20), followed by a decline in the transition layer region. At further distance downstream, 

the tangential velocity in the near wall regions approaches zero, however, it is sustained in the bulk, in the 

opposite direction. 
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Figure 11.64. Comparison of upstream and downstream, relative to spacer-grid, normalized mean 

streamwise and tangential velocity profiles. 

 

Observing the normalized principal Reynolds stress profiles, shown in Figure 11.65, it is evident 

that the mixing vanes impart a significant increase in energy to all components at the downstream 

location. The gradients of 𝑅𝑥𝑥 and 𝑅𝑡𝑡 are increased in the near wall regions (𝑦+ < 10), as compared to 

the upstream profile, and decrease progressively downstream. Further from the wall (30 < 𝑦+ < 100) 

the trend for downstream profiles of 𝑅𝑥𝑥 is similar to the upstream profile, however, further towards the 

center of the sub-channel another component is added due to the presence of mixing vanes. An especially 

sharp increase can be seen in the immediate wake of the mixing vanes. While the tangential component 

is insignificant in the upstream region, it shows an almost five magnitude order increase in the region 

𝑦+ ∼ 10.  

 

Figure 11.65. Comparison of upstream and downstream, relative to spacer-grid, normalized streamwise 

and tangential Reynolds stress profiles. 
 

A relatively dense distribution of probe planes, as shown in Figure 11.61, allows the study of axial 

evolution of turbulence features. This data is pertinent to modeling in system thermal hydraulic codes, like 

CTF, since they involve cross-sectionally averaged governing equations. Figure 11.66 shows the axial 

evolution of principal Reynolds stresses and TKE for the 𝑅𝑒𝜏 = 230 case. A sharp increase in the turbulent 

energy is evident at the leading edge of the spacer and along the mixing vane profile, while the TKE 

decreases monotonously in downstream region.  

 



   

253 
 

 

Figure 11.66. Axial evolution of plane averaged, normalized principal Reynolds stresses and TKE for 

𝑅𝑒𝜏 = 230 case. 

 

Further details and comprehensive discussion on the mixing vane effect on downstream turbulence, 

including the wall normal component of velocity and Reynolds stresses, the secondary stresses and 

anisotropy can be found in Saini [29]. 

 

11.3.4. Two-phase Simulations 

 

Among the critical observations and results presented by Bajorek et al [15] for experiments conducted 

at the RBHT facility, the effect of heat transfer enhancement due to droplet collision with spacer-grid and 

mixing vane structures was particularly underscored. Droplet collision and subsequent breakup and/or 

deformation results in a very sharp increase in the interfacial area, which provides a positive feedback to 

several heat transfer paths. The reported increase in heat transfer coefficient has been empirically correlated 

to the Sauter mean diameter, which in turn was found to have a strong dependence on the upstream collision 

Weber number. 

 

The steam-water system cases, as listed in Table 11.18, were run for a total simulation time of 𝑡 =
{14.75, 13.65, 13.35}𝑚𝑠  for We40, We55 and We80 cases, respectively. The droplet volume fraction for 

the cases at these time stamps were {3.14, 3.12, 2.91}%, respectively. Instantaneous velocity contours for 

the steam-water system case with 𝑊𝑒𝑐 = 40 at 𝑡 = 14.75 𝑚𝑠 and 𝑊𝑒𝑐 = 80 at 𝑡 = 13.35 𝑚𝑠, are shown 

in Figure 11.67. For the We40 case the observed diameter of the droplets at the downstream location is 

evidently larger than the We80 case. For the former case, the droplets tend to coalesce into larger blobs 

while for the We80 case smaller droplet diameters, but a larger number of individual droplets can be seen 

in the domain, which is indicative of lower SMD value. Further, for the We40 case the droplets show a 

greater tendency to develop a liquid film over the leading edge of the spacer-grid structure, owing to a 

higher surface tension coefficient. 
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Figure 11.67. Axial evolution of plane averaged, normalized principal Reynolds stresses and TKE for 

𝑅𝑒𝜏 = 230 case. 

 

11.3.5. Axial Evolution of Droplet Dynamics 

 

To quantify the axial evolution of droplet dynamics from the two-phase simulations, the domain is 

partitioned into 20 equi-spaced axial regions. The total droplet volume and interfacial area are captured at 

each simulation time step for each partition, which then allows for the calculation of SMD and studying its 

axial profile.  

 

Figure 11.68 shows the time and cross-sectionally averaged profile of droplet volume and 

interfacial area in axial partitions. A sharp increase is evident at the leading edge of spacer-grid owing to 

droplet accretion due to collision, while a monotonous decrease is seen downstream of spacer-grid structure. 

This is a result of the higher acceleration experienced by the daughter or deformed droplets due to increased 

drag force relative to the gravitational force. The SMD profile is shown in Figure 11.69 and compared with 

the empirical correlation suggested by Cheung et al [24] based on RBHT data. Figure 11.70 shows the 

instantaneous SMD and time averaged profile for the We80 case, also compared with the existing CTF 

correlation [43]. The results show good agreement of time averaged SMD with these correlations at the 

downstream locations, Partition 14-19. 
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Figure 11.68 Axial profile of time averaged droplet volume (left) and interfacial area in axial partitions 
for all two-phase cases. 

 

Figure 11.69. Axial profile of time averaged SMD in axial partitions for all two-phase cases. The 

values obtained with the RBHT correlation by Cheung et al [24] are also annotated. 
 

 

 

Figure 11.70. Instantaneous and time averaged SMD for the We80 case. Comparison with existing CTF 

and empirical correlation is shown for the downstream partitions. 
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11.3.6. Effect of Droplets on Downstream Turbulence 

 

The presence of droplets in the computational domain decreases the effective hydraulic diameter for 

the steam/vapor flow. Thus, for the same flow rate maintained at the inlet cross-section, the droplets throttle 

the bulk flow, which is expected to increase the overall turbulent kinetic energy. From Figure 11.71 it is 

evident that the presence of droplets increases the streamwise velocity magnitude in the near wall region. 

The effect is more pronounced for the immediate downstream location 
𝑥

𝐷ℎ
= 1.54 and the further 

downstream location past the vanes, with the near wall 𝑈𝑥
+ profile at 

𝑥

𝐷ℎ
= 2.77 being almost identical. For 

the tangential component, however, the presence of droplets attenuates the momentum imparted due to 

mixing vanes, as compared to single phase case, in the wall region at 
𝑥

𝐷ℎ
= 1.54. Away from the wall the 

droplets do not seem to have a significant effect on the mean components besides some re-organization of 

momentum. 

 

 

Figure 11.71. Comparison of normalized streamwise and tangential velocity for the single-phase and 

We80 case. 

 

 

Figure 11.72. Comparison of normalized streamwise and tangential Reynolds stress for the single phase 

We80 case. 
 

The presence of droplets imparts a significant positive feedback, across the 𝑦+ distance, to the 

streamwise and tangential Reynolds stress components, especially at the immediate downstream location. 

The feedback is attenuated as we move further downstream, nevertheless an increase in the streamwise and 

tangential components is registered even at the 𝑥/𝐷ℎ = 2.77 location. The massive feedback at the 

immediate downstream location can be owed to the mixing vane profile, which forces both the droplets and 

the bulk flow towards the peripheral regions. The results highlight the importance of considering droplet 

feedback to turbulence flow features and the need for modeling it in the DFFB regime. 
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11.4. Path Forward 

 

The objectives achieved in this project clearly demonstrated the value of high-resolution simulations 

when the design and execution is implemented in collaboration with model developers and 

experimentalists.  

 

In the future, the data generated and the capabilities developed will be applied to relevant problems in 

nuclear engineering thermal-hydraulics, including reactor operation and safety modeling problems. Of 

particular interest is the application of novel machine-learning based methods for model development and 

for gaining insight into flow physics.  

 

The extensive data set provided (see data management, Section Error! Reference source not found.) 

will allow future data mining efforts for advanced model development, as well as investigating new 

algorithms for this data. The process, in turn, may identify additional fields and parameters which could be 

extracted from high resolution simulations in the future.  

 

To summarize, given the potential future funding, the following objectives can be addressed in future 

projects: 

• Apply and enhance interface tracking approach for a wide variety of two-phase flow problems 

in nuclear reactor relevant geometries. 

• Utilize DNS for many advanced reactor designs. 

• Enhance data collection algorithms to be suitable for a variety of modern ML-based methods. 

• Develop scalable training databases for ML algorithms to continuously improve the models as 

more high resolution numerical and experimental data becomes available. 

• Adding heat transfer / phase change effects (recently implemented in PHASTA) will greatly 

enhance the range of problems which can be studied using this approach. 

 

11.5. Conclusions 

 

The key conclusions from this project contribution are: 

• The research herein highlights the capability of PHASTA, coupled with level-set method, to 

simulate the post-LOCA DFFB regime. Simulations with unprecedented resolution and fidelity 

were performed to illuminate droplet dynamics in this critical PWR regime. 

• Advanced high-resolution data collection tools are implemented in PHASTA which enable detailed 

study of turbulence from DNS scale simulations, optimized for large scale supercomputers. 

• The high spatial and temporal resolution of data collected from the single-phase and two-

simulations is archived and would, potentially, serve as a data mine for the development of machine 

learning based turbulence and STH models. 

• The results from single-phase simulations highlight the effect of spacer-grids and mixing vanes on 

convective enhancement. Further, invariant analysis of the data reveals that the mixing vanes 

modify the state of turbulence in the downstream region. 

• The results from two-phase simulations emphasize the importance of considering droplet feedback 

to turbulence, in addition to the enhancement provided by spacer-grids and mixing vanes. The SMD 

results at the downstream locations match well with experimental data, establishing confidence in 

PHASTA and the incorporated level-set method in simulating the DFFB regime. 

• All tools are in place for a more extensive parametric study of the DFFB regime, with a range of 

bulk Reynolds number and collision Weber numbers. Single droplet collision studies are 

recommended for characterizing uncertainties associated with collision events. 

• The most limiting assumption of the current simulations, in contrast to the real DFFB conditions, 

is the lack of heat transfer modeling. Consideration of heat transfer mechanisms requires more 
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extensive development efforts in PHASTA, including methods for phase change, conjugate heat 

transfer and modeling of radiative heat transfer. 
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12. Data-Driven Modeling and Validation Methods & Tools   
 

This Chapter highlights key developments (by the project team and collaborators) in data-driven 

methods for thermal-fluid modeling, error evaluation, validation, uncertainty quantification, and scaling 

(scale bridging), including both STH and CFD. 

 

12.1. Data-driven modeling (Hi2Lo) 
 

Chih-Wei Chang and Nam Dinh, “Classification of Machine Learning Frameworks for Data-Driven 

Thermal Fluid Models”, International Journal of Thermal Science, 135, pp.559-579, 2019.  

 

Thermal fluid processes are inherently multi-physics and multi-scale, involving mass-momentum-

energy transport phenomena at multiple scales. Thermal fluid simulation (TFS) is based on solving 

conservative equations, for which – except for “first-principles” direct numerical simulation – closure 

relations (CRs) are required to provide microscopic interactions or so-called sub-grid-scale physics. In 

practice, TFS is realized through reduced-order modeling, and its CRs as low-fidelity models can be 

informed by observations and data from relevant and adequately evaluated experiments and high-fidelity 

simulations. This paper is focused on data-driven TFS models, specifically on their development using 

machine learning (ML). Five ML frameworks are introduced including physics-separated ML (PSML 

or Type I ML), physics-evaluated ML (PEML or Type II ML), physics-integrate ML (PIML or Type III 

ML), physics-recovered (PRML or Type IV ML), and physics-discovered ML (PDML or Type V ML). 

The frameworks vary in their performance for different applications depending on the level of 

knowledge of governing physics, source, type, amount and quality of available data for training. Notably,                                 

outlined for the first time in this paper, Type III models present stringent requirements on modeling, 

substantial computing resources for training, and high potential in extracting value from “big data” in 

thermal fluid research. 

 

The current paper demonstrates and investigates ML frameworks in three examples. First, we utilize the 

heat diffusion equation with a nonlinear conductivity model formulated by convolutional neural 

networks (CNNs) and feedforward neural networks (FNNs) to illustrate the applications of Type I, Type 

II, Type III, and Type V ML. The results indicate a preference for Type II ML under deficient data 

support. Type III ML can effectively utilize field data, potentially generating more robust predictions 

than Type I and Type II ML. CNN-based closures exhibit more predictability than FNN-based closures, 

but CNN-based closures require more training data to obtain accurate predictions. Second, we illustrate 

how to employ Type I ML and Type II ML frameworks for data-driven turbulence modeling using 

reference works. Third, we demonstrate Type I ML by building a deep FNN-based slip closure for two-

phase flow modeling. The results show that deep FNN-based closures exhibit a bounded error in the 

prediction domain. 

 

Yang Liu, Nam Dinh, Yohei Sato and Bojan Niceno, “Data-driven modeling for boiling heat transfer: using 
deep neural networks and high-fidelity simulation results”, Applied Thermal Engineering, 144, pp.305-320, 

2018 

 

Chih-Wei Chang, Jun Fang and Nam Dinh; “Reynolds-Averaged Turbulence Modeling Using Deep 

Learning with Local Flow Features – an Empirical Approach”, Nuclear Science and Engineering, Vol.00, 

pp.1-15, 2020 (online January 2020). 
 

Yangmo Zhu, Nam T. Dinh, Nadish Saini, Igor A. Bolotnov, “An adaptive knowledge-based data-

driven approach for turbulence modeling using ensemble learning technique under complex flow 

configuration: 3D PWR sub-channel with DNS data”, Submitted for review, 2020 
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This work describes a new approach to increase the accuracy of Reynolds- averaged Navier–Stokes 

(RANS) in modeling turbulence flow leveraging the machine learning technique. Traditionally, different 

turbulence models for Reynolds stress are developed for different flow patterns based on human 

knowledge. Each turbulence model has a certain application domain and prediction uncertainty. In recent 

years, with the rapid improvements of machine learning techniques, researchers start to develop an 

approach to compensate for the prediction discrepancy of traditional turbulence models with statistical 

models and data. However, the approach has deficiencies in several aspects. For example, the amount 

of human knowledge introduced to the statistical model couldn’t be controlled, which makes the 

statistical model learn from a very naive stage and limits its application. In this work, a new approach is 

developed to address those deficiencies. The new approach uses the “ensemble learning” technique to 

control the amount of human knowledge introduced into the statistical model. Therefore, the new 

approach could be adaptive to the multiple application domains. According to the results of case studies, 

the new approach shows higher accuracy than both traditional turbulence models and the previous 

machine learning approach. Furthermore, the new approach shows better performance in predicting the 

error caused by applying coarse mesh (insufficient mesh resolution) to the computational fluid dynamics 

(CFD) simulation, which indicates the potential of the approach to save the computational expense of 

RANS to the coarse-mesh level. 

 

 

12.2. Data-driven error evaluation 

 

Botros Hanna, Nam Dinh, Robert Youngblood, and Igor Bolotnov, “Coarse-Grid Computational Fluid 

Dynamic Errors Prediction by Machine Learning”, Progress in Nuclear Energy, Vol.118 (2020) 103140 

(online September 2019)  

 

Computational Fluid Dynamics (CFD) is one of the modeling approaches essential to identifying the 

parameters that affect Containment Thermal Hydraulics (CTH) phenomena. While the CFD approach 

can capture the multidimensional behavior of CTH phenomena, its computational cost is high when 

modeling complex accident scenarios. To mitigate this expense, we propose reliance on coarse-grid CFD 

(CG-CFD). Coarsening the computational grid increases the grid-induced error thus requiring a novel 

approach that will produce a surrogate model predicting the distribution of the CG-CFD local error and 

correcting the fluid-flow variables. Given sufficiently fine-mesh simulations, a surrogate model can be 

trained to predict the CG-CFD local errors as a function of the coarse-grid local flow features. The 

surrogate model is constructed using Machine Learning (ML) regression algorithms. Two of the widely 

used ML regression algorithms were tested: Artificial Neural Network (ANN) and Random Forest (RF). 

The proposed CG-CFD method is illustrated with a three-dimensional turbulent flow inside a lid-driven 

cavity. We studied a set of scenarios to investigate the capability of the surrogate model to interpolate 

and extrapolate outside the training data range. The proposed method has proven capable of correcting 

the coarse-grid results and obtaining reasonable predictions for new cases (of different Reynolds 

number, different grid sizes, or larger geometries). Based on the investigated cases, we found this novel 

method maximizes the benefit of the available data and shows potential for a good predictive capability. 

 

Han Bao, Nam T. Dinh, Jeffrey W. Lane, and Robert W. Youngblood, “A data-driven framework for error 

estimation and mesh-model optimization in system-level thermal-hydraulic simulation”, Nuclear 

Engineering and Design, Volume 349, 1 August 2019, Pages 27-45 

  

Over the past decades, several computer codes have been developed for simulation and analysis of 

thermal-hydraulics and system response in nuclear reactors under operating, abnormal transient, and 

accident conditions. However, simulation errors and uncertainties still inevitably exist even while these 

codes have been extensively assessed and used. In this work, a data-driven framework (Optimal 

Mesh/Model Information System, OMIS) is formulated and demonstrated to estimate simulation error 
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and suggest optimal selection of computational mesh size (i.e., nodalization) and constitutive 

correlations (e.g., wall functions and turbulence models) for low-fidelity, coarse-mesh thermal-hydraulic 

simulation, in order to achieve accuracy comparable to that of high-fidelity simulation. Using results 

from high-fidelity simulations and experimental data with many fast-running low-fidelity simulations, 

an error database is built and used to train a machine learning model that can determine the relationship 

between local simulation error and local physical features. This machine learning model is then used to 

generate insight and help correct low-fidelity simulations for similar physical conditions. The OMIS 

framework is designed as a modularized six-step procedure and accomplished with state-of-the-art 

methods and algorithms. A mixed-convection case study was performed to illustrate the entire 

framework. 
 

12.3. Data-driven validation and uncertainty quantification 
 

Yang Liu and Nam Dinh, “Validation and Uncertainty Quantification for Wall Boiling Closure Relations 
in Multiphase CFD Solver”, Nuclear Science and Engineering. pp.1-19, 2018 (online Sep 2018) 
 

Yang Liu, Nam Dinh, Ralph Smith, and Xiaodong Sun, “Uncertainty Quantification of Two-Phase Flow 

and Boiling Heat Transfer Simulation Through a Data-Driven Bayesian Modular Approach”, International 

Journal of Heat and Mass Transfer, Volume 138, August 2019, Pages 1096-1116 

 

Yang Liu, Xiaodong Sun, and Nam T. Dinh, “Validation and Uncertainty Quantification of multiphase-

CFD solvers: A Data-Driven Bayesian Framework Supported by High-Resolution Experiments”, J. Nuclear 

Engineering and Design, 2019, Vol.354, 110200, pp.1-19.  

 

Yang Liu, Dewei Wang, Xiaodong Sun, Yang Liu, Nam Dinh, and Rui Hu, “Uncertainty quantification for 

Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by 

high-resolution experiments”, Reliability Engineering and System Safety, 2021 (in press). 

 

In this paper, we developed a machine learning-based Bayesian approach to inversely quantify and 

reduce the uncertainties of multiphase computational fluid dynamics (MCFD) simulations for bubbly 

flows. The proposed approach is supported by high-resolution two-phase flow measurements, 

including those by double-sensor conductivity probes, high-speed imaging, and particle image 

velocimetry. Local distributions of key physical quantities of interest (QoIs), including the void 

fraction and phasic velocities, are obtained to support the Bayesian inference. In the process, the 

epistemic uncertainties of the closure relations are inversely quantified while the aleatory uncertainties 

from stochastic fluctuations of the system are evaluated based on experimental uncertainty analysis. 

The combined uncertainties are then propagated through the MCFD solver to obtain uncertainties of 

the QoIs, based on which probability-boxes are constructed for validation. The proposed approach 

relies on three machine learning methods: feedforward neural networks and principal component 

analysis for surrogate modeling, and Gaussian processes for model form uncertainty modeling. The 
whole process is implemented within the framework of an open-source deep learning library PyTorch 

with graphics processing unit (GPU) acceleration, thus ensuring the efficiency of the computation. The 

results demonstrate that with the support of high-resolution data, the uncertainties of MCFD 

simulations can be significantly reduced. 

 
 

12.4. Data-driven scale bridging 
 

Han Bao, Nam Dinh, Linyu Lin, Robert Youngblood, Jeffrey Lane, Hongbin Zhang, “Using Deep Learning 

to Explore Local Physical Similarity for Global-scale Bridging in Thermal-hydraulic Simulation”, Annals 

of Nuclear Energy journal Volume 147, November 2020, 107684 
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Current system thermal-hydraulic codes have limited credibility in simulating real plant conditions, 

especially when the geometry and boundary conditions are extrapolated beyond the range of test 

facilities. Because mesh size is one of the model parameters for these coarse-mesh codes with simplified 

boundary-layer treatments, the mesh-induced error and model error are tightly connected, which makes 

it difficult to evaluate mesh effect or model scalability independently, as in classical scaling analysis. 

This paper proposes a data-driven approach, Feature-Similarity Measurement (FSM), to establish a 

technical basis to overcome these difficulties by exploring local patterns using machine learning. The 

underlying local patterns in multiscale data are represented by a set of physical features that embody the 

information from a physical system of interest, empirical correlations, and the effect of mesh size. After 

performing a limited number of high-fidelity numerical simulations and a sufficient amount of fast-

running coarse-mesh simulations, an error database is built, and deep learning is applied to construct and 

explore the relationship between the local physical features and simulation errors. As a result, a data-

driven model can be developed to provide an accurate estimate on the simulation error even when global-

scale gaps exist. Case studies based on mixed convection have been designed for demonstrating the 

capability of data-driven models in bridging global-scale gaps. 
 
 

12.5. Concluding Remarks 
 

At the time of the IRP proposal submission (2015-2016), data-driven methods in thermal fluid applications 

were in infancy. The investigations conducted in this project were exploratory; the developments were 

cutting-edge, building on advances in artificial neural networks (ANN), particularly “deep learning”. 

During the last three years, we witness a wave of interests in machine learning applications in thermal-fluid 

process modeling, validation, and uncertainty quantification. There is a critical mass of interests, talents, 

and technical capabilities to explore and exploit the potential of this new approach. However, it also 

becomes evident that data, both quantity and quality, present a bottleneck in data-driven methods’ success 

in new and complex applications.  
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13.  Data Management Infrastructure to Support Validation Activities  
 

13.1. Introduction 

 

High-fidelity simulations (including CFD and DNS) and advanced experiments produce an 

unprecedented amount of data.  However, the conventional framework was developed in the era when data 

storage and transfer were a weaker link.  As a solution, empirical correlations were developed through 

experts’ insight of the physics model. While methods of the formula and equation-centric era still remain 

important, they face increasing challenges from rapid data explosion.  Their incapability in capturing and 

handling massive data, data irregularities, and complicated data interrelationships have resulted in 

considerable amount of data archives, experimental and computational, becoming corrupted, 

misinterpreted, and partially or completely lost over time. 

 

To find solutions and address this problem, a complexity reduction approach is considered that would 

allow analysts to use high-fidelity models without having to develop empirical formulas.  While the high-

fidelity models can describe the system behavior at the finest scale, the range of model applicability often 

introduces numerous constrains, significantly reducing the effective dimensionality of the resulting 

datasets.  This implies that the datasets are highly correlated with their true dimensionality much smaller 

than their nominal dimensionality.  It has been shown by Bang, et. al. that reduced order modeling 

techniques can be used to identify so-called active degrees of freedom that can be used to reconstruct the 

big datasets from other datasets of much smaller dimensions, with the reconstruction errors being upper-

bounded by preset tolerances over the wide range of conditions expected for model application (Bang, et 

al., 2012).  This tactic not only affords a computationally efficient approach to processing and storing 

datasets, but also allows for much smaller number of metrics that can be used as a basis for the validation 

of large volume datasets associated with the high-fidelity models. 

 

In the conventional equation-centric paradigm, four steps are involved in the workflow, i.e., (i) data 

analysis, (ii) model/correlation development, (iii) validation against data and quantification of uncertainty, 

and (iv) relevant data.  In the new data-centric paradigm employed in the data-driven methodology, the 

workflow skips the two middle steps and goes directly from (i) data analysis to (iv) relevant data.  

Significant biases associated with (ii) and (iii) are thus eliminated.  As more relevant data become available, 

the simulation becomes increasingly accurate.  There is no data wasted in this framework.  Validated 

simulations per se also become “data”.  Simulation control becomes knowledge management.  Furthermore, 

it generates an incentive for community collaboration, with the common goal of reducing uncertainty 

through data sharing, experimental and computational alike.  It follows that this new paradigm requires 

analytical capability to manage the data and complicated data interrelationships to ensure correct 

interpretation, extraction, and use of the data.   

 

To achieve the data-driven goals, an advanced data management system is required to systematically 

collect, process, and manage data, and support all the relevant data operations on massive machine-readable 

data records.  The system must meet the following requirements: 

 

1. For infrastructure, tools, and protocols it should provide: 

• A web-accessible, searchable, quality-assessed, and user-friendly Database Management 

System. 

• A secure and access-controlled knowledgebase in compliance with partners-agreed technology 

control plan protocols. 

• A sustained platform enabling data (experimental, industrial, computational) collection, 
qualification, and preservation for a broad range of users, including non-developers and 

posterity. 
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• An efficient system with high traceability, accountability, and advanced data manipulation 

functionalities. 

• Application Programming Interfaces (APIs) customized for intended simulation codes and 

Verification and Uncertainty Quantification (VUQ) analytical tools for data analytics, data 

mining, and data assimilation. 

 

2. VUQ-enabling functionalities must be provided to ensure viable, effective workflows and protocols 

for collecting, assessing, processing, and managing validation data. 

 

3. A Data File Warehouse is needed to support the following functions: 

• Data identification for preservation. 

• Data collection (primary sources of data in various types of electronic files such as 

spreadsheets, videos, photos, etc.). 

• Data tracking (data provenance and pedigree). 

• Data qualification (data quality assessment). 

 

4. A Relational Digital Database is required to offer high traceability, accountability, and advanced 

data manipulation functionalities. 

 

5. The system must provide functionalities that support predictive models (specified bounds for 

predictions): 

• Systematic and iterative evaluations. 

• Data characterization, i.e., assess, categorize, and rank the scalability, relevancy, and 

uncertainty of data for use in total data integration. 

• Data reconfiguration, i.e., converse/homogenize data of different types to formats compatible 

with VUQ methods, including converting raw data in analog media into digital data formats, 

reprocessing legacy data, and reformatting data as needed. 

• Interoperability, i.e., directly exchange data between the Relational Digital Database and the 

VUQ or simulation software in an automated fashion, with searching, sorting, and filtering 

capabilities. 

 

6. The system must provide features that facilitate verification and validation activities: 

• Amenable to processing (with statistical and optimization methods and tools) 

• Specialized strict input, flexible, unlimited output/extraction 

• Creating dataset guided by questions Graphic User Interfaces (GUIs) 

• Knowledge accumulation (accumulative experience of using datasets) 

 

7. The system must support integration of new and legacy experimental data for use in VUQ and 

M&S. 

 

8. Compatible with engineering practice (current, and provision for future), e.g., VUQ methodologies 

including NRC regulatory guide. 

 

Development of such a system requires considerable resources and time, which is obviously beyond 

the scope of the present project.  A pragmatic approach would be to piggyback on an existing system and 

leverage its sustained resources and administrative support. 

 

During the proposal preparation of the present project, the Department of Energy (DOE) was initiating 

the Nuclear Energy Knowledge and Validation Center (NEKVAC) in response to the strong support and 

recommendations from stakeholders at an Atlanta workshop organized in 2015 by DOE and the Idaho 

National Laboratory (INL) to brainstorm for developing such capabilities and particularly for advancing 
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the theory and practice of simulation code validation in the service of the nuclear industry.  The NEKVAC 

was organized to operate through a Directorate composed of the Steering Committee, the Methods and 

Guidelines Committee, and a Knowledge Management Committee, with stakeholder members from 

government, academia, and industry organizations (Gougar, 2015).  In addition to the three committees, the 

workshop also recommended establishing a knowledgebase and simulation code validation system using 

the Nuclear Energy Knowledgebase for Advanced Modeling and Simulation (NE-KAMS) Demo and the 

Radiation Safety Information Computational Center (RSICC) resources at the Oak Ridge National 

Laboratory (ORNL) to provide a tangible framework to support NEKVAC development and operation.  It 

followed that as NEKVA took off, NE-KAMS would provide an ideal infrastructure to host the data for the 

present project, ensuring their compatibility with validation and uncertainty quantification, and most 

importantly, serving as a Validation Data Management System (VDMS) to implement the new data-centric 

paradigm.  The homepage for NE-KAMS login is presented in Figure 13.1. 

 

 
Figure 13.1. Homepage of NE-KAMS for authorized user login at http://nekams.ornl.gov/ 

 

The NE-KAMS Demo was sponsored by the DOE Nuclear Energy Advanced Modeling and 

Simulation (NEAMS) Program specifically to support verification and validation of advanced modeling 

and simulation [Lee, et. al., 2012; Ren, 2012; Lee, et. al., 2013].  Its development at the time was focused 

on a Data File Warehouse section to store and manage fluid dynamics and thermal hydraulics data files as 

foundation for further development of a Digital Database section to manage machine-readable digital data 

records.  Standards and requirements for fluid dynamic code verification and validation data were also 

developed and archived in the NE-KAMS Data File Warehouse (Mousseau, et. al., 2011).  To strive for 

time and cost efficiency, the NE-KAMS Demo was created in DOE’s Gen IV Database Infrastructure that 

supports the Gen IV Materials Handbook project to manage nuclear materials data contributions from 

Canada, China, European Union, France, Japan, Korea, South Africa, Switzerland, and United States for 

international collaboration in development of the Generation IV Nuclear Energy Systems [Ren, 2008; Ren, 

2013].  Over a decade of evolution, the infrastructure successfully fostered development of several other 

database and knowledgebase systems to support various programs, which included the Nuclear System 

Materials Handbook Database for all existing domestic reactor systems, the ASME Materials Properties 

Database for codes and standards of the American Society of Mechanical Engineers (ASME) (Ren, et. al., 

2011a), and the Nuclear Concrete Materials Database for the Light Water Reactor Sustainability Program 

http://nekams.ornl.gov/
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(Ren, et. al., 2010; Ren, et. al., 2011b).  To support the NEKVAC, a sophisticated implementation plan was 

developed for expansion and operation of NE-KAMS Demo (Ren, et. al., 2015).  The plan considered 

prospective NE-KAMS users from government, academia, and industry organizations, offering an excellent 

opportunity for leverage by the present project. 

 

13.2. Scope of Work 

 

The Oak Ridge National Laboratory would provide the NE-KAMS System to support the present 

project in data collection and management, verification and validation of simulation results, as well as other 

related activities.  Documents generated from the project, including publications, presentations, and 

important project files considered worth preserving, would also be uploaded to NE-KAMS and maintained 

in a well-organized fashion for posterity retrieval.  Based on the collected simulation and experimental 

results, reliable predictions or development of new experiments would be suggested by NE-KAMS through 

its data mining functionality.  Authorized participants of the present project would be provided with 

different access privileges needed for conducting their tasks.  The developed was expected to create a NE-

KAMS-based archive of validation data for scenarios considered in two Risk-Informed Safety Margin 

Characterization (RISMC) applications, i.e., flooding hazard simulation and analysis; and reactor system 

thermal-hydraulic analysis.  Because these applications would involve new data types and unique 

information management functionalities and tools, requirements from RISMC methods and toolkit would 

necessitate modification and adaptation of the NE-KAMS System.  Further, the development was also 

expected to provide advice and support in formulating requirements of RISMC-VDMS as a knowledge 

management system that is scalable and improvable, with growth potential through RISMC applications. 

 

In the blueprint for development and implementation of RISMC-VDMS, the RISMC-VDMS was 

designed to initially consist of a validation data file warehouse, relational digital databases and associated 

interfaces and utilities, to provide support for a range of activities, namely (a) collection, documentation, 

and preservation of validation data into one data repository; (b) analysis, qualification and characterization 

of data; (c) processing, formatting, and archiving data for rapid and coherent access and use in VUQ 

activities and advanced M&S development via the construction of relational databases.  Structural design 

of the system is presented in Figure 13.2. 

 
Figure 13.2. Structural design of the RISMC-VDMS of integrated data management, processing, and 

analysis workflow with NE-KAMS 
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Obviously, the desired development and implementation of RISMC-VDMS would require 

considerable effort in NE-KAMS structural and functional expansions.  Since NE-KAMS was developed 

under the sponsorship of DOE for the specific purpose of supporting nuclear data collection and knowledge 

management, with the preparation of NEKVAC intensely underway, it was reasonably assumed that its 

further development under NEKVAC would provide adequate resources to support the needed expansion 

that could be leveraged by the present project. 

 

13.3. Key Findings 

 

To support the present and other DOE projects, the NE-KAMS Demo was upgraded to NE-KAMS 

Version 1.0 consisting of the following compartments with evolutionary expansions whenever resources 

became available under a piecewise development strategy. 

• Operation Instructions 

• Reports 

• Experiment Unit Files 

• Material Property Files 

• Fluid Property Files 

• Test Data Files 

• Information Permit 

• Quality Assessment 

• Quality Assurance 

• External Resources 

• Presentations 

• References 

• Terminology Definitions 

Each compartment is composed of a specific database schema that matches the data structure of the 

specific information domain.  For example, Compartment Experiment Unit Files includes the following 

headings each containing a unique group of attributes: 

• General Information 

• Facility Information  

• Structure and Geometry  

• Surface Roughness  

• Invasive Instrument  

• Non-Invasive Instrument  

• Data Acquisition System  

• Test Control System  

• Related Records  

• Record Management Information  

• Further Information 

 

The access control system of NE-KAMS has been configured with two types of access privileges for 

the present project, i.e. READ users who can review and download data, and EDIT users who can review, 

download, upload, and edit data.  Some project team members that needed NE-KAMS have been identified 

and granted access.  NE-KAMS compartments that are applicable to the present project have also been 

configured with areas for “NCSU Released” and “NCSU Preparing,” respectively.  The “NCSU Released” 

areas are dedicated to data generated from this project that are qualified for public access.  All NE-KAMS 

users can access such data.  The “NCSU Preparing” areas are dedicated to data still under preparation.  Only 
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the project EDIT users can access such data before the data are ready for release and moved to the “NCSU 

Released” areas. 

 

Using the “NCSU Released” and “NCSU Preparing” structure in the Test Data Files Compartment, 

some test data file files were prepared, uploaded, and released.  As shown in Figure 13.3, expandable folders 

named “NCSU/Thermal Hydraulics Test Data Files/Released” and “NCSU/Thermal Hydraulics Test Data 

Files/Preparing,” respectively, are found in the compartment directory of the left pane.  The first test data 

record is displayed in the right pan with test parameters and downloadable test result data files, as shown 

in Figure 13.3 (a).  The records are hyperlinked at the bottom, as presented in Figure 13.3 (b), to their related 

records in other compartments so that users can browse conveniently through the information chain to 

understanding the data interrelationships and correctly interpret and use the data. 

 

 
(a) 

 

 
(b) 

Figure 13.3. Data released and preparing areas for the present IRP in the Test Data File Compartment 

 

Because a lot of important information of the project is summarized and reported in the periodic review 

meetings, a compartment for preservation of the meeting presentations was also developed for this project, 

as shown in Figure 13.4.  These presentations provide auxiliary information for monitoring the project 
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progress, and more importantly, for understanding of the rationales of the validation data generation to 

ensure correct interpretation and use of the data, particularly for posterity who most likely will not have the 

full background knowledge that the present project participants have. 

 

 
 

Figure 13.4. The Presentation Compartment and a record for the welcome and opening presentation for 

the Multiphysics Model Validation Workshop hosted by this IRP at NCSU in June 2017. 

 

As the first step to provide APIs customized for the intended simulation codes and VUQ analytical 

tools for data analytics, data mining, and data assimilation, a data exchange web service interface was 

developed and successfully tested, in which the web service interface enabled a project participant at NCSU 

to access NE-KAMS data at ORNL from his computer at NCSU, and retrieved the data to remotely upload 

the data into a server at NCSU. 

 

As previously discussed, the NE-KAMS structural and functional expansions required for 

development and implementation of RISMC-VDMS for the present project would largely rely on the NE-

KAMS development under NEKVAC for adequate resources.  With the initiation of NEKVAC intensely 

underway at the time, it was reasonably assumed that the required support would become available.  

Unfortunately, the situation did not pan out the desired way.  NEKVAC was put on hold and eventually 

dissolved, despite the strong needs and the serious lack of effective information and knowledge 

management for advance modeling and simulation. 

 

The dissolution of the NEKVAC had a significant negative impact on the present project.  The 

ongoing development of schema for experiment data and simulation data was forced into a halt, and the 

work on V&V database infrastructure was also slowed down.  Eventually it became clear that the desired 

structural and functional expansions of NE-KAMS could not be fully implemented during the period of this 

present project. 

 

To prevent information loss and prepare for future opportunities, documents generated from the 

present project such as R&D reports, dissertations, and technical publications were preserved in NE-

KAMS.  For test data of large volumes, index records were created in NE-KAMS with descriptions of the 

data, background information, data structures, and hyperlinks to the data depositories so that posterity can 

correctly understand the information generated from the present project and easily locate the data when 

needed. 
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13.4. Path Forward 

 

In order to ensure successful further development of the data-driven methodology, a major issue that 

must be addressed is the current lack of efficient knowledge management systems customized with a 

validation data structure.  One of the major characteristics that made NE-KAMS stand out from the crowd 

during the INL-led nationwide survey of existing database systems for developing such a system was its 

customizable management of data and data interrelationships based on the data structure of interest [Lee, 

et. al., 2012].  The importance of customizable management of data and data interrelationships can be 

illustrated using Figure 13.5, where each circle represents a model, which may comprise multiple sub-

models; and each line indicates a relation between the two models.  The sub-models and sub-

interrelationships multiply inside each circle.  Data from the models and sub-models reflect the complex 

structure.  Obviously, to fully develop the data-driven methodology, the complicated data interrelationships 

must be accurately maintained so that the information can be correctly interpreted, understood, and used 

with confidence. 

 

 
Figure 13.5 A schematic of multi-fluid dynamics modeling and simulation that demonstrates complexity 

of interrelationships among data generated. 

 

Another major issue that must be addressed for successful development in the data-driven 

methodology is the sparse of validation data.  This issue mainly has two folds: 1) the lack of qualified data, 

and 2) the lack of awareness about existing data.  As more projects are conducted, more and more data will 

be generated to gradually improve the lack of qualified data situation.  However, without a go-to focal point 

that registers and manages the characteristics and locations of all the generated data on a national or 

international scale, many datasets generated at high cost and stored in various places can quickly fade into 

oblivion. 

 

In preparation for NEKVAC, a detailed implementation plan was developed by ORNL to delineate 

path forward in modernizing knowledge management for advanced simulation and modeling [Ren, et. al., 

2015].  Today, the major principles and strategies discussed in the plan still provide valid guidance for path 

forward to support the data-driven methodology and other simulation and validation activities. 
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14. Project Data Management 
 

14.1. High-Fidelity Simulation to Support System Thermal-Hydraulics Model Validation 

 

Data Access 

 

The data repository from the single and two-phase simulations is archived on the twophase system at 

North Carolina State University’s (NCSU) Nuclear Engineering department. To access the repository a user 

account needs to be created on the system. Contact Nadish Saini (nsaini3@ncsu.edu) or Igor Bolotnov 

(igor_bolotnov@ncsu.edu) for access to the machine and appropriate data archive.  

To log into the machine from within the NCSU network, ssh using (replace ‘user’ with your username): 

 

ssh -Y user@twophase.ne.ncsu.edu 

 

If the user is outside the NCSU network, contact the above administrators for further instructions on getting 

access. 

 

Repository Location 

 

The single-phase instantaneous data for probe locations shown in Figure 11.61 are located at: 

 

/home/nsaini3/CASES/summer2019/singlephasethermal 

 

The above directory includes four Reynolds number cases ∈ 𝑅𝑒𝑏 = [5000, 20000]. The binary files for 

instantaneous data for any given case are in: 

  

/home/nsaini3/CASES/summer2019/singlephasethermal/Re11000/newvarts 

 

Data for the two-phase cases have a similar directory structure. They are located at: 

 

/home/nsaini3/CASES/summer2019/twoPhase 

 

Data Format 

 

The instantaneous data is written from PHASTA in big endian binary format. Each single-phase 

contains data collected from 84,908 probes, with 28 variables written for each probe. The variable 

arrangement for a probe is as follows: 

 

𝑝, 𝑢, 𝑣, 𝑤, Δ𝑡,
𝜕𝑢

𝜕𝑥
,
𝜕𝑣

𝜕𝑥
,
𝜕𝑤

𝜕𝑥
,
𝜕𝑢

𝜕𝑦
,
𝜕𝑣

𝜕𝑦
,
𝜕𝑤

𝜕𝑦
,
𝜕𝑢

𝜕𝑧
,
𝜕𝑣

𝜕𝑧
,
𝜕𝑤

𝜕𝑧
,
𝜕𝑇

𝜕𝑥
,
𝜕𝑇

𝜕𝑦
,
𝜕𝑇

𝜕𝑧
,
𝜕𝑝

𝜕𝑥
,
𝜕𝑝

𝜕𝑦
,
𝜕𝑝

𝜕𝑧
,
𝜕2𝑢

𝜕𝑥2
,
𝜕2𝑣

𝜕𝑦2
,
𝜕2𝑤

𝜕𝑧2
, 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 

 

Here 𝑥𝑝 , 𝑦𝑝, 𝑧𝑝 are the probe coordinates, 𝑝 and 𝑇 are pressure and temperature, respectively, while the 

other variables are self-explanatory. Each instantaneous data file contains data written for 100 simulation 

time steps.  

 

For the two-phase simulations, 9 variables were recorded arranged as, 

 

𝑝, 𝑢, 𝑣,𝑤, Δ𝑡, 𝑥𝑝 , 𝑦𝑝, 𝑧𝑝 , 𝜙 

 

where, 𝜙 is the local level-set field value at the probe location.  

mailto:nsaini3@ncsu.edu
mailto:igor_bolotnov@ncsu.edu
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Data Processing: Extracting Turbulent Statistics 

 

Python scripts for extracting turbulent statistics are located at the following Github repository: 

https://github.com/nandu90/dataDriven_IRP. 

 

Owing to the large amount of instantaneous data and required memory requirements, the data is 

processed for each probe plane, as shown in Figure 11.61, separately. The necessary input file for running 

the Python script is 𝑖𝑛𝑝𝑢𝑡𝑠. 𝑡𝑥𝑡. Details of the inputs are specified in the file. The most important inputs 

are described below: 

 

inistep 5500    #Initial time step of binary file 

laststep 9500   #Final time step of binary file 

nprobes 84908   #Total number of probes 

nsteps 100      #Total time-steps in each file 

nplot 0         #Index of plane for which data is #to be extracted (0-29) 

Rotate 0        #Rotates coordinate system to #tan-norm system with respect to #fuel rod walls 

 

In the above example, the total number of time steps considered for averaging is 4000 (laststep- 

inistep). nplot parameter specifies the index of the plane, starting from the inlet of primary domain, Figure 

11.60, for which the user chooses to extract the mean quantities. Rotate is a flag used to rotate the lateral 

coordinates to tan-norm system as described in Figure 11.61, necessary for comparing the statistical results 

with the existing DNS data, for instance the results shown in Figure 11.62. All output files are written in 

the output/pln_** directory. It contains CSV files for probe coordinates, mean velocities and Reynolds 

stresses. 

 

14.2. Experimental Data to Support System Thermal-Hydraulics Model Validation 

 

The processed data was properly stored for the future usage. Three ways of data storage were used: 

the virtual container in the DataFrame format supported by Pandas (for numerical values), which is a python 

package, cloud storage (for imagery information), and the one in compliance with the Nuclear Energy 

Knowledgebase for Advanced Modeling and Simulation (NE-KAMS). The list of large datasets is as 

follows: 

 

Table 14.1. List of large datasets. 

Dataset Description Type Size 

(Gb) 

Storage 

Location 

Y0OP1 y = 0 mm, operating condition 1 Images, Numeric 2.1  Pandas, Cloud 

Y0OP2 y = 0 mm, operating condition 2 Images, Numeric 2.5  Pandas, Cloud 

Y0OP3 y = 0 mm, operating condition 3 Images, Numeric 3.1  Pandas, Cloud 
Y0OP4 y = 0 mm, operating condition 4 Images, Numeric 2.9 Pandas, Cloud 

Y0OP5 y = 0 mm, operating condition 5 Images, Numeric 3.6 Pandas, Cloud 

Y-4OP1 y = -4 mm, operating condition 1 Images, Numeric 2.7 Pandas, Cloud 

Y-4OP2 y = -4 mm, operating condition 2 Images, Numeric 2.3 Pandas, Cloud 

Y-4OP3 y = -4 mm, operating condition 3 Images, Numeric 2.2 Pandas, Cloud 

Y-4OP4 y = -4 mm, operating condition 4 Images, Numeric 3.5 Pandas, Cloud 

Y-4OP5 y = -4 mm, operating condition 5 Images, Numeric 3.7 Pandas, Cloud 

Y4OP1 y = 4 mm, operating condition 1 Images, Numeric 1.7 Pandas, Cloud 
Y4OP2 y = 4 mm, operating condition 2 Images, Numeric 2.6 Pandas, Cloud 

Y4OP3 y = 4 mm, operating condition 3 Images, Numeric 3.4 Pandas, Cloud 

Y4OP4 y = 4 mm, operating condition 4 Images, Numeric 3.2 Pandas, Cloud 

https://github.com/nandu90/dataDriven_IRP
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Y4OP5 y = 4 mm, operating condition 5 Images, Numeric 2.7 Pandas, Cloud 

14.3. Multi-Level Simulation to Support External Flooding Model Validation 

 

14.3.1. Enhanced Spatial Resolution of Subdomain Meshes 

 

Hundreds of terabytes of data are generated in ADCIRC full domain and subdomain simulations. 

These datasets include maximum elevation data, elevation time series, velocity time series, and boundary 

condition data.  Considering the size of these datasets, they are archived and stored on servers at the United 

States Army Corps of Engineers, which have the capacity to store them.  

 

Each case study considered is organized as follows: 

 

Directory Name: StormName_Case StudyID/ 

 

Subdirectories:  

 

(1) RefinedFull_NoProject 

 

Input Files 

a. ADCIRC mesh,  

b. Meteorological data,  

c. Nodal attributes file, 

d. Full domain control file1   

 

Output Files 

e. Elevation time series 

f. Velocity time series 

g. Maximum Elevation data 

h. Boundary conditions for all specified subdomains 

 

(2) RefinedFull_WithProject1  

 

Input Files 

a. ADCIRC mesh,  

b. Meteorological data,  

c. Nodal attributes file, 

 

Output Files 

d. Elevation time series 

e. Velocity time series 

f. Maximum Elevation data 

 

(3) RefinedFull_WithProject2  

 

Input Files 

a. ADCIRC mesh,  

b. Meteorological data,  

c. Nodal attributes file, 

 

 
1   Recorded in this file are boundary node numbers of subdomains mapped to full domain node numbers 
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Output Files 

d. Elevation time series 

e. Velocity time series 

f. Maximum Elevation data 

 

(4) RefinedFull_WithProject3   

 

Input Files 

a. ADCIRC mesh,  

b. Meteorological data,  

c. Nodal attributes file, 

 

Output Files 

d. Elevation time series 

e. Velocity time series 

f. Maximum Elevation data 

 

(5) Subdomains_WithProject: 

 

Input Files 

a. Shape file (geometry using subdomain modeling scripts) 

b. ADCIRC sub mesh,  

c. Subdomain mapping files2  

d. Meteorological data,  

e. Nodal attributes file, 

f. Subdomain boundary conditions file 

Output Files 

g. Elevation time series 

h. Velocity time series 

i. Maximum Elevation data 

 

ADCIRC-Neutrino coupling. For this effort, the case studies considered are relatively simple and 

small. Thus, datasets are stored on desktop computers at USACE by Bukhari. 

 

Each case study considered is organized as follows: 

 

Directory Name: Case StudyID/    

 

Subdirectories:  

 

(1) Full domain includes the following files: 

 

Input Files 

a. ADCIRC mesh,  

b. Meteorological data,  

c. Nodal attributes file, 

d. Full domain control file   

Output Files 

e. Elevation time series 

f. Velocity time series 
 

2   Includes information of how subdomain nodes map to full domain nodes 
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g. Maximum Elevation data 

h. Boundary conditions for all specified subdomains 

 

(2) SubdomainAroundNeutrinoDomain: 

 

Input Files 

a. Shape file (geometry using subdomain modeling scripts) 

b. ADCIRC sub mesh,  

c. Subdomain mapping files  

d. Meteorological data,  

e. Nodal attributes file, 

f. Subdomain boundary conditions file 

Output Files 

g. Elevation time series 

h. Velocity time series 

i. Maximum Elevation data 

 

(3) ADCIRCSubDataToNeutrinoData: 

 

Input Files 

a. convertAdcirc2Neutrino.py 

b. stations.dat  

c. elevation time series 

d. velocity time series 

Output Files 

e. SWData.csv 

 

14.3.2. Verification and Validation 

 

Datasets, models, and tools are maintained online in publicly accessible repositories, as described below. 

 

Alloy Case Studies on Scientific Computing 

 

Hurricane storm surge, sparse matrix computations, and other verification studies are maintained here: 

 

https://people.engr.ncsu.edu/jwb/alloy/ 

 

Sterling Visualizer for Alloy 

 

Sterling is Alloy extended to include visualizations generated using the alloy-js library. A local 

webserver is created when Alloy is initialized, and instance data is served automatically as solutions 

are found. The alloy-js library and supporting web pages are included to generate visualizations in the 

browser automatically. 

 

The focus of this project is bringing better visualization techniques to Alloy, and so the name Sterling 

seemed particularly appropriate. After all, sterling silver is an alloy of silver that is generally used to 

make things that look nice. 

 

Sterling website: https://sterling-js.github.io/ 

 

Github repository: https://github.com/alloy-js/sterling 

https://people.engr.ncsu.edu/jwb/alloy/
https://sterling-js.github.io/
https://github.com/alloy-js/sterling
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Components and Directory Structure 

 

We make use of the following tools: 

 

• Gradle: Build tool responsible for gathering dependencies and generating the JAR file. 

• Shadow: Gradle plugin used to create a fat JAR. 

• Spark: Small webserver framework used to communicate with the browser. 

• Alloy: Currently using Alloy 5.0.0.1 

 

The project is laid out as follows (italicized items are not included in the repository but are generated 

by building the project): 

 

• build/ 

o libs/ 

▪ Sterling-*.jar - The Sterling JAR file 

• gradle/ - Gradle wrapper directory (more info) 

• libs/ - Directory containing regular Alloy JAR files 

• src/ 

o main/ 

▪ java/ 

− gui/ - The main Alloy GUI (alloy4whole) 

− server/ - The Spark server code for communicating with the browser 

− sterling/ - Entry point and various Sterling specific classes 

− viz/ - The Alloy visualization window (alloy4viz) 

▪ resources/ 

− public/ - Directory containing all web pages and Javascript to display 

visualizations 

• build.gradle - The gradle build file that contains dependencies and build instructions 

• gradlew - The gradle wrapper script (more info) 

• gradlew.bat - The gradle wrapper script for Windows (more info) 

• README.md - This file 

• settings.gradle - The gradle settings file 

 

14.4. SPH Simulation to Support External Flooding Model Validation 

 

• A simulation with a particle size of 0.01 m (181,387 fluid particles total) takes about 16.7 hours for 

30 cycles using an Intel Xeon central processing unit E5-2683 v3 @ 2.00 GHz with 28 core and 56 

logical processors. 

• Pressure data from the experiments was provided in 4 CSV format giving the time and pressure 

value for the four test cases. For validation 6 neutrino scene files were generated and used to reach 

optimal results. Results files from the simulations generated 6 pressure field result files.  

• For the significant parameter work modified one main neutrino scene file into 35 varying scene 

files.  The simulations resulted in 35 pressure field result files. 
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