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Abstract

The document is the Final Technical Progress Report for the Nuclear Energy University Program’s
Integrated Research Project (IRP) on “Development and Application of a Data-Driven Methodology for
Validation of Risk-Informed Safety Margin Characterization Models” that supports the LWR Sustainability
Program’s RISMC R&D Pathway. The project goal is to develop and demonstrate a data-driven
methodology for validation of advanced computer models used in nuclear power plant safety analysis.
Specifically, the advanced computer models are those in the toolkit developed to support risk-informed
safety margin characterization (RISMC), an integrated deterministic/probabilistic safety analysis
methodology developed in the Department of Energy’s Light Water Reactor Sustainability (LWR-S)
program.

The report reflects the progress made towards the project’s stated goal by contributions by researchers and
graduate students from universities, with support from researchers from national laboratories and industry
companies. The project organization, effort coordination and technical implementation are summarized,
followed by discussion of main findings, issues, and path forward. Selected chapters provide a more
detailed description of tasks, approaches and respective findings and recommendations. Noteworthy are
contributions that serve as guidelines for methodology development. It is also noted that this report is
complemented by other milestone reports (as stand-alone deliverables) that provide detailed discussion of
the technical developments. The project results have been documented in a number (12) dissertations and
these, 50+ peer-reviewed publications in technical journals and conference proceedings.
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1. Project Overview

1.1. Goal, Vision, and Approach

The goal of the integrated research project is to develop and demonstrate a data-driven methodology
for validation of advanced computer models for nuclear power plant safety analysis. Specifically, the
advanced computer models are those in the toolkit developed to support the risk-informed safety margin
characterization (RISMC), an integrated deterministic/probabilistic safety analysis methodology developed
in the Department of Energy’s Light Water Reactor Sustainability (LWR-S) program.

The project is carried out with vision that the new validation methodology for safety analysis codes
will build upon the U.S. Nuclear Regulatory Commission’s Code Scaling, Applicability and Uncertainty
(CSAU) methodology, and its subsequent regulatory guide NRC 1.203 on “Transient and Accident Analysis
Methods”, also known as Evaluation Model Development and Assessment Process (EMDAP). The
resulting methodology, called Risk-informed EMDAP or REMDAP, should meet requirements of the
RISMC methodology. The project team brings to bear advanced methods and tools in verification,
validation, sensitivity, and uncertainty analysis to facilitate the implementation of already demanding
EMDAP in a risk-informed application.

The project’s technical approach involves applying the developed validation methodology to guide the
validation of computer models for flooding hazard analysis and for system thermal-hydraulics analysis.
Respectively, the RISMC tools are (1) a Smoothed Particle Hydrodynamics code used in the LWR-S
program for flooding simulation, and (2) a system-level reactor core thermal-hydraulics simulation code.
In both cases, the RISMC models are applied to study a selected class of accident scenarios, for which
sources of errors and uncertainties and predictive capability gaps are identified. Methods and tools of
sensitivity, uncertainty and scaling analysis are applied to guide the development of a verification and
validation plan, including the validation data plan. The latter identifies and characterizes existing and
available data and databases and defines requirements for data to be obtained experimentally and
computationally. Validation experiments (e.g., fluid dynamics, and fluid-structure interactions, turbulent
mixing, and thermal stratification) and high-fidelity computer simulation (“numerical experiments”) are
formulated, designed, built, and operated to produce data for validation of the respective RISMC tools.
Lessons learned by means of the two applications will serve as useful feedback for refining the proposed
methodology and associated techniques.

One major challenge in validation is a lack of relevant data, including lack of confidence in the
applicability of models and their supporting data in prototypic reactor conditions. In addition to this, the
computational and methodological limitations of previous eras led to reliance on human judgment that can
now be reduced. It is not that we no longer need data: rather, nowadays, it is possible to improve the use
that we make of the data that we have (or can obtain).

In addition, in order to bridge the remaining gap in data, the project investigates and advances:
(a) a decision-theoretic framework for predictive capability maturity quantification;

(b) techniques for simulation-based scaling for evaluation of applicability of experiments and determination
of the validation domain;

(c) reduced order modeling techniques to enable uncertainty quantification;

(d) data-driven multi-scale integration that enables effective use of “big data” generated by advanced
experiments and validated computational simulations;

(e) validation data plan as a dynamic risk-informed instrument to guide design of experiments and
simulation, and
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(f) validation data management system that makes use of the Nuclear Energy Knowledgebase for Advanced
Modelling and Simulation (NE-KAMS) infrastructure.

The proposed project will bring to bear advanced methods and tools in verification, validation,
sensitivity, and uncertainty analysis to facilitate the implementation of already demanding EMDAP in a
risk-informed application (see Figure 1.1). in REMDAP, the risk-informed dimension manifests itself
through the requirements (Box 1.1 in Figure 1.1) and measured by PCMQ (Box 1.3 in Figure 1.1). The
proposed approach will combine the NRC’s CSAU methodology with the state-of-the-art uncertainty
characterization techniques to provide a mathematically defendable basis for calculating biases and their
uncertainties for the wide range of operating conditions that represent the intended range of model
application. Our proposed approach will allow for a reliable scaling of the biases between the experimental
and application conditions that precludes the need for model calibration. Quantitative metrics will be used
to judge the relevance and value of available experimental information within the application scenario.
Further, it will reduce reliance on the heuristics. The choice of models and model parameters will be based
on the Phenomena Identification and Ranking Table (PIRT) process, increasingly aided by
sensitivity/uncertainty analysis.

1.1: Reqs Element 1 - Establish Requirements for Evaluation Model Capability

E1.1. Specify analysis purpose, transient class and power plant class

E1.2. Specify figures of merit

E1.3. Identify systems, components, phases, geometries, fields and processes that should be modeled
E1.4 Identify and rank phenomena and processes

v ¥

W =
-

7D Element 2 — Develop Assessment Base Element 3 — Develop Evaluation Model
E2.1. Specify objectives for assessment base Perform = E3.1. Establish EM development plan
scaling analysis and identify similarity criteria E3.2 Establish EM structure
A:CFD E2.2. Identify existing data and/or perform IETs and SETs E3.3 Develop or incorporate closure
to complete data base models IS

E2.3. Evaluate effects of IET distortions and SET scaleup

1.8: VDMS capability 1.6: DDM
E2.4. Determine experimental uncertainties
¥
Element 4 — Assess Evaluation Model Adequacy Closure Relations (Bottom-up)
E4.1. Determine model pedigree and applicability to simulate physical processes
E4.2. Prepare input and perform calculations to assess model fidelity and/or accuracy
E4.3. Assess scalability of models
Integrated EM (Top-down)
E4.5. Determine capability of field equations and numeric solutions to represent process and phenomena
E4.6. Determine applicability of EM to simulate system components
. E4.7. Prepare input and perform calculations to assess system interactions and global capability
1.4:SBS E4.8. Assess scalability of integrated calculations and data for distortions
1.5: ROM E4.9. Determine EM biases and uncertainties
1.3: PCMQ Adequacy Decision: Does code meet adequacy standard? ¥
s NO - Return to appropriate elements, make and assess corrections
YES - Perform plant event analyses

Figure 1.1. Risk-informed Evaluation Model Development and Assessment Process. Orange boxes denote
developments in the project and indicate EMDAP elements where the advances are expected to impact.

Many limitations of a "validation™ process arise because the experimental data correspond only
partially to a scenario of interest. Consequently, a scenario-based approach for V&V-UQ proposed in this
project is intended to overcome these limitations. Another challenge in validation is a lack of relevant data,
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including lack of confidence in the applicability of models and their supporting data in prototypic reactor
conditions. In addition to this, the computational and methodological limitations of previous eras led to
reliance on human judgment that can now be reduced. It is not that we no longer need data: rather,
nowadays, it is possible to improve the use that we make of the data that we have (or can obtain). In
particular, a new physics-guided validation strategy based on first principles physics will rigorously map
and bound the simulation errors in the domain of intended model use. To our knowledge, this represents a
first-of-a-kind approach for the determination of the validation domain in the nuclear engineering
community that presents a significant shift from the current approach for expert-determined scale distortion
uncertainties. This is what we mean by “data-driven.”

The project pursues a simulation-aided uncertainty-guided data-driven approach to enable effective
implementation of the CSAU/EMDAP elements. The project investigates:

(a) Risk-informed approaches for collection and characterization of evidence,

(b) Decision-oriented framework for quantification of “validity” (or “maturity”), with a probabilistic
criterion for adequate level of validation.

(c) Techniques for physics-based simulation-aided scaling, uncertainty, and sensitivity analysis (to
compute and optimize the relevance and value of experiments),

(d) Methods for data-driven model development and assessment process that effectively utilizes data from
physical and numerical experiments.

The project team applies the developed validation methodology to guide the validation of computer
models for flooding risk-assessment and for system thermal-hydraulics analysis. Specifically, the RISMC
tools selected in the proposed project are a Smoothed Particle Hydrodynamics (SPH-NEUTRINO) code for
flooding simulation and the CTF code as surrogate for reactor system thermal-hydraulics simulation. In
both cases, the RISMC models will be applied to study a selected class of accident scenarios, for which
sources of errors and uncertainties and predictive capability gaps will be identified. Methods and tools of
sensitivity, uncertainty and scaling analysis will be applied to guide the development of a verification and
validation plan, including the validation data plan. The later identifies and characterizes existing and
available data and databases and defines requirements for data to be obtained experimentally and
computationally. Validation experiments (fluid dynamics, and fluid-structure interactions, turbulent
mixing, and thermal stratification) and high-fidelity computer simulation (“numerical experiments”) will
be formulated, designed, built, and operated to produce data for validation of the respective RISMC tools.
Through the two applications, lessons learnt will provide feedbacks to the methodology and associated
techniques.

1.2. Project Organization and Execution

The project has three inter-related sub-domains and respective Tasks: (i) Task 1: Validation
methodology development; (ii) Task 2: Flooding hazard simulation code application, and Task 3: System
thermal-hydraulics simulation code application. The three sub-teams were organized, with overlapping
participation, to ensure two-way information flow from methodology to applications, and between the two
applications.

e The methodology group is led by NCSU, Purdue, ORNL and INL.
e The flooding application group is led by GWU, CPI, NCSU, RTS and INL.
e The system thermal-hydraulics (STH) application is led by UM, ZNE, Purdue and NCSU.
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Table 1.1. The project’s principal investigators.

_ Areas of Expertise Special capability & contributions

Nam Dinh (NCSU) Reactor safety, thermal-hydraulics V&YV, data-driven; project integration

Abhinav Gupta (NCSU) Nuclear facilities, structures; hazards PRA-based; Bayesian validation framework;

Hany Abdel-Khalik (PU) Data assimilation; sensitivity/uncertainty Reduced order modeling, coverage mapping
Xiaodong Sun (OSU) Reactor system/core thermal-hydraulics Advanced T-H experimentation; validation experi.

Philippe Bardet (GWU) T-H experimentation; advanced diagnostics  Fluid-structure interaction; validation experiment

Igor Bolotnov (NCSU) Multiphase flow direct numerical DNS (CFD) —informed STH; data analysis
simulation

John Baugh (NCSU) Storm surge analysis; code assessment ADCIRC; code interfacing; flooding scenarios

Maria Avramova (NCSU)  Reactor system/core thermal-hydraulics COBRA-TF; RELAP; TRACE; CFD

Robert Youngblood (INL)  Risk, prevention & decision analysis; Value of information; acceptance

Steve Prescott (INL) Simulation-aided RISMC applications RISMC validation requirements

Cristian Rabiti (INL) Sensitivity/uncertainty analysis; RAVEN S/UA support for design of experiments

Weiju Ren (ORNL) Data management; relational database NE-KAMS; VUQ-oriented data management

Jeff Lane (Zachry) Reactor core/ plant thermal-hydraulics GOTHIC, STH, SCA code assessment

Robert Sewell (RTSA) Hazard analysis, External Event PRA Industry requirements on code validation

Ram Sampath (CPL) Flooding simulation; SPH modeling NEUTRINO code improvement/support

Anh Bui (NCSU) Turbulent and multi-phase CFD, SPH, V&V; CFD-informed SPH; model calibration

The coordination started from the kick-off meeting and reinforced and adjusted by the half-yearly and
annual meetings. The exchanges were initiated and maintained via electronic communication, and
teleconferences.

Capability and human resources development: The project team places a high significance on attracting
young talented students and researchers for the project, and their training. The project recruited and
involved two post-doctoral research scholars and thirteen graduate students.

Coordination and integration:  The project coordination is conducted through project meetings, group
meeting, and topical meetings. Three groups are organized along the Task areas, each has a coordinator.
The project’s principal investigator provides overall coordination that facilitates integration.

Milestones and deliverables:

The project is implemented through a series of milestones. The list of milestones (M2 and M3 reports)
and delivery schedule were submitted and accepted by the NEUP program (Table 1.2).

Table 1.2. Major and minor milestones (left column includes milestone ID number, level, and schedule).

N151 (M2) Final Report for (Project 16-10918) Development and Application of a Data-Driven
12/2019 Methodology for Validation of Risk-Informed Safety Margin Characterization Models

N152 | (M2) Year 1 Status Report for (Project 16-10918) Development and Application of a Data-
12/2017 | Driven Methodology for Validation of RISMC Models

glégis (M2) Formulation of a data-driven methodology for validation of RISMC models

N154 (M2) Methods and tools to support the data-driven methodology for validation of RISMC
3/2019 | models
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N155

(M2) Application of the data-driven methodology to validation of a system thermal-

6/2019 | hydraulics-based simulation model

N156 (M2) Application of the data-driven methodology to validation of a computational fluid
9/2019 | dynamics-based simulation model

glégb (M3) Assessment of predictive capability maturity

N158 (M3) Risk-informed approach to validation

12/2017

N159 (M3) Reduced order model development and application

3/2018

N1510 . . . .

6/2018 (M3) Approaches to implementation and evaluation of coupling of codes

N1511 (M3) System thermal-hydraulic model validation experiment

12/2018

ll\lzllgéiS (M3) Computational fluid dynamics code validation experiment

N1513 | (M3) Using high-fidelity CFD simulation to support calibration and validation of system
3/2019 | thermal-hydraulics model

N1514 | (M3) Using high-fidelity CFD simulation to support calibration and validation of coarse-grain
6/2019 | CFD model

Table 1.3. The project’s milestones relationships. Each M2-level (major) milestone is supported by two
M3-level (minor) milestones.

N151: Final Report

Methodology Development Applications
STH/CTF Flooding/SPH
M2 N153 RFW N154 M&T N156 CFD
M3 N157 N158 N159 N1510 N1512 N1514
PCMQ PRAV ROMT | CCVV CFDE H2LC

N152 Y1R

1.3. Project Technical Implementation

The project technical implementation is task-based, milestone-oriented, following the approach
outlined in the original proposal. Project tasks and information flow are illustrated in Figure 1.2 and Figure
1.3. Relationship between the project tasks and milestones are presented in Table 1.4.
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Task 1: Validation Methodology Development

1.1: RISMC Requirement

¥

1.2: Validation Methodology

v

1.3: PCMQ

1.4: SBS

1.5: ROM

1.6: DDM

1.7: VDP

Validation Supporting Tools

Task 2: Flooding Application

\ 4

2.1: Storm Surge Flood

h

2.2:VDP

|
1
=
1.8: VDMS| |
i
1
1
1

Task 3: System Thermal-Hydraulics

3.1: Post-dryout

r

I i
i i
i i
2.4:CFD| |2.5: Exp ] ! 3.4: CFD| [3.5: Exp
A A : : 7'y y
e, _ ...
Figure 1.2. Project tasks and information flow.
/ RISMC
Reguirementson /a0 RI?M(?
data content adels Application
\ Tasks 2.2 &3.2 .
Tasks 2.1&3.1
[~ I _
DS1 N //,/..- . \ /
J— NE-KAMS /Calibration | /A/d ‘“‘w\
b2 > Database ' Validation | /\ (?“L‘:SCV >
— System \UQ i <
. - ——1 Tasks [ | 1
e R ~ § 123&33 Task 1.2 |
DS3 T Tasks ‘ (e =l ——
N 24834 |
| Tasks | |
2.5&3.5 ‘ Requirements | vua
on VDMS I:." MethOdS & | )
Tools | | Task13

3.2: VDP

]

Figure 1.3. Information flow in application tracts.
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Table 1.4. Relationship between the project tasks and milestones.

Miles-
tone
NO

Task

1.1

1.2

1.3

1.4

15

1.6

1.7

1.8

2.1

2.2

2.3

2.4

2.5

3.1

3.2

3.3

3.4

35

157

158

153

159

1510

154

1512

*

1514

*

156

#

*

X

X

152

%

%

%

%

%

%

%

%

%

%

%

151

Final Report (integration)

X — direct support; # — synthesized; * — input; % - progress report.

Task Area 1 — Validation Methodology Development for RISMC Models: Development of

methodology, including framework and enabling methods for validation of RISMC models.

Task 1.1: Define RISMC requirements for model applications, RISMC models (codes), and their
validation.

Task 1.2: Develop validation methodology of RISMC models.

Task 1.3: Predictive capability maturity quantification (PCMQ): evidence-based framework for
quantifying maturity of predictive capability.

Task 1.4: Simulation-based scaling (SBS): an information-theoretic based method to quantify similarity
and applicability of experiment to reactor prototypic process

Task 1.5: Reduced order modeling (ROM): to achieve computational efficiency much needed in
RISMC applications.

Task 1.6: Data-driven multi-scale modeling (DDM): to make use of data for model improvement.

Task 1.7: Validation data plan (VDP): to identify data needs and planning experimental activities to
meet data requirements.

Task 1.8. Validation data management system (VDMS) using NE-KAMS to support validation
activities.

Task Area 2 — Flooding Hazard Simulation Code Application: Apply the methodology to flooding

simulation model for a storm surge scenario.

Task 2.1: Perform RISMC analysis of storm surge flood scenarios to guide VDP

Task 2.2: Define data plan for SPH-NEUTRINO model validation (VDP).

Task 2.3: Develop flooding hazard analysis database (\VDB).

Task 2.4: Generate numerical simulation data used for validation of NEUTRINO model (CFD).
Task 2.5: Design experiments used for validation of NEUTRINO model (Exp).

Task Area 3 — System Thermal-hydraulics Application: Apply the methodology to system-level

core thermal-hydraulics model and CTF.
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Task 3.1: Perform RISMC analysis to guide VDP for CTF in post-dryout regime

Task 3.2: Define CTF Validation data plan (VDP)

Task 3.3: Develop CTF validation data base (VDB)

Task 3.4: Generate numerical simulation data used for validation of CTF model (CFD)
Task 3.5: Design experiments used for validation of CTF model (Exp)

Note #1: Tasks 2.1 and 3.1 are focused on analysis that serves to guide development of the respective
VDP (Validation Data Plan). As such, the analysis is intended to be limited in scope (as opposed to a full-
scope RISMC treatment). Considering the available resources and timeline of the required input, the
problem statement for Tasks 2.1 and 3.1 will allow for scenario assumptions and system simplification
appropriate for methodology demonstration.

Note #2: The IRP focus is on methodology development for validation of advanced CFD-type code
(SPH) and system thermal-hydraulics (STH). Initially, the choice for STH was RELAP-7, a next generation
system thermal-hydraulics code under development in the LWR Sustainability program. As the project
started, the team learned about the delay of RELAP-7 code release. At the Kick-off meeting, the team
evaluated options, and decided to focus the validation demonstration on core thermal hydraulics using CTF
as surrogate for RELAP-7. The focus on the core thermal hydraulics is motivated by its high priority in
safety analysis. CTF (aka COBRA-TF) is a sub-channel analysis code for core thermal-hydraulics based on
multi-field two-fluid model, similar to the one in STH, but allowing for higher (sub-channel) resolution.
We expect CTF-like capability be in advanced STH. In fact, CTF is currently used as the T-H component
in CASL-VERA. The choice for CTF is also critical because the IRP team has access to the source codes
and validation experiments for CTF, both are essential for the implementation and demonstration of the
developed IRP methodology. The decision was communicated to the IRP TPOC and RISMC Technical
Lead. The team put in place the backup option (with CTF) to cope with the delay of RELAP-7 release.

1.4. Project Technical Findings

The project technical findings are discussed on task basis and given in detail in the corresponding
sections of this report. The main findings and issues are highlighted as follows:

(1) Risk-informed validation approach (RFW/PRAV): The project study proposed a formal validation
approach that provides a basis to quantify credibility of risk assessments that are based on advanced
simulation codes. The efficiency of the risk informed validation approach lies in the identification of critical
structures, systems, and components (SSCs) that contribute to the system-level risk using Bayesian
statistics. The validation methodology employs a data-driven approach to quantify the quality of data that
is used to evaluate experimental fragilities for flooding failures. As the fragility assessment of a flooding
scenario suffers from large epistemic uncertainties, the credibility of system-level validation is expressed
using probabilistic distribution and maturity levels. To ensure that the system-level validation is complete
and consistent, an additional validation index called consistency index is introduced. The risk informed
validation approach is integrated with USNRC’s Evaluation Model Development and Assessment Process
(EMDAP) framework for a complete and wider applicability of the framework.

In the project’s milestone report M3NU-16-NC-NCSU-030401-158, Bodda and Gupta (2018) explored
a novel approach to quantitatively assess the validation of a system-level simulation based on the available
information from component level validation. The proposed approach uses performance-based probabilistic
risk assessment (PRA) as the basis for validation as well as for allocating resources towards improving the
validation either by collecting additional data or by enhancing the accuracy of simulation tools. The
approach builds upon characterizing the validation in terms of an overlapping coefficient which is described
as the joint area under the experimentally obtained and simulation based probability density functions of
basic parameters or events. The approach utilizes the power of Bayesian statistics by mapping fault trees
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and event trees into a Bayesian network which allows consideration of non-Boolean relationships between
events as well as allows consideration of correlated events in the network. Starting with the experimental
and simulation based probability density functions of basic parameters or basic events, a Bayesian network
is used to propagate the risk for the system. The experimental data is graded by RSU: Relevance (€g),
Scaling (€5) and Uncertainty (€;). The experimental data is identified based on integral effect tests (IET)
and relevant separate effect tests (SET). If experimental data is not available for any event, then the
experimental fragility curve can be taken as the best estimate simulation fragility curve. The fragilities and
the risk associated with each intermediate event and the top event is calculated separately for both the
experimental and simulated data. This set of curves are then used for evaluating the overlapping coefficient
of each event. The PRA based approach helps in identification of critical path thereby reducing the
computational effort by focusing on only those events that lie on the critical path. Reliance on the events of
critical path can also be used to determine the allocation of resources among different events for improving
the validation at component or intermediate levels. When a validation between the experimental and
simulation data is available for the basic parameters and not for the basic events directly in the network, a
hidden layer is added below the basic events to relate the fundamental parameters to the basic events. The
relationship between the hidden layer nodes and the basic event nodes can be defined by either a
mechanistic model or a simulation-based generation of response surface. Availability of new validation
data, either through new experimental information or enhanced simulation tools, can be incorporated in a
relatively straightforward manner by employing Bayesian updating to calculate posterior fragilities and the
corresponding overlapping coefficients.

For details, see Chapter 2 and cited therein references.

(2) Data-Driven Validation Methodology for RISMC M&S (RFW): Risk-Informed Safety Margin
Characterization (RISMC) is a modern methodology for Nuclear Power Plant safety analysis that combines
a dynamic probabilistic risk assessment (PRA) and “best estimate plus uncertainty” realization of the
RISMC mechanistic models. Controlled by probabilistic tools with initial and boundary conditions,
multiple simulations are performed with mechanistic tools to identify the safety margin and vulnerability
of the reactor. Since the result of RISMC is used to inform and support the decision regarding design,
operation, and safety of nuclear power plant, a mathematically defendable and robust approach is needed
for the validation of the simulation tools, such that a confident and effective decision can be made regarding
the high-consequence nuclear safety. Due to the lack of prototypical data and deficiencies of the simulation
model, a framework is needed to guide the validation of RISMC Modeling & Simulation (M&S) tools in
three major aspects: generating & gathering direct all related evidence, integrating evidence into a claim
regarding the model credibility/uncertainty, and making confident and robust decision for the model
credibility/uncertainty. Also, since RISMC requires a large number of simulations for every external event,
it’s sometimes inefficient to pursue high-order-accuracy M&S tools, where the facilities’ margins are
enormous compared to code uncertainty. As a result, the sufficiency of simulation accuracy depends on the
characteristics of the scenario and validation that adapts such a concept is known as the risk-informed
validation. The objective is to advise the safety management group on how to make a best and effective
assessment for the model uncertainty, given the research goal and the scenario information. Although many
validation frameworks have been developed, none of them explicitly adapts the risk-informed concept.
Moreover, many elements are performed as black boxes due to the inherent limitations and challenges.
When the system becomes large and complex, the uncertainties induced by these limitations could grow up
and accumulate. Without proper investigations, such issues can be easily overlooked and the user may
experience a loss of confidence on the validation decision. As a result, a risk-informed validation framework
is needed for assessing the credibility/uncertainty of RISMC M&S tools. At the same time, new
methodologies/technologies are needed to resolve the major issues and challenges of traditional validation
methodologies.

In the project of “Development and Application of a Data-Driven Methodology for Validation of Risk-
Informed Safety Margin Characterization Models”, a validation framework, named Risk-informed
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Evaluation Model Development and Assessment Process (REMDAP), is proposed for the validation of
RISMC M&S tools. REMDAP is designed based on the framework of Evaluation Model Development and
Assessment Process (EMDAP) and the methodology of Code Scaling Applicability, and Uncertainty
(CSAU). By incorporating data-driven and risk-inform concept, REMDAP aims to present a significant
shift from the current approach for expert-determined validation to the data-driven approach. In this study,
a concept of sufficient accuracy is developed and adapted in the REMDAP framework to account for the
unfrozen model forms, parameters and computational resources in the RISMC analysis. A tentative
workflow is prepared based on the currently developing methodologies/technologies. Next, the progress of
developing key methodologies in the REMDAP framework, including the data-driven closure development,
data-driven uncertainty quantification, and Predictive Capability Maturity Quantification & Bayesian
Network (PCMQBN) are demonstrated. Presently, this study demonstrates some initial developments of
classifying methodologies based on assumptions and conditions, the objective is to identify the feature and
create an initial proof-of-concept for applying Data Driven Modeling (DDM) in the model development
and validation process. The application of REMDAP to sophisticated RISMC tools, including Cobra-TF
and NEUTRINO-SPH, is still under development.

First, a data-driven closure development methodology is under initial development and the available
data-driven methods are classified into two types. The parametric model is built upon the fixed model form
that relies on human knowledge, while the nonparametric model solely depends the data. Illustrative
examples are prepared for both types of model development methods and observations are analyzed.
Second, a data-driven uncertainty quantification (UQ) methodology is developed and the present methods
are classified into two types: global data-driven UQ and local data-driven UQ. The global approach targets
at system code like Cobra-TF by assuming that the model has been well-verified and closures are the major
source of uncertainties. The local approach uses Physics-Informed Machine Learning (PIML) to construct
a surrogate between the simulation error and the input physical features. It’s designed for the coarse-grid
CFD like NEUTRINO-SPH, where error of each computing element is characterized with PIML.
Illustrative examples are prepared for both types of data-driven UQ methods and observations are analyzed.

Another major challenge of RISMC M&S tools validation is the decision-making process under
uncertainty. Traditional validation relies heavily on expert judgments and the process is obscure and
heuristic. In this study, a decision-theoretic methodology PCMQBN is under development. The objective
is to construct a transparent, consistent and improvable validation process with mathematical languages and
effectively make decisions on model credibility with adequate confidence based on a set of uncertain beliefs
and a set of utilities. Guidance is constructed for the uncertainty grade of the R/S/U
(Relevance/Scaling/Uncertainty) grading system. lllustrative examples are prepared to demonstrate the
guidance and major findings. In addition, a framework of Bayesian sensitivity study is proposed for
PCMQBN and the objective is to improve the robustness of the PCMQBN’s result.

For details, see Chapter 3 and cited therein references.

(3) Predictive Capability Maturity Quantification (with Bayesian Network) (PCMQ-BN): In this
project study, a framework of PCMQBN is developed to formalize and quantify the validation decision-
making process with mathematical languages. The objective is to support the decision-making process for
simulation adequacy in a transparent, consistent, and improvable manner. PCMQBN first formalizes the
mathematical representation of simulation adequacy as a triplet of scenario, predictive capability level, and
belief. Next, argumentation theory is employed to formalize the decision-making process in validation as
an argument for simulation adequacy that is based on evidence from the validation frameworks and
activities. In this process, all related evidence is characterized such that its representation is consistent with
the definition of simulation adequacy. Next, all evidence is quantified where the predictive capability is
represented by maturity levels and the belief is quantified by probabilities. Next, Bayes’ theorem is used to
integrate the quantified evidence, and the Bayesian network is used to represent this integration by directed
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acyclic graphs. To ensure the consistency of network connections and causal dependence on well-known
physics, rules, and knowledge, a synthetic model is also suggested for evaluating the conditional probability
among all nodes in the network by calculating the Reactor Prototypicality Parameter. A sensitivity analysis
is performed to evaluate the impact of conditional probability and decision parameters. It is found that the
conditional dependency between simulation adequacy and validation result has higher impacts on those
between [R]elevancy/[S]caling/[U]ncertainty grade and data applicability. It is also found that relative
weights of evidence from different databases have large impacts on the final data adequacy. Therefore,
during a validation decision-making process, the correlations and dependencies among different databases
and attributes need to be evaluated more carefully than accuracy assessments and scaling analysis for
separate models and databases. Based on the sources and levels of uncertainty, three phases of development
are defined for documenting and grading the quality of the assessment process and simulation adequacy
results.

To demonstrate the capability of PCMQBN, a case study is performed to assess the adequacy of SPH
methods in simulating the scenario of “floods damage the building structures, enter the room, and cause
diesel generator (DG) malfunctioning”. The validation framework CSAU and its regulatory guide EMDAP
is used for collecting evidence and qualitative adequacy assessment. Since opposite conclusions are
obtained from two numerical benchmarks, the PCMQBN framework is used to further refine the adequacy
assessment with quantitative results. For separate benchmarks, it is found that the belief level on the
adequacy claim for the SPH method is consistent with the qualitative results from CSAU/EMDAP.
Meanwhile, it is found that the belief level for an adequate SPH simulation is 83% when evidence from
both benchmarks are used. Comparing to the qualitative result, there is higher confidence that the SPH
simulation is adequate for the designated purposes based on available evidence. Also, the uncertainty of
simulation adequacy is less than that from the qualitative assessment since the contradictory results suggest
a non-informative adequacy distribution. To further demonstrate how PCMQBN results can be used in risk-
informed validation, a risk-informed safety analysis is performed to evaluate potential damages to SSCs of
NPPs by water waves. SPH simulations are performed to determine the structural loads by a wave for 60
cycles. Based on a synthetic ensemble model, distributions of SPH predictions and corresponding
consequences are made based on the simulation adequacy results. It turns out that the expected loss
determined based on the PCMQBN results is 30% less than that loss from the qualitative assessment. As a
result, the formalized PCMQBN framework is able to reduce the uncertainty in simulation adequacy
assessment and the expected losses in the risk-informed analysis due to that uncertainty.

For details, see Chapter 4 and the project’s milestone report M3NU-16-NC-NCSU-030401-157.

(4) Reduced Order Modeling (ROM) & Physics Coverage Mapping (PCM) (M&T): This project
segment has focused on further development of reduced order modeling techniques and physics-guided
coverage mapping methodology to support the validation of computerized physics models employed in
support of engineering calculations. Two challenges are targeted by these developments. First, how to take
advantage of high-fidelity software tools in a manner that is computationally feasible. High fidelity tools
are sought because they are believed to enable better predictions of complex physics phenomena.
Engineering analyses however require numerous executions of such tools to achieve engineering objectives
such as design optimization, propagation of uncertainties, integration of measurements from separate
effects of integral effects experiments, etc. The cost of running this analysis is prohibitively large, forcing
analysts to revert back to lower-fidelity models. To address this challenge, reduced order modeling
techniques with error preserving bounds are sought in this project. The project has started with recent
advances in reduced order modeling techniques that rely on the use of randomization to seek optimum
reduction conditions for a given model. The project has further developed a number of algorithms to enable
reduction across multiple physics models and has integrated the use of neural networks with previously
developed randomized reduction algorithms. The outcome is an advanced set of reduction algorithms
suitable for reducing complexity of multi-physics models for both transient and steady state calculations,
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with mathematically rigorous upper-bounds on the maximum errors resulting from the reduction. For the
second challenge tackled by this project segment, the goal is to answer a recurring question in validation
exercises, that is, why and how could analyst rely on experimental data, often collected in idealized
conditions, to validate modeling results for other conditions, for which no experimental data exist,
representing the envisaged domain of model application. To address this challenge, investments in a hew
methodology, called physics-guided coverage mapping has been made. The idea is to rely on high fidelity
modeling tools to identify in a non-parametric fashion the relationship between experimental and
application conditions. The non-parametric description implies that no assumptions are made about the
functional form relating application responses to experimental responses. Instead, information theory
principles are employed directly to find the best joint PDF relating the experimental responses and the
application responses. Going beyond this initial rendition of physics-guided coverage mapping
methodology, the project has invested into further developing this methodology to account for modeling
errors and constraints that might be present, which if not respected, would lead to incorrect mapping results.
Examples include constraints on the input model parameters that must be respected when the parameters
are perturbed. Also, in many situations, model parameters are pre-calculated by other computer codes, and
the model is validated along with these parameters. In principle, any perturbations to these parameters
would result in additional modeling errors that are yet to be validated. Hence, algorithms have been
developed to ensure no additional errors are introduced due to parameters perturbations. This is achieved
via a constrained sensitivity analysis exercise to ensure zero sensitivities of the modeling errors to parameter
perturbations.

In the study Zhou and Abdel-Khalik (2017) further develop a data-driven methodology called physics-
guided coverage mapping (PCM) to support model validation with the primary objective of formulating
mathematically defendable procedures for mapping biases from the experimental domain to the application
domain where measurements are scarce. PCM-based bias mapping is demonstrated using an application of
BWR full-size fine-mesh bundle test (BFBT) experiments axial void distributions. The transfer of biases is
done directly using kernel density estimation techniques and a joint probability distribution constructed by
a pseudo response obtained non-parametrically using alternating conditional expectation (ACE) algorithm,
which maximizes the mutual information between the pseudo response and the application response.
Central to these developments is the ability to measure the importance of individual experiments which can
be done quantitatively using the proposed algorithm. Thus, this work has further developed the PCM
methodology as a calibration-free methodology to estimate application responses using the available body
of experimental data. PCM requires for its optimal performance high fidelity physics models for both the
application and experimental conditions. It also requires performing multiple uncertainty analyses which
are later harvested for correlations that directly relate the application to the experimental response. By doing
S0, one needs not to identify the individual sources of uncertainties which precludes the need to solve an
ill-posed problem. The study was performed using TRACE code. Current effort is to apply the method to
CTF and post-dryout experiments.

For details, see Chapter 5 ad peer-reviewed references listed therein.

(5) Multiscale Simulation by Code Coupling for Flooding Scenarios (CCVV): Events such as the
flooding around the Fort Calhoun (2011), Vermont Yankee (2013), and St. Lucie (2014) nuclear power
plants have highlighted the need for accurate simulations to determine the risk of flooding at these and other
facilities around the country. However, plant response to flooding due to hurricane storm surge involves
multiple spatiotemporal scales. While ocean circulation models can simulate large-scale storm surge events,
assessment of the resilience of critical infrastructure to storm-induced flooding require much smaller scales
that are more appropriate for fluid solvers, which can resolve finer scale processes. Therefore, bridging the
gap between these simulation approaches is essential, and calls for the conception, development, and
evaluation of a multi-scale methodology that can accommodate the substantial differences in scales.
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We describe a modeling framework that incorporates the larger scale finite element (FE) model,
ADCIRC, along with the smaller scale smoothed particle hydrodynamics (SPH) code, Neutrino, to provide
finer level resolution for complex geometries. ADCIRC is an ocean circulation model that solves the
shallow water equations over a mesh of nodes and triangular elements. The use of unstructured grids with
varying element sizes means that a mesh can be gradually refined in areas that require greater levels of
topographic detail. While these refinements can reach the meter scale, shallow water equations are not
suitable for simulating the hydrodynamic processes that occur beneath that scale and that must account for
the complex geometries of, for example, a nuclear power plant. Such simulations require smaller-scale
models like the mesh-free fluid solver, Neutrino.

Our approach draws on a methodology called subdomain modeling, which allows local changes in a
finite element model to be accommodated with less computational effort than would be required by re-
running the entire simulation. Provided a subdomain is large enough to contain the altered hydrodynamics,
changes can be made—such as refinements in spatial resolution and the addition of flood protection
measures—and simulations performed on a subdomain without the need to calculate new boundary values.
Obijectives of the project include enhanced spatial resolution of subdomain meshes to get finite element
simulations closer to facility-scale features and topography; data libraries and reuse to curtail the need for
large, ocean-scale simulations, allowing modelers to instead start from the subdomain scale; ADCIRC-
Neutrino coupling to facilitate subdomain-to-facility scale interactions; and verification and validation to
ensure the correctness of computer implementations.

Results are based on datasets obtained from and through collaboration with the United States Army
Corps of Engineers (USACE), and include (1) refinement and evaluation of subdomain modeling for its
computational benefit and solution quality in actual, real-world applications that consider a range of
USACE engineering design scenarios, (2) development of a post-processing approach that facilitates the
use of spatially and temporally coarse datasets from USACE as boundary conditions for subdomain
modeling, allowing us to adopt a library of states (LOS) perspective so that simulation results from a variety
of historical and synthetic storms are available for reuse—this allows us to recover boundary conditions of
a quality comparable to datasets with a much finer temporal resolution, (3) a prototype coupling approach
using subdomain modeling to combine the larger scale finite element model, ADCIRC, with the smaller
scale smoothed particle hydrodynamics code, Neutrino, to provide finer level resolution for complex
geometries.

For details, see Chapter 6 and the project’s milestone report M3NU-16-NC-NCSU-030401-1510.

(6) Validation acceptance criteria (REW): In an early report, Youngblood (2017) provided an analysis
of approaches of acceptance criteria for validation process, from “traditionalist” and ‘revisionist”
perspectives. Further, he highlighted scaling-induced uncertainty. If we lack data at full scale, and are not
completely certain of the applicability of data obtained at reduced scale, then we have a residual epistemic
uncertainty about our model, and we do not know how to deal with it except by making essential use of
expert analysis and expert judgment. It may prove to be possible to address this issue at least partially in
the likelihood model that we use in Bayesian analysis, but a convincing explication of this remains to be
developed. Given relevant data obtained at multiple scales, there might be a way to “learn” (machine-learn)
how to correct for scale differences. This would not qualify as classical “validation,” but it may turn out to
be useful: it would help in formulating a project-specific approach to scaling.

For details, see Appendix A in the project’s milestone report M2NU-16-NC-NCSU-030401-152.

(7) Industry perspectives on risk-informed methodology: In an early study by the project’s industry
partner, Sewell (2018) analyzed external events PRA in the nuclear industry, bringing out four principal
insights. Firstly, model validation approaches should address the entire uncertainty distribution, and thus
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be keyed to development of (at least) the best estimate (eliminating model bias) and the aleatory variation
(i.e., model error, or 6). The scope of models considered should also enable evaluation of the epistemic
variation (i.e., differences existing among models that reflect data uncertainties and the competing
hypotheses/theories of an informed technical community (ITC), plus code-to-code variations in results of
models solving similar hypothesis/theory). Secondly, model validation should consider the broad scope of
customer requirements. For PRA in the nuclear industry, customer requirements may pertain to safety
analysis and regulatory requirements, as well as a licensee’s own financial analyses toward effective
operational management of their nuclear facility. Thirdly, owing to its past and existing role, and its
demonstrated efficacy, the SSHAC approach logically serves as a de facto template for requirements and
procedures for validating models and their use in the nuclear industry, particularly for PHA and PRA.
Finally, as PHA and PRA are naturally compatible with decision science, validation approaches can be
resolved, or tailored, to the needs of the specific decision.

(8) SPH/CFD model validation experiment (CFDE): The primary purpose of this task is to
demonstrate an application of the data-driven validation methodology on a flooding simulation model. A
large-scale oscillating tank experiment was designed, constructed, instrumented and conducted and then
used to validate the SPH code Neutrino, as well as determine parameters that affect the simulation results.
The 90% and 50% end-wall pressure bounds were compared, as was the pressure impulse. The simulation
bounds fell mostly within the experimental bounds, with exceptions at the beginning of the cycle (~40%
difference), at peak pressure (~75% difference), and at the end of the cycle (~40% difference). The
simulation pressure impulse matched the experiments well and was within 10%. Additionally, seven
parameters were identified and investigated to determine their significance. All seven parameters were
identified as significant. However, the particle size, interaction-radius to particle-size ratio, and fluid
settling seem to have a greater effect due to larger fluctuation in their results.

The next step is to quantify the significance of each parameter. Once this is done, those parameters
that have the greatest effect on the simulation results can be optimized. The optimization goal would be to
increase the accuracy of the simulation results while still accounting for the computational runtime of the
simulation. This optimization will also depend on the scenario and a valid parameter range vs. result criteria
needs to be established.

Further, insights gained from the experimental validation exercise led to suggestions on refinements
of the initial framework. For details, see Chapter 7 in this report.

(9) Adequacy of SPH model for flooding analysis: In this study, a scoping-stage assessment is
performed for SPH’s adequacy in simulating the real-scale external flooding scenarios, especially in
predicting the surface-wave impacts on SSCs at NPP sites. To ensure the completeness and consistency,
validation frameworks, Code Scalability Applicability and Uncertainty (CSAU), and its regulatory guide,
Evaluation Model Development and Assessment Process (EMDAP) are followed to guide validation
activities and to make final code adequacy assessment. First, an external-flooding scenario is designed, and
SPH simulations are performed with an SPH-based software named Neutrino. A Phenomenon Identification
and Ranking Table (PIRT) is created, and the surface-wave impacts are identified as one of the high-rank
phenomena. At the same time, a performance measurement standard is created for measuring the code
adequacy in informing safety decisions consistently and transparently. At the scoping stage, these criteria
are selected based on authors’ knowledge and reviewed by researchers in related fields. Next, numerical
benchmarks are designed for assessing the code adequacy of SPH methods and corresponding software
implementations on Neutrino. Next, code accuracy is evaluated by comparing simulation results from
Neutrino against experimental measurements in each benchmark. Meanwhile, a scaling analysis is
performed to determine a group of dimensionless number for characterizing important physics and to assess
the applicability of validation database collected in reduced-scale facility to the prototypic scenario. Finally,
results from all activities are brought together to make an adequacy decision. It is found that, based on the
current evidence, SPH methods and associated Neutrino software can predict the unbroken surface-wave
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peak pressure onto stationary rigid with reasonable accuracy if the suggested sizes of particles are used.
However, the available evidence is not sufficient to support the decisions of SPH’s adequacy in predicting
impact force on dynamic rigid structures.

The validation exercises of the SPH simulation highlighted several aspects of data for the data-driven
methodology: general uncertainty values; data for scaling; and bands of applicable validation data. Through
varying the SPH parameters it was shown that the particle size, interaction-radius to particle-size ratio, and
fluid settling are important factors can have a large influence on the uncertainty of the results. The process
used for this research can be used in developing validation cases against experiments for the flooding
scenario areas of pressure, duration, max height/splash, and turbulence. The resulting uncertainty can then
be used in correlation with scenario applicability in the PCMQBN data driven methodology for an overall
model confidence rating.

For details, see Chapter 8 and Chapter 9 in this report.

(11) Industry perspectives on data-driven methodology: In an early phase of the project, a study by
the project’s industry partner (Zachry) concluded that if successful, the project could advance the safety
analysis methods and offer better information to support the decision making process. Many of the proposed
ideas seem promising, but additional progress and integration of the methods is necessary to determine the
feasibility for industry application and regulatory acceptance. Over the course of the project, efforts were
made to formalize and communicate developments (of methods and tools), including through peer-reviewed
publications. A follow-up study by Zachry focused on “requirements for data-driven validation
framework™, outlining challenges (e.g., methodology inertia, overfitting, cost of changes). The study
concluded that the integration of a data-driven methodology into RISMC models for nuclear safety analysis
is a clear step forward for the industry. For the near future, we see the most promise in Physics-Separated
and Physics Evaluated Machine Learning domains (for details, refer to Chang & Dinh, 2018, IJTS). We
believe that the input space for these types of problems is too vast for the data-only type of approach that
has gained traction in other applications. The strategy most likely to succeed will leverage the advantages
of a physics-based approach with those of a data-driven approach.

(12) STH model validation experiment (STHE): The primary purpose of this study is to demonstrate
an application of the data-driven validation methodology for a STH model. The task is to establish
experimental facilities, conduct experiments, and provide data support for the data-driven validation
methodology development. Compared to the traditional validation practices, data-driven validation relies
on data from experiments (and advanced computational analyses) that are specifically designed for the
model and use state-of-the-art methods to rigorously map and bound the simulation uncertainties in the
domain of intended model use. Therefore, data-driven validation presents a significant shift from the
current validation practices based on expert-determined scale distortions. CTF, a subchannel analysis code,
was chosen as the subject of STH code validation. In addition, based on the literature and feedback from
the STH code validation subgroup, dispersed flow film boiling (DFFB) regime, where droplets are
dispersed in a continuous superheated vapor phase, was chosen as the phenomenon focus of the study.

Three phases for the experimental investigation were proposed. In the first phase (Phase 1), an air-
water experiment was to be carried out at room temperature to test necessary optical instrument for droplet
measurements and to develop proper experimental procedures, which serve as guidelines for elevated-
temperature and pressure experiments. The second and third phase (Phase 1I/111) experimental work would
involve modification of the Phase | experimental facility and proper configuration of components, which is
not included in this report. Data processing was completed using LaVision ParticleMaster package and in-
house computer codes to obtain polydispersed droplets diameter and velocity statistics. Additionally, the
particle diameter distribution was modeled using a lognormal distribution. The distribution uncertainty was
used to represent the data uncertainty quantification. Also, the estimated parameters’ confidence interval in
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the distribution model fitting process was provided based on bootstrap resampling and central limit theorem.
Finally, SMD calculation results based on two approaches, namely data-based and distribution-based, were
provided. The processed data and quantified uncertainty from Phase | experiments would be valuable to the
validation process in the data-driven model development.

The choice of CTF and post-dryout heat transfer in dispersed droplet film-boiling flow as the target
for validation imposes demanding operating conditions for a UM test facility, while limiting the facility’s
flow diagnostic capability. Efforts are required to complete the facility construction and bring it to a reliable
operation, to generate data for the STH/CTF validation task. While the test facility was constructed to
generate data for the project, time (and resources) allocated within the IRP enabled completion of Phase |
of the experimental plan, as summarized in Chapter 10 of this report. For details, see the project milestone
report M3NU-16-NC-NCSU-030401-155.

(13) STH/MCFD Modeling and UQ using High-Resolution Experiments (STH): The project study
introduced a modular Bayesian approach to quantify and reduce the uncertainties of Multiphase
Computational Fluid Dynamics simulations. The proposed approach is supported by three machine learning
methods: principal component analysis for dimensionality reduction, feedforward neural network for
surrogate modeling, and Gaussian processes for model form uncertainty evaluation. The epistemic
uncertainty is quantified through the modular Bayesian approach, then combined with the aleatoric
uncertainty of the stochastic flow fluctuation for a comprehensive uncertainty evaluation of the MCFD
predictions. Based on the obtained uncertainty, probability-boxes can be constructed for comprehensive
risk analysis.

With the support of high-resolution experimental measurements acquired in a test section with a cross
section of 10 mm x 30 mm, a comprehensive case study has been performed to evaluate the uncertainty of
three quantities of interest: void fraction, liquid velocity, and gas velocity. The proposed approach is
implemented based on the open-source deep learning library PyTorch and can be run on GPU for efficient
and fast evaluation. The case study demonstrates that the proposed approach can effectively quantify and
reduce the uncertainty of the MCFD predictions. With the consideration of the model parameter uncertainty
only, the prediction uncertainty can be significantly reduced, and any unphysical predictions can be
eliminated. The results can be further improved with the combination of the model parameter uncertainty
and model form uncertainty. The proposed approach provides a general framework that utilizes different
experimental measurements for a comprehensive UQ of high-resolution, low-fidelity numerical models, an
example close to this work is the boiling and heat transfer problem.

Be that as it may, it should also be noted that discrepancies between the MCFD predictions and
experimental measurements still exist after the UQ is performed. The main reason is the model form
uncertainty trained with Gaussian process neglects the influence of the inlet conditions. To further improve
the work, additional experiments need to be performed for a broader range of the inlet conditions. Based
on larger measurement databases, a model form uncertainty that takes both the location and inlet conditions
as input can be trained to better reflect the physics underlying the bubbly flows. Furthermore, the effect of
data size on the UQ results could also be evaluated with the additional available data.

(14) High-fidelity Simulation Data Generation (H2LS/STH): To support data-driven modeling and
validation of coarse-grid models, methods of Direct Numerical Simulation (DNS) for both single-phase and
two-phase flow are employed to generate high-fidelity data. Large scale simulations running on massively
parallel supercomputers, which constitute the major objective of this task, pose several problems for their
successful execution and subsequent, or in-situ, post-processing and data analysis. Major challenges with
the simulations performed herein with PHASTA were, understandably, of a logistical nature, which
required efficient data management code, either integrated as subroutines within PHASTA using advanced
MPI libraries or developed as separate programs capable of handling large volumes of data.

27



The technical objectives of the large-scale simulations include

Implementing code functionalities in PHASTA to make DFFB simulations feasible. This includes
suite of tools to assign fully turbulent inflow boundary conditions, droplet injection at the upstream
spacer-grid location and scalable MPI I/O routines for high data throughput.
Single-phase and two-phase simulations on large scale supercomputers for a range of operating
DFFB conditions, including different flow Reynolds numbers and droplet collision Weber
numbers.
Data collection, post-processing and analysis from single and two-phase simulations.
o Study of turbulent flow features including mean flow properties, Reynolds stresses and
turbulent anisotropy to gain insight into the effect of spacer-grids and mixing vanes.
o Analysis of the axial evolution of droplet volume, interfacial area and Sauter mean
diameter, for different Weber numbers, and comparison with existing correlation in the
STH code COBRA-TF [20] and empirical correlation from prior DFFB experiments,
conducted at the rod bundle heat transfer facility
Data archival to support future developments on data-driven, machine learning based turbulence
and STH modeling.

The key conclusions from this project contribution are:

The research herein highlights the capability of PHASTA, coupled with level-set method, to
simulate the post-LOCA DFFB regime. Simulations with unprecedented resolution and fidelity
were performed to illuminate droplet dynamics in this critical PWR regime.

Advanced high-resolution data collection tools are implemented in PHASTA which enable detailed
study of turbulence from DNS scale simulations, optimized for large scale supercomputers.

The high spatial and temporal resolution of data collected from the single-phase and two-
simulations is archived and would, potentially, serve as a data mine for the development of machine
learning based turbulence and STH models.

The results from single-phase simulations highlight the effect of spacer-grids and mixing vanes on
convective enhancement. Further, invariant analysis of the data reveals that the mixing vanes
modify the state of turbulence in the downstream region.

The results from two-phase simulations emphasize the importance of considering droplet feedback
to turbulence, in addition to the enhancement provided by spacer-grids and mixing vanes. The SMD
results at the downstream locations match well with experimental data, establishing confidence in
PHASTA and the incorporated level-set method in simulating the DFFB regime.

All tools are in place for a more extensive parametric study of the DFFB regime, with a range of
bulk Reynolds number and collision Weber numbers. Single droplet collision studies are
recommended for characterizing uncertainties associated with collision events.

The most limiting assumption of the current simulations, in contrast to the real DFFB conditions,
is the lack of heat transfer modeling. Consideration of heat transfer mechanisms requires more
extensive development efforts in PHASTA, including methods for phase change, conjugate heat
transfer and modeling of radiative heat transfer.

For more details, see Chapter 11 of this report, and milestone report M3NU-16-NC-NCSU-030401-1513.

(15) CED Modeling and Validation (SPH/CFD): The project study established that currently validation
of SPH turbulence models has been conducted mostly for small-scale flows in simple geometries by
comparison with mesh-based CFD results and small-scale experimental data. There is no study of the effects
of particle resolution/size on the performance of the above-mentioned turbulence models. The study by
Bui led to the following: (i) Either one-equation or two-equation equation turbulence model is
recommended to be used in the SPH modeling of simple turbulent flows, such as open-channel flows or
straight fluid spreading; (ii) More complex and computationally expensive algebraic Reynolds stress model
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is suitable for more complex flow conditions and for fluid-structure interactions; (iii) Closure laws, such as
wall functions and the mixing length, used in all previously mentioned turbulence models would need
proper validation for different flow conditions and scales; (iv) Physics-constrained machine learning (ML)
can be used to either to develop and validate closure model surrogates, or to construct a data-driven
turbulence model to calculate turbulence viscosity directly. Both of these approaches require data from
high-fidelity simulations and/or experiments.

(16) CFED Data-Driven Modeling: The project study introduced and implemented two data-driven
approaches to model CFD error leveraging the potential of massive high-fidelity (HF) data. The first
approach is type Il approach, the advantage of it is code efficiency, machine learning (ML) process only
needed to be done once based on a pre-calculated RANS results. The disadvantage of it is the error
introduced because of the inaccuracy of the pre-calculated RANS result. The second approach is type |
approach, which is use ML surrogate model to replace turbulence model in CFD iteration. Two case studies
have been performed to demonstrate and evaluate these two approaches. According to the results of both
case studies, the data-driven model largely improved RANS model. The improved RANS model allows
more accurate and flexible prediction for turbulence flow, which is not only the aim of turbulence modeling
but also fundamental for coarse mesh CFD in NPP. As nuclear safety problem becomes increasingly
stringent and requires detailed analysis of thermal-hydraulics, computationally efficient CFD methods are
needed to support the study of a broad range of accident scenarios. Current turbulence modeling requires
different RANS models for different flow patterns, which largely hinder the use of CFD for complex
scenarios with transient flow patterns.

(17) Data-Driven Modeling, Calibration, and Validation (H2LS/H2L.C): The effort in this area aims
to develop and assess a data-driven approach for turbulence modeling (DDTM) approach that could be
leveraged in engineering analysis including simulation of thermal-hydraulic processes in nuclear power
plants (NPP). Traditionally, the most common method in computational fluid dynamics (CFD) used in
engineering practice is based on the solution of Reynolds-averaged Navier—Stokes (RANS) equations. The
method has limitations in the calculation accuracy and complexity of choosing turbulence model and
parameters for different flow configurations. High fidelity (HF) simulations, such as the Direct numerical
simulation (DNS) and the Large eddy simulation (LES), could break the two limitations of RANS but their
computational expenses are too large to be used in engineering practice. The DDTM approach aims to
develop a RANS-based method which is as accurate as HF simulations and applicable to a broad range of
flow patterns leveraging the power of machine learning. The potential advantages of DDTM are in three
aspects: The first advantage is to let data automatically improves the model. Labor cost and human biases
in devising the mathematical expressions are reduced; The second advantage is the potential to integrate
the various types of turbulence models into one model, which could greatly simplify the CFD simulation
process and system code coupling; The third advantage is the potential to largely reduce computational
expense by applying the framework of DDTM into coarse mesh simulation, where the DDTM approach
not only simulate the turbulence error but also the error caused by using coarse mesh.

The main contribution of this work is the proposal of a new DDTM approach. The new approach is
named as “multi-model data-driven turbulence modeling (MDTM)”, compared to the “single-model data-
driven turbulence modeling (SDTM)” approach proposed by other researchers. The term “model” here
refers to the turbulence models in RANS. The SDTM approach is so far considered as the most suitable
DDTM approach for our purpose. But it has two limitations that prevent it from being a practical approach:
First, the single-model approach fails when the baseline model result is far from the true result; Second, the
selection of baseline turbulence model form and parameters could make a difference in prediction accuracy.
But one could not quantitatively determine which baseline model is the most suitable one for a certain flow
configuration beforehand. Hence the MDTM approach is proposed to overcome these limitations by
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increasing the degree of freedom to the machine learning surrogate model and let the machine learning
surrogate model automatically select the most suitable baseline model to be used.

Numerical experiments have been performed to test the performance of DDTM. 5 case studies are
performed to answer 5 critical questions about DDTM separately. The 1st question is whether the SDTM
approach performs better than traditional turbulence model approach. 1D channel flow problem with DNS
data is used to answer this question. The 2" question is whether the MDTM approach performs better than
the SDTM approach. This question is also answered by 1D channel flow problem with DNS data and 2D
lid-driven cavity problem with LES data. The 3™ question is whether the MDTM approach could be applied
to more complex flow configurations. The question is answered by 2D lid-driven cavity problem with LES
data. The 4™ question is whether the HF data could use LF data (such as RANS) instead. The question is
answered by 2D lid-driven cavity problem with RANS data. The last question is whether the LF model
could be coarse mesh RANS. The question is also answered by 2D lid-driven cavity problem.

For details, see the project’s milestone report MBNU-16-NC-NCSU-030401-1514.

(18) Data-Driven Framework for error estimation and mesh-model optimization in STH (M&T): The
project study, a data-driven framework (optimal mesh-model information system, or OMIS) was developed
and demonstrated to improve applications of the coarse-mesh codes by predicting their simulation errors
and suggesting the optimal mesh size and closure models. The OMIS framework was illustrated based on
the mixed convection case study. By learning from massive data instead of human experience, the OMIS
framework provides data-driven guidance to help a user improve the modeling and simulation. This
modularized procedure is extendible to modeling and simulation using other coarse-mesh codes where mesh
size is one of the key model parameters. Scalability of the OMIS framework in the GELI (Global
Extrapolation via Local Interpolation) condition is achieved by exploring local physics instead of global
physics with the usage of advanced deep learning techniques and statistical approaches. It is expected to
improve the scale-distorted approaches that connect scaled data to the real full-scale applications and reduce
the uncertainty of scaling. This work also contributes to the development of a data-driven framework for
the validation and uncertainty quantification of CFD-like codes. The OMIS framework treats physical
models, coarse mesh sizes, and numerical solvers as an integrated model, which can be considered as a
surrogate for governing equations and closure correlations. The prediction of simulation error takes all the
error sources into account and shows a promising accuracy in the case study. For details, see Bao et al
(NED-2019); Bao et al (ANE-2020).

(19) Validation Data Management System (VDMS): In the project study Ren et al. established that in
order to ensure successful further development in the project, an issue that must be addressed as soon as
possible is the current lack of a clear understanding of the validation data structure for advanced thermal-
hydraulics analysis in reactor safety applications. The project investigated capability of NE-KAMS:
Nuclear Energy — Knowledge base for Advanced Modeling and Simulation. One of the major characteristics
that made NE-KAMS stand out during a nationwide survey of existing database systems was its
customizable management of data and data interrelationships based on the data structure of interest. The
importance of customizable management of data and data interrelationships was illustrated, where each
circle represents a model, which may comprise multiple sub-models; and each line indicates a relation
between the two models. The sub-models and sub-interrelationships multiply inside each circle. Data from
the models and sub-models reflect the complex structure. Apparently, to confidently interpret and correctly
use the data, the data interrelationships must be accurately maintained and understood. The project
recommends further development, and use of NE-KAMS. For more detail, see Chapter 12.

30



1.4.1.Summary

In summary, the research conducted in this project has made important steps to advance the technical
state of knowledge in the area of model validation by addressing the fundamental limitation of existing
validation exercises - that is how to provide scientific guarantees on the simulation predictability for the
intended wide range of reactor conditions using limited set of experiments and simulation analysis datasets.
The research findings to date supports an initial team vision that the proposed methodology will:

e enable the RISMC models to provide a prediction of plant safety characteristics with associated
uncertainty, which are crucial in the RISMC decision making process.

e serve as an instrument to coordinate R&D program for validation of RISMC models, supporting the
continued safe operation of existing nuclear plants.

e guide efforts to maintain and develop the supporting research infrastructures, such as experimental
facilities and numerical tools.

The project research provides valuable input towards guiding the development of both the RISMC
formulation and the RISMC toolkit. It is critical to realize that V&YV should not be an afterthought. Instead,
it is necessary to integrate the V&YV efforts into the development of RISMC formulations and toolkit. Lack
of appropriate and sufficient experimental data has been a historic concern and yet the perceived need for
such data continues to grow because every piece of data is considered equally relevant. The project team
believes that the information-guided decision-theoretic based approach proposed in this project can assist
by ranking the relevance of data for a particular RISMC scenario and thereby guiding efficient management
of resources for future experimental studies and in some cases eliminating the need completely.
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R. Sampath, S. Prescott, E. Ryan, “Applying Flood Simulations” SMiRT 25, August 6 2019

E. Ryan, R. Sampath, S. Prescott, “Validation and Determination of Significant Simulation
Parameters using the Smoothed Particle Hydrodynamic Code Neutrino” SMiRT 25, August 6 2019
Y. Liu, Design of Validation Experiments for Model Improvement of Dispersed Flow Film Boiling
in COBRA-TF, Presentation, ANS Winter Meeting & Expo, November 15, 2018, Orlando, FL.
John Baugh, The role of Alloy in developing scientific software. Workshop on the Future of Alloy,
MIT, Cambridge, MA, April 30-May 1, 2018

John Baugh, Formal methods in scientific computing. Johns Hopkins University Applied Physics
Laboratory, invited lecture, December 2019

John Baugh, Lightweight formal methods in scientific computing. Logic for Systems, Brown
University, invited lecture, February 2020

Philippe Bardet, “Molecular Tagging Velocimetry: Pushing the limits of velocimetry,” CEA-
Saclay, Saclay, France, 2019/10/14.

Philippe Bardet, “Molecular Tagging Velocimetry: Pushing the limits of velocimetry,” KTH,
Physics department, Stockholm, Sweden, 2019/10/04.

Philippe Bardet, “Molecular Tagging Velocimetry: Pushing the limits of velocimetry,” Technical
Plenary Session, NURETH 18 conference, Portland, 2019/08/18-23.

Philippe Bardet, “Progress in Thermo-Fluids Lab,” COE CFD Center of Excellence, Chicago, IL,
2019/06/26.

Philippe Bardet, “Molecular Tagging Velocimetry - MTV,” Rencontre Technique and Scientifique,
CEA Cadarache, France, 2018/06/04.

Philippe Bardet, “Advanced laser diagnostics development for Thermal Hydraulics,” Paul Scherrer
Institute, Switzerland, 2018/10/16.

1.5.4.Dissertations/Theses

S. S. Bodda, “Risk Informed Validation Framework Using Bayesian Approach,” PhD Thesis, North
Carolina State University (2019).

A. R. Dubey, “Seismic Fragility of Piping Systems: Consideration of Cyclic Behavior and Closed-
Form Relationship,” PhD Thesis, North Carolina State University (2019).

Linyu Lin, “Development and Assessment of Smoothed Particle Hydrodynamics Method for
Analysis of External Hazards”, PhD Dissertation in Nuclear Engineering, North Carolina State
University, December 2018

Yangmo Zhu, “Development and Assessment of a Data-Driven Approach for Turbulence
Modeling”, PhD Dissertation in Nuclear Engineering, North Carolina State University, December
2019

Mengnan Li, “High Resolution Boiling Simulation using Interface Tracking Method”, PhD
Dissertation, NCSU, 2019

Nadish Saini, “High-fidelity Interface Capturing Simulations of the post-LOCA Dispersed Flow
Film Boiling Regime in a Pressurized Water Reactor Sub-channel”, PhD Dissertation, NCSU, 2020
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10.

11.

12.

Shrey Satpathy, “Development of high-resolution computational fluid dynamics capabilities for
LWR accident analysis”. MNE Report, NCSU, 2017
Xiaogin Zhang, “Experimental Investigation and Data Uncertainty Analysis of Synthetic Dispersed
Flow Film Boiling”, PhD Dissertation, University of Michigan, 2020
Dongli Huang, Efficient Uncertainty Characterization Framework In Neutronics Core Simulation
With Application To Thermal-Spectrum Reactor Systems, PhD Dissertation, Purdue University,
2020
Emerald Ryan, “Determination, Development, and Validation of a Fluid Height Analysis Method
and Particle Spacing Protocol for the Smoothed Particle Hydrodynamic Code Neutrino”, PhD
Dissertation, Idaho State University, 2019

[*] Work supported by INL Research Fellowship, in collaboration with IRP researchers.
Fatima Bukhari, “Performance Evaluation of Subdomain Modeling and Operational Enhancements
for Large-Scale Storm Surge Simulations”, PhD Dissertation, NC State University, April 2020.
Andrew Dyer, “Lightweight Formal Methods in Scientific Computing”, PhD Dissertation, NC
State University, June 2020.

1.5.5.Technologies or Techniques

Developed a novel technique to quantitatively assess the system-level validation by connecting
individual validation events through a probabilistic risk assessment (PRA) informed validation
framework. The framework utilizes the power of Bayesian statistics to include uncertainty in both
simulation and experimental models. In this technique, the system-level validation and the
identification of critical events are evaluated based on fragility estimates. To improve the overall
validation, it requires enhancement of simulation models of events along the critical path or
collection of additional field data until the adequacy of the system-Ilevel validation is satisfied. This
process helps in allocating the resources efficiently thereby reducing the effort to conduct high-
fidelity simulations and large-scale experiments.

Enhanced the proposed framework by developing a new set of validation metrics (overlapping
coefficient and consistency index) and an additional attribute (Code adequacy) for making the
framework more robust. The concept of overlapping coefficient (OC) is used to quantify the degree
of validation within the context of uncertainty. OC is calculated by evaluating the percentage of
overlapping area between simulation and experimental (data-driven) fragility curves. Consistency
index (3) ensures that the simulation and data-driven fragilities correspond to the same set of critical
events. The interpretation of consistency index in the risk informed framework is illustrated for
various cases of seismic and flooding scenarios. The concept of maturity levels are utilized to assess
the decision regarding the adequacy of a simulation code for an intended application.

Integrated the proposed risk informed validation framework with USNRC’s Evaluation Model
Development and Assessment Process (EMDAP) framework. This allows transformation of
EMDAP into a risk-informed EMDAP. The applicability of the proposed framework is evaluated
by application to a real life like flooding scenario of a sunny day dam failure. Application to the
realistic scenario illustrates that the credibility of flooding simulations can be assessed using formal
quantification which is otherwise not possible in the existing EMDAP framework. The integrated
framework formalizes the validation process by quantifying the expert knowledge and making it
less heuristic.

Developed a methodology which examines reduced scale experiments at multiple scales to infer
the effect of scaling. Several advanced simulation tools used for studying real world flooding
scenarios are validated through smaller scale laboratory experiments. An implicit extrapolation is
performed on the reduced scale data generally beyond the domain of validation when these
simulation tools are used for real-world applications. This leads to scale distortion and uncertainty
in prediction. Such issues are often only resolved by professional experts. Hence, the current
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methodology is an attempt to understand scaling phenomenon to enhance and support the scaling
extrapolation and reduce the reliance on expert data analysis.

e Sterling, a web-based visualizer for Alloy, enables modeling of scientific software using
lightweight formal methods by providing advanced visualization tools that address shortcomings
of the existing Alloy visualizations. These tools focus particularly on the ability to express the types
of dynamic and spatial relationships that are embedded throughout models of scientific software.

e Asapartof her PhD dissertation work, Fatima Bukhari demonstrates the appreciable computational
savings provided by Subdomain Modeling for storm surge simulation, while maintaining solution
integrity. Additionally, a one-way coupling methodology has been developed that allows for
coupling between the large-scale finite element model, ADCIRC, and the small-scale smoothed
particle hydrodynamics code, Neutrino. This work facilitates simulation of storms and their effects
at ‘facility level® scales, in turn enabling the quantitative assessment of the resilience of critical
(nuclear) infrastructure to storm-induced flooding.

e (PU) The project has matured the physics-guided coverage mapping methodology to effectively
and rigorously map biases between two sets of modeling conditions, representing experimental and
application domain or high and low fidelity models. The developed technology provides a solution
to a key challenge in existing regulatory/licensing framework, that is how to transition from heavy
reliance on experiments to a science-based risk-informed validation strategy capable of leveraging
advances in predictive science, information theory, and data analytics to develop transformational
approaches for the evaluation of biases and uncertainties when limited experimental data exist.
Addressing this challenge is critically needed to support the expected adoption of advanced reactor
technologies, which require scientifically-defendable analysis capabilities for model validation of
first-of-a-kind reactor technologies. The proposed helped develop the basic algorithms required to
realize this vision.

e (GWU) The project developed a new experimental diagnostics to measure the interface of rough
water waves in 3D + time.

e (UM) The project developed ParticleMaster Integrated Optical Imaging System Data Acquirement
Procedures.

1.5.6.Inventions, Patent Applications, and/or Licenses

e Hany Abdel-Khalik and Ugur Mertyurek, “A Novel Capability to Support Nuclear Model
Validation and Mapping of Biases and Uncertainties,” August 2019, Invention Disclosure. Given
interest in this technology, the co-PI has initiated collaborative discussions with various researchers
in the DOE complex. Based on a recently executed inter-institution agreement between Purdue and
ORNL, the co-PI is working with both institutions to file for a provisional patent regarding this
technology and is currently working on a licensing agreement to help commercialize this
technology. A startup company by the co-Pl has been formed in 2018, and will be leveraged to
apply for future funding opportunities in support of technology further development and adaption
to nuclear industry needs.

1.5.7.0ther products, notable achievements

e The work on risk informed validation framework got Saran Bodda recognized as one of the three
winners of the Shibata Early Career Award at SMIRT 25 Conference, 2019.

e Saran Bodda and Ankit Dubey were awarded Zia Graduate Fellowship for their research
contributions at NC State University.

e Yangmo Zhu is recipient of Student Paper Award at NURETH-17 (2017)

e Chih-Wei Chang receives Best Paper Award at NURETH-18 (2019)
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1.5.8.0pportunities for training and professional development

o Conference attendance supported through the project by graduate students and faculty have
contributed to the professional development.

e Students Saran Bodda and Pragya Vaishnav worked closely with industry collaborators on the
project.

e Students Saran Bodda and Ankit Dubey spent a summer as interns at Idaho National Lab and getting
familiar with MOOSE and related modules.

e Saran Bodda also developed codes for PRA that have been incorporated into MASTODON which
is part of MOOSE.

e Ankit Dubey worked closely with INL researchers for simulating a scenario of internal flooding
risk assessment at a nuclear plant.

o Internships for participating students:

o Innovative Systems Software: Basic RELAP/SCDAPSIM Training June-July 2017
o ldaho National Lab: RAVEN Training and RAVEN-CTF Coupling June-July 2018

e The development of Sterling led to an invited lecture opportunity for PhD student Tristan Dyer,
who has secured a postdoctoral research position at Brown University to continue its development
for use as the primary visualization tool for Forge, a language built for teaching formal methods
and model checking.

e The demonstration of the applicability of Subdomain Modeling as a tool that affords appreciable
computational savings while maintaining solution quality led to an internship with US Army Corps
of Engineers - Engineering Research and Development Center (USACE-ERDC) for former PhD
Student Fatima Bukhari. Upon completion of her degree, this internship was converted to a full-
time employment opportunity as a Research Civil Engineer.

o At GWU, the project has supported a postdoctoral fellow, one doctoral student part time, one MS
student, and served as capstone design for 5 undergraduate students at GWU. The postdoctoral
fellow designed the experimental facility, which required significant structural analysis, an area in
which he was not trained (he is an experimentalist in fluid dynamics). He managed to leverage the
excellent and challenging work and is now doing structural testing for SpaceX Dragon capsule that
brought back US astronauts to space in 2020!

e At Purdue University, the material developed has been the basis for two internships, one in the
summer of 2019 for then-PhD candidate, Ms. Dongli Huang, who has graduated in May 2020, and
another in the fall of 2019 for PhD candidate, Ms. Yeni Li, who is expected to graduate in December
2020. The material developed has contributed to a new course on data mining in Engineering, which
was taught in TU-DELFT, Netherlands, 2018.

e At University of Michigan, the project created opportunity for facility design and construction
training; experiment quality control training; LaVision ParticleMaster system package training.
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2. Risk Informed Validation Framework Using Bayesian Approach

2.1. Summary

Safety of nuclear plants against external flooding has gained significant attention following the accident at
Fukushima Daiichi nuclear power station. In United States, Oyster Creek nuclear plant was safely shutdown
when high storm surge during hurricane Sandy caused a potential flooding threat. Subsequently, the nuclear
energy industry experienced a significant activity in Probabilistic Risk Assessment (PRA) for external
flooding. Past few decades have seen a rapid growth in the availability of computational power and that
induces continually reducing cost of simulation. This rapidly changing scenario together with availability
of high precision and large-scale experimental data has enabled development of high fidelity simulation
tools capable of simulating multi-physics multi-scale phenomena. Increasingly, methods of computational
fluid dynamics including advanced simulation codes are being considered to evaluate the sequence of
events during different scenarios of flooding at a plant. One of the key limitations in validation is the lack
of relevant experimental data at system-level. This limitation leads to a decrease in the confidence of
system-level risk predictions. Therefore, a robust validation framework is needed to formalize the
confidence in predictive capability of advanced simulation results.

In this project, we propose a formal validation approach that provides a basis to quantify credibility
of risk assessments that are based on advanced simulation codes. The efficiency of the risk informed
validation approach lies in the identification of critical structures, systems, and components (SSCs) that
contribute to the system-level risk using Bayesian statistics. The validation methodology employs a data-
driven approach to quantify the quality of data that is used to evaluate experimental fragilities for flooding
failures. As the fragility assessment of a flooding scenario suffers from large epistemic uncertainties, the
credibility of system-level validation is expressed using probabilistic distribution and maturity levels. To
ensure that the system-level validation is complete and consistent, an additional validation index called
consistency index is introduced. The risk informed validation approach is integrated with USNRC’s
Evaluation Model Development and Assessment Process (EMDAP) framework for a complete and wider
applicability of the framework.

2.2. Introduction

Given the events at Fukushima-Daiichi nuclear power plant, there is an increased emphasis on using high
fidelity simulation tools to evaluate the vulnerability of nuclear facilities subjected to external hazards.
Availability of sophisticated computer models capable of simulating multi-physics multi-scale phenomena
has increased the need for verification and validation of such high fidelity simulations. In this report, we
aim to develop and demonstrate a comprehensive risk informed decision-oriented methodology for
validation of advanced computer models used in nuclear power plant safety analysis. Specifically, the
advanced computer models are those in the toolkit developed to support risk-informed safety margin
characterization (RISMC), an integrated deterministic/probabilistic safety analysis methodology developed
in the Department of Energy’s Light Water Reactor Sustainability (LWR-S) program. The project
investigated a decision oriented framework for quantification of validity with a probabilistic criterion for
adequate level of validation.

The two primary challenges encountered in this project are: (1) lack of relevant plant-level data
needed for validation of high-fidelity simulations, and (2) non-availability of a rational, consistent, and
guantitative approach for validation. While first item above is essential in any validation effort, it is usually
restricted by high cost of collecting such data and in some cases inability to conduct large-scale
experiments. The confidence in high-fidelity simulations decreases due to excessive reliance on expert
opinion for establishing the acceptability of high simulation models. The uncertainties due to inherent
randomness and lack of knowledge about real physical complex systems as well as natural hazards pose
significant challenges to the model validation assessment. Fidelity of a system-level computer simulation
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model is difficult to assess even though a model for each component of the system can be individually
validated with available component-level data. The system-level validation process involves a validation at
component level, determine a relationship between component-level and system-level performance, and
finally establish an inference of the degree of validation at system-level. The validation goal is difficult to
achieve particularly in a quantitative sense because of the uncertainties in the relationship between different
levels as well as in the parameters used for characterizing the performance at both the component and
system levels. Consequently, six key aspects in this process are:
1. Validation metric: Characterization of appropriate validation indices for quantitative comparison
of simulation and test data
2. Inference on the degree of validation at system-level
3. Ranking of Components and Subsystems: Any component or subsystem on the critical path would
be considered most significant and assigned a higher priority
4. Confidence Bands: The component-level validation metric can be combined with the failure
probabilities for a specific risk-scenario to develop confidence bands
5. Acceptability/Hypothesis Testing: Probabilistic criteria can be used to evaluate the acceptability
of the validation for a particular component or simulation of an event in the given scenario
6. ldentification of Validation Gaps: The prioritization described above would then help identifying
appropriate validation gaps and allocating resources for data collection to reduce these gaps.

This research explored the development of a novel performance-based risk-informed validation
approach that is rational, efficient, and quantitative in nature. A framework based on Bayesian statistics is
proposed in validation of RISMC Models (Task 1 - Methodology Development) to implement and explore
the proposed validation data plan (IRP-RC-1, 2016). The intent of the proposed approach is to provide a
guantitative assessment of validation for a system-level simulation model based on component-level
validation information. It uses performance-based criteria to judge the efficacy of a particular validation
and a risk-informed framework to determine whether additional validation of a certain component or
subsystem is needed or not. The specific steps of Bayesian framework are: The applicability and
effectiveness of the proposed approach is explored in the context of a synthetic example of an accident
sequence in nuclear plant subjected to storm surge, for which sources of errors and uncertainties and
predictive capability gaps are identified. The proposed validation framework developed in this research is
described in detail in Bodda (2020).

2.3. Scope of Work

The project goal is to develop and demonstrate a comprehensive risk-informed decision-oriented
methodology for the validation of RISMC models (1.3.1 Project Scope, IRP-RC-1, 2016). In this project,
we pursued a simulation-aided uncertainty-guided data-driven approach to enable effective implementation
of the EMDAP elements and we investigated:
¢ Risk-informed approaches for collection and characterization of evidence.
e Decision-oriented framework for quantification of “validity” (or “maturity”), with a probabilistic
criterion for adequate level of validation.
o lllustration and quantification of uncertainty in scaling phenomenon.
o Methods for data-driven model development and assessment process that effectively utilizes data
from physical and numerical experiments.

To accomplish the work, our team has performed following subtasks corresponding to the major
Task 1: Validation of RISMC Models (Methodology Development) and Task 2: Validation of Flood
Simulation Capability for Plant Safety Analysis.
o Task 1.1: RISMC model applications and validation requirements
e Task 1.2: RISMC model validation methodology
e Task 1.3. Predictive capability maturity quantification
e Task 1.4. Simulation-based scaling
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Task 1.6. Data-driven multi-scale modeling

Task 1.7. Validation data plan

Task 2.1. Perform RISMC analysis of storm surge flood scenarios
Task 2.2: Define flooding validation data plan

The specific information (technical approach and assumptions) required to carry out the validation of
advanced simulation codes using the proposed validation framework is listed below (Bodda et al. 2020b):

It is assumed that the event and fault trees needed as the first step in implementation of the proposed
approach are available which is generally true for a major engineering facility or project. If not,
then one would need to start by creating the logic tree and accident sequences. Subsequent mapping
of this information into a Bayesian network does not require any additional input.

A logic tree based risk assessment approach requires fragility curves for basic events. These are in
general the simulation-based fragilities for a specific implementation. Therefore, it is assumed that
these are available.

The biggest challenge in implementing the proposed approach lies in developing the data-driven
fragility curves that are used for validation. The data could come from experiments, experience, or
high fidelity simulations. This aspect also involves establishing the grade levels for Relevance,
Scaling, and Data Uncertainty (R/S/U) for the data used (Dinh, 2012).

In the initial implementation of risk informed validation methodology, it is possible that the
development of data-driven fragility for a certain event might not be available. This is similar to
initial implementation of PRA in 1970s when there was not much information available on
fragilities of components. The initial implementation of PRA relied significantly on expert opinion.
Similar expert-based knowledge can be used for the initial implementation of the data-driven
fragilities for such events. The initial implementation of the framework can then be used to
determine the specific events that contribute more to the overall validation and therefore ideal
candidates for collecting more data. As more information becomes available either through high
fidelity simulations or experiments, the complete validation process can be updated.

If the data-driven fragility cannot be generated for a certain event, then one can assume the data-
driven fragilities to be same as the simulation-based fragilities in the initial implementation. These
can then be updated as additional information become available.

It is assumed that Fussell-Vesely importance measures can be used to identify the critical path for
the entire system.

In the context of overlapping coefficient as the validation metric, alternative validation metrics such
as KL Divergence, Mutual Information, and Bayes Factor can be potential candidates.

In order to quantify the adequacy of the various simulation codes used for generating the simulation
fragility curves, it would be required to assess a maturity level for each simulation code.

Finally, stakeholders would need to agree on an acceptance criterion for evaluating the degree of
validation at the system-level.

2.4. Key Findings

Technical Findings

Developed a novel technique to quantitatively assess the system-level validation by connecting
individual validation events through a probabilistic risk assessment (PRA) informed validation
framework (Bodda et al. 2020a). The framework utilizes the power of Bayesian statistics to include
uncertainty in both simulation and experimental models. In this technique, the system-level
validation and the identification of critical events are evaluated based on fragility estimates. To
improve the overall validation, it requires enhancement of simulation models of events along the
critical path or collection of additional field data until the adequacy of the system-level validation
is satisfied. This process helps in allocating the resources efficiently thereby reducing the effort to
conduct high-fidelity simulations and large-scale experiments. Addresses Tasks 1.1, 1.2, 1.7, 2.1,
2.2.
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Developed a data-driven approach to incorporate the quality of experimental data quantitatively in
experimental fragility or data-driven fragility (Bodda et al. 2020a). The quality of experimental
data is graded by three attributes: Relevance, Scaling, and Data Uncertainty (R/S/U). Relevance
reflects the degree of applicability of experimental data from existing studies to the current
application. Scaling uncertainty incorporates both geometric and physics scaling uncertainties.
Data uncertainty reflects the uncertainty in the measured data. In the absence of appropriate
experimental data, one could use experience data (given in terms of failure rates) or even high
fidelity simulations to develop the data-driven fragilities especially if high fidelity simulations have
been validated against experiments. The uncertainties due to each of these three attributes are
guantified by assigning grades on a 4-point scale (from 1 to 4 with 1 being poor and 4 being
excellent) based on the quality of data. Partially addresses Task 1.6

Proposed a new set of validation metrics (overlapping coefficient and consistency index) and an
additional attribute (Code adequacy) for making the risk informed validation framework more
robust (Bodda et al. 2020b). The concept of overlapping coefficient (OC) is used to quantify the
degree of validation within the context of uncertainty. OC is calculated by evaluating the percentage
of overlapping area between simulation and experimental (data-driven) fragility curves (Figure
2.1). Consistency index (8) ensures that the simulation and data-driven fragilities correspond to the
same set of critical events. The interpretation of consistency index in the risk informed framework
is illustrated for various cases of seismic and flooding scenarios. The concept of maturity levels are
utilized to assess the decision regarding the adequacy of a simulation code for an intended
application. Addresses Tasks 1.1, 1.2, 1.3

— Simulation Data -- Experimental Data

Figure 2.1. Overlapping Coefficient (Kwag et al. 2018)

Integrated the proposed risk informed validation framework with USNRC’s Evaluation Model
Development and Assessment Process (EMDAP) framework as shown in Figure 2.2 (Bodda et al.
2020c). This allows transformation of EMDAP into a risk-informed EMDAP. The applicability of
the proposed framework is evaluated by application to a real life like flooding scenario of a sunny
day dam failure. Application to the realistic scenario illustrates that the credibility of flooding
simulations can be assessed using formal quantification which is otherwise not possible in the
existing EMDAP framework. The integrated framework formalizes the validation process by
guantifying the expert knowledge and making it less heuristic. Addresses Tasks 1.1, 1.2, 1.3, 1.7,
2.1,2.2.
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Element 1
Establish Requirements for Evaluation Model Capability

o Construct Event Tree/Fault Tree (ET/FT) corresponding to
an initiating external hazard
e Map ET/FT into a Bayesian Network (BN)

e Characterize failure in terms of Performance function (Figures
of merit)

o Identify Quantities of Interest using Importance measures

l |

Element 2 Element 3
Develop Assessment Base Develop Evaluation Model
Collect more o Identify experimental data at e Develop component-level Improve
experimental data component and sub-system levels performance-based simulation-driven evaluatiIou m’Odqu
B— (SETs and IETSs) and data-driven fragility curves _ - -

e Establish Relevance, Scaling, Data
Uncertainty (R/S/U)

Element 4
Assess Evaluation Model Adequacy
Bottom-up Top-down
e Evaluate fragilities for sub-system and o Identify evaluation models that needs to be
imporved based on desired acceptance
e Introduce Overlapping coefficient (OC) and criterion of system-level OC'
Consistency index (§) as validation metric

system-level from component-level fragilties

o If new data is available in any higher levels,
o Use fragility data to calculate OC and § for update OCs and ds of all levels based on
nodes along critical path the new data

Decision
NO (Validation Metric of nodes along NO

critical path satisfies Criterion?)

‘ System level validation process is done ‘

Figure 2.2. Integrated Risk informed EMDAP framework (Bodda et al. 2020c)

o Developed a methodology which examines reduced scale experiments at multiple scales to infer
the effect of scaling (Vaishanav et al. 2019). Several advanced simulation tools used for studying
real world flooding scenarios are validated through smaller scale laboratory experiments. An
implicit extrapolation is performed on the reduced scale data generally beyond the domain of
validation when these simulation tools are used for real-world applications. This leads to scale
distortion and uncertainty in prediction. Such issues are often only resolved by professional experts.
Hence, the proposed methodology is an attempt to understand scaling phenomenon to enhance and
support the scaling extrapolation and reduce the reliance on expert data analysis. Addresses Tasks
14,16

Highlights of technical innovations
o Risk informed methodology for system-level validation within the context of uncertainty.
Quantitative validation to assess credibility of system-level estimates.
Bayesian approach for system-level validation.
Grade quality of experimental data for quantitative representation of uncertainty.
Incorporate the quality of experimental data quantitatively by adopting a data-driven approach.
Identification of events critical for improving system-level validation.
Concept of overlapping coefficient as validation index.
Propose consistency index to ensure system-level validation is complete.
Adequacy of a simulation code for an application is characterized by maturity level.

45



e Integration of risk informed validation approach with USNRC’s Evaluation Model Development
and Assessment Process (EMDAP) framework.
o Examination of reduced scale experiments at multiple scales to infer the effect of scaling.

2.5. Path Forward

Some of the key challenges and the recommendations for future work are discussed below. In practice,
computational cost of the proposed approach can be a challenge. This is particularly true for generating
multiple simulation-based fragility curves due to a large number of simulations that may be needed to
account for uncertainties within a Monte Carlo approach. This challenge can be addressed to a certain
degree by employing statistical inference for fragility estimates while minimizing the number of
computationally intensive simulations. Another challenge relates to generation of data-driven fragility
curves especially for all the basic events in the Bayesian network. The impact of this aspect is reduced in
the proposed approach by recommending the development of assessment base for only the critical events
first. Then, the non-critical events can be considered in the subsequent steps. In the absence of experimental
data, one can use either experience data or high fidelity simulations to generate the data-driven fragilities.
In the absence of any of these potential options, one could use expert judgment to come up with an initial
estimate of data-driven fragilities and if that is also not desired for any specific event under certain extreme
circumstances then it would be appropriate to use simulation-based fragility curve as a substitute for data-
driven fragility for that specific event (indicating a perfect validation for this event). This can be updated
in future as additional information becomes available. Another way could be to consider two different
options for this event, that of perfect validation as well as no validation, and evaluate the impact on the
overall system level validation. However, this aspect is not considered in this study and is a good candidate
for future studies. This concept can also be extended to study the cliff-edge effect that is often observed in
real life fragility estimates for certain events. An event with cliff-edge fragility could be considered using
the two potential options of perfect validation as well as no validation. It is recommended to consider this
aspect in future studies. The case studies considered in this manuscript do not include common cause
failures (CCF). However, CCF events can be incorporated into the validation framework using Bayesian
approaches (Mi et al., 2012; Li et al., 2019; Nguyen et al., 2020), and it does not require special attention.
In this methodology, the non-critical paths in the Bayesian network are ignored for the system-level
validation. Therefore, this assumption may cause some impact on the system-level code adequacy. For
future work, the effect of assumption can be treated as a model uncertainty or incompleteness uncertainty
and should be analyzed as part of uncertainty analysis in PRA (Drouin etal., 2017). The computational cost
of Bayesian analysis is a limitation of using Bayesian approach in itself but availability of increasing
computational resources have helped overcome this limitation in recent years.

2.6. Conclusions

The key conclusions of this study are summarized as follows:

e The risk informed methodology is mapped into four elements of the EMDAP framework to enable
consistency and completeness in the validation process.

e The proposed integrated risk informed EMDAP framework enables us to quantify the validation
for a realistic flooding scenario.

e ltisalso illustrated that the proposed framework allows implementation of Bayesian inference to
identify the critical events for which collecting additional data would reduce the uncertainty and
improve the validation of overall risk estimates.

e The integrated framework formalizes the validation process by quantifying the expert knowledge
and making it less heuristic.

e The non-physical events in the PRA model are identified and treated as either completely safe or
fail in the validation process.
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The data-driven fragilities are generated only for critical events. For non-critical events, the data-
driven fragilities are considered to be same as simulation-based fragilities.

The critical path in a Bayesian network is identified by using extended definition of
Fussell-Vesely (FV) Importance measure for Bayesian networks.

Introduced the concept of consistency index (d) in the validation metric which ensures that the
simulation and data-driven fragilities correspond to the same set of critical events.

Overlapping coefficient is used as the standardized validation metric.

The quality of experimental data used in the validation study is quantified and incorporated in the
data-driven fragility curves.

Multiple fragility curves are evaluated using different confidence levels instead of just the mean
fragility curves.

The robustness of the modified framework is illustrated by enabling clarity, consistency, and
completeness for a synthetic and realistic examples of flooding scenario.

The performed project reinforced its potential for broader impacts as follows:

The proposed framework will provide a better understanding of uncertainty in safety margins, and
subsequently, help identify vulnerability and risk of nuclear systems. From the perspective of the
nuclear industry, this understanding is central to a more efficient design, operation, and emergency
management, of current and future NPPs.

Presently, most of the regulators around the world as well as organizations developing codes and
standards (ANS, ASME, USNRC, IAEA, etc.) are in the process of developing regulatory
guidelines for probabilistic flooding risk assessment particularly for advanced reactors. Therefore,
the scenario-based RISMC applications proposed in this project can be used as an assessment tool
to evaluate the value of new frameworks.

Historically, the nuclear industry has not been effective in communicating the risks to public and
media. Effective communication of risk requires an extremely simple characterization and powerful
simulation/visualization of scenarios, which can then be used as a confidence builder through
public’s understanding of the extensive defense-in-depth measures followed by the industry
experts. RISMC toolkit can be quite powerful in simplifying and in enabling the visualization of
defense-in-depth measures for appropriate communication to the public and the media.
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3. Data-Driven Methodology for Validation of RISMC Models

3.1. Summary

Risk-Informed Safety Margin Characterization (RISMC) is a modern methodology for Nuclear Power
Plant safety analysis that combines a dynamic probabilistic risk assessment (PRA) and “best estimate plus
uncertainty” realization of the RISMC mechanistic models. Controlled by probabilistic tools with initial
and boundary conditions, multiple simulations are performed with mechanistic tools to identify the safety
margin and vulnerability of the reactor. Since the result of RISMC is used to inform and support the decision
regarding design, operation, and safety of nuclear power plant, a mathematically defendable and robust
approach is needed for the validation of the simulation tools, such that a confident and effective decision
can be made regarding the high-consequence nuclear safety. Due to the lack of prototypical data and
deficiencies of the simulation model, a framework is needed to guide the validation of RISMC Modeling
& Simulation (M&S) tools in three major aspects: generating & gathering direct all related evidence,
integrating evidence into a claim regarding the model credibility/uncertainty, and making confident and
robust decision for the model credibility/uncertainty. Also, since RISMC requires a large number of
simulations for every external event, it’s sometimes inefficient to pursue high-order-accuracy M&S tools,
where the facilities’ margins are enormous compared to code uncertainty. As a result, the sufficiency of
simulation accuracy depends on the characteristics of the scenario and validation that adapts such a concept
is known as the risk-informed validation. The objective is to advise the safety management group on how
to make a best and effective assessment for the model uncertainty, given the research goal and the scenario
information. Although many validation frameworks have been developed, none of them explicitly adapts
the risk-informed concept. Moreover, many elements are performed as black boxes due to the inherent
limitations and challenges. When the system becomes large and complex, the uncertainties induced by these
limitations could grow up and accumulate. Without proper investigations, such issues can be easily
overlooked and the user may experience a loss of confidence on the validation decision. As a result, a risk-
informed validation framework is needed for assessing the credibility/uncertainty of RISMC M&S tools.
At the same time, new methodologies/technologies are needed to resolve the major issues and challenges
of traditional validation methodologies.

In the project of “Development and Application of a Data-Driven Methodology for Validation of Risk-
Informed Safety Margin Characterization Models”, a validation framework, named Risk-informed
Evaluation Model Development and Assessment Process (REMDAP), is proposed for the validation of
RISMC M&S tools. REMDAP is designed based on the framework of Evaluation Model Development and
Assessment Process (EMDAP) and the methodology of Code Scaling Applicability, and Uncertainty
(CSAU). By incorporating data-driven and risk-inform concept, REMDAP aims to present a significant
shift from the current approach for expert-determined validation to the data-driven approach. In this study,
a concept of sufficient accuracy is developed and adapted in the REMDAP framework to account for the
unfrozen model forms, parameters and computational resources in the RISMC analysis. A tentative
workflow is prepared based on the currently developing methodologies/technologies. Next, the progress of
developing key methodologies in the REMDAP framework, including the data-driven closure development,
data-driven uncertainty quantification, and Predictive Capability Maturity Quantification & Bayesian
Network (PCMQBN) are demonstrated. Presently, this study demonstrates some initial developments of
classifying methodologies based on assumptions and conditions, the objective is to identify the feature and
create an initial proof-of-concept for applying Data Driven Modeling (DDM) in the model development
and validation process. The application of REMDAP to sophisticated RISMC tools, including Cobra-TF
and NEUTRINO-SPH, is still under development.

First, a data-driven closure development methodology is under initial development and the available
data-driven methods are classified into two types. The parametric model is built upon the fixed model form
that relies on human knowledge, while the nonparametric model solely depends the data. Illustrative
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examples are prepared for both types of model development methods and observations are analyzed.
Second, a data-driven uncertainty quantification (UQ) methodology is developed and the present methods
are classified into two types: global data-driven UQ and local data-driven UQ. The global approach targets
at system code like Cobra-TF by assuming that the model has been well-verified and closures are the major
source of uncertainties. The local approach uses Physics-Informed Machine Learning (PIML) to construct
a surrogate between the simulation error and the input physical features. It’s designed for the coarse-grid
CFD like NEUTRINO-SPH, where error of each computing element is characterized with PIML.
Illustrative examples are prepared for both types of data-driven UQ methods and observations are analyzed.

Another major challenge of RISMC M&S tools validation is the decision-making process under
uncertainty. Traditional validation relies heavily on expert judgments and the process is obscure and
heuristic. In this study, a decision-theoretic methodology PCMQBN is under development. The objective
is to construct a transparent, consistent and improvable validation process with mathematical languages and
effectively make decisions on model credibility with adequate confidence based on a set of uncertain beliefs
and a set of utilities. Guidance is constructed for the uncertainty grade of the R/S/U
(Relevance/Scaling/Uncertainty) grading system. lllustrative examples are prepared to demonstrate the
guidance and major findings. In addition, a framework of Bayesian sensitivity study is proposed for
PCMQBN and the objective is to improve the robustness of the PCMQBN’s result.

3.2. Introduction

This chapter aims to demonstrate the motivation of developing a new validation framework for the
RISMC M&S tools from the perspective of practical challenges/gaps.

3.2.1.Risk-Informed Reactor Safety Analysis

Risk-Informed Safety Margins Characterization (RISMC) Pathway is conducting research and
development for advanced methods and tools to support Nuclear Power Plant (NPP) safety assessments and
management [1]. Presently, RISMC is applied to address the NPP safety margin during external hazards,
including flooding, high winds and so on. Because the RISMC approach explicitly couples probabilistic
approaches (the “scenario”) with phenomenological representations (the “physics”) through a modeling-
and-simulation-based approach, it is ideally suited to serve as a framework to address the interactions of
external hazards on NPPs and their potential impacts on the NPP safety. Figure 3.3 shows a simple
representation of load and capability in both traditional safety analysis (left) and RISMC (right). Originally,
the load and capability on the Structures Systems Components (SSCs) are calculated deterministically by
the system code with less uncertainty information. In RISMC analysis, uncertainty of the load and capability
are considered, and the safety margin is characterized by the region where the load exceeds the capacity.
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Figure 3.3: Simple representation of load and capability in traditional safety analysis (left) and RISMC
(right) analysis. The shaded region in the right plot is where the load exceeds the capacity, exhibiting
potential failure risk.
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Usually, the capacity distribution does not vary too much from one scenario to another since they
are determined by the physical designs and material properties or regulatory safety limits. But distributions
of the load will depend on scenarios and RISMC simulation tools are needed to determine the time and
scenario-dependent outcomes for a family of accident scenarios. Figure 3.4 shows an example for a family
of load and capacity distributions under different accident scenarios. The plot is extracted from the RISMC
document by C. Smith et al, 2015 (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins
Characterization (RISMC) Path Technical Program Plan, 2015).
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Figure 3.4: Family of load and capacity distributions for different accident scenarios. This plot is
extracted from figure 2-4 of RISMC document (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed
Safety Margins Characterization (RISMC) Path Technical Program Plan, 2015).

In recent works (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins
Characterization (RISMC) Path Technical Program Plan, 2015) [3] [4], RISMC has been applied to analyze
the risk induced by flooding hazards, and Figure 3.5 shows the corresponding flowchart for tsunami events.
RAVEN (Risk Analysis in a Virtual Control Environment) is the statistical package that samples, executes,
and evaluates the simulation with uncertain parameters. NEUTRINO, one of the Smoothed Particle
Hydrodynamics (SPH) software packages, is applied as the Computational Fluid Dynamics (CFD) tool for
simulating the flooding generation, propagation, and interaction with NPP sites. RELAP-7 is the system
code designed for the reactor thermal-hydraulics simulation. For the CFD simulation, three-dimensional
terrains and building models are constructed by SPH particles for the entire NPP site. Next, multiple full-
size and real-time fluid simulations with various initial conditions characterized by RAVEN are performed
with NEUTRINO. Event sequences and plant responses, including the dynamic water height, force acting
on a certain SSC, and so on, can be extracted for tsunami events. Reference document (Smith C. , Rabiti,
Martineau, & Szilard, Risk-Informed Safety Margins Characterization (RISMC) Path Technical Program
Plan, 2015) has demonstrated detailed procedures and findings.

51



RAVEN RAVEN + RAVEN
(representing Neutrino o R‘WEI:’“ (representing ll':::-:::ﬂ!
frequency and (representing 'ﬂ“pm' '"“ not) scenario core melt or not)

. SsC
'nét"’:tr'l?g ] ;Ieasnt:nig T  Failures T Scenario Scenario
. po —— (Floodor —— Simulation Outcomes
(Tsunami) to Initiator Stochastic)
o 30 faciy ety
l_:a nIl:dc building model to track and process
dg i i response and progress of i oprovents
m:) ° nglo boundary flooding + gsguch as
sunam conditions failure models
hazards failures
Flooding Analysis

Figure 3.5: Flowchart of applying RISMC in external flooding analysis by C. Smith, et al. (Smith C. ,
Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins Characterization (RISMC) Path Technical
Program Plan, 2015).

Figure 3.6: NEUTRINO simulation for the tsunami event [5].

Figure 3.6 shows a snapshot of tsunami simulation using NEUTRINO with a ¥ slice of the nuclear
facility. The impact of the tsunami, whose wave height ranges from 14 to 38 meter, are determined based
on the SPH simulation. Based on the information from NEUTRINO, the system code can predict the
thermal-hydraulic status inside the reactor core. The scenario-based and risk-informed safety margin can
be obtained for the reactor and facilities using the statistical analysis. Reference document [6] shows the
safety margins risk for a Pressurized Water Reactor during the tsunami event. Though NEUTRINO has
shown great capability in performing the large-scale fluid simulation, the simulation’s credibility or
uncertainty remains to be a problem. Some initial assessments have been performed for SPH and
NEUTRINO (Smith C. , Rabiti, Martineau, & Szilard, Risk-Informed Safety Margins Characterization
(RISMC) Path Technical Program Plan, 2015), however, due to the complexity of physics and phenomenon,
a comprehensive validation is still needed to accurately characterize the uncertainty of simulations. What’s
more, although SPH can be treated as a DNS software, whose accuracy can be improved by refining
particles, it is not realistic to perform RISMC analysis with DNS configurations. In addition, for facilities
that have much more margins than the code uncertainty, it is not effective to keep pursuing high accuracy.
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Therefore, the accuracy of characterized M&S credibility/uncertainty needs to be sufficient but also
practical.

3.2.2. Model Validation Framework

This section aims to review the previous standards and methodologies for the M&S credibility
assessment in the nuclear discipline, including their features, limitations and applications.

CSAU/EMDAP

Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology is introduced in
1989 [7] to accommaodate the revised rule on the acceptance of Emergency Core Cooling System (ECCS)
entitled “Emergency Core Cooling System; Revision to Acceptance Criteria”. The objective is to provide
a practical engineering approach that can quantify the code reliabilities and uncertainties. It’s mainly
composed by three elements [8]: (1) requirements and code capability; (2) assessment and ranging of
parameters; (3) sensitivity and uncertainty analysis; The first element aims to identify the code applicability
and potential code limitations for the particular scenarios. This is usually achieved with a phenomenon
identification and ranking process, (e.g., Phenomenon Identification and Ranking Table (PIRT) [9]), such
that the assessment process can be sufficient and efficient. The product of the first element is a hierarchy
of relevant tests for the code validation, including the separate effect tests (SETs), mixing effect tests
(METS), and integral effects tests (IETS). The second element aims to assess the capability of the code by
comparing simulation results against experimental data. The scaling methodology is needed in this element
to guide the development of simulation codes and assess the code scale-up capability. The third element
aims to assess the uncertainty due to the code limitations, scaling distortions, data quality, and so on.
Usually, the second and third element are performed at the same time and the ultimate product is a simple
and direct statement of the code uncertainty or credibility in the primary safety criteria (e.g. the Peak
Cladding Temperature (PCT)). For obvious and inevitable limitations in knowledge, a conservative margin
is added to compensate for the effect of epistemic uncertainty.

Evaluation Model Development and Assessment Process (EMDAP) is a regulatory guide
developed by U.S. NRC [10] for code development and assessment. The objective is to describe an
acceptable process of developing and assessing the evaluation models that are used to analyze transient and
accident behavior within the design basis of a nuclear power plant. The principle of EMDAP is developed
based on the CSAU methodology, while EMDAP has formal and explicit descriptions for most of the
assessment process, including the PIRT, evaluation model, assessment base, scaling analysis, and so on.
After the validation, the system code will be “frozen” and applied to accident scenario for reactor transient
and risk analysis. Though CSAU and EMDAP have a logical and comprehensive structure, the decision
process for the adequacy is not explicitly specified, and the judgment is made based on experts’ opinion.
Therefore, for an individual researcher, it’s difficult to conduct EMDAP independently and transparently,
and the epistemic uncertainty are easily overlooked. For a group of researchers, problems of expert
elicitation become serious and challenging. In addition, though CSAU/EMDAP emphasizes the importance
of VUQ, they have a vague classification between the verification and validation. CSAU has been
successfully applied to the RELAP-5 simulation code for the Small Break Loss-of-Coolant Accidents of
APG600 [11], while EMDAP has not been widely applied.

Predictive Capability Maturity Model

Predictive Capability Maturity Model (PCMM) [12] is developed by Sandia National Laboratory
and it aims to assess the credibility of M&S tools based on the decision consequence. Comparing to
CSAU/EMDAP, PCMM explicitly treats the model credibility/uncertainty assessment as a decision-making
process with explicit structures. First, a specific application and the corresponding model is selected. Also,
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based on the nature and consequence of the application, requirements and targets can be designated. Next,
for the chosen scenario, six attributes are designed and assessed separately: representation and geometric
fidelity; physics and material model fidelity, code variation, solution verification, model validation, and
uncertainty quantification and sensitivity analysis. At the same time, a qualitative assessment for each
attribute is performed based on a PCMM matrix, and it characterizes each attribute with maturity levels.
Finally, the model’s achieved level is compared against the target level and the decision of validation
adequacy can be made. Since the final decision can either be made based on a stringent requirement or a
trade-off between the fulfillment and limitation, PCMM can effectively guide the development and
validation of M&S tools. In addition, PCMM presents a formal definition for credibility assessment using
the maturity level and it also explicitly distinguishes the difference between verification and validation.
Though the maturity descriptor of PCMM includes statements of IETs and SETS, the scaling analysis and
the hierarchical structure are not explicitly discussed. As a result, the capability of PCMM is limited in
validating complex systems with multiple scales, physics, and phenomenon. In 2013, PCMM has been
specifically discussed in the report by U.S. NRC [13], which emphasizes the use of maturity for the model
credibility assessment. CASL also adopts PCMM for assessing Multiphysics computational tools [14].

In general, previous validation frameworks either do not have a formalized decision model or do
not have the capability of scaling. Also, none of them is built on the risk-informed concept. As a result, a
new risk-informed framework is needed to better validate the RISMC M&S tools. What’s more, the
proposed framework should be built based on the best-existing knowledge and show the capability of
evolution with new data, information, and knowledge.

3.2.3.Data-Driven Modeling and Application

This section aims to review the development of Data-Driven Modeling (DDM), and in fact, the
concept of data-driven modeling is not new to the nuclear discipline. For a complicated physical process
that has not been fully understood, the classical data-driven approach aims to gain insights and mechanistic
understanding of the physics through the data analysis and mining process. Figure 3.7 shows a classical
cycle of the modeling process. The cycle usually starts from a specific application, where requirements and
specifications are designated for each scenario. At the same time, the prediction made based on the
knowledge base is compared against the observation from the application. If the inconsistency is not
acceptable, the database will be renewed with more data collection. Next, the data will be “formatted” to
information that is valuable and meaningful to the human being for understanding a subject [15] and form
an information base. Next, knowledge is extracted from the information based on people’s understandings,
beliefs, and assumptions, such that a theory/model can be designed for the application purpose. Next, the
model prediction from the compact theory/model is again compared to the observation and the consistency
is against evaluated. This cycle is repeated until the consistency is acceptable and it usually takes decades
to develop a satisfactory model. Moreover, the modeling evolution of this cycle is driven by human’s
knowledge and capability. Sometimes, data analysis and mining are employed in addition to human efforts
for information collection and knowledge abstraction.
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Figure 3.7: Classical cycle of modeling process

In the last few decades, with the rapid growth of computational powers and data availability from
high-resolution experiments and high-fidelity simulation, the role of data analysis and data mining becomes
more important. Techniques, including calibration and statistical inference, are widely applied for
estimating the parameters of deterministic models. Domingos [16] has classified data-driven methods into
five tribes based on their learning algorithm and targeting problem (Table 3.).

Table 3.1: Five tribes of data-driven techniques [16].

Tribe Targeting Problem Origins Master Algorithm
Symbolistic Knowledge Composition | Logic, philosophy Inverse deduction
Evolutionaries | Structure Discovery Evolutionary biology | Genetic programming
Analogizers Similarity Psychology Kernel machines
Connectionists | Credit Assignment Neuroscience Backpropagation
Bayesians Uncertainty Statistics Probabilistic inference

At the same time, as the statistical inference algorithms become more sophisticated and feasible, it
is possible to assimilate and extract information from the large amount of data, like those generated by DNS
simulations. In recent years, with the advancement of machine learning, DDM shows potential in extracting
and learning knowledge without being explicitly programmed. In a word, the development of statistical
inference and machine learning show potential of carrying one or more modeling steps and the reliance on
human knowledge is getting less. Depending on the level of involvement for the DDM and human
knowledge, a DDM hierarchy structure for the modeling process can be developed based on the data-
information-knowledge-wisdom hierarchy by Ackoff [17] and Rowley [18].
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Figure 3.8: DDM hierarchy system modified according to Ackoff [17] and Rowley [18].

In the present nuclear discipline, DDM is mainly used for extracting information from data, including
the uncertainty, similarity, and so on. Attempts have been made in the thermal fluid area, especially in the
turbulence modeling and the Nuclear System Thermal Hydraulics (NSTH). For turbulence modeling,
efforts have been made to accelerate the calculation speed [19] and to improve the accuracy [20] [21]. For
the NSTH development, initial works have been performed for classifying the DDM application [22].
Besides, some efforts have been made to recognize and recover the underlying physics from a large amount
of data, including constructing the governing equation [23] and closure relations [24] [25]. Although DDM
shows excellent potential in information abstraction and knowledge abstraction, the problem of data
collection limits its application. In one hand, the quality of nuclear data is not properly guaranteed, where
information of experimental setups and uncertainty are poorly recorded. In another hand, the amount of
nuclear data is far less than the requirements for “big data” and data gaps are commonly seen in nuclear
studies. Therefore, to properly apply DDM in the nuclear discipline, a data collection system with proper
requirements on data quality, data amount, and data coverage is needed in addition to the system of data
analysis and mining.

One major challenge in validation of nuclear discipline is the data gap. Previously, validation relies
on human judgment to bridge the gap and improve confidence. However, such expert-determined process
is highly heuristic and takes decades to develop and validate a model. Nowadays, with the rapid growth of
computer powers and experimental instruments, a large amount of data is generated by both the high-
fidelity simulations and advanced experiments. Also, data analysis and mining are getting more
sophisticated and tools like Bayesian inference and machine learning have proven to be successful in many
areas. It has become possible to improve the use that we make of data we have (or can obtain) and present
a significant shift from the previous expert-determined model development/validation to a new data-driven
path. As a result, this study aims to investigate the DDM and its application to model development and
validation in the nuclear discipline, especially the Nuclear System Thermal Hydraulics and coarse-grid
Computational Fluid Dynamics (CFD).

3.2.4.Remarks
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This chapter first describes the RISMC technology and its application in the reactor safety analysis,
where both accuracy and sufficiency are required. It’s claimed that a comprehensive validation is needed
to characterize the uncertainty of RISMC M&Ss. The objective is to ensure the reliability of RISMC results,
meanwhile, to maintain the M&S efficiency to the best extent. Next, this chapter describes the state of art
for the present model validation framework in nuclear discipline, including CSAU/EMDAP and PCMM.
By comparing the requirement of risk-informed technology against the capability of existing validation
methodologies, it’s found that the practical gaps/challenges are too large to apply conventional validations.
Next, the recent development and applications of DDM for the M&S in the nuclear discipline. To properly
assess the uncertainty/credibility of the RISMC M&S tool, a new validation framework is needed based on
the current best knowledge, including the decision theory, scaling analysis and DDM. In addition, risk-
informed technology should be incorporated into the proposed validation framework.

3.3. Technical Developments

This chapter aims to demonstrate the development of Risk-Informed Evaluation Model Development
and Assessment Process framework, including the central concept, present progress of key
technologies/methodologies, and recommendations from the expert group.

3.3.1.Concept of Sufficient Accuracy

To validate selected RISMC simulation tools, a validation framework is needed for uncertainty
quantification and scaling. In the EMDAP framework, the M&S is “frozen” for the specific scenario after
the validation. However, model forms and parameters of RISMC tools are subject to change since efficiency
is another important consideration in addition to accuracy. Moreover, since RISMC analysis aims to
evaluate the reactor’s safety margin during external hazards, the uncertainty is significant and the result is
subjective. Under such conditions, the way that traditional frameworks validate the M&S by characterizing
one single error number is not very meaningful. Indeed, reducing the number of error implies better
accuracy, but the work becomes more complicated and less scrutable. Even though the simulation error
appears to be acceptable or far less than the criteria for a specific large-scale scenario, the credibility of the
M&S remains suspicious. As a result, this study proposes the concept of sufficient accuracy that aims to
adapts the accuracy requirements according to scenarios and tools’ limitations. In this study, the “accuracy”
of a simulation result is represented by the maturity level that is characterized by errors and the “sufficient”
is characterized by the utility on the M&S maturity. The utility on the model maturity is assessed based on
the expect rewards by multiplying the reward function by subjective beliefs. The rewards function depends
on the consequence and human preference on each level, while the subjective belief is assessed with
validation metrics and expert elicitations. Note that the concept of sufficient accuracy has many commons
with the risk-informed or risk-oriented concept. Therefore, validation adopting such concept can be claimed
as a risk-informed validation. Further, to ensure the reliability and avoid confusion, it’s required that the
sufficient accuracy and its analysis are transparent, complete, consistent and improvable.

Table 3.2: Example of reward levels and their meaning. The reward function ranges from O to 1.

Expected Rewards Characteristics

0.9 The uncertainty of M&S is well characterized and successfully maintained at a
very low level for the application purpose.

0.5 The uncertainty of M&S is partially characterized and successfully maintained at
a reasonable level for the application purpose.

0.1 The uncertainty of M&S is poorly characterized and likely to amplify for the
application purpose.

57



Sufficient accuracy has two sub-attributes: acceptance domain and bounded error. The acceptance
domain is assessed by on the scenario and requirement, while the bounded error is characterized based on
the discrepancy between the model prediction and the true value. Table shows their definition and features.

Table 3.3: Definition and notation for sufficient accuracy, acceptance domain and bounded error.

Terminology

Definition

Notation

Sufficient
Accuracy

A risk-informed concept for
M&S validations by
adapting  the  accuracy
requirements according to
scenarios and tools’
limitation

The sufficient accuracy is the theoretical basis for the
risk-informed validation framework. It is designated for
situations where the effect of uncertainties are
dominant. The “sufficient” is measured by the utility on
the model accuracy. It requires the validation to be
transparent, complete, consistent and improvable.

Acceptance
Domain

An accuracy requirement for
simulating the generation,
propagation, and interaction
of accident scenarios

The acceptance domain is inherited from the concept of
sufficient accuracy and arisen from the application
requirements. Other than the practical consideration, no
explicit restriction is placed on the acceptance domain.

The bounded error is inherited from the concept of
sufficient accuracy and estimated by comparing the
model prediction against the true value or high-fidelity
data. The bounded error has to be consistent, therefore,
the analyzing process should be transparent, complete
and robust.

An error analysis for the
M&S based on the
discrepancy between the
model prediction and the true
value

Bounded
Error

Comparing to the accuracy concept in traditional validations, the sufficient accuracy has three major
differences. First, it aims to establish that the belief is high enough to regard the M&S as a tool of certain
maturity rather than seeking the precise error. Though such concept appears to be trivial when conservative
treatment is available, it avoids the excess conservatism while maintains convincing. This conservatism
suggests that sufficient accuracy has to be transparent, while the convincement suggests that the analysis
(of both logical and evidential) towards the sufficient accuracy should be complete. Second, it clearly
separates the aspects of well-posed error/discrepancy calculation and the aspects of human confidence that
are subject to large variations. The former aspect can be classified as a “causal relation” that is deterministic
and obtained by direct comparisons. The latter one is “intangible” that is probabilistic depending on the
scenario and human articulates. As a result, this requires a properly document for human articulates. Also,
arobust and consistent process is needed for making confident decision regarding the M&S accuracy. Third,
the concept of sufficient accuracy focuses on the area where large uncertainties exist. Instead of
gualitatively defining the model credibility, the sufficient accuracy aims to bound the uncertainty.
Therefore, as uncertainties being reduced, the process guided by sufficient accuracy should be improved.
In conclusion, this study proposes a risk-informed validation framework that is transparent, complete,
consistent, and improvable. To ensure the logical completeness and consistency, the framework is
suggested to be built upon the existing studies.

3.3.2.RISMC Model Validation Methodology

Risk-Informed Evaluation Model Development and Assessment Process (REMDAP) is a validation
framework first proposed by Dr. N. Dinh, et al. [26] in the project of “Development and Application of a
Data-Driven Methodology for Validation of Risk-Informed Safety Margin Characterization Models.” The
objective is to “provide a mathematically defendable basis for calculating biases and their uncertainties for
a wide range of operating conditions that represent the intended range of model application” by combining
the CSAU/EMDAP methodology with advanced DDM methods, including Reduce Order Modeling (ROM)
[27], Simulation-Based Scaling (SBS) [28], Validation Data Planning (VDP) [29], and Validation Data
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Management System (VDMS) [30]. Figure 3.9 shows the advanced methods and tools to facilitate the
implementation of already demanding EMDAP in a risk-informed application. Orange boxes represent
methodologies that will be developed in this project and their task number.

1.1: Reqs ——» Element 1 - Establish Requirements for Evaluation Model Capability
E1.1. Specify analysis purpose, transient class and power plant class
E1.2. Specify figures of merit
E1.3. Identify systems, components, phases, geometries, fields and processes that should be modeled
E1.4 Identify and rank phenomena and processes

4 v

1.7:VDP |—> Element 2 — Develop Assessment Base Element 3 — Develop Evaluation Model
E2.1. Specify objectives for assessment base Perform = E3.1. Establish EM development plan
scaling analysis and identify similarity criteria E3.2 Establish EM structure
3.4:CFD }—b E2.2. |dentify existing data and/or perform IETs and SETs E3.3 Develop or incorporate closure
to complete data base -+ models T
—— E2.3. Evaluate effects of IET distortions and SET scaleup )
1.8: VDMS —» capability 1.6 DDM
E2.4. Determine experimental uncertainties

!

Element 4 — Assess Evaluation Model Adequacy Closure Relations (Bottom-up)
E4.1. Determine model pedigree and applicability to simulate physical processes
E4.2. Prepare input and perform calculations to assess model fidelity and/or accuracy
E4.3. Assess scalability of models
Integrated EM (Top-down)
E4.5. Determine capability of field equations and numeric solutions to represent process and phenomena
E4.6. Determine applicability of EM to simulate system components
. E4.7. Prepare input and perform calculations to assess system interactions and global capability
1.4:5SBS E4.8. Assess scalability of integrated calculations and data for distortions
1.5: ROM —» E4.9. Determine EM biases and uncertainties I

1.3: PCMQ Adequacy Decision: Does code meet adequacy standard? l
= NO - Return to appropriate elements, make and assess corrections

YES - Perform plant event analyses

Figure 3.9: Risk-informed Evaluation Model Development and Assessment Process. Orange boxes denote
developments in the project and indicate EMDAP elements where the advances are expected to impact
[26].

The present section discusses and demonstrates the progress of Task 1.3, Task 1.6, and Task 1.7.
Details of Task 1.3 and Task 1.7 have been initially addressed in a previous milestone report [31], this study
will further develop the PCMQBN framework by constructing guidance for the R/S/U
(Relevance/Scaling/Uncertainty) grading system. Also, this study will discuss the present development on
the robustness of PCMQBN. Task 1.6 DDM is the most critical and challenging problem since it presents
a significant shift from the current approach of expert-driven to data-driven analysis and this project aims
to prove its feasibility. Presently, the DDM is applied to two elements: closure development and uncertainty
guantification. The data-driven closure development aims to construct or calibrate closure models with
data-driven techniques, while the data-driven UQ seek s to evaluate the uncertainty of simulation.
Furthermore, the data-driven UQ has two approaches: the global approach aims to evaluate the uncertainty
of NSTH codes like Cobra-TF, where closures and correlations are assumed to be the major uncertainty
source; the local approach aims to evaluate the uncertainty of Coarse-Grid CFD code like NEUTRINO,
where each element is the source of uncertainties. Presently, this study demonstrates some initial
developments of classifying methodologies based on assumptions and conditions, the objective is to
identify the feature and create an initial proof-of-concept for applying Data Driven Modeling (DDM) in the
model development and validation process.
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Figure 3.10 shows a tentative structure of the REMDAP framework according to the present
methodology development. Elements #1 - #4 are inherited from the EMDAP framework, while new
components, including data-driven closure development, data-driven validation and PCMQBN are
developed and included. Element 1 and 2 are the same as EMDAP process, and a similar procedure should
be followed. For element 3, the data-driven closure development is incorporated. Techniques, including
machine learning and statistical inference, are used for the model construction. At the same time, the data-
driven concept is also employed in the model assessment process by quantifying the simulation uncertainty,
and two approaches are developed for the system code and coarse-grid CFD separately. If models are
consistent and uncertainties are bounded by an acceptable range. The uncertainty information will be fed
into the PCMQBN framework for the model maturity analysis. The code adequacy, represented by the
probabilistic maturity level, will guide the M&S credibility decision. If the achieved credibility has reached
the target level, a robustness test will be performed to ensure the robustness of the validation process. Next,
the similar validation process will be performed multiple times with different combination of model forms,
model parameters, and computational resources. Finally, a function of the M&S credibility against model
forms, model parameters, and computational costs will be constructed, based on which model suggestions
will be made for the full-scale safety analysis. For cases that fail to satisfy the criteria or has a major issue
like model inconsistency or unbounded error, information will be fed to the validation data plan and guide
the update of validation database and evaluation models.

» Safety Analysis (full-scale)

Modelsuggestions

‘ Element 1: Establish Requirements ‘

Validation Data Plan

‘ Element 2: Develop Assessment Base ‘4— Update Database

Element 3: Develop Evaluation Model

Update EM

Data-Driven Closure Development
Element 4: Assess Evaluation Model

Propagated error = f(model form, Data-Driven Uncertainty Quantification

model parameters, computational

P ! P Global Approach Local Approach
resource)
¥ Model Inconsistency

ar
y Unbounded Error

ME&S Error |

Element 5: Credibility Decision-Making

PCMOQBN

Probabilistic Maturity ‘

Credibility Decision ‘

Maodel credibility doesn't satisfy
NO the sufficient accuracy

YES &

‘ Robust? ‘
Model credibility decision is not

YES I_NQ robust

Figure 3.10: Schematic flowchart of REMDAP framework (tentative). The innovative
methodologies/techniques are bolded.
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Comparing to the EMDAP process, the information flow and element 1 & 2 are maintained. Element
3 and 4 have been greatly simplified and only essential components that have data-driven concept are
included since the project aims to demonstrate the feasibility of the data-driven and risk-informed concept
in the validation. Scaling analysis is not explicitly discussed, but it’s performed as part of the data-driven
UQ. The adequacy decision of EMDAP has been rebuilt into a new decision-making element. Moreover,
in addition to the model credibility decision, REMDAP also requires a sensitivity study for the decision-
making such that the final decision can be robust.

3.3.3.Progress of the Key Technology/Methodology

This section aims to demonstrate the progress of crucial methodologies in the present REMDAP
framework. For each methodology, assumptions, objective, technical approach and illustrative examples
are provided.

Data-Driven Closure Development

With the rapid growth of computer powers, data-driven techniques, especially statistical inference and
machine learning, have been continuously gaining success in the computer vision and healthcare. Machine
learning, especially the deep learning technique, has shown to be more capable than human contestants in
the area of image processing, pattern recognition, and so on. Inspired by such successes, researchers have
been trying to apply machine learning in closure model developments. The expectation is that machine
learning can help researcher identify the essential physical features from the data, and thus shorten the
model development cycle. Recently, general guidance for machine-learning-based data-driven closure
development has been developed by Chang et al [22] for the NSTH. Figure 3.11 shows his schematic
workflow for the NSTH closure development using supervised machine learning. X represents the input
flow features, Y represents the targets associated with the input flow features, k represents the kg,
measurement for a single flow feature point. Both inputs and targets will be fed into the machine-learning
engine. After sufficient training, a NSTH closure will be developed.

ARAED (inputs) ARAED (targets)
X={xy, ..., x, L, k=12,..,n Y={y, . mbk=12,..,n

\

Machine
Learning
Engine

ML-based thermal fluid closures
X = {xll "'fxn}Jk = 1J'2J "'ln

Figure 3.11: Schematic workflow of data driven NSTH closure development using machine learning by
Chang et al. [22]

Detailed information for each type can be found in the reference document [22]. Until now, machine-
learning-based data-driven closure development has been used in constructing single-phase turbulence
models [20] [21] and simple two-fluid models [24] [25]. Ling et al. [32] evaluates the predictive capability
of different machine learning algorithms for predicting the averaged Navier-Stoke uncertainty in a high
Reynolds region.
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The present study mainly investigates the application of statistical inference and machine learning
algorithm in data-driven closure development process. To adapt the concept of sufficient accuracy and
investigate the feature of various types of development process, this study classifies the present closure
development methods into two types. Table shows a summary of two types of methods, including their
assumptions and master algorithms. Compared to the parametric model, the nonparametric model makes
fewer assumptions and requires no priori information [33]. Therefore, the nonparametric model is more
robust and simpler, however, it requires a large amount of data to draw a confident conclusion. In many
application, the parametric and nonparametric form are mixed [34] but mathematically transferring them
from one to another remains challenging.

Table 3.4: Summary of closure development techniques

Closure Development | Assumption Master Algorithm

1. Fixed model form,

2. The errors are normally distributed,

3. Random variables are independent and
identically distributed.

Two unspecified continuous distributions are Neural Network.

identical Gaussian Process.

Maximum Likelihood
Estimation.
Bayesian Inference.

Parametric

Nonparametric

An illustrative example is prepared to demonstrate the feature and difference between two types of
methods. This example assumes that the closure is a correlation for the Nusselt number with respect to
Reynold and Prandtl number. It’s also assumed that the data from Petukhov correlation [35] is high-fidelity
and they will be used as the training data. By employing a deterministic correlation as the training data
source, the effect of data amount and data bias on the closure quality can be illustrated. For the parametric
method, a fixed form of Dittus-Boelter correlation is employed, while for nonparametric method, the neural
network is used. Since neural network randomly generates the initial weight and bias, which will be updated
by the optimizer, multiple (100 times) training is performed with a sequence of random number and a mean
value of all training results is used. This example uses Mean Squared Error (MSE) to measure the quality
of model prediction. Figure 3.12 shows the plot of MSE for closures constructed by both methods. As more
data is used for training and calibration, the MSE value reaches the asymptotic range for all types of
methods. It’s also found that a similar error is obtained from the Bayesian Inference and Least Squared
Error since the closure’s quality is limited by the fixed model form. In addition, the MSE from the neural
network can be reduced to a very small value (10~3). What’s more, both closures are sensitive to the amount
of data. However, when the data amount is small, the neural network tends to have larger error than the
parametric error. In the appendix document (Appendix B) by Zachry Inc., it’s also suggested that machine
learning algorithm like neural network has the problem of overfitting.
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Figure 3.12: Mean Squared Error (MSE) of closures constructed by parametric and nonparametric
methods.

Data-Driven Uncertainty Quantification

This session demonstrates the study of data-driven Uncertainty Quantification (UQ), and the objective
is to accurately quantify and propagate the simulation error. This study classifies the data-driven UQ
methods into two types: the global data-driven UQ and the local data-driven UQ. Table shows the summary
of two types of methods that are underdeveloped.

Table 3.5: Summary of data driven UQ

Bgta—Drlven Assumption Targeting Problem Master Technique
Global Closure models are the major Model Form and
. Forward/Inverse UQ
Approach source of uncertainty Parameter Error
Local Discretization Error, Physics-Informed
Model Form, and - .
Approach Machine Learning
Parameter Error.

Although Data-Driven UQ aims to propagate/predict the simulation uncertainty, it’s more
straightforward and feasible to compare the corrected simulation result against the real result rather than
comparing the predicted uncertainty against real uncertainty. In addition, most of the present validation
metric is designed for estimating the credibility/uncertainty of simulation result rather than the
credibility/uncertainty of uncertainty. Therefore, the quantified uncertainty will be substituted back to the
simulation and the corrected result will be compared against the real value to test the applicability of
proposed methods.

Global Data-Driven Uncertainty Quantification

By assuming closure models are the major source of uncertainty, the global data-driven UQ aims to
guantity the uncertainty induced by the closure model. The simulation is assumed to be well-verified before
this process. Therefore, the capability of global approach is limited to the model error quantification,
including the model form and model parameters. In this study, the global approach is designed for the
system code of Cobra-TF. Figure 3.19 shows workflows for the inverse UQ component of the global
approach. Note that the global approach calibrates the model based on the quantity of interest, therefore,
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the field data from the CFD or system code simulation needs additional processing. In addition, the result
of uncertainty quantification depends on the selection of validation metrics. In addition, since inverse UQ
usually requires a sampling process, to save computational resources in complex problems, methodology
of Reduced Order Modeling (ROM) is used to construct a surrogate model for the solver. As another major
methodology developed by the data-driven project, detailed discussions will be prepared in a separate
report. After the inverse UQ, uncertainties of model parameters and forms will be propagated by perturbing
their values according to the known distribution.

ROM

I CTF Salver : J-
Initial & Boundary condition ) rocessing -
, Y —| Field Data * Quantity of Interest
Conservation law Empirical
Correlation o validation|Metric
| e_g. Bayesian Inference validation
Experiment

Figure 3.13: Schematic workflow for the global approach of data driven UQ.

To demonstrate the application of global approach, an illustrative example is prepared and the objective
is to quantify the parameter uncertainty of Dittus-Boelter correlation. Also, the uncertainty of a machine-
learning-based model is analyzed. This example assumes that the data from Petukhov correlation is high-
fidelity and Bayesian inference is used for quantifying the parameter uncertainties based on data from
validation domain. Next, the quantified uncertainty will be propagated to the application domain. Figure
3.14 shows the coverage mapping of model inputs variables, including the Reynolds (Re) and Prandtl (Pr)
number. The red region represents the validation domain, while the region with blue diagonal stripes
represents the application domain. In addition, the application domain fully covers the validation domain.

5.E+05 7

Applicaiton Domain

//////////////

/ Validation Domain /

100 150 200
Pr
Figure 3.14: Coverage mapping of input variables.

2 3E+05

Figure 3.15 shows the plot of MSE for the Dittus-Boelter correlation and the machine-learning-based
closure in the application domain. It’s found that the error reaches the asymptotic range in the application
and increasing the number of training data will not change the error. However, comparing to the error in
the validation domain (Figure 3.12), uncertainties of both parametric and nonparametric methods are
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amplified in the application domain. And the amplification turns to be much higher for the machine-
learning-based closure (nonparametric method) than the Bayesian inference or least square error
(parametric method). As a result, the problem of data gap remains challenging even with sophisticated data-
driven closure development and pursuing high accuracy is very likely to induce large scaling distortion.
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Figure 3.15: MSE of Dittus-Boelter correlation and machine-learning-based closure in the application
domain.

Moreover, this study performs the same example with the metric of confidence interval and the closure
quality is measured by the percentage of real values being bounded by the 95% confidence range of closure
predictions. Figure 3.16 shows the plot of bounded percentage for closure constructed by both types of data-
driven methods. Comparing to the MSE, a similar trend of converge is found. However, the confidence
ranges from Bayesian Inference bounded more real data points than the one from Neural Network. The
reason is that the uncertainty from Bayesian inference is much larger than the one form Neural Network
(refer to Figure 3.12). Such finding again indicates that pursing higher accuracy is likely to result in large
distortion when there is a data gap.
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Figure 3.16: Percentage of real values being bounded by the 95% confidence range of model prediction in
the application domain.
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The effect of data bias is also investigated by introducing constant error to the high-fidelity data.
In this study, the error is introduced in two ways: total fractional error by adding a constant fractional error
to the high-fidelity output (Nu); parameter fractional error by adding a constant fractional error to the high-
fidelity input (Re, Pr). Figure 3.17 shows how data bias influences the model quality and it’s found that as
more bias is introduced, the model quality keeps deteriorating. Although the data bias has a significant
effect on the closure quality, there is rarely an effective way of analyzing or avoiding the bias. However,
it’s important that the information of high-fidelity data, especially the uncertainty information, needs to be
properly characterized and recorded. Otherwise, a poorly documented low-quality data can induce terrible
and irreversible effect on the quality of closures and simulations.
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Figure 3.17: Effect of data bias on the percentage of real values being bounded by the 95% confidence
range of model prediction in the application domain.

Another successful application of global approach for complex problems is the Total Data
Modeling Integration (TDMI). In addition to the data-driven UQ, TDMI also has the component of
surrogate construction, sensitivity study and closure evaluation. Figure 3.18 shows its complete workflow
for the multiphase CFD application. It is first proposed by Bui et al [36] and the objective is to calibrate
models of multiscale and multi-physics phenomena in thermal hydraulics. The master methodology of
TDMI is inverse UQ, where uncertainties of model are inferred according to experimental measurements.
Compared to the traditional method, TDMI is based on a strategy of model-data integration, where all
models are simultaneously analyzed and calibrated using multiple sets of data from various scales. In
addition to the model parameters, recent developments also aim to characterize and calibrate the model
form error [37] [38]. Figure 3.18 shows Liu’s schematic workflow of TDMI for validating a MCFD code.
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Figure 3.18: Schematic workflow of TDMI framework for validating the Multiphase CFD (MCFD) by
Liu [34].

Local Data-Driven Uncertainty Quantification

For the local approach, since no explicit assumptions are made for the uncertainty source, it shows more
capabilities than the global approach. Figure 3.19 shows the schematic workflow for the local approach of
data-driven UQ. Different from the global data-driven UQ, the local approach targets at the field data
directly and objective is to estimate the simulation uncertainty of field data. Therefore, the data from each
calculation element will be extracted and analyzed.

SPH Solver Processing

Field Data

LH

Initial & Boundary condition
Conservation law

L
v

Quantity of Interest

Physics-Informed Machine
Learning
e.g. Random Forest, ANN

y

HF simulation

Figure 3.19: Schematic workflow for the local approach of data-driven UQ

In this study, the method of Physics-Informed Machine Learning (PIML) is used for the local approach
and it is mainly designed for the coarse-grid SPH simulation. PIML has first been proposed for
characterizing the simulation error of each computing element that is induced by turbulence models [20]
[21]. The objective is to construct a surrogate model between the simulation error and the physical features.

eqy, W) = V;(HF) — V;(LF) Eg.3.1

In the previous work, it is assumed that the targeting simulation has reached the grid convergence range.
However, since it is challenging to ensure grid convergence for large-scale simulations, especially when
there are additional closures, the grid assumption is not employed in this study. Since the local approach
targets at coarse-grid SPH simulations, one challenge is that the high-fidelity data is obtained from mesh-
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based simulation. A mapping method is needed to transfer the field data (pressure, velocity, energy) from
Eulerian method to Lagrangian method. In this study, a simple averaging method is used by assuming that
each particle has a stable size the properties in the particle volumes are approximately the same.

To demonstrate the application of the local approach, an illustrative example is prepared, and the
objective is to demonstrate how PIML predicting the uncertainty of SPH in simulating the velocity field. A
lid-driven simulation is constructed with LAMMPS-SPH and OpenFOAM, where OpenFOAM is used as
the source of high-fidelity data. Multiple simulations with different configuration are constructed and Table
shows the ID and setups for each simulation. Currently, only the dynamic viscosity is changed, therefore,
the Reynolds number is used to characterize each case. To test the applicability of PIML, it will be trained
with selected cases, named as training sets, and applied to other cases, named as application sets.

Table 3.6: Summary of simulation ID and configurations. Dynamic viscosity is currently the only variables
being changed.

ID or v Re

dpl 0.02 1073 1000
dp8 0.02 5x 1074 2000
dp4 0.02 2x107* 5000
dp6 0.02 10~* 10000

First, the high-fidelity mesh-based simulation data need to be mapped to the SPH simulation. A simple
averaging method is used and Figure 3.20 shows the velocity comparison for the original SPH, mapped
SPH and the reference simulation by STARCCM. After the mapping, the target variables are calculated by
Eqg. 3.1.
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Figure 3.20: Comparison of V, at the vertical centerline.

Next, based on the SPH equation for velocity calculation and the theoretical analysis for the truncation
and discretization error, five physical features are selected as the input variables (Eq. 3.2) of PIML. For a
two-dimensional simulation, each physical feature is propagated to two direction and there will be ten
features in total.
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Next, both input features and target variables are fed into the machine-learning engine and the
simulation error of velocity is predicted for each particle. To characterize the accuracy of PIML for SPH
application, the SPH’s velocity field is corrected based on the predicted error by substituting the error into
Eq. 3.1. The corrected velocity is then compared against the high-fidelity data and L2 relative error norm
is used as the comparing metric. As a result, if the corrected L2 error is less than the original simulation, it
can be claimed that PIML can predict the simulation error of velocity. Table shows a summary of all cases,
including their training datasets, application datasets, error of corrected velocity field based on the PIML
result, and error of original SPH velocity field. For both case studies, it can be found that except for the
PIML trained by the first training set, which has the most distant Reynolds number from the application
dataset, all other PIMLs successfully predict the error of field data. It is also found that as more datasets are
used for training, the error of corrected fields becomes smaller. For case study #2, as the Re of training set
becomes closer to the application set, the error of corrected field gets smaller.

In addition to the random forest machine-learning engine, this study also tests the neural network
engine. It turns out that random forest is faster and more robust than the neural network, however, the error
reduction with respect to the data amount is more obvious for the neural network.

Table 3.7: Summary of PIML results with Random Forest as the machine-learning engine.

Case Training Set Re Application Set E_rror of Corrected Error of Original
Study Re Fields Fields
10000 454 x 10~*
1000+10000 3.23x107* _
# 2000+10000 5000 344 x 10~ 31107
1000+2000+10000 3.23 x 10~*
1000 6.10 x 10~*
2000 4.88 x 10~
5000 3.99 x 10~*
#2 1000+2000 10000 444 x 10™* 5.37 x 1074
1000+5000 418 x 107*
2000+5000 3.74 x 10~*
1000+2000+5000 4.00 x 10~*

Predictive Capability Maturity Quantification & Bayesian Network

Predictive Capability Maturity Quantification Bayesian Network (PCMQBN) is a decision framework
that can quantitatively measure the model credibility with maturity level and subjective belief. Next, with
a synthetic reward function, the decision regarding the selection of models and parameters can be made by
maximizing the expected rewards. The conceptual development has been included in a separate report [31].
This study aims to demonstrate the new development on the R/S/U grade and Bayesian sensitivity study.

R/S/U Grade

In PCMQ framework, data attribute of data applicability is determined based on the qualitative
Relevance/Scaling/Uncertainty grade, where the uncertainty (U) measures the data uncertainty due to
instrumentation errors and limited resolution of measurement instruments. However, there is no explicit
guidance for evaluating and assigning the grading number to each attribute. As suggested by the previous
study on the effect of data bias (Figure 3.17), a proper document of data is crucial to the development and
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quality of closures. Therefore, recent developments have focused on designing a guidance for the
uncertainty (U) grade, while the other two attributes remain to be investigated. Table shows the present
guidance of specifying uncertainty grade.

Table 3.8: Guidance for specifying the uncertainty grade in the R/S/U grade system.

Data Uncertainty .

Type Grade Description

Type | <U>=1 Largely biased data

Type Il <U>=2 No uncertainty information

Type 111 <Us>=3 !Elther thg model prediction or the high-fidelity data has uncertainty
information

Type IV | <U>=4 !30th the_model prediction and the high-fidelity data have uncertainty
information

To better use the data uncertainty information, various validation metrics are needed. Table summarizes
most of the popular validation metrics in the engineering discipline.

Table 3.9: Summary of validation metrics and their applicability to each type of data.

Validation Metric Type Il | Type lll | Type IV | Range
Deterministic Metric

Root Mean Square Error v [0, o0)
Euclidean Distance v [0, o0)
Normalized Euclidean Metric v [0, )
Mahalanobis Distance v v [0, 00)
Probability-based Metrics

Confidence Interval v

Kullback-Leibler Divergence v [0, )
Symmetrized Divergence v [0, 00)
Jensen-Shannon Divergence v [0,1n 2]
Hellinger Metric v [0,1]

Hypothesis Testing

Kolmogorov-Smirnov Test v v [0,1]

Total Variation Distance v [0,1]

To demonstrate the applicability of this grading system, the illustrative example of section 2.3.2 is
prepared with a simple PCMQBN structure (shown in Figure 3.21). The goal is to estimate the model
credibility in the application domain in Figure 3.14 based on the result in the validation domain. The
maturity level of validation result is estimated according to the MSE from machine-learning based closure
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(Figure 3.15) in the validation domain, while the maturity level of code adequacy is measured according to
the MSE in the application domain.

Code Adequacy
Wery Low
Low {] 16.667%

Medium {] 16.667%
High 4 G6.667%

N

Data Applicability
Very Low 4
Low{ ]33.333%
Medium | ] 33.333%
High{__]33.333%

=

Validation Result Relevance Scaling Uncertainty
Wery Low 4 Wery Low - Very Low 4 Wery Low 4
Low - | Low 4 Low Low{ ]100%
|| Medium 4 | medium{ Medium {]100% Medium -
High-:|100% High-:|100% High 4 High 4
L Tscenario1:High | —— TScenario 1 :High ————IScenario 1 :Medium |—|Scenario 1 : Low |

Figure 3.21: lllustrative example with a simple PCMQBN structure.

Table shows the range of outputs from validation metrics that corresponds to each maturity level of
the validation result attribute. A fabricated reward for each maturity level of code adequacy is also included.
The expected reward is obtained by multiplying the belief by the reward of each level, based on which
decision of the model credibility can be made.

Table 3.10: Summary of maturity levels with their corresponding MSE ranges and maturity rewards.

Maturity Level | Validation Metrics Output | Reward of Maturity Level for Code Adequacy
VL [103, 00) —$100

L [10%,10%) —$50

M [1,100) $50

H [0,1) $100

Table shows the summary of the estimated probabilistic maturity, expected rewards and real rewards
for the code adequacy. In addition, to better use the data uncertainty information, various validation metrics
are employed. As more uncertainty information becomes available, both the probabilistic maturity level
and expected rewards are getting closer to the real value.
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Table 3.11: Summary of the estimated probabilistic maturity, expected rewards and real rewards for the

code adequacy.

Probabilistic Maturity Rewards
Uncertainty —— .
Grade Validation Metric PCMQ Real Expected Real
Estimate P
VL 0% 100%
L 16.67% 0%
2/Type Il Mean Squared Error $66.75 -$100
M 16.67% 0%
H 66.66% 0%
VL | 0% 0%
i i L 0% 100%
3/ Type Il gprmallzed Euclidean 0 0 $83.34 $50
Istance 33.33% | 0%
H 66.67% 0%
VL 0% 0%
L 0% 0%
4/Type IV Symmetric Divergence $57.8 $73.39
53.22% 53.22%
H 46.78% 46.78%

Bayesian Sensitivity Analysis for PCMQBN

To ensure the robustness of the credibility assessment from the validation framework, a sensitivity
study is needed to ensure the uncertainty has been maximumly reduced based on the present knowledge
and data. As a quantified credibility assessment and decision-making framework, PCMQBN supports
sensitivity study in a more feasible manner, where mathematical analysis can be performed by perturbing
the parameters of each component. PCMQBN has three major components: prior belief on maturity level,
update rule and utility/reward of each maturity level. Figure 3.22 shows the scheme of validation decision
process and the Bayesian sensitivity analysis for the entire loop. The objective is to reach a consistent result
or an interval of results. The present study focuses on the sensitivity study of the prior belief estimation,
especially the prior belief on the maturity of validation result. Presently, the sensitivity study is still under

investigation.
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Bayesian Sensitivity Analysis
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Figure 3.22: Scheme of validation decision and the performance of Bayesian Sensitivity Study

3.3.4.Remarks

This chapter first describes concept of sufficient accuracy. Next, a tentative REMDAP framework is
constructed based on the concept sufficient accuracy and DDM. The progress of key
technologies/methodologies is introduced, including the data-driven closure development, data-driven
uncertainty quantification and PCMQBN. In addition, illustrative examples are prepared for each
methodology. Recommendations for the data-driven validation have been provided by researchers in
Zachry Inc. and the document is attached in Appendix B.

3.4. Summary and Outlook

In this study, a novel data-driven concept is incorporated into the model validation process to help
shorten the closure development and validation process. The concept of sufficient accuracy is developed
based on the risk-informed concept to guide the validation of RISMC simulation tool, which has a
significant portion of uncertainties and intangibles. Based on the data-driven concept and sufficient
accuracy, a validation framework named Risk-Informed Evaluation Model Development and Assessment
Process (REMDAP) is proposed and under development. A tentative workflow is prepared based on the
currently developing methodologies/technologies. Next, the progress of developing key methodologies in
the REMDAP framework, including the data-driven closure development, data-driven uncertainty
guantification, and Predictive Capability Maturity Quantification & Bayesian Network (PCMQBN) are
demonstrated. Presently, this study demonstrates some initial developments of classifying methodologies
based on assumptions and conditions, the objective is to identify the feature and create an initial proof-of-
concept for applying Data Driven Modeling (DDM) in the model development and validation process.

For the data-driven closure development, the present study classifies it into two types. The parametric
method assumes a fixed model form that relies on human knowledge, while the nonparametric method uses
nonparametric forms that solely depend on the data. From the condition of illustrative examples, it’s
observed that as more data is used for training and calibration, the error will reach an asymptotic range for
all types of methods. Also, it is observed that a similar error is obtained from the Bayesian Inference and
Least Squared Error since the closure’s quality is limited by the fixed model form. Moreover, the error from
the nonparametric form can be reduced to a very small value (10~3). In addition, both types are sensitive
to the amount of data, however, when the data amount is small, the nonparametric model tends to have
larger error than the parametric error.
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For the data-driven uncertainty quantification (UQ) methodology, the present study classifies them
into two types: global data-driven UQ and local data-driven UQ. Schematic workflows are constructed for
both approaches. The global approach targets at system code like Cobra-TF by assuming that the model has
been well-verified, and closures are the major source of uncertainties. The illustrative examples show that
the error reaches the asymptotic range in the application domain and increasing the number of training data
will not change the error. When the UQ is performed for both parametric and nonparametric closure
development methods, errors are amplified when the closure of both types is used in the application domain.
And the amplification turns to be much higher for the machine-learning-based closure (nonparametric
method) than the Bayesian inference or least square error (parametric method). As a result, the problem of
data gap remains challenging even with sophisticated data-driven closure development and pursuing high
accuracy is very likely to induce large scaling distortion. A same procedure is performed with a difference
validation metric of confidence interval, where the closure quality is measured by the percentage of real
values being bounded by the 95% confidence range of closure predictions. In addition to the similar finding
of error amplification, the confidence ranges from Bayesian Inference bounds more real data points than
the one from Neural Network, because the uncertainty of Bayesian inference is much larger than the one of
Neural Network. This suggests that though the parametric model with fixed model form limits the model
quality in the validation domain, however, when there is a data gap, it also helps to restrain the error
amplification in the application domain due to the failure of capturing the correct pattern with the
nonparametric model. The effect of data bias is also investigated by introducing constant error to the high-
fidelity data. From the illustrative examples, it’s observed that as more bias is introduced, the model quality
keeps deteriorating. Although the data bias has a significant effect on the closure quality, there is rarely an
effective way of analyzing or avoiding the bias. However, it’s important that the information of high-fidelity
data, especially the uncertainty information, needs to be properly characterized and recorded. Otherwise, a
poorly documented low-quality data can induce significant and irreversible effect on the quality of closures
and simulations.

As for the local data-driven approach, Physics-Informed Machine Learning (PIML) is employed to
construct a surrogate between the simulation error and the input physical features. It is designed for the
coarse-grid computational fluid dynamics like NEUTRINO-SPH, where the error of each computing
element is characterized with PIML. Since there is no validation metric available to characterize the
accuracy of error prediction, this study substitutes the estimated error from PIML back to the original
simulation and measures the capability of PIML by comparing the corrected data against the high-fidelity
data. In the conditions of the illustrative example, it is observable that the error of corrected field data by
PIML is lower than the original SPH simulation, except for the one trained by data with the furthest fluid
characteristics to application dataset. It is also found that as more datasets are used for training, the error of
corrected fields becomes smaller. In addition, as the fluid characteristics of training set becomes closer to
the application set, the error of corrected field gets smaller. In addition to the random forest machine-
learning engine, the same process is performed with the neural network engine. The result suggests that
random forest is faster and more robust than the neural network, however, the error reduction with respect
to the data amount is more obvious for the neural network.

Finally, further developments are made for the decision-theoretic methodology of PCMQBN.
Guidance is constructed for qualitatively evaluating the uncertainty grade in the R/S/U
(Relevance/Scaling/Uncertainty) grading system. It’s found from the illustrative example that as more
uncertainty information becomes available; both the probabilistic maturity level and expected rewards are
getting closer to the real value. Furthermore, a framework of Bayesian sensitivity study is proposed for
PCMQBN and the objective is to improve the robustness of the PCMQBN’s result, which is presently under
investigation.
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4. Predictive Capability Maturity Quantification using Bayesian Network

4.1, Introduction

Nowadays, an increasing amount of research has been conducted for developing and applying
advanced modeling and simulation (M&S) tools in nuclear discipline. In risk-informed safety analysis [1]
[2], M&S tools are used to investigate the effects of uncertain scenarios, simulate accident progressions,
characterize the reactor safety margin, improve the operational procedures, locate design vulnerabilities,
etc. Compared to classical risk analysis, the risk-informed analysis aims to address both aleatory and
epistemic uncertainty within a well-defined issue space, rather than trying to work with arbitrarily defined
point values of load and capacity. Meanwhile, in complex systems like Nuclear Power Plants (NPPs), since
the interactions among systems, components, and external events can be highly nonlinear, risk-informed
safety analysis uses advanced simulations to fully represent the generations, progressions, and interactions
of accident scenarios with the NPPs. However, the classical risk-informed approach does not consider the
impacts of simulation adequacy [3] [4], which includes model parameter uncertainty, model form
uncertainty, numerical approximations, scaling errors, etc. As a result, a validation framework is needed to
not only determine whether the M&S code is adequate for representing the issue spaces but also to be
directly used in the risk-informed safety analysis.

Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology was introduced in 1989
[5] to demonstrate a method that “can be used to quantify uncertainties as required by the best-estimate
option described in the U.S. Nuclear Regulatory Commission (NRC) 1988 revision to the ECCS Rule (10
CFR 50.46) [6]”. A Regulatory Guide (RG 1.203), Evaluation Model Development and Assessment Process
(EMDAP), is developed at 2005 to “describe a process that the U.S. NRC considers acceptable for use in
developing and assessing evaluation models that may be used to analyze transient and accident behavior
that is within the design basis of a nuclear power plant [7].” In the CSAU/EMDAP framework, the
complexity of physics and phenomena is emphasized, and scaling analysis is suggested to resolve the lack
of data issues. The objective is to ensure both the sufficiency and necessity of validation data, modeling,
and simulation, such that the simulation can adequately describe the scenarios investigated. Although the
evidence involved is objective, the assessment process requires subjective information, including
phenomena ranking and identification, decisions regarding data applicability, selection of validation
metrics, etc. In CSAU/EMDAP, such subjective evidence is treated implicitly, and it causes the validation
process to lack transparency. Meanwhile, due to a lack of formalized treatment, it becomes hard for analysts
and decision makers to ensure the consistency of elicitation and processing of subjective information.
Therefore, a decision model is needed for integrating all sources of evidence and determining final
simulation adequacy. Meanwhile, the decision model needs to be practical, transparent, and consistent, such
that the simulation adequacy results can be used with sufficient confidence.

The Predictive Capability Maturity Model (PCMM) (Oberkampf, Pilch, & Trucano, Predictive
Capability Maturity Model for computational modeling and simulation (SAND2007-5948), 2007) was
developed by W.L. Oberkampf et al. in 2007. As a decision model for Verification, Validation, and
Uncertainty Quantification (VVUQ), PCMM explicitly treats the model credibility/uncertainty assessment
as a decision-making process. For designated scenarios, six attributes are designed and assessed
gualitatively based on a PCMM matrix, which is designed according to the context and consequence of
applications. Since the final decisions are informed by requirements and consequences, PCMM can
effectively guide the development and validation of M&S tools. However, since the PCMM matrix is
constructed using descriptive statements, the representations of performance standards can be obscure and
suggest inconsistent criteria. Meanwhile, although validation and uncertainty quantification are discussed
as major attributes, other critical components, including scaling analysis, data applicability, data quality,
etc., are not explicitly discussed. As a result, when there are data gaps induced by differences between the
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prototypical and experimental systems, such implicitness could suggest results in inconsistent maturity
levels.

Other frameworks include “Guide for Verification and Validation in Computational Solid Mechanics
(VV10)” [9] and “Standard for Verification and Validation in Computational Fluid Dynamics and Heat
Transfer (VV20)” [10] by ASME for quantifying the degree of accuracy to consider the errors and
uncertainties in both the solution and the data. Since the adequacy results are used to support nuclear risk
analysis, while VV10 and VV20 are designed as a general guidance for the V&V of computational model,
CSAU/EMDAP and PCMM are more appropriate and relevant to the context of this study.

In this paper, a new decision model named Predictive Capability Maturity Quantification using
Bayesian network (PCMQBN) is presented. Developed based on argumentation theory and Bayes’ theorem,
PCMQBN aims to formalize the decision-making for assessing simulation adequacy assessment such that
the process is transparent, consistent, and improvable with new evidence. This paper is organized as follows
(Figure 4.1): section 2 limits the scope of this study by introducing assumptions, conditions, and limitations
of proposed framework. Section 3 formalizes the interpretation of simulation adequacy based on the nature
of validation. Section 4 introduces PCMQBN, where the first two subsections describe technical basis that
characterizes and integrates evidence based on the argumentation theory and Bayes’ theorem; the last two
subsections evaluate the behavior of this framework. Section 5 illustrates the application of PCMQBN in
evaluating the adequacy of a Smoothed Particle Hydrodynamic simulation for predicting the hydrodynamic
forces onto static structures during an external flooding scenario.

§5: Adequacy Assessment for SPH Methods by PCMQBN

Case Study §5.1: PCMQBN §5.2: Sensitivity §5.3: Application of
Adequacy Assessment Analysis PCMQBN Adequacy Results

§4: Predictive Capability Maturity Quantification using Bayesian Network

Technical Technical Basis ’ §4.1: Evidence Characterization ‘ | §4.2: Evidence Integration
Approach
imil e K 4.4: Ph f
Prehmlr?ary | §4.3: Sensitivity Analysis | § ases of adequacy
Evaluations assessment
§2: Assumption, Condition, and Limitation §3: Simulation Adequacy Interpretation
Motivation, o -"*
Objective, and Validation is critical for the development and application of M&S
Background i ;
8 §1: Introduction An explicit and quantified decision model is needed for CSAU/EMDAP

or PCMM validation framework

Figure 4.23: The schematic structure for this chapter.

4.2. Assumption, Condition, and Limitation

To properly identify the scope of this study, important conditions and assumptions are listed in Table
4.1. Category A aims to define the scope and application of this study; category B lists the assumptions in
PCMQBN for formalizing the decision-making process in validations; category C suggests the conditions
and assumptions used in case studies.
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Table 4.1: Important conditions and assumptions with respect to aspects of investigation.

ID Conditions/Assumptions

A Investigation Scope

Al Current work only focuses on validation activities to support the risk-informed
safety analysis

A2 There are data gaps between the validation databases and target applications

A3 The SPH-based computer code is assumed to be verified

B Validation Formalization

Bl Formalism can reduce the uncertainty

B2 Decision makings in validation is a structured argument process supported by a
body of evidence;

B3 Risks due to model uncertainty are characterized by expected losses

C Case Study

Cl If simulation is not adequate, it can predict the Qols with maximum 100% errors

C2 If simulation is adequate, it can predict the Qols with maximum 20% errors

C3 If simulation adequacy is uncertain, Qols are assembled according to predictions
and beliefs at each adequacy level

ca Preference over different simulation-adequacy levels can be characterized by the
magnitude of expected loss

Assumption Al limits the application to risk-informed safety analysis, and the objective is to determine
the error distribution of the quantity of interest predicted by M&S. More specifically, this study focuses on
situations with data gaps. As a result, to better characterize adequacy of M&Ss and to avoid unreliable
expert judgments, this study aims to reduce the uncertainty in estimating the simulation adequacy and
corresponding risks induced by such uncertainty. Assumption A3 mainly assumes that the code verification
has been performed. The confidence on such assumption is built on the theory manual of NEUTRINO [11],
together with code and solution verifications from various literature (Lin L. , Assessment of the smoothed
particle hydrodynamics method for nuclear thermal-hydraulic applications, 2016) [13] [14].

Assumption B1 suggests the formal methods to improve the reliability and robustness of the validation
decision-making process. Formal methods have continuously proven its success in financial, computer
system, etc. in reducing major losses due to unverified errors [15]. It is argued that the formal methods do
not obviate the need for testing, experiments, and other assertion techniques, it is mainly designed to help
identify errors in reasoning which could be overlooked or left unverified. Assumption B2 aims to formalize
the validation process as an argument process and to further represent the validation argument with Bayes’
theorem. However, it has been suggested that the prior probability and likelihood cannot be known precisely
[16] [17]. In this study, a sensitivity analysis is suggested by performing standard Bayesian analysis with a
class of prior and likelihood functions. Next, all important parameters, which have high impacts on the
results, are carefully examined. If no significant discrepancy is witnessed, the result is claimed to be robust.
Assumption B3 aims to suggest expected losses for representing the risks of adopting code predictions to
risk-informed safety analysis. Since M&Ss are mainly used to support safety decisions and alternatives in
designated applications, the corresponding “adequacy” should be defined based on the consequence of
adopting the predicted Qols. This study makes a table of synthetic monetary loss for each possible
consequence, and the expected losses are calculated based on the simulation adequacy result.

Assumptions 1, 2 and 3 in category C are made to define the error distributions of Qols in the case
study based on the simulation adequacy results. It is criticized that the current assembly of simulation
adequacy and model predictions is arbitrary. Therefore, the claim that the proposed framework can reduce
uncertainty in simulation adequacy results is questionable [18]. However, at the initial developmental
phase, it is acceptable to have a crude ensemble method for demonstration purposes. It is stressed that the
parameters in the proposed framework are not fixed. As more evidence is gathered, the parameters need to
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be calibrated and refined. Moreover, since formal methods are designed to avoid or reduce unverified errors,
it is argued that the validity of this claim should not be greatly deteriorated by assumptions for simplification
purposes. Assumption 4 suggests a rational agent who prefers to have fewer expected monetary losses. It
is criticized in [19] that the expected value cannot fully represent the agents’ choices, where subjective and
psychological impacts are neglected. It is argued that this study is at the scoping stage, and the objective is
to formalize the decision-making process. In the future developmental stage, different decision analysis
models can be tested and optimized for validation purposes.

4.3. Simulation adequacy Interpretation

To formalize the decision-making process in simulation-adequacy assessment, a consistent and
transparent interpretation is needed for “simulation adequacy” as a theorical basis of the proposed
framework. This section first reviews definitions from relevant works and identifies requirements for
interpreting simulation adequacy. Next, the simulation adequacy is interpreted as a triplet set by answering
three key questions. Meanwhile, examples are given for illustrating each of the three elements.

In validation, simulation adequacy is usually defined as the degree to which a simulation can
adequately represent the system quantities of interest from the perspective of the intended uses [20]. In
works by P. Athe et al. [21] and J.S. Kaizer et al. [22], the simulation adequacy is represented by a binary
term “credibility — the determination that an object (in this particular instance, a model) can be trusted for
its intended purpose.” Furthermore, the concept of assurance case is adopted in the definition of credibility,
and a “validation case” is developed for arguing the trustworthiness of a model to the decision maker for
certain applications. This definition emphasizes the effects of expert belief and connections between
simulation adequacy and the consequences of application. However, as an argument process, the assessment
process heavily relies on expert opinions in claiming, reasoning, justifying, and reaching final goals. It
could also become expensive to reach agreements when a group of experts with different backgrounds and
knowledge is presented. Although the decision-making has been formalized in [22], it is suggested here
that the process should be further quantified for better transparency and for reducing uncertainties due to
inconsistent assessment results. In works by S. Mahadevan et al. [23], simulation adequacy is quantified by
Probability Density Function (PDF) of model predictions or their uncertainty. The Bayes’ theorem is used
for either testing the hypothesis about model uncertainty or estimating the probability that model predictions
represent the target phenomena. The uncertainty distribution definition emphasizes mathematical
representations of uncertainty such that the reliability or probability of success of the model can be
measured in a direct, objective, and quantitative manner. Although such interpretations are consistent and
rigorous in mathematics, its applicability is greatly limited by assumptions in the assessment process. For
example, the uncertainty distribution and likelihood function are assumed to have explicit forms and
parameters [24], such that they can be determined by probabilistic inference. Moreover, these distributions
are assumed to be fixed in different scenarios and applications. However, for situations with a lack of
prototypical data, the uncertainty can be seriously distorted when it is propagated across different scales.
Meanwhile, when there are multiple scales and phenomena involved in application scenarios, the inference
of uncertainty distributions relies heavily on the quality of multi-physics and multi-scale models. If the
multi-physics and multi-scale interactions are poorly captured, results from uncertainty inference can be
misleading (Liu & Dinh, Validation and uncertainty quantification for wall boiling closure relations in
multiphase-CFD solver, 2018). Meanwhile, these models are usually developed based on reduced-scale and
separate-effect databases. Therefore, when the data are not fully applicable to the target applications due to
scaling distortions, uncertainty due to model forms can hardly be characterized, and results from uncertainty
inference can be further distorted. Besides, the quality of data also affects the results from uncertainty
inference, however, the uncertainty inference can hardly capture its impacts without an informative prior
[26]. As a result, although the simulation adequacy assessment needs to be quantified, the framework is
suggested to have more flexible forms and adaptable structures than PDF-based distributions in uncertainty
inference. At last, in the CSAU/EMDAP framework, simulation adequacy is defined by both accuracy
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information of model predictions and the applicability of the validation database [27]. Such a definition is
more comprehensive and flexible since it not only considers the effect of scale gaps in assessing data
applicability but also the uncertainty distributions of model predictions. In the present study, the
interpretation of simulation adequacy will be made based on that from CSAU/EMDAP. Moreover, the
impacts of scenarios and applications are also considered.

As a result, this study describes simulation adequacy as the degree to which M&S tools can adequately
represent the system quantities of interest in the target applications. The objective is not only to determine
if an M&S is good or bad but also to describe the uncertainty in the real application, especially when it is
understood from non-prototypical data. In this study, simulation adequacy is suggested to be composed of
three components: scenario, uncertainty/predictive capability levels, and beliefs. Note the purpose of this
interpretation is not to resolve fundamental issues of uncertainty classifications through a sophisticated
interpretation. Instead, this study focuses on practical resolutions for deciding simulation adequacy in
complex engineering problems with a transparent and consistent framework. In the context of nuclear
engineering, the term “transparent” requires a formalized interpretation and representation for simulation
adequacy; the term “consistent” requires the formalization to have a mathematical basis, and allow for
assumptions that cannot be violated in real applications; the term “practical” requires that the formalized
simulation adequacy assessment should be easily applied to risk analysis. Eq. 4.1 shows a representation
of simulation adequacy as a triplet set: scenarios, beliefs, and levels of uncertainty or predictive capability
for M&S.

Simulation adequacy = {scenario, belief, predictive capability} Eqg. 4.1

The structure of interpretation in this study is similar to the triplet by Kaplan and Garrick [28] for
probabilistic risk analysis. The definition for simulation adequacy aims to answer three questions:

1. What scenario does the M&S apply to?

In the nuclear accident and transient analysis, results of M&S are used to support system designs and
risk management within a range of issue spaces. Meanwhile, since risk-informed safety analysis aims to
address the scenario uncertainty, a scenario set S = [Sy, ..., S;, ... | is defined, and each element corresponds
to one sampled scenario S; according to designated distributions. Therefore, the selections of computational
methods and simulations naturally depend on the investigated scenario. Moreover, in scenarios with minor
impacts, the reactor systems can be robust enough to withstand much higher loads than those being exerted.
In this circumstance, safety decisions do not heavily rely on M&S results, requirements on model predictive
capability and confidence do not need to be high. Similarly, when scenarios loads are likely to exceed
system capacities and the uncertainty of M&S results could alter the safety decisions, the requirements on
the predictive capability and confidence will be strict.

2. What is the predictive capability of M&S?

The “Predictive Capability” refers to the capability of M&Ss in predicting Qols during accident and
transient scenarios. As a major product of classical validation methods, the capability is quantified by errors
between simulation results and observations. Such techniques, as validation metrics, statistical analysis, etc.
are usually used. Meanwhile, Oberkampf et al. [20] represent the model’s predictive capability by maturity
levels, which are further explained by sub-attributes and descriptive terms. In this case, argumentation
theory and corresponding techniques, including Goal Structure Notation (GSN), Claim, Argument, and
Evidence notation (CAE), etc. are used.

3. What is the belief in the M&S predictive capability?
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Due to imperfect knowledge and insufficient data, predictive capability cannot be precisely estimated,
and belief is used to describe a state of knowledge regarding estimations. Although belief is represented by
probability, it does not refer to the frequency or statistics in the sense that it does not represent a property
of the ‘real’ world. Rather, belief describes our state of knowledge and discusses its effects on decisions.
Table 4.2 shows an example of belief scales in probabilities together with their characteristics. This scale
provides the definition of unreasonable model maturity levels as involving the independent combination of
an end-of-spectrum condition with a condition that is expected to be outside the main body of the spectrum
but cannot be positively excluded. The spectrum in this study refers to the spectrum of physics, scales, data
applicability, and prediction errors. For example, when a solid-mechanistic code is applied to simulate fluid
dynamics, its prediction errors for certain Qols can occasionally be small at certain locations. However, the
belief that this simulation generally has low prediction errors and high maturity should be low since the
physics in solid mechanics are outside the spectrum of fluid dynamics; when experimental data for
validating a simulation in kilometer-scale and multi-physics scenarios is collected from a centimeter facility
that focuses on one of the involving phenomena, the belief that the experimental data are applicable to the
target scenarios should be low since the scale are different and phenomena are separate. However, such
reduced scale and separate-effect data cannot be positively excluded from the main body of the spectrum
in target applications since the involving physics and phenomena are in the spectrum of target scenarios.

Table 4.2: Assignment of screening probability with characteristics and examples.

Belief scales in - Examples
S Characteristics — —
Probabilities Validation Result | Data Applicability
Corresponding levels are well- | Applying CFD-based High-quality validation
. - . databases are collected from
1 known and obtainable on the | M&S with very fine .
. . prototypical systems for the
major spectrum grids (DNS scales) .
directly relevant phenomena
Correspondin levels  are Applying CFD-based | Validation databases are
P 9 M&S with coarser | collected from reduced-
0.1 known but obtainable only at | _ . - .
grids  (Asymptotic | scale systems for the highly
the edge of spectrum 4
range or outside) relevant phenomena
Validation databases are
Corresponding levels cannot | Applying CFD-like | collected from low-quality
0.01 be excluded, but it is outside | or correlation-based | and reduced-scale systems
the spectrum of reason M&S with the poorly relevant
phenomena
Corresponding Ievels- are Validation databases are
unreasonable and violates Applyin solid | collected from low-qualit
0.001 well-known reality. Its | PPYING quality
occurrence can be argued mechanistic M&S an_d _reduced-scale systems
. . with irrelevant phenomena
against positively

As a result, the objective is to find the belief Pi(levelj), represented by probabilities, such that Eq.
4.2 can be satisfied for any investigated scenarios S; within the designated scenario set or issue space S =
[S1, -, Si, - ]; Ps s the screening probability for beliefs in simulation’s validation result, data applicability,
and simulation adequacy for a given set of scenarios. It is to ensure consistent belief assignments across the
entire issue space in the risk-informed safety analysis. Similar definitions can also be found in the Risk-
Oriented Accident Analysis Methodology by T.G. Theofanous [2], which focuses on the scenarios spectrum
and aims to distinguish unreasonable and small-probability events.

P;(level;) < P, for all S; Eq. 4.2
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Table 4.2 shows an example of screening probability assigned by expert knowledge. Examples are
also provided assuming that an M&S simulation is applied to predict the generation and progression of
surface waves in the flooding scenarios. Validation Result (VR) is assessed by comparing simulation
predictions against validation databases, while Data Applicability (DA) is assessed by the scale of facilities,
relevancy of phenomena, and quality of data.

The probability values Pl-(levelj) are computed from the probabilistic framework that represents a
map of parameters in the causal relationships {d;}, prior knowledge {$;}, and decision parameters {k;}:

P,(level;) = F(dy,dy, ..., D1, D2s s ke, kg, o02) Eq. 4.3

The prior knowledge {p;} and corresponding uncertainties are distributions and can be quantified
according to the probability scale in Table 4.2. Causal relationships and decision parameters should not
violate well-known physics and laws, and a synthetic model can be developed to support the value
assignment. Meanwhile, they are assumed to be well-posed problems in the sense that they are not subject
to major discontinuities and the uncertainty can be reduced to the parameter level without major modeling
uncertainty. It is argued that the three questions above are sufficient for guiding validation activities and
adequacy assessment. However, since simulation results are usually applied in risk analysis and safety
decisions, the preferences and consequences of accepting certain simulation adequacy results need to be
evaluated, especially when results contain uncertainties. Although such topics are beyond the scope, for
completeness, this study briefly discusses a fourth attribute of simulation adequacy as an additional concern.
Meanwhile, a synthetic model, together with a review of other sophisticated options, is included regarding
the application of simulation adequacy results.

Since the simulation adequacy results are mostly applied to support safety-related decisions or
alternatives, the adequacy should be judged not only based on model predictions and validation databases,
but it should also consider the target decisions. For example, in scenarios with severe consequences,
requirements on belief and M&S’s predictive capability levels should be more stringent than for those with
less severe consequences. In the risk-informed analysis, the predictive capability level and belief should be
higher for regions where loads distributions and capacity distributions overlap. If the adequacy result
satisfies the requirements, a cost-benefit analysis is performed based on the consequence of simulation’s
uncertainty and risk. If the adequacy of results does not satisfy the requirements or it is net beneficial for
improving the predictive capability level and belief, additional iteration will be conducted to either continue
developing new models, collecting new data, or updating the validation techniques. By adding risk and
performance measurement results, the validation process becomes risk-informed in the sense that the
acceptance criteria of simulation adequacy are informed by risks of target applications, which are caused
by both model and scenario uncertainty.

4.4. Predictive Capability Maturity Quantification using Bayesian Network

To avoid expert biases and unreliable judgement within an implicit decision scheme, this study
proposes a quantitative decision-making framework, named Predictive Capability Maturity Quantification
using Bayesian Network (PCMQBN) to formalize the assessment of simulation adequacy. Considering the
similarity between assurance case to simulation validation, the simulation adequacy assessment can be
described as a “confidence argument” supported by evidence that justifies the claim that simulation
provides reliable prediction in the domain of application. The evidence is collected from the validation
framework and characterized mathematically such that it is consistent with the interpretation of simulation
adequacy. Moreover, such an argument process can be further quantified by probabilities and maturity
levels, and further represented graphically by Bayesian networks. In this framework, all evidence is
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integrated by probabilistic inferences and can be further represented graphically by a Bayesian network. At
the same time, to integrate evidence from various sources, a synthetic decision model is suggested for
determining the relative weights and conditional probabilities in Bayesian networks. Figure 4.24 shows the
scheme for assessing and applying simulation adequacy by PCMQBN. Evidence of validation result and
data applicability are firstly collected from validation activities guided by validation frameworks like
CSAU/EMDAP. Sub-section 4.4.1 discusses in detail how evidence is collected and characterized
consistently based on the maturity level assignment (4.1.1) and belief assignment (4.1.2). Next, the
characterized evidence, together with decision parameters regarding the conditional dependencies among
different evidence and attributes, are integrated for simulation adequacy results. Sub-section 4.4.2 discusses
details of how evidence is integrated based on the argumentation theory and further quantified by
probabilistic inference. To evaluate the sensitivity of decision parameters, sub-section 4.4.3 suggests a
sensitivity analysis for the simulation adequacy result with the same set of evidence. At last, the simulation
adequacy result is applied to safety analysis by assembling the predictions by Modeling and Simulation
(M&S) and beliefs. At the same time, the parameter assignment and integration structures are subject to
refinement. Sub-section 4.4.4 discusses different phases of simulation adequacy assessment based on
qualities of each step.

PCMQBN
Validation Evidence i —
Frameworks —— 4.1, Evidence Characterization
Validation Data
Result Applicability
Decision ) .
parameters > 4.2. Evidence Integration

'

Simulation Adequacy Result

Belief Maturity [evel ]
Initiatin
M&S Codes &
v event
® N Consequence
factors
Ensemble
Predigtions
~ Model Selection &

" Safety Management

Figure 4.24: Scheme for the assessment and application of simulation adequacy by PCMQBN.

4.4.1.Evidence Characterization

During a validation process like CSAU/EMDAP, different activities and materials, including validation
databases, scaling analysis of experimental databases, simulation assessment results, phenomenon
identification and ranking process, etc., are used to support the adequacy assessment of a simulation. To
make better use of these materials, this study characterizes all related evidence based on the argumentation
theory and the triplet definition for simulation adequacy. The characterization is required to be transparent,
practical, and consistent. The term “transparency” requires a clear representation of evidence by
mathematical forms such that the meaning and substance of evidence are maintained and visible. The term
“practice” requires all related evidence to be effective for practical purposes and easily obtainable. In the
context of nuclear safety analysis, the evidence should be characterized such that it can be directly used to
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support safety-related decisions. The term “consistency” requires the characterizations to be theoretically
defendable, mathematically sound, and consistent with common knowledge and well-known rules.

There are various ways of characterizing evidence. Sun [29] categorizes evidence as direct evidence,
backing evidence or counter evidence, based on its association with confidence. In the context of assurance
case that focuses on safety [30], the evidence is defined as “the information that serves as the grounds and
starting point of (safety) arguments, based on which the degree of truth of the claims in arguments can be
established, challenged and contextualized”. Furthermore, in Toulmin’s argument model [31], the evidence
is classified into six groups: claim, data, warrant, backing, qualifier, and rebuttal. Since validation shares
many common features with the assurance case, Table 4.3 shows examples in simulation adequacy
assessment for each element based on the Toulmin’s argument model. In this study, information including
simulation predictive capability, validation data, scaling results, data relevance, data uncertainty,
assumptions, and conditions, are considered as evidence for assessing simulation adequacy. In addition,
although indirect evidence, including process quality assurance, use history, M&S management, etc. [32],
will affect the adequacy assessment for M&S, this study mainly investigates direct evidence for validation.

Table 4.3: Elements of Toulmin’s Argument model with simulation adequacy example.

e.g., Simulation predictive capability for an
intended reactor application

Claims | The statement we wish to justify

The fact we appeal to, the grounds or
Data information on which our claim is
based

e.g., Validation data and results collected from
experiments, observations, and knowledge

e.g., Results from the scaling analysis that infer
system behaviors in prototypical conditions based
on validation data in reduced-scale conditions
e.g., Argument that authorizes the relevance of
Backing | A reason for trusting the warrant investigated phenomena and processes for the
target applications

A statement authorizing the step from

Warrant . S
data to claim is true; an inference rule

A term or phrase reflecting the degree
Qualifier | to which the data support the claims,
e.g. generally, probably

Specific circumstances in which the
Rebuttal | argument will fail to support the claims
as exceptions

e.g., Argument that evaluates the uncertainty of
data and experiment

e.g., Assumptions and conditions about validation
data, model, and adequacy assessment

Since simulation adequacy is to estimate the degree that model predictions represent the real values,
the errors, referred to as validation result, between model predictions and the validation data should be used
to support the adequacy assessment. In some validation methods, simulation adequacy is interpreted as
uncertainty distributions of model predictions [23]. However, it is argued that in nuclear applications, the
difficulties, and costs in collecting data under prototypical conditions are so high that only data from small-
scale facilities and separate (or mixed) effect tests are practically obtainable. Therefore, the uncertainty
distribution estimated by validation data on different scales can be significantly distorted. To avoid the
problem of scaling distortion, it becomes necessary to evaluate the applicability of validation data to the
target applications, referred to as data applicability, in addition to the validation result. As a result, the top
claim of simulation adequacy is supported by sub-claims of validation result and data applicability. The
validation result is to determine the errors between simulation results and the validation data, while the data
applicability is to determine the applicability of validation data from reduced scales and experimental
conditions in the context of applications. Next, the corresponding evidence is collected and evaluated.
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The following sections discuss how evidence for validation results and data applicability are
characterized. Specifically, the predictive capability is described by maturity levels, while the belief is
represented by probability.

Maturity Level Assignment

There have been a lot of research performed to quantitatively measure the level of predictive capability
for an M&S tool. Harmon and Youngblood [33]suggested a five-point maturity ranking scale based on the
concept of credibility, objectivity, and sufficiency of accuracy for the intended use. Long and Nitta [34]
suggested a 10-point scale by the concepts of completeness, credibility, and sufficiency of accuracy for the
intended use. Pilch et al. [35] suggested a four-point scale dominated by the level of formality, the degree
of risk in the decision based on the M&S effort, the importance of the decision to which the M&S effort
contributes, and sufficiency of accuracy for the intended use. It is discussed by Pilch et al. that the maturity
level of each element should be made based on the risk tolerance of the decision maker. NASA suggested
a four-point scale based on the level of believability, formality, and credibility [36]. It was suggested by
NASA that the credibility assessment should be separated from the requirements for a given application of
M&S. In this study, the maturity level by W.L. Oberkampf (Oberkampf, Pilch, & Trucano, Predictive
Capability Maturity Model for computational modeling and simulation (SAND2007-5948), 2007) is used
to represent and rank the predictive capability of M&Ss. It is believed that the maturity assessment and
adequacy assessment should be dealt with independently as much as possible to reduce misunderstandings
or misuse of an M&S maturity assessment. As a result, the maturity level in this study is defined by the
intrinsic and fundamental attributes in the M&S validation and decision-making process. The objective is
to objectively track all intellectual artifacts obtained during all related validation activities.

Validation Result

In this study, the “validation result” is defined as the comparisons between the model predictions and
validation data. Based on the comparisons, maturity levels can be further defined by descriptive terms in
Predictive Capability Maturity Model (Oberkampf, Pilch, & Trucano, Predictive Capability Maturity Model
for computational modeling and simulation (SAND2007-5948), 2007), value bounds from probabilistic or
distance metrics, confidence interval, or hypothesis testing. The results from different validation metrics
are in different ranges, and the corresponding interpretations can be distinct. Maupin et al. [37] has reviewed
and tested a class of validation metrics with a synthetic example, it is found that the selection of metrics is
problem dependent. For example, when both the experimental measurement uncertainty and model
uncertainty is available, probabilistic metrics are more preferred than distance metrics. Otherwise, for
results from deterministic models, the distance metrics are more appropriate. The descriptive terms are
composed of two elements: model accuracy and performance standards. Performance standards are criteria
for measuring “acceptability” of simulation accuracy, and they are defined according to applications and
scenarios. These number are not fixed such that the upper and lower bounds can be floating in a single
application, especially when multiple phenomena and databases are available. At the same time, it is
suggested that the designation of value bounds should be consistent with the meaning of metrics outputs.
For example, if hypothesis testing is used, higher values suggest a higher confidence level, and the
corresponding level should be higher; if distance metrics are used, higher values usually suggest larger
error, and the corresponding levels should be smaller.

When validation data is collected directly from the prototypical system, the validation result can
directly support the argument of simulation adequacy. However, when the data is collected from reduced-
scale facilities or separate effect tests, additional evidence is needed for assessing the simulation adequacy
in target applications. Different from the maturity level definitions in PCMM, attributes of data applicability
and scaling analysis are not included in the validation result. Rather, a separate evidence characterization,
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data applicability, is prepared to account for the effect of data relevance, scaling analysis, and data
uncertainty. Meanwhile, the involvements of expert knowledge and judgment in selecting metrics and
designing acceptance criteria are not included, and they will be discussed separately in the belief
assessment.

Data Applicability

In addition to the levels from validation results, evidence of data applicability is also needed when the
data is collected from reduced-scale facilities, Separate Effect Tests (SETS) or Integral Effect Tests (IETS),
etc. The “data applicability” is defined by the similarity between validation facilities and reactor
prototypical conditions. In this study, the maturity level of data applicability is characterized by a R/S/U
grading system. The R/S/U is firstly developed by N. Dinh’s works in 2013 [38] and has been used in [39]
to evaluate the quality of validation data. The R/S/U system categorizes evidence of data applicability into
three sub-attributes: [R]elevance, [S]caling, and [U]ncertainty, and each of them is designed according to
their intrinsic properties. In this study, focuses have been put on extreme cases with binary grades for
relevance and scaling attributes. In practical applications, intermediate grades can be introduced with higher
resolutions. The relevance grade [R] is determined according to relationships of phenomenon and physics
between application and reduced-scale validation databases. For example, the flow data collected from a
curved tube is irrelevant to those in a straight tube since the phenomena are different; and the channel flows
with Re around 100 is irrelevant from those around 5000 since the dominating physics is different. The
relevance grade is mostly determined by expert opinions. PIRT [40] and the corresponding quantitative
version QPIRT [41] are strategies for identifying and ranking the relevance between validation databases
and applications. The (physics) scaling grade [S] measures the degree of similarity between phenomena in
the prototypical systems and reduced-scale experiments on the basis of physics scaling. At the same time,
the scaling grade aims to determine if the validation databases are sufficient to justify extending the
experimental model assessment results to applications. A formalized scaling analysis can be found in [5],
and a recent review on scaling methodology can be found in [42]. In classical scaling analysis [27],
dimensionless parameters are used for measuring the similarity between prototypical systems and reduced-
scale facilities. If the dimensionless space of the validation databases covers the space of application,
scaling analysis is claimed to be sufficient. Meanwhile, the database is claimed to be capable of representing
behaviors and phenomena in the designated scenarios. For example, it is assumed that the lid-driven cavity
flow can be sufficiently characterized by the Reynolds number (Re). It is also assumed that behaviors in
the prototypical system can be represented by reduced-scale lid-driven cavity flow, while geometries,
driven velocity, and fluid properties are different. As a result, the scaling grade for the validation databases
can be decided by comparing the range of Re for the reduced-scale database against the range under
prototypical conditions. If the Re range of validation databases covers that in prototypical systems, the
scaling is graded as 1. Otherwise, scaling is graded as 0. In addition, scaling grade equals to 1 only if and
only if the relevance [R] is not 0. Moreover, considering the effects of measurement errors, the uncertainty
grade [U] is suggested for measuring the data uncertainty due to instrumentation errors and limited
resolution.

For example, the data applicability assessment is performed when the target application is a channel
flow, and the quantities of interest are the averaged flow velocity v,. It is assumed that the flow can be fully
characterized by Reynolds number (Re), and the target Re equals to 5 x 103. Meanwhile, it is required that
the uncertainty, quantified by L1 relative error norm &g, in measuring v, is less than 50% of the
characterized velocity v,. It is further assumed that four databases are available from four different
experiments. The experiment #1 is performed in a curved pipe with Re € [102, 10*] and measurement error
ggor = £0.1v,. The experiments #2, #3, and #4 are performed in straight pipes. Experiment #2 has Re €
[10,103] and &y,; = +0.1v,; Both experiment #3 and #4 have Re € [10%,10*], while experiment #4 has
higher measurement errors £,; = +2v,. For experiment #1, since the phenomena in the curved pipe (case
#1) is different from those in the straight pipe, the collected data is not relevant to the target application
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even though the Reynolds number and data uncertainty satisfies the target conditions. Databases of case #3
and #4 are sufficient since the physical characterization (Re) of validation database covers the same
characterization in the target application. However, case #2 does not cover the target application. Therefore,
the scaling attribute of case #3 and #4 is rated as 1, while case #2 is rated as 0. The uncertainty of case #4
in measuring quantities of interest ,,, is higher than the acceptance criteria, and the corresponding attribute
is rated as 0. Uncertainty of case 2 and 3 satisfies the criteria and rated to be at least 1. As a result, case #3
is found to be applicable.

Beliefs Assessment

In addition to the maturity, belief in levels of validation results and data applicability needs to be
assessed based on the prior knowledge. Considering the subjective and intangible nature of beliefs, a table
of belief scales is prepared for the temporary quantification of intangibles, and the results are rendered in
gualitative terms by applying this scale in reverse. Table 4.2 provides an example with an arbitrary
assignment of probabilistic values; more sophisticated evaluations might be made by different sources and
groups. The objective is to reach an agreement on a single or a class of scales, and the defense in depth is
assured with better scrutability and communicability [2]. Also, beliefs can be estimated by metrics,
including confidence interval, probability boxes, etc. [16] [37]However, their results cannot violate Eq. 4.2
such that an adequate margin can be ensured. Meanwhile, the belief can also be assessed based on expert
opinions and represented by splinter probabilities. The value assignment in this study is arbitrary, and it is
also suggested that the values are problem dependent. For scenarios with severe consequences and small
margins, the belief assessment and the belief scales can be more stringent.

It is suggested that the attributes of data applicability and validation result are not independent. For
example, it has been pointed out by [37] that the selection of validation metrics depends on the uncertainty
grades. It is also suggested by [27] that the gradings for scaling and relevance are also correlated.
Meanwhile, the assessment for data applicability and selection of validation metrics relies on expert
opinions. Considering the objective nature of maturity level and R/S/U grades by their definitions, an
evidence integration process is needed for integrating intercorrelations and dependencies among attributes,
subjective and objective information to the final simulation adequacy. Although GSN provides structural
representations of validation arguments, no quantitative result can be obtained. To better support risk
analysis and guide model selections, additional techniques are needed to quantify evidence and to transform
validation arguments into computable networks.

4.4.2. Evidence Integration

To integrate evidence in a transparent and consistent manner, many studies have employed Goal
Structuring Notation (GSN) to integrate evidence to final simulation adequacy with the diagrammatic
notation [43]. Based on the evidence characterization, the claim of overall simulation adequacy is supported
by sub-claims of validation result and data applicability, which is further argued based on the R/S/U grade.
Error! Reference source not found. depicts the network of simulation adequacy assessment by GSN [44]
and defines principal components in GSN. The top objective (Goal #1) is to assess the adequacy of M&S
for a designated scenario, and it is argued based on sub-claims of validation results and data applicability.
Furthermore, the data applicability is argued based on three sub-claims: relevance, scaling, and uncertainty
(R/S/U). The goals at bottom levels are solved by corresponding evidence and corresponding
characterizations.
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Figure 4.25: Decision model for simulation adequacy assessment in a designated scenario. Principal
components and their descriptions in global structure notation (GSN).

—

is solved by

To quantify the validation argument with mathematical languages, this work uses probabilities and
connects them with logic for quantitative reasoning. Comparing to the classical logics with rigid and binary
characters, probabilistic approaches soften the constraints of Boolean logic and allow truth values to be
measured on a belief scale [45]. According to Eq. 4.3, the belief is represented as a function of causal
relationships {d;}, prior knowledge {p;}, and decision parameters {k;}. The prior knowledge, represented
by probability, has been estimated as belief and collected from the validation framework, together with the
evidence of validation result and data applicability. Causal relationship includes direct and indirect
dependency among all attributes. Since the dependence can be uncertain, the dependence becomes
conditional to all possible states of attributes or intermediate variables. Such a process enables reasoning
“by assumption” and decompose the reasoning task into a set of independent subtasks. It also allows us to
use local chunks of information taken from diverse domains and fit them together to form a global
interference in stages, using simple, local vector operations. Since the quantification of conditional
dependency relies on conceptual relationships and expert opinions, decision models are needed for
assessing conditional probabilities. A validation knowledge base is constructed by quantifying components
{d;}, {p;}, and {k;}. In addition to different evidence characterizations, PCMQBN also aims to integrate
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evidence from different databases, and a synthetic model is needed for assessing the conditional
probabilities according to their levels in relevancy, scaling, data uncertainty, data applicability, and
validation results.

For better visualizations, this study uses the Bayesian network to represent the statistical relationships
between different evidence and attributes. A Bayesian Network (BN) is a directed acyclic graph (DAG)
that is created by using the nodes represented by circles, arrows, and the conditional probability table. Each
node defines either a discrete or a continuous random variable. An intermediate node serves as a parent as
well as a child node. The nodes which have arrows directed to other nodes are parent nodes and nodes that
have arrows coming from other nodes are called child nodes A node that does not have any arrow coming
from another node is called as the root node, and it does not have any parent node. Arrows represent direct
relationships between interconnected parent and child nodes. The conditional probability table assigned to
each node describes the quantitative relationships between interconnected nodes. A BN analysis is
performed based on the conditional probability as in Eq. 4.4 and the conditional independence assumption,
i.e. P(x,y|z) = P(x|z)P(y|z) if and only if x L y|z. The joint probability distributions can be described
by conditional probability as:

n
P(Xy, Xy o X)) = —[P(Xi|X1, X)) Eq. 4.4
i=1

The conditional independence assumption simplifies Eq. 4.4 further as:

P(Xy, Xy, ) X)) = —[ P(X;|Parent (X,)) Eq. 45

Parent (X;) is parent nodes for X;; P(X;|Parent (X;)) is the conditional probability table of X;; n is the
number of nodes in the network. A Bayesian network can also be used as an inference tool to evaluate
beliefs of events when evidence becomes available. For evidence e, the joint probability of all the nodes
can be inferred as:

P(Xy,X5, ..., Xn, €)

P(e)
_ P(X1IX21"'IXnI e)

- ZXl,...,XnP(XLXZI 'an e)

P(Xl,Xz,...,ane) =
Eq. 4.6

In this study, node X; includes Simulation Adequacy (SA), Validation Result (VR), Data Applicability
(DA), Relevancy [R], Scaling [S], and Uncertainty [U], and each node is further characterized by maturity
levels. Based on Eq. 4.4 and Eq. 4.5, the joint probability distributions are calculated as a product of
probability distributions of each of the variable’s conditional on other variables. The conditional probability
table is determined based on expert knowledge in casual relationships and dependencies among different
nodes. Table 4.4 shows an example of assigning conditional probabilities when the data applicability is
assessed based on evidence from R/S/U grades. First of all, it is 0% confident that corresponding data is
applicable if the phenomena and involving physics are 100% not relevant; Meanwhile, the data is applicable
with 100% confidence only if the data is relevant, scaling is sufficient, and data uncertainty is acceptable
with 100% confidence [27]. Second, the confidence level of having applicable data drops to 60% if the data
uncertainty becomes unacceptable; the level drops to 20% if the scaling becomes insufficient; the level
further drops to 5% if both scaling and uncertainty are not acceptable. These number are required to be less
than 100% based on findings by D’ Auria [46] such that insufficient scaling and low-quality data are
expected to have negative impacts on simulation adequacy assessment. However, the values are arbitrarily
assigned to quantify the relative impacts due to different root causes, and it is assumed in this study that the
negative impact due to insufficient scaling is higher than that due to low-quality data. Similar techniques
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also apply to the conditional probabilities for simulation adequacy assessment. The simulation is 100%
adequate if the data is applicable and the validation result satisfies the acceptance criteria. Moreover, it
becomes 30% or less confident that the simulation is adequate if either validation result or data applicability
does not satisfy the criteria.

Table 4.4. Example of conditional probabilities based on expert knowledge on causal relationships and
dependencies among different evidence characterizations.

Conditional Probability Value
P(Yes-Applicable data | No-relevant data) 0
P(Yes-Applicable data | Yes-relevant & Yes-scaling & Yes-uncertainty) 1
P(Yes-Applicable data | Yes-relevant & Yes-scaling & No-uncertainty) 0.6
P(Yes-Applicable data | Yes-relevant & No-scaling & Yes-uncertainty) 0.2
P(Yes-Applicable data | Yes-relevant & No-scaling & No-uncertainty) 0.05
P(Yes-Adequate simulation | Yes-Applicable data & Yes-Validation result) 1
P(Yes-Adequate simulation | Yes-Applicable data & No-Validation result) 0.3
P(Yes-Adequate simulation | No-Applicable data & Yes-Validation result) 0.25

Error! Reference source not found. shows examples of the Bayesian network with the conditional
probabilistic prepared with GeNie [47]. Although the data is relevant and has good quality, the confidence
for applicable validation data is 20% since the dimensionless space of validation data does not cover the
space of the target application. Meanwhile, since the confidence of getting an adequate simulation given an
acceptable validation and not applicable data is 0.25. the confidence for an adequate simulation is 40% even
the simulation predictions have good accuracy in predicting the validation data.

© Simulation Adequacy

YesAO%
No 60% BT

£

O Vvalidation Result O Data Applicabil...

ves 100% | ) Yes 20%’ﬁ

No No 80% 3
O  Relevance (@] Scaling O  Uncertainty
ves100% [ |  [ves 0% ves 100% [ |
No 0% & No 100% F No 0% =

Figure 4.26: Example of Bayesian network for simulation adequacy assessments with designed
conditional probability table by expert knowledge.
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In practice, since multiple databases are usually used in the validation process, the overall simulation
adequacy should account for impacts from multiple nodes that represent the simulation adequacy result
from each database. In this study, a synthetic integration model is designed to determine the conditional
probability based on the Reactor Prototypicality Parameter (RPP) and Experimental Measurement
Uncertainty (EMU).

The concept of validation cubic was first suggested in [38], and the objective is to measure how close
the given test conditions are to the reactor conditions in scenario of interest to the application. The term
“cubic” refers to three-dimensional and normalized space, which is filled by a body of validation evidence
from validation experiments. At the same time, each “dimension” is normalized to the range of 0 to 1 such
that each face has a square shape. Three dimensions include Reactor Prototypicality Parameter (RPP),
system decomposition, and physics models. RPP, Reactor Prototypicality Parameter, is defined as the
significance of certain evidence in supporting claims in reactor conditions. In this study, a numerical value
equal to 1 stands for highly significant evidence, in the sense that the data from validation experiments are
relevant, sufficient, and high-quality. 0 means insignificant evidence where the data can be irrelevant,
insufficient or low-quality. System decomposition represents the separation of target scenarios into sub-
phenomena and sub-physics. As a result, the validation experiments can be classified into separate or mixed
effect tests, where separate phenomena and physics are investigated in different facilities. Physics models
refer to the micro-scale closures, equation sets, and macro-scale effective-field model for simulating the
prototypical system. Figure 4.27 shows an example of a validation cubic. A body of evidence (E, ..., E;, ...)
is collected from experiments with different system decomposition, i.e. Separate Effect Test (SET), Mixed
Effect Test (MET), Small-Scale Integral Effect Test (SS-IET), and Large-Scale Integral Effect Test (LS-
SET). Meanwhile, each evidence E; is to develop the model and to support the validation over a range of
models from sub-grid-scale models (closures) to macroscale Effective-Field Model (EFM). In this study,
the RPP value is proposed to integrate the dimension of system decomposition and physics model, and it
represents the relative importance of each evidence from the perspective of the physics model and system
decomposition. Also, it is found that the status of evidence collection and simulation adequacy support is
correlated with the filling of the Cubic’s upper layer (RPP->1) across physics and system decomposition
dimensions.

RPP: Reactor
Prototypicality

High-value evidence

region (high RPP) 1
E.
O.tm--------- E
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- 1
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""" B xaintuinteinituieieind et ol
i SET A B |C Y z Physics
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! MET prasan et
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System

Decompaosition

Figure 4.27: Validation Cubic for a body of evidence for validating sub-grid-scale models (closures) to
macroscale effective-field model EFM. Evidence included (Eq, ..., E;, ...) is notational and they are
collected from different experiments or databases with different levels of system decompositions. The
relative importance of evidence is represented by RPP values. The status of validation evidence and
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simulation adequacy support is correlated with filling of the Cubic’s upper layer (RPP->1) across physics
and system decomposition dimensions.

This study suggests a synthetic model for determining the RPP values based on the ratio of scaling

parameters (Sc) in the experiments [Scyoa, | . and in the applications[Scaoq, |

EXP APP’

RPP = [SCMOdK]E}{p/[SCMOdK]APP Eq 47

The Mody represents the physical process K calculated from test/experimental conditions, which is
also a high-ranked physics in the application conditions. [SCMOdK]EXP represents the scaling parameters of

Mody in experimental conditions, while [SCMOdK]APP is the scaling parameters in the application’s

conditions. In fluid mechanics, Scy,q, Can be quantified by dimensionless parameters, like Reynolds
number and Mach number, which describe the relative magnitude of fluid and physical system
characteristics, such as density, viscosity, speed of sound, flow speed, etc. To determine the conditional
probability, a weight factor g, for each evidence E; is first calculated by Eq. 4.8 based on the EMU and
RPP. in the validation cubic model [38].

EMU is Experimental Measurement Uncertainty that measures the uncertainty of a certain experiment,
and it is determined based on the level of uncertainty characterizations of experimental measurements. A
similar characterization for uncertainty levels can be found in [37]. m and n are grades that represent the
significance of experiment J and the physics K. The experimental significance is affected by the quality
and relevance of a given experiment, while the physical significance is ranked according to the PIRT
process, where highly ranked phenomena and their corresponding physics should have high a significance
factor n. Table 4.5 provides an example of parameter selections and their definitions in the validation cubic
decision model.

Table 4.5. Summary of parameters in the validation cubic decision model.

Experimental Measurement Uncertainty (EMU) for a given experiment J

EMU = 0.001 < Level 0: Experimental uncertainties are unknown or largely biased

EMU = 0.01 & Leve 1: Experimental uncertainties are qualitatively analyzed only

[0, 1] EMU = 0.1 & Level 2: Experimental uncertainties are well characterized for most important
measurements, but some remains poorly known

EMU =1 < Level 3: Experimental uncertainties are well characterized for all tests
Significance factor for a given experiment J: m

[0, 1] Value ranging from 0 to 1. O represents insignificant experiments due to low relevance or low
quality. 1 means highly significant experiments that are directly relevant to the applications,
and the experimental quality is great.

Significance factor for a given physics K: n

[0, 1] Value ranging from 0 to 1. O represents low-ranked phenomena and physics, while 1 means
high-ranked ones based on PIRT results

Governing scaling parameters for model [SCMOdK]EXP and application [SCMOdK]APP

[0, ) | Dimensionless quantities that measure the system invariance according to the model
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Figure 4.28 illustrates both 2D and 3D views of the validation cubic. To demonstrate the effects of
significance factors, ranges of weight factors against the EMU values are made with three arbitrarily
assigned values for m and n. The minimum bound is obtained with RPP equals 0, while the maximum
bound is obtained with RPP equals 1. It is emphasized that the current formulation is to illustrate the
qualitative correlations between important decision parameters, i.e., the weight of evidence, and validation
evidence, including scaling parameters, experimental VUQ qualities, etc.

2

m=0.1,n=0.4
18 — — —m=n=1
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Figure 4.28: Illustration of validation cubic: left: 3D surface plot for weight factor 1, given m = n =1;
right: ranges (minimum and maximum) of weight factors 1, with three arbitrary values of m and n. The
uncertainty is introduced by samples of RPP values.

After determining the weight factor 1, for each evidence E;, they are normalized to 1/75i according to
Eg. 4.9 and used as the conditional probabilities between overall simulation adequacy CA and individual
simulation adequacy from separate databases.

P(SA|SAg,) = Y,/ i1 ¥, Eq. 4.9

Considering the previous discussion on validation result and data applicability, the general standards
for simulation adequacy can be identified as:

Adequate — For the high-rank phenomena, the accuracy in predicting the quantity of interest is acceptable.
The simulation can also be confidently used in similar applications with relevant, scaling, and high-quality
validation databases (high R/S/U grades or answer yes). The accuracy in predicting corresponding
quantities of interest should also be acceptable.

Inadequate — For the high-rank phenomena, the accuracy in predicting the quantity of interest is
unacceptable. The simulation cannot be confidently used in similar applications with irrelevant, insufficient,
or low-quality validation databases (low R/S/U grades or answer no).

The inadequacy can be caused by reasons including unacceptable validation result, irrelevant, low-quality
data insufficient validation data. In classical validations, the simulation is inadequate if one of these
conditions is satisfied. In the PCMQBN framework, the simulation becomes “partial” inadequate, and the
degree is defined based on beliefs in probability.

4.4.3.Sensitivity Analysis

Sensitivity analysis is the study of how the uncertainty in the output of a system can be divided and
allocated to different sources of uncertainty in its inputs [48]. In Bayesian-network applications, sensitivity
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analysis investigates the effect of small changes in numerical parameters (prior probability, conditional
probability) on the output parameters (posterior probabilities). Since the design and parameter selection of
PCMQBN requires expert inputs, it is necessary to evaluate that induced uncertainty in the PCMQBN
framework. A list of uncertain parameters is designed, including beliefs on the levels of evidence,
conditional probability, and evidence integration structures. Next, a sensitivity analysis is performed to
assess the impact of each parameter on any target nodes. In this study, an algorithm by Kjaerulff and van
der Gaag [49] is used for calculating a complete set of derivatives of the posterior probability distributions
over the target nodes over each of the uncertain parameters. Figure 4.29 shows an example of a tornado
plot for the Bayesian network in Error! Reference source not found.. Twelve variables are sampled,
including the belief in the evidence of validation result is acceptable (VR=Yes), validation data is relevant
(DA_R=Yes), validation data is sufficient for scaling (DA_S=Yes), the probability of having an adequate
simulation given that the data is applicable and validation result is acceptable (SA=Yes|DA=Yes, VR=No0).
All parameters are sampled from 0 to 1, and the width of each bar represents the range of belief values on
the target attribute (Simulation adequacy = Yes). It can be found that evidence of validation result has the
most significant impact on simulation adequacy. This is reasonable since the comparison between model
predictions and experimental data directly represents the simulation’s degree of accuracy. The conditional
dependencies of simulation adequacy on data applicability and validation result have more impacts on the
target belief than other dependencies.

Sensitivity for SA=Yes
Current value: 0.5 Reachable range: [0.25 .. 0.75]

0.3 0.4 0.5 06 0.7

L 1 1 |

1. VR=Yes

2:SA =Yes | DA=Yes, VR=No

3:SA=Yes | DA=No, VR=Yes

4: DA _R=Yes

]
5. DA_B=Yes

|
6. DA_LFYes

|
7: DA=Yes | DA_R=Yes, DA_S=No, DA_U=No

8: DA=Yes | DA_R=No, DA_S=Yes, DA_U=No
9: DA=Yes | DA_R=No, DA_S=No, DA_U=Yes
10: DA=Yes | DA_R=Yes, DA_S=Yes, DA_L=No
11: DA=Yes | DA_R=Yes, DA_S=No, DA_UFYes

12: DA=Yes | DA_R=No, DA_S=Yes, DA_U~Yes

Figure 4.29: Example of tornado sensitivity plot. All listed evidence and conditional probabilities are

sampled by 40% of their current values, the colored bar shows the maximally reachable ranges for the

final simulation adequacy results. These ranges are arranged based on their widths, while the number
indicates their ranks of importance to the simulation adequacy.

Sensitivity analysis is a unique feature enabled by formalizing and quantifying the decision-making
process. It improves the robustness of the assessment results for simulation adequacy in the presence of
uncertainty. It also helps the understanding of correlations between different attributes in the validation
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decision-making process such that the structure can be continuously refined. Moreover, by identifying the
most sensitive attribute, simulation adequacy can be improved by collecting evidence of specific
phenomena, improving the model performance for local predictions, and refining the conditional-
dependency parameters. In addition, the sensitivity analysis offers a simple strategy against the imprecision
issue in classical Bayesian analysis, where the uncertainty is required to be measured by a single (additive)
probability, and values can be measured by a precise utility function [16]. However, such an assumption is
very hard to achieve in validation since the data is too few to make precise estimates on the probability and
the distribution. By performing a sensitivity study on various sources of uncertainty, the standard analysis
is applied to all possible combinations of the decision including parameters, evidence, integration structure,
etc. Next, a class of simulation adequacy is determined, and if the class of decisions is approximately the
same, it can be claimed that a robust result is obtained. Otherwise, the range can be taken as an expression
of confidence from the analysis. As a “convenient” approach against the imprecision issue, this method is
also known “Robust Bayes” or “Bayesian sensitivity study” [50] [51].

4.4.4.Phase of Simulation Adequacy Assessment

To manage the progress of validation activities, PCMQBN adequacy assessment, sensitivity analysis,
and applications, this study defines three phases of development for grading the quality and confidence in
the simulation adequacy results based on the sources and levels of uncertainties. Error! Reference source
not found. defines the phases of development based on the sources and levels of uncertainties in simulation
adequacy assessment by PCMQBN. At each stage, evidence needs to be collected and characterized
accordingly. Meanwhile, the uncertainty in each evidence, parameter, integration structure, and the final
simulation adequacy need to be evaluated. Complete documentation and review of this process mark the
completion of each phase. Phase 1 is designed for initial adequacy assessment. Although the uncertainty in
final adequacy is large, the objective is to agree on the evidence selection, conditional dependencies,
acceptance criteria, and qualitative impacts on the target applications. Meanwhile, it serves as the
foundation for phase 2. Most validation activities and decision-making efforts will be conducted in Phase
2, and the objective is to have an adequate simulation that can support designated decisions with confidence.
The quality assurance for the simulation is also required to prevent defects and issues in software products.
Phase 3 involves licensing and regulatory activities, and the objective is to provide confirmatory results and
define a defense-in-depth in evaluation.

Table 4.6. Definition of phases of development.

Phase # Sources of Uncertainty Levels of Uncertainty
Largely uncertain conditional Uncertainty in the final simulation
dependency with unknown bounds. adequacy is so large that
1 Scopin Insufficient evidence or imprecise preliminary sensitivity analysis
ping beliefs on evidence with uncertain shows that the uncertainty will alter
bounds. the decisions in designated
Unverified or low-quality evidence. scenarios and applications.
Uncertainty in the final simulation
Uncertain conditional dependency with | adequacy has known ranges or
2 Refinement known bounds. distributions with confidence levels.
Sufficient evidence with imprecise The uncertainty can alter the
beliefs but known bounds. decisions only at the edge of
scenario spectrum
Condltlopal _dep_endency with precisely Uncertainty in the final simulation
known distributions. adequacy is precisely characterized
3 Maturation | Sufficient evidence with beliefs on quacy IS precisely ’
. . and they are not likely to alter the
evidence and precisely known decisi
o ecisions.
distributions.
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To illustrate the process and help the understanding, a case study is prepared for assessing the
simulation adequacy for Smoothed Particle Hydrodynamics (SPH) methods in external-flooding scenarios.
A validation process has been performed and discussed in [52]. The current case study is at the scoping
stage, and the decision parameters are subject to sensitivity analysis.

4.5. Adequacy Assessment for SPH Methods by PCMQBN

To demonstrate the capability of PCMQBN in assessing the adequacy of simulation results, this study
assesses the adequacy of SPH simulations in predicting the impact forces during an external-flooding
scenario. Evidence is collected from the CSAU/EMDAP framework, which is performed and explained in
detail by a separate work [53]. Sub-section 5.1 describes the assessment process for simulation adequacy.
Sub-section 5.2 evaluates the sensitivity of simulation-adequacy results by sampling decision parameters
and evidence characterizations. Sub-section 5.3 describes the application of simulation adequacy from
PCMQBN results.

There are different types of flooding scenarios evaluated by the nuclear industry, and each may have
multiple criteria for adequacy acceptance. For this external-flooding example, the analysis purpose is to
assess if the simulation adequacy of SPH to model impact forces when simulating the scenario of “floods
damage the building structures, enter the room, and cause diesel generator (DG) malfunctioning” is
acceptable. The validation framework CSAU and its regulatory guide EMDAP is used for qualitative
adequacy assessment. Figure 4.30 shows the scheme of the CSAU-guide validation process, and results
from all activities lead to a qualitative decision of simulation adequacy for SPH methods in designated
applications. The SPH methods and the simulation code, Neutrino, are explained in [53].

Scaling Analysis of

Experimental Database
Performance Measurement Ar% data
. Standards applicable?
| * Acceptable “~Whatis - PIRT
+ Insufficient acceptable? - -
What is
Adequacv important?
How well does  Decision
Code Assessments the code d/o}
* Theoretical Error Analysis e
» State of the art review Is simulation Yes | Risk-Informed
* Numerical benchmarks result adequate? " Safety Analysis
* Accuracy (error) assessment \
No l
Go back to corresponding Issue Identification and
elements for improvement Resolution

Figure 4.30: Demonstration of adequacy assessment based on CSAU/EMDAP.

The corresponding Qols include the response time and the structural loads on Systems, Structures, and
Components (SSCs) by floods. The response time is the time for the external floods to reach the DG
building and to potentially fail the DGs, while the structural loads are the pressure forces acting on the
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nuclear SSCs by the floods. This study focuses on the adequacy assessment of SPH methods in predicting
the structural loads. An SPH-based software, Neutrino [11], is used to simulate an external-flooding
scenario.

A PIRT process is performed to rank the importance of separate phenomena for evaluating the
simulation adequacy in the designated scenarios. To estimate the structural loads with sufficient accuracy,
the adequacy of SPH methods in simulating the hydrodynamic forces on stationary structures is highly
important. As a result, a validation database is constructed with a list of numerical benchmarks, and
evidence of simulation accuracy (validation result) is collected by comparing simulation predictions against
measurements from each benchmark. At the same time, a scaling analysis is performed to evaluate the
applicability of all databases. Table shows a list of benchmarks together with qualitative results for each
assessment. In both benchmarks, the peak pressure forces are selected as the quantity of interest, and SPH
simulations are performed with different simulation parameters for complete uncertainty quantification.
Next, simulation results are compared against the experimental measurements, and an L1 metric (L1
relative error norm) described in Eg. 4.10 is used to evaluate the accuracy of SPH’s performance. The
accuracy is acceptable if L, is less than 20%.

QOIpreds - QOImeas

L. =
1= Qolyeqs

Eq. 4.10

where Qol,.qs represents the predicted quantity of interest by Neutrino, while Qolp,.qs represents the

measurements from experiments. More details about the accident scenario, PIRT process, performance
measurement standards, accuracy and scaling analysis can be found in [52].

Table 4.7. Validation results for SPH methods in simulating hydrodynamic forces on stationary structures
in the external-flooding scenario.

Benchmark Simulation | Accuracy Data Applicability
Adequacy (L1 error) Relevancy | Scaling | Data Quality
Acceptable .
Dam Break Adequate (L,=3.6%) Yes Yes High

Falling: Acceptable
(L1=5.52%)
Floating: Acceptable
(L1=4.41%)

Moving Solids in
Fluid

Inadequate Yes No High

It is found from the dam break benchmark that the SPH method can adequately predict the hydrodynamic
forces on the stational object with acceptable accuracy and applicable databases. At the same time, an
opposite conclusion is obtained from the moving solids in fluid benchmark since the experimental scale is
too small to cover the application scenarios. Therefore, based on the collected databases, it is hard to decide
whether SPH methods can predict the hydrodynamic force on solid objects with acceptable accuracy since
claims from two benchmarks seem to be contradictory. To reduce uncertainty, PCMQBN is applied to
assess the simulation adequacy with the validation cubic model.

4.5.1.PCMQBN Adequacy Assessment

Since evidence from two experimental databases is used, the weight factor needs to be calculated, and
Table 4.8 shows the assignment of decision parameters based on validation activities from CSAU/EMDAP.
Parameter m represents the significance of dam-break and moving-solid-in-fluid experiments. It ranges
from 0 to 3, and it is mainly determined by the quality of experiment and collected data. Since the dam
break data is collected by extracting graphical points from literatures, its experimental significance is rated
as low (=1). The moving solid data is collected directly from experimental facilities, and repeated runs are
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performed to quantify the experimental uncertainties from sensors, equipment, operating conditions, etc.
Therefore, the moving-solid experiment is rated as high (=3). Parameter n represents the significance of
physics in two experiments, and it is rated according to the PIRT process. Since both experiments are
investigating the phenomenon of hydrodynamic forces on stationary structures, they are rated as high, and
the corresponding value is 3. [SCMOdK]EXP and [SCMOdK]APP are scaling parameters in experimental and

prototypical conditions respectively. A scaling analysis has been performed and discussed in [52]. A
dimensionless number x* is suggested for the dam break benchmark according to Eq. 8.50. L is the distance
between the gate and the solid object, & is the initial depth of surface wave.

x* =h/L Eq. 4.11

Table 4.8: A list of decision parameters in validation cubic model. The value is assigned based on author’s
knowledge.

Decision

Dam Break Moving Solid in Fluid
Parameters
m 1 (Low) 3 (High)
n 3 (High) 3 (High)

[Semoak] yp | 0.1~0.26 (x* EXP) | 0.017 (x* EXP)

[Scmoak) pp | 0.1 (x* APP) 0.1 (x* APP)
RPP 1 0.17

EMU 0.1 (Level 1) 0.01 (Level 2)
Vg, 0.43 0.16

Y, 0.73 0.27

For the moving-solid benchmark, the scaling analysis shows that the accuracy in predicting the
buoyance force depends on the particle intensity around the solid object. Therefore, for the moving object
calculation, the cube density ratio (p* defined in Eq. 4.12) and the ratio between cube volume and average
particle volume (V* defined in Eq. 4.13), are selected as the dimensionless parameters. Vdp is the average

particle volume defined by Eq. 4.14 [54], and d is the initial particle diameter.

pr= pcube/pfluid Eq. 4.12
Ve= cube/vdp Eq.4.13
Vap = d3 Eqg. 4.14

Based on the scaling parameters, the RPP can be determined according to Eq. 4.7. The dam break
has RPP equal to 1 since the range of dimensionless parameters in validation databases covers those in the
application scenario. The EMU is rated according to the characterization of experimental uncertainties
(Table 4.5). Since the dam break data does not have any uncertainty information, the uncertainty level is
rated as level 1 (EMU=0.1). The uncertainty of moving solid measurements is quantified by repeated runs
and rated as level 2 (EMU=0.01). At last, all parameters are substituted into Eq. 4.8, and the weight factor
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Y, for each benchmark can be determined. They are further normalized to 1/)_El such that they can be further
used in PCMQBN for calculating the conditional probabilities.

Figure 4.31 shows the Bayesian network for simulation adequacy assessment based on evidence and
decision parameters for two numerical benchmarks. It is found that the belief level on the claim that the
SPH method is adequate in predicting the hydrodynamic force is 100% when the simulation adequacy is
estimated solely by evidence from the dam break benchmark. This finding is consistent with the qualitative
result given the simulation accuracy and data applicability for the dam break benchmark. Meanwhile, the
belief level on the same claim becomes 36% when the simulation adequacy is estimated by evidence from
the moving-solid experiment. This result is similar to the qualitative results where the simulation is not
adequate in simulating pressures in the moving-solid benchmarks. Furthermore, it is found that the belief
level for an adequate SPH simulation is 83% when evidence from both benchmarks is used. Compared to
the qualitative results, there is higher confidence that the SPH simulation is adequate for the designated
purposes based on available evidence. Also, the uncertainty of simulation adequacy is less than that from
the qualitative assessment since the contradictory results suggest a non-informative adequacy distribution.
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Figure 4.31: Simulation adequacy estimated by the evidence from two benchmarks and weight factors
estimated by the listed decision parameters.
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4.5.2.Sensitivity Analysis

Considering the uncertainty of assigning decision parameters, a sensitivity study is performed by
sampling all conditional probabilities by 10% of their current values. Figure 4.32 shows the sensitivity
tornado, and it turns out that the relative importance of two validation databases, i.e.
P(SA=Adequate|SA_DAM = Adequate, SA_Moving = Inadequate), has the highest impact on the final
simulation adequacy. When the conditional probability is sampled from 0.438 to 1 (currently at 0.73 based
on the RPP model), the probability of having an adequate simulation range from 0.64 to 1.
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Sensitivity for SA__SPH =Adequate
Current value: 0.7092 Reachable range: [0.62744 _0.79096]

0.65 07 0.75
1: SA_DAM |S=Sufficient

2. SA_SPH=Adequate | SA_DAM=Adequate, SA_MOVINGanadequate

3 SA_DAM=Adequate | SA_DAM VR3Acceptable, SA_DAM DA=napplicable

4: SA_SLOSH_S=Suificient

5. SA_SPH=Adequate | SA DAM=Inadequate, SA_MOVING=Adequate

6: SA_DAM_DA=Appicable | SA_DAM_R=Relevant, SA_DAM_S4ansufficient, SA_DAM_U=Bounded

7-SA_MOVING=Adequate | S&_SLOSH VH=Acceptable, SA_SLOSH DA=Inapplicable

8. SA_SLOSH_DA=Applicable | SA_SLOSH_R=Relevant, SA_SLCOSH_S=nsufficient, SA_SLOSH_U=Bounded

Figure 4.32: Sensitivity plot for the simulation adequacy assessment with uncertain scaling grade and
uncertain conditional probabilities. All conditional probabilities are sampled by 40% of their current
values, the maximally reachable belief in an adequate simulation range from 0.63 to 0.8.

At the scoping stage, the evidence of scaling grade can be unverified. Thus, another sensitivity
analysis is performed by excluding the evidence on scaling grade and setting the belief in
sufficient/insufficient scaling as 50%/50%. The belief in an adequate simulation has reduced to 71%. Figure
4.32 shows the sensitivity tornado of simulation adequacy result with uncertain scaling grade and
conditional probability. It is found that the scaling analysis for the dam break benchmark has the highest
impact on the simulation adequacy result. When the parameter is sampled from 0.3 to 0.7 (currently at 0.5),
the simulation adequacy ranges from 0.63 to 0.8. Meanwhile, the relative importance of two validation
databases, i.e. P(SA=Adequate|SA_DAM = Adequate, SA_Moving = Inadequate), still has a high impact.
Therefore, it is recommended that the sufficiency analysis (scaling grade) for validation databases needs to
be verified and ensured with high confidence levels. At the same time, the relative weights of two evidence
from the RPP model need to be carefully examined. However, in both cases, where scaling grade and
conditional probabilities are uncertain, the beliefs on an adequate simulation are higher than 50%, and it
suggests a more informative distribution than the qualitative decision analysis.

4.5.3.Application of PCMQBN Adequacy Results

To further demonstrate how PCMQBN results can be used in risk-informed validation (Figure 4.24),
a risk-informed safety analysis is performed to evaluate potential damages to SSCs of NPPs by water waves.
SPH simulations are performed to determine the structural loads by a wave for 60 cycles. The cycle is
defined based on the frequency of hydrodynamic pressures by the surface-wave. Figure 4.33 shows the
predicted time transient of hydrodynamic pressure Pr(t) and impulse, and 1 cycle lasts for 9.09sec. The
impulse is calculated by:
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To+t

Im(t) = f Pr(t) dt Eq. 4.15
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Figure 4.33: Predicted time transient of hydrodynamic pressures (left) and impulse (right) onto the
structure by water surface waves.

To evaluate damages from structural loads in each wave cycle, the pressure-impulse (P-1) diagram
is calculated for each cycle. The pressure-impulse diagram is determined by finding the maximum pressure
and maximum impulse in each cycle. In structural engineering, the P-1 diagram is used to describe a
structure’s response to blast load. Depending on the P-I values in each cycle, damages to the structure by
surface waves can be characterized by 4 damage levels as in Figure 4.34. This study uses the P-I diagrams
for Reinforced Concrete (RC) structures, and the curve of damage levels is made based on experimental
data from [55].
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Figure 4.34: Logarithm plot of damage levels. Four levels of damage are defined based on the P-1 values.

Based on the adequacy definition, the accuracy is acceptable when the L1 error in predicting
hydrodynamic pressure is less than 20%. It is further assumed that when the simulation is not adequate,
either due to unacceptable error or inapplicable data, the prediction will have maximally 100% L1 errors.
As a result, error bands are added to the SPH predictions by:

y = YpT‘d + STYpTd Eq 416
Ypra i the SPH prediction for the hydrodynamic pressure and impulse, &, is the maximum L1 error by the
requirements: &, equals to 20% when the simulation is adequate, and the accuracy is acceptable; &, equals
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to 100% when the simulation is not adequate. When the simulation adequacy is uncertain, the prediction is
linearly assembled based on the confidence:
Yen = P(adq) “Yadq + (1= P(adq)) " Yinadq Eq. 4.17

Ve 1S the ensembled predictions; P(adq) is the confidence in the claim that the simulation is adequate;
Yaaq 1S the SPH predictions with error bands when the simulation is adequate (&, = 20%); Yinqaq IS the
predictions with error bands when simulation is not adequate (e, = 100%). Figure 3.35 shows the
distribution of P-1 values onto the damage-level plots for all 60 cycles in four conditions: (1) the simulation
is 100% adequate; (2) the simulation is 100% inadequate; (3) the simulation is 50% adequate and 50%
inadequate; (4) the simulation is 83% adequate and 17% inadequate.
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|

04 F { ) 10° ‘
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Figure 3.35: Distribution of P-I values onto the damage levels for all 60 cycles when the simulation is
100% adequate or 100% inadequate (left) and when the simulation is 50% adequate or 83% adequate
(right).

The number of cycles in each different damage levels can be found with different simulation
adequacy results. Table 4.9 shows the number of cycles in each damage level for four distributions of P-I
values based on the simulation adequacy results. If no validation decision is made, on one hand, when the
simulation is presumably 100% inadequate, all damages are predicted to be severe; on the other hand, when
the simulation is presumably 100% adequate, there are no severe damages, and 21 out of 60 cycles result
in light damages. If validation activities are performed, and when a qualitative validation decision is made
with 50/50 adequacy results, 26 out of 60 cycles (43.3%) turn to be severe. However, when a quantitative
validation decision is made 83/17 adequacy results based on the PCMQBN framework, all cycles turn to
be moderate.

Table 4.9. Number of cycles in each damage levels for four different simulation adequacy results.

Probability of Occurrence P,; among 60 cycles
Damage L C
Level (DL) oss (C) 100% 100% Ensembled Ensembled
Adequate Inadequacy 50/50 83/17
No 0 0/60 0/60 0/60 0/60
Light $10 21/60 0/60 0/60 0/60
Moderate $50 39/60 0/60 34/60 60/60
Severe $100 0/60 60/60 26/60 0/60
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To further demonstrate how these predictions affect the safety analysis, an expected loss (C) is
calculated based on a table of synthetic monetary loss and the probability of each damage levels.
4

(€)= fPDL -CdC = ZPDL(L') “CoL Eg. 4.18
i=1

CpL(iy Is the consequence in monetary losses for the damage level i, and a synthetic value is assigned in
Table 4.9; Py, ;) is the chances that the predicted cycles will fall into the damage level i, and it is determined

in Table 4.9. i ranges from 1 to 4 and it represents four damage levels from no damage to severe damage.
Table 4.10 shows the value of expected loss (C) based on Eq. 4.18 and corresponding values in Table 4.9.

Table 4.10. Expected losses for four simulation adequacy results.

Decision Analysis Expected Loss (C)
Qualitative and Implicit framework $71.67
(Ensembled 50/50)

PCMQBN decision framework $50

(Ensembled 83/17)

Optimistic decision maker $36

(100% Adequate)

Conservative decision maker $100

(100% Inadequate)

It is found that if the decision maker is willing to accept potential risks by the simulation errors and
completely trust the simulation with 100% simulation adequacy, the expected loss is the smallest, which
suggests an optimistic attitude to the simulation prediction errors. However, if the decision maker is not
willing to accept any risks by simulation errors, the expected loss is greatest, which suggests a conservative
attribute to the simulation and its prediction errors. Meanwhile, it is found that with simulation adequacy
result assessed by PCMQBN (83/17), the expected loss is reduced by 30% compared to the qualitative and
implicit decision framework (50/50) in classical validations. Assuming our goal is to make the expected
loss less than $60. The currently available evidence is sufficient to achieve this target. However, with the
gualitative decision framework, we need additional validation efforts to further improve our confidence in
simulation adequacy. Therefore, it is found that compared to the qualitative decision analysis, the PCMQBN
framework is able to reduce costs by effectively conducting and planning validation activities.

4.6. Conclusion

In this study, a framework of PCMQBN is developed to formalize and quantify the validation decision-
making process with mathematical languages. The objective is to support the decision-making process for
simulation adequacy in a transparent, consistent, and improvable manner. PCMQBN first formalizes the
mathematical representation of simulation adequacy as a triplet of scenario, predictive capability level, and
belief. Next, argumentation theory is employed to formalize the decision-making process in validation as
an argument for simulation adequacy that is based on evidence from the validation frameworks and
activities. In this process, all related evidence is characterized such that its representation is consistent with
the definition of simulation adequacy. Next, all evidence is quantified where the predictive capability is
represented by maturity levels and the belief is quantified by probabilities. Next, Bayes’ theorem is used to
integrate the quantified evidence, and the Bayesian network is used to represent this integration by directed
acyclic graphs. To ensure the consistency of network connections and causal dependence on well-known
physics, rules, and knowledge, a synthetic model is also suggested for evaluating the conditional probability
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among all nodes in the network by calculating the Reactor Prototypicality Parameter. A sensitivity analysis
is performed to evaluate the impact of conditional probability and decision parameters. It is found that the
conditional dependency between simulation adequacy and validation result has higher impacts on those
between [R]elevancy/[S]caling/[U]ncertainty grade and data applicability. It is also found that relative
weights of evidence from different databases have large impacts on the final data adequacy. Therefore,
during a validation decision-making process, the correlations and dependencies among different databases
and attributes need to be evaluated more carefully than accuracy assessments and scaling analysis for
separate models and databases. Based on the sources and levels of uncertainty, three phases of development
are defined for documenting and grading the quality of the assessment process and simulation adequacy
results.

To demonstrate the capability of PCMQBN, a case study is performed to assess the adequacy of SPH
methods in simulating the scenario of “floods damage the building structures, enter the room, and cause
diesel generator (DG) malfunctioning”. The validation framework CSAU and its regulatory guide EMDAP
is used for collecting evidence and qualitative adequacy assessment. Details about SPH simulations and
evidence collection are discussed in [52]. Since opposite conclusions are obtained from two numerical
benchmarks, the PCMQBN framework is used to further refine the adequacy assessment with quantitative
results. For separate benchmarks, it is found that the belief level on the adequacy claim for the SPH method
is consistent with the qualitative results from CSAU/EMDAP. Meanwhile, it is found that the belief level
for an adequate SPH simulation is 83% when evidence from both benchmarks are used. Comparing to the
gualitative result, there is higher confidence that the SPH simulation is adequate for the designated purposes
based on available evidence. Also, the uncertainty of simulation adequacy is less than that from the
gualitative assessment since the contradictory results suggest a non-informative adequacy distribution. To
further demonstrate how PCMQBN results can be used in risk-informed validation, a risk-informed safety
analysis is performed to evaluate potential damages to SSCs of NPPs by water waves. SPH simulations are
performed to determine the structural loads by a wave for 60 cycles. Based on a synthetic ensemble model,
distributions of SPH predictions and corresponding consequences are made based on the simulation
adequacy results. It turns out that the expected loss determined based on the PCMQBN results is 30% less
than that loss from the qualitative assessment. As a result, the formalized PCMQBN framework is able to
reduce the uncertainty in simulation adequacy assessment and the expected losses in the risk-informed
analysis due to that uncertainty.
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5. Reduced Order Modeling Techniques and Physics-guided Coverage
Mapping Methodology

5.1. Summary

This project investigation has focused on further development of reduced order modeling (ROM)
techniques and physics-guided coverage mapping (PCM) methodology to support the validation of
computerized physics models employed in support of engineering calculations. Two challenges are targeted
by these developments. First, how to take advantage of high-fidelity software tools in a manner that is
computationally feasible. High fidelity tools are sought because they are believed to enable better
predictions of complex physics phenomena. Engineering analyses however require numerous executions
of such tools to achieve engineering objectives such as design optimization, propagation of uncertainties,
integration of measurements from separate effects of integral effects experiments, etc. The cost of running
this analysis is prohibitively large, forcing analysts to revert back to lower-fidelity models. To address this
challenge, reduced order modeling techniques with error preserving bounds are sought in this project. The
project has started with recent advances in reduced order modeling techniques that rely on the use of
randomization to seek optimum reduction conditions for a given model. The project has further developed
a number of algorithms to enable reduction across multiple physics models and has integrated the use of
neural networks with previously developed randomized reduction algorithms. The outcome is an advanced
set of reduction algorithms suitable for reducing complexity of multi-physics models for both transient and
steady state calculations, with mathematically rigorous upper-bounds on the maximum errors resulting from
the reduction. For the second challenge tackled by this project segment, the goal is to answer a recurring
question in validation exercises, that is, why and how could analyst rely on experimental data, often
collected in idealized conditions, to validate modeling results for other conditions, for which no
experimental data exist, representing the envisaged domain of model application. To address this challenge,
investments in a new methodology, called physics-guided coverage mapping has been made. The idea is to
rely on high fidelity modeling tools to identify in a non-parametric fashion the relationship between
experimental and application conditions. The non-parametric description implies that no assumptions are
made about the functional form relating application responses to experimental responses. Instead,
information theory principles are employed directly to find the best joint PDF relating the experimental
responses and the application responses. Going beyond this initial rendition of physics-guided coverage
mapping methodology, the project has invested into further developing this methodology to account for
modeling errors and constraints that might be present, which if not respected, would lead to incorrect
mapping results. Examples include constraints on the input model parameters that must be respected when
the parameters are perturbed. Also, in many situations, model parameters are pre-calculated by other
computer codes, and the model is validated along with these parameters. In principle, any perturbations to
these parameters would result in additional modeling errors that are yet to be validated. Hence, algorithms
have been developed to ensure no additional errors are introduced due to parameters perturbations. This is
achieved via a constrained sensitivity analysis exercise to ensure zero sensitivities of the modeling errors
to parameter perturbations.

5.2. Introduction

First, we discuss work related to reduced order modeling. Despite the explosive growth in computer
power enabling scientists to model systems at unprecedented levels of accuracy, the resulting high-fidelity
models are too expensive for routine engineering analyses at the production level, which often require many
repeated model executions for applications such as design optimization, uncertainty quantification,
inference, etc. These engineering activities are needed to demonstrate the safety basis of advanced nuclear
reactor designs with sufficient characterization of system performance as per modern regulatory
frameworks. To address this challenge, a need exists for a formal approach that establishes a rigorous basis
for reducing the complexity of high-fidelity models in order to enable fast turn-around times for routine
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executions with acceptable and known accuracy. Reduced order modeling (ROM) refers to a wide class of
methods designed to achieve this goal. ROM approaches may be classified into three categories, physics-
based, pattern-based, and regression-based. The first category, physics-based, refers to approaches that rely
on reducing the modeling complexity by incorporating assumptions and approximations to simplify the
representation of the physics operator used to describe the system behavior. Examples of this include the
use of RANS (Reynolds-averaged Navier-Stokes) models or LES (Large Eddy simulation) instead of direct
numerical simulation (DNS) methods. The specific example employed in our recent work is the physics-
based simulation of the protected and unprotected Shut Down Heat Removal Tests (SHRT-17 and SHRT-
45R) for the Experimental Breeder Reactor Il (EBR-II), modeled using the System Analysis Module
(SAM), developed at Argonne National Laboratory for advanced non-LWR safety analysis. The physics-
based reduction approach, while based on intuitive physical principles, cannot credibly estimate the
uncertainties resulting from the various introduced assumptions and approximations, which is referred to
as modeling uncertainties over the model validation domain. The validation domain refers to the range of
conditions over which the modeling accuracy is assumed to be acceptable. Practitioners often resort to code-
to-code comparisons and/or complicated scaling studies to justify the use of the model over the range of
conditions envisaged for code use. In principle, one can estimate modeling uncertainties if one could
execute both the high fidelity and reduced order model. This is however not practical, especially when
considering the wide range of conditions expected during normal or abnormal operation. If the cost were
acceptable, one would not need the reduced order model. The idea however is to use few executions of the
high-fidelity model to estimate the modeling uncertainties, and then based on scaling arguments augmented
by expert-judgment-based recipes, the uncertainties are mapped to other conditions for which no high
fidelity model predictions exist. If high fidelity models are not available, one would resort to experiments
to estimate modeling uncertainties, but this is outside the scope of the paper, as the focus is on how to
reduce the complexity of simulation-based models. Thus, physics-based reduction is challenged by the lack
of a rigorous approach to quantify the modeling uncertainties resulting from the reduction. Different from
physics-based reduction, the basic idea for pattern-based methods is to construct a low-rank approximation
to the model variables whose physics correlations are not explicitly available. Pattern-based methods rely
on finding recurring patterns in the variability of the various model interfaces described by the input
variables, representing measured or design independent variables i.e., model input parameters such as
thermal conductivity, heat transfer coefficients, flow conditions, etc.; the state variables, e.g., the
temperature distribution; and the output variables, representing performance metrics, e.g., peak fuel and
clad temperatures. The state variables represent the solution of the physics equations, with the output
variables being functions thereof. Specifically, pattern-based methods employ unsupervised methods such
as principal component analysis (PCA), singular value decomposition (SVD), and proper orthogonal
decomposition-type techniques to identify dominant behavior over the range of variations for the various
model variables. The dominant behavior is described using few degrees of freedom, referred to as active
degrees of freedom (DOFs), designed to capture a large percentage of the variability. Unlike physics-based
reduction, these methods require no physics insights or intimate knowledge of the models being reduced
but only nonintrusive access to allow multiple executions to generate training data, i.e., snapshots. The
reduction errors have been conventionally estimated using a trial-and-error approach, where the number of
active DOFs is changed until the error resulting from the reduction meets user tolerance. This however does
not guarantee the reduction errors will be bounded over the range of conditions envisaged for model
application, i.e., the model validation domain. In the recent past, randomized linear algebra techniques have
resurfaced, offering a theoretical basis for estimating upper-bounded on the reduced models using pattern-
based methods. One typical approach for achieving this is the randomized range finding algorithm, whose
theoretical development allows one to estimate a realistic, i.e., hon-conservative, upper-bound on the
reduction error that is met with very high probability. Regarding the third category, regression-based, the
basic idea is to try to regress one set of variables, referred to as responses, to other set of variables, called
regressors. To regress, by definition, is to explain the cause of responses. In doing so, the relationship
between the regressors and responses, referred to as response surface or a surrogate model, is often based
on trial and error until an acceptable surface is identified which minimizes the regression errors. Some of
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the notable choices for the surrogate model include linear/polynomial functions, artificial neural network-
based functions, Gaussian process models, etc. The selection of a certain surrogate model is often guided
by the nature of the physics model or phenomena being analyzed, and hence is generally a subjective
process. Thus, it is not surprising that multiple surrogates could be developed with essentially similar
accuracy. In our work, both linear regression and artificial neural network (ANN) based reduction are
employed to construct surrogate models in terms of the active DOFs generated using pattern-based
reduction. The construction of regression-based surrogate models represents the ultimate goal of any
complexity reduction exercise, as it provides an inexpensive tool for repeated model executions for
applications like sensitivity analysis, uncertainty quantification, and probability risk assessment. The key
challenge however is that it is not clear how to estimate the reliability of the surrogate model for all
conditions in the validation domain. This challenge is not addressed in the current work.

Second, we discuss work related to physics-guided coverage mapping. This project has laid the
foundations for the development of a new methodology for the integrated use of uncertainties -- including
parameters and modeling uncertainties and experimentally determined biases/uncertainties -- to support a
recurring theme in a number of DOE’s programs, that is how to improve modeling predictability via an
optimized use of minimal targeted experiments and high-fidelity modeling and simulation tools. This vision
recognizes the huge investments made by DOE in modeling and simulation over the past two decades, the
climbing cost and challenges of first-of-a-kind measurements. This theme -- of increased reliance on
modeling and simulation to guide the experimental activities and identify data needs -- represents an
umbrella vision for a wide range of nuclear reactor and non-reactor applications, such as material testing,
and advanced reactors/fuel concepts, etc. Realizing this vision will have far reaching implications for a
wide range of nuclear systems, achieved via effective inference of the dominant sources of uncertainties,
thus leading to better designs, more informed regulatory process, and ultimately to better economy for the
associated systems. This project has developed and implemented a recently emerging methodology denoted
by physics-guided coverage mapping (PCM) that employs data analytics, information theory, and high-
fidelity simulation to develop novel computational capabilities that would be instrumental in meeting this
vision. These capabilities include novel mathematical kernels capable of transferring biases/uncertainties
between two generic user-specified domains, referred to hereinafter as the experimental domain and
application domain. The experimental domain is considered small as it represents conditions which are
difficult to obtain, realize, or measure, e.g., conducting a real experiment to analyze rare events or hew
evaluations of nuclear data, execution of computationally expensive high-fidelity model at few conditions
when one is interested in replacing a high-fidelity model by a low-order model for routine calculations. The
application domain is much bigger as it represents all conditions at which predictions are sought, e.g.,
design of experiments for fundamental research to support new reactor concepts and/or advanced fuel
design, predicting reactor hot full power operating conditions for at normal and off-normal conditions, etc.
The PCM methodology exploits uncertainties in a non-traditional manner which is primarily concerned
with inferring the best possible correlations between the application’s quantities of interest and the
experimental responses. These relationships can be identified mathematically without making any adhoc
assumptions by minimizing entropy-based measures, referred to as the mutual information. The implication
is that even if the propagated uncertainties are high, one can find relationships -- via mathematical search
through the uncertainty analysis results -- between the experimental responses and the application’s
quantities of interest which allow for an effective mapping of experimental biases. To ensure mathematical
rigor of the PCM mapping kernels, both parameter and modeling uncertainties are simultaneously
characterized in both the application and experimental domains based on high fidelity simulation, which
represents the key contribution of this project, beyond what was done previously. This methodology departs
markedly from the existing predictive modeling and validation methods which essentially decouple
predictive simulation from uncertainty analysis -- sometimes performing the former and completely
forgoing the need for the latter -- and basing model validation on expert-based customized recipes for bias
mapping between the experimental and the application conditions. In doing so, the code-based uncertainty
analysis -- in which known sources of uncertainties are propagated through the simulation -- may be
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completely skipped and deemed unnecessary because the associated uncertainties are too high to be realistic
for operation; instead, they are estimated via direct comparisons between experimental measurements and
code predictions, referred to as “biases”. To make up for the analyst’s lack of knowledge on the exact
mapping of these biases between the experimental and the application conditions, several system-specific
recipes have been developed by practitioners.

5.3. Scope of Work

Regarding Reduced Order Modeling, as detailed in one of the listed papers (to be published; see sub-
section 5.5), our goal is two-fold; first, to explore the reducibility of the SAM code using pattern-based
techniques which are used to identify a small number of active DOFs for time-varying responses, e.g., fuel
temperature, and model input parameters. In tandem with that, the reduction errors are rigorously
quantified; second, regression-based reduction is used to regress the responses’ active DOFs to input
parameters active DOFs. Different regression surfaces are employed to explore best scenarios for SAM
reducibility. In doing so, we recognize that it is difficult to assess the errors resulting from SAM’s own
physics-based reduction and regression-based reduction, which remain as open research topics for future
work. The scope of work is directly related to the IRP objectives, as it provides an enabling tool for fast-
execution of accuracy-preserving tools to enable scientific validation of computer models. Specifically, the
goal here is to explore the reducibility of the SAM code using pattern-based and surrogate-based reduction
techniques. The overarching goal here is to determine whether additional reducibility can be incorporated
into the SAM physics model, based on the range of its intended application, thereby providing an efficient
solver capable of performing computationally intensive analyses such as uncertainty quantification,
inference, etc., especially when the number of model parameters is significantly increased. A representative
model with 25 input model parameters expected to directly influence key performance metrics (fuel, clad,
and coolant temperatures) is employed. The training shapshot are generated based on 1000 model
executions, each randomizing the input parameters within their prior uncertainties. Each execution records
the model responses and the associated state. The time-dependent fuel temperature is selected as the state
variable, while the peak temperature over the transient time is selected as the model response. The goal is
to create a reliable ROM model relating input parameter variations to both the state and response variations
over the range of uncertainties for the model parameters. The transient time is selected to be 900 seconds,
which corresponds to benign termination of the transient. The details can be found in the attached paper.

For PCM, the focus has been on the design of the noted mapping kernel and its associated enabling
algorithms -- representing the key contribution of this project -- as it provides a mathematical construct in
the form of a joint probability distribution function (PDF) which encodes all possible variations for the
application’s quantities of interest and the experimental responses. One key distinction of this work is the
ability to include both parameter and modeling errors when performing the PCM analysis. Specifically, a
neutronic model was used for demonstrating how modeling errors could interact with parameter
uncertainties, leading to incorrect results, if modeling errors are ignored. Representative lattice physics
models and core-wide models are employed wherein nuclear parameters, e.g., cross-sections, uncertainties
are propagated using two different models, one representing a high fidelity and the other a low fidelity
models, to assess the impact of modeling errors on the propagated uncertainties. A constrained sensitivity
analysis algorithm is developed to identify all parameter perturbations that impact the modeling errors and
are thus removed when performing the PCM or uncertainty analysis. Two attached papers describe the
details of the new algorithms. These algorithms are expected to have many follow-up applications in
support of data-driven validation of software tools. For example, they can be used to quantify the modeling
errors based on few numbers of high-to-low fidelity models comparisons and employ PCM to estimate the
modeling errors using the low-fidelity models at conditions for which the high-fidelity model predictions
are considered computationally expensive. These algorithms can also be employed to estimate both
modeling and parameters uncertainties, in a manner than ensures modeling errors are not stretching the low-
fidelity models outside their validation domain.
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5.4. Conclusions and Path Forward

This work has explored the reducibility of the SAM model using both pattern-based and regression-
based methods. The two reduction methods are applied for two representative transient benchmark models,
the EBR-I1 SHRT-17 and SHRT-45R tests. The pattern-based methods are capable of reducing the effective
dimensionality of the model variables in a manner that establishes realistic upper-bounds on the reduction
errors that are met with high probability. The reduced dimensions are referred to as the active degrees of
freedom (DOF). The implication is that model responses of interest, despite their nominal high
dimensionality, can be well-approximated by a much smaller number of DOFs. Next, regression-based
methods are employed to functionalize model responses of interest in terms of the active DOFs as the
regressor variables instead of the original number of model variables, which is typically much higher than
the number of active DOFs. Although regression-based methods suffer from their lack of a rigorous
approach for bounding their prediction errors, their performance is typically improved when the number of
regressor variables is significantly reduced. These encouraging results are expected to lay the foundation
for future work focused on devising new methods for incorporating the active DOFs directly into the
numerical solver of the SAM code to allow for a faster execution by constraining the search for the solution
along the active subspaces. Further, when straightforward application of ANN is not adequate, hybrid
methods relying on physics-based reduced order modeling techniques will be employed to guide the
construction of the ANN-based surrogate models. Overall, these results are expected to drive future work
of more sophisticated application-targeting reduced order modeling technigques with superior computational
efficiency and accuracy-preserving capability to help realize the value of high-fidelity modeling and
simulation tools, in which a great deal of investments have been made by DOE over the past two decades.

With regard to PCM, the contributed methodology paves the way for a philosophy shift in the value
of traditional uncertainty analysis in support of predictive model validation, shifting from a conventional
measure of confidence in the calculated results to a mathematically-rigorous -- rooted in information theory
-- approach by which experimental evidence, i.e., rare or expensive measurements, could be integrated with
high fidelity simulation to directly produce inference on the quantities of interest, i.e., quantities that are
costly to measure, cannot be directly measured, or computationally expensive to calculate on a routine
basis. The work has upgraded previous PCM developments to take into account the impact of modeling
errors on the inference analysis, typically ignored in previous work. The work has highlighted the key
dependencies between modeling errors and parameter uncertainties for representative neutronic models and
how modeling errors could have a significant impact on propagated parameter uncertainties. An algorithm
to ensure non-contamination of parameter uncertainties by modeling errors has been presented and applied
to a representative steady state and transient reactor models. Results indicate that one must carefully remove
the modeling errors before propagating uncertainties. Future work will focus on the implication of these
results for inference studies and bias calculations in support of model validation for first-of-a-kind reactor
systems. Going beyond neutronics, it is important to note that modeling errors from other physics, e.g.,
thermal hydraulics, could feedback into neutronic modeling errors, expected to occur in a multi-physics
simulation of core-wide performance. In this case, one must take into account the impact of other physics
on neutronic errors. Algorithms, similar in function, to the ones proposed here could be envisioned, where
one employs both a high and low fidelity multi-physics solver to estimate the modeling discrepancies for
the responses of interest and ensure their insensitivity to the parameter perturbations.

5.5. Peer-Reviewed Documented Work

The following 5 peer-reviewed articles document the key aspects of the work performed under this contract.
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Jeongwon Seo, Hany S. Abdel-Khalik, and Zoltan Perko, “Addressing Ambiguities in Constrained
Sensitivity Analysis for Reactor Physics Problems,” Nuclear Technology, March 2020. This paper
discusses a key enabling algorithm for PCM to ensure all parameter perturbations respect established
constraints, prior to application of PCM

Dongli Huang and Hany Abdel-Khalik, “Modeling Errors-Preserving Constrained Sensitivity
Analysis,” Nuclear Engineering and Design, June 2020. This paper discusses how modeling errors
could be integrated under the PCM framework with neutronics as example.

Dongli Huang and Hany S. Abdel-Khalik, “Nuclear Data Uncertainty Propagation and Modeling
Uncertainty Impact Evaluation in Neutronics Core Simulation,” Progress in Nuclear Energy, under
review. This paper discusses our initial work on assessing the impact of modeling errors on uncertainty
analysis studies used in support of model validation. This paper is still under review.

Yeni Li, Acacia Brunett, Elise Jennings, and Hany S. Abdel-Khalik, “ROM-based Surrogate Modeling
of EBR-II benchmark using ANL’s SAM Code,” to be submitted, currently under internal review at
ANL. This paper discusses ROM developments hybridizing both pattern-based and regression-based
methods for reduction.

Dongli Huang, Ugur Mertyurek, and Hany S. Abdel-Khalik, “Verification of the sensitivity and
uncertainty-based criticality safety validation techniques: ORNL’s SCALE case study,” Nuclear
Engineering and Design, pp.110571, 2020. This paper is byproduct of our research on forward-based
methods for sensitivity analysis.
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6. Approaches to Implementation and Evaluation of Coupling of Codes

While having the potential to threaten nuclear infrastructure, external flooding hazards are often
qualitatively assessed as risk-insignificant and excluded from detailed quantitative evaluation (Ma et al.,
2017). However, lessons learned from Fort Calhoun (2011), the accident at Arkansas Nuclear One (2013),
and the flooding of Vermont Yankee (2013) and St. Lucie (2014) have underscored the need for quantitative
simulations to evaluate the risk of flooding to nuclear power plants.

6.1. Summary

Coastal flood hazard studies rely on many hundreds of design storm events, both historical and
synthetic, to inform more comprehensive risk-based analyses, giving rise to the need for fast, deterministic
simulations. As a part of the broader Integrated Research Project (IRP), we develop a methodology that
supports probabilistic, risk-based design and decision-making by making deterministic, large-scale
simulations more practical and efficient.

Events such as the flooding around the Fort Calhoun (2011), Vermont Yankee (2013), and St. Lucie
(2014) nuclear power plants have highlighted the need for accurate simulations to determine the risk of
flooding at these and other facilities around the country. However, plant response to flooding due to
hurricane storm surge involves multiple spatiotemporal scales. While ocean circulation models can simulate
large-scale storm surge events, assessment of the resilience of critical infrastructure to storm-induced
flooding require much smaller scales that are more appropriate for fluid solvers, which can resolve finer
scale processes. Therefore, bridging the gap between these simulation approaches is essential, and calls for
the conception, development, and evaluation of a multi-scale methodology that can accommodate the
substantial differences in scales.

We describe a modeling framework that incorporates the larger scale finite element (FE) model,
ADCIRC, along with the smaller scale smoothed particle hydrodynamics (SPH) code, Neutrino, to provide
finer level resolution for complex geometries. ADCIRC is an ocean circulation model that solves the
shallow water equations over a mesh of nodes and triangular elements. The use of unstructured grids with
varying element sizes means that a mesh can be gradually refined in areas that require greater levels of
topographic detail. While these refinements can reach the meter scale, shallow water equations are not
suitable for simulating the hydrodynamic processes that occur beneath that scale and that must account for
the complex geometries of, for example, a nuclear power plant. Such simulations require smaller-scale
models like the mesh-free fluid solver, Neutrino.

Our approach draws on a methodology called subdomain modeling, which allows local changes in a
finite element model to be accommodated with less computational effort than would be required by re-
running the entire simulation. Provided a subdomain is large enough to contain the altered hydrodynamics,
changes can be made—such as refinements in spatial resolution and the addition of flood protection
measures—and simulations performed on a subdomain without the need to calculate new boundary values.
Objectives of the project include enhanced spatial resolution of subdomain meshes to get finite element
simulations closer to facility-scale features and topography; data libraries and reuse to curtail the need for
large, ocean-scale simulations, allowing modelers to instead start from the subdomain scale; ADCIRC-
Neutrino coupling to facilitate subdomain-to-facility scale interactions; and verification and validation to
ensure the correctness of computer implementations.

Results are based on datasets obtained from and through collaboration with the United States Army
Corps of Engineers (USACE), and include (1) refinement and evaluation of subdomain modeling for its
computational benefit and solution quality in actual, real-world applications that consider a range of
USACE engineering design scenarios, (2) development of a post-processing approach that facilitates the
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use of spatially and temporally coarse datasets from USACE as boundary conditions for subdomain
modeling, allowing us to adopt a library of states (LOS) perspective so that simulation results from a variety
of historical and synthetic storms are available for reuse—this allows us to recover boundary conditions of
a quality comparable to datasets with a much finer temporal resolution, (3) a prototype coupling approach
using subdomain modeling to combine the larger scale finite element model, ADCIRC, with the smaller
scale smoothed particle hydrodynamics code, Neutrino, to provide finer level resolution for complex
geometries.

In this report, we elaborate on these objectives, technical approaches, and results, describing their
relationship with other components of the project, summarizing key findings, and presenting highlights of
the technical innovations and implications of our work, as well as paths forward.

6.2. Technical Background

Flooding risk from hurricane storm surge is a multi-scale issue. Hurricanes develop and evolve over a
period of weeks at spatial scales of hundreds of miles as they progress across the deep ocean and move onto
the continental shelf and coastal floodplains. While numerical ocean circulation models can simulate storms
and their flooding effects, they operate on spatiotemporal scales that are too coarse for evaluating the
resilience of coastal infrastructure. Conversely, fluid solvers can resolve complex hydrodynamic processes
beneath the meter scale but are incapable of simulating the large-scale processes that lead up to these more
localized events.

Therefore, bridging the gap between these simulation approaches is essential, and calls for the
conception, development, and evaluation of a multi-scale methodology that can accommodate the
substantial differences in scales. In this study, we address practical needs identified through interactions
with the Department of Energy (DOE), the United States Army Corps of Engineers (USACE), and other
stakeholders by (1) refining and evaluating a subdomain modeling approach for its computational benefit
and solution quality in actual, real-world applications that consider a range of USACE engineering design
scenarios, (2) developing tools that facilitate the use of spatially and temporally coarse datasets from
USACE as boundary conditions for subdomain modeling, and (3) prototyping a coupling approach using
subdomain modeling to combine the larger scale finite element (FE) model, ADCIRC, with the smaller
scale smoothed particle hydrodynamics (SPH) code, Neutrino, to provide finer level resolution for complex
geometries, which we introduce below.

ADCIRC (Luettich et al., 1992; Luettich and Westerink, 2004; Westerink et al., 2008) is an ocean
circulation model that uses finite element methods to solve the shallow water equations over a mesh of
nodes and triangular elements. The use of unstructured grids with varying element sizes means that a mesh
can be gradually refined in areas that require greater levels of topographic detail. While these refinements
can reach the meter scale, shallow water equations are not suitable for simulating the hydrodynamic
processes that occur beneath that scale and that must account for the complex geometries of, for example,
a nuclear power plant. Such simulations require smaller-scale models like the mesh-free fluid solver,
Neutrino.

Neutrino is a smoothed-particle hydrodynamics (SPH) model developed by the Neutrino Dynamics
Initiative (Sampath et al., 2016; Sampath, 2018). It solves continuous fluid flow equations through the use
of discrete moving particles (Liu and Liu, 2010) and simulates single-phase, isothermal, incompressible,
Newtonian fluid flows with viscosity assumed to be constant with respect to space, and surface tension
forces neglected. Discontinuities of physical quantities occurring at boundaries, such as densities and non-
physical pressure forces, are generally challenging for SPH codes. Neutrino uses frozen particles to
accommodate multiple bodies and circumvent underestimation of physical quantities at the boundaries.
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6.3. Previous Work

Bridging the gap in modeling scales and coupling codes as diverse as ADCIRC and Neutrino present
a technical challenge. There is some precedent, however, for nesting and coupling strategies that facilitate
model integration across smaller differences in scales. A substantial body of work in both ocean and
atmospheric modeling addresses both one-way and two-way nesting strategies (Spall and Robinson, 1989;
Debreu and Blayo, 2008). As-Salek and Yasuda (1995) develop and employ a one-way nesting technique
using flow velocities and water surface elevations as boundary conditions to drive finer, local meshes in
their investigation of the effects of storm surge in the Bay of Bengal. Their results demonstrate that solutions
from the nested model agree better with observed data than those from the coarser large-scale model alone.

Hubbert et al. (1990) compare large-grid non-nested models with nested models using water surface
elevations as boundary conditions and demonstrate that the nested model outperforms the large-scale non-
nested model. Fox and Maskell (1995) compare one-way and two-way nesting models and show that two-
way nesting is advantageous when there are concerns about noise being generated at the interface of the
nested domain and the larger domain. Similarly, Sheng et al. (2005) describe a two-way nesting method
that obtains accurate results compared to large-scale outer models with one-way nesting. Debreu and Blayo
(2008) review several two-way nesting techniques and conclude that the choice of technique involves trade-
offs between conservation properties, accuracy, robustness, and coding challenges.

With respect to coupling between ADCIRC models, Baugh et al. (2015) present an approach for
simulating storm surge and tides called subdomain modeling that allows local changes in a subdomain to
be accommodated with less computational effort than would be required by re-running the full domain.
Provided a subdomain is large enough to contain the altered hydrodynamics, changes can be made—such
as refinements in spatial resolution and the addition of flood protection measures—and simulations
performed on a subdomain without the need to calculate new boundary values. Using subdomain modeling,
a library of states (LOS) perspective can therefore be adopted so that simulation results from a variety of
historical and synthetic storms are available for reuse.

6.4. Relevant Methods

Analysis of plant response to external flooding requires a methodology and workflow that can
accommodate the broad range of spatiotemporal scales involved. We begin by defining three modeling
scales and two points of interaction between them. These scales are: (1) ocean scale (kilometers) in
ADCIRC, (2) subdomain scale (tens of meters) in ADCIRC, and (3) facility scale (meter-level and below)
in Neutrino, which have the following points of interaction:

¢ Ocean-to-subdomain scale — the interface between full domain and subdomain ADCIRC models,
which differ in scale and resolution, using the subdomain modeling extension of ADCIRC.

e Subdomain-to-facility scale — the interface between a subdomain ADCIRC model to a Neutrino
model, using a one-way handoff of data from ADCIRC to Neutrino.

Below we describe the modeling scales they entail and the coupling approaches at both of these points
of interaction. We also introduce general verification and validation issues that are further explored in
subsequent sections.

Ocean scale: well-validated ADCIRC simulations, test cases, and meshes composed of elements graduated

in size with the largest elements over the deep ocean, smaller ones to resolve finer scale processes, and still
smaller ones next to the coastline.
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Subdomain scale: areas around a nuclear power plant facility selected from large-scale meshes using
strategically placed boundaries to define a region of interest, and within which a variety of flood protection
measures can be modeled and evaluated using ADCIRC.

Facility scale: local simulations using Neutrino, who’s initial and boundary conditions are informed by and
generated from subdomain scale simulations in ADCIRC.

In the workflow we advance, full domain simulations are performed that generate boundary conditions
and initial conditions for subdomains in the form of time histories of water surface elevations, depth
averaged velocities, and wet/dry states of nodes. Subdomain simulations are then performed at increased
spatiotemporal resolutions without the need for additional full domain simulations.

With respect to coupling, because of the complexity involved in combining a mesh-based FE ocean
circulation model and a mesh-free SPH model, our initial prototypes rely on a one-way handoff of output
data from ADCIRC subdomains to the Neutrino domain. This requires: (1) geographical overlapping of the
Neutrino domain with the ADCIRC subdomain, and (2) the ADCIRC subdomain to model local
hydrodynamic behavior with sufficient fidelity so that boundary conditions around the peripheries of the
Neutrino domain are meaningful. That is, subdomain simulations should behave as if a facility is present
by matching topography and by including roughness coefficients to account for local hydrodynamic
behavior.

This in turn requires that spatiotemporal gaps be bridged between the respective models and—since
ADCIRC grids are typically resolved locally at larger scales than those of Neutrino—enhanced spatial
resolution in ADCIRC subdomain simulations to account for protective structures, the facility itself, and
any other finer topographic features. Temporal refinement is also required in combination with the spatial
refinements in order to satisfy the Courant-Friedrichs-Lewy (CFL) condition.

6.5. Technical Objectives

As a part of the broader Integrated Research Project (IRP), we develop a methodology that supports
probabilistic, risk-based design and decision-making by making deterministic, large-scale simulations more
practical and efficient.

Technical objectives, approach, and relationship within the overall project are presented below.
Additional details can be found in the doctoral dissertations of Bukhari (2020) on enhanced spatial
resolution of subdomain meshes, data libraries and reuse, and ADCIRC-Neutrino coupling, and Dyer
(2020) on verification and validation.

Coastal flood hazard studies rely on many hundreds of design storm events, both historical and
synthetic, in their efforts to quantify larger risk-based goals, giving rise to the need for fast, deterministic
simulations. In this project, we develop a modeling framework that includes a) enhanced spatial resolution
of subdomain meshes — to get finite element simulations closer to facility-scale features and topography, b)
data libraries and reuse — to curtail the need for large, ocean-scale simulations, allowing modelers to instead
start from the subdomain scale, c) ADCIRC-Neutrino coupling — to facilitate subdomain-to-facility scale
interactions, and d) verification and validation — to ensure the correctness of computer implementations.
We describe these objectives below.

Enhanced spatial resolution of subdomain meshes. While subdomain modeling preserves the
accuracy of solutions obtained from full domain simulations, its ability to accommodate ex post facto
refinements of a subdomain have not been attempted or evaluated, particularly within the context of actual
coastal projects that could benefit from such enhanced resolution. Our work here is with actual projects
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obtained from and in coordination with the US Army Corps of Engineers (USACE) and their Engineering
Research and Development Center (ERDC) in Vicksburg, MS. For each case study and project alternative
defined, we determine whether and to what extent hydrodynamic effects remain local in subdomains,
subsequent to mesh refinements and modifications; how sensitive subdomain solutions are to boundary
locality, and placement; and how spatial mesh refinements for real world scenarios affect boundary
conditions for subdomains when combined with variations in project configurations.

Data libraries and reuse. Existing datasets of historical and synthetic storm results—such as those
developed and maintained at USACE, NOAA, and other agencies and oceanographic institutes—are widely
available, providing a rich set of storm surge data that could in principle be used in combination with
subdomain modeling in the design of coastal protective structures. Because the necessary output is
commonly stored at intervals of as much as 5 to 15 minutes, however, we consider the role of higher order
interpolation and smoothing of those results based on the following intuition: when results are infrequently
recorded, since they represent points along a relatively smooth solution to the shallow water equations, it
may be possible to recover any peaks that were inadvertently clipped—as the result of coarse-resolution
temporal output—using cubic splines, Fourier analysis, and other numerical techniques. We develop an
effective approach in the form of a post-processing step that can be applied to existing ADCIRC files before
subdomain modeling is attempted on those existing datasets.

ADCIRC-Neutrino coupling. Interactions between ADCIRC and Neutrino can be realized through
a one-way data handoff, proceeding from the kind of observable data produced by a shallow-water model
like ADCIRC, and then made available to an SPH code like Neutrino through its available types of boundary
conditions. Beyond the mechanics of the exchange, we consider modeling and scale differences in both
space and time that require, for instance, working with parameters, terminology, and assumptions that vary
between diverse modeling approaches and their respective communities, e.g., local and latitude-longitude
coordinates and their transformations, devising an approach for finding and extracting small, appropriately-
placed time windows from larger-scale output, and other differences between localized hydrodynamic and
large-scale ocean circulation models. Our scope includes a) the details of the computer formats and
requirements for data exchange, b) consideration of the modeling assumptions made between two diverse
scientific areas with distinct paradigms, ¢) development of a series of coupling test cases, from simpler to
more complex and with more realism, and their comparative evaluation, and d) observations and
recommendations for continued development.

Verification and validation. Given the nature of the coupling approach being developed and its likely
applications, it is particularly important that the software does what it is intended to do. Two key aspects
of this determination, in the vernacular of the software engineering community, are verification and
validation, where verification asks, "Is the product right?" and validation asks, "Is it the right product?"
Verification, then, is concerned with whether an implementation satisfies its specification, i.e., is bug-free.
Beyond traditional testing and code reviews, we develop static program verification techniques, which are
based on providing a formal, or mathematical, specification of functional behavior and showing that an
implementation satisfies the specification. This process involves concepts from mathematical theorem
proving, and thus relies on modeling or manipulating computer programs instead of executing them, hence
the term static. Doing so allows one to make strong correctness claims since coverage is more complete
than can be obtained via testing alone.

6.6. Technical Approach

In this and the following sections, we lay out our technical approach for each of the above objectives,
describe the relationship between our study and other components of the project, summarize key findings,
present highlights of technical innovations and the implications of our work, and finish with a discussion
on paths forward and conclusions.
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Enhanced spatial resolution of subdomain meshes. To narrow the gap between large-scale storm
surge simulations and more local facility-scale simulations, we address subdomain scale models and mesh
refinements that are intended to capture a finer level of land surface detail than has previously been
attempted. Three extensive case studies on the US Gulf and Atlantic coastlines—each with differing
characteristics—have been developed and evaluated with respect to both computational benefits of the
approach and its accuracy, at the following three sites:

(1) Dyke Marsh Wildlife Preserve, located between Mount Vernon and Alexandria, VA, along the west
bank of the Potomac River, with project alternatives on the order of several miles long, which seek to restore
a natural promontory structure and the surrounding area to its pre-1940s and ‘50s conditions, prevent further
loss of the marsh, and potentially expand and protect the wetland and its delicate ecosystem.

(2) Ike Dike, located at Galveston Bay, TX, with project alternatives on the order of tens of miles long,
which would enhance and extend the Galveston Seawall and provide further protection for an area at
significant risk from storm-induced flooding, such as the damage resulting from Hurricane lke. As part of
a larger ““coastal spine,” the concept includes a gated coastal barrier that would limit inflow of hurricane
storm surge into the bay and thus provide additional protection for Galveston Bay, the Bolivar Peninsula,
Houston, and other surrounding communities.

(3) New York-New Jersey Harbor and Tributaries (HATS), an area affected by Hurricane Sandy and
identified by USACE as one of nine high-risk, focus areas on the North Atlantic Coast that is most
susceptible to storm-induced flooding. For this project, several flood control structures have been proposed
to reduce costs and risks associated with storm events, and to support overall resilience and sustainability
of coastal communities. Alternatives include the Throg’s Neck barrier, a 1-mile flood control barrier, and
a 13-mile flood control system referred to as the Jamaica Bay barrier. Each case study incorporates a full,
base mesh along with several refined with-project alternatives.

Data libraries and reuse. To take advantage of existing datasets of historical and synthetic storm
results, techniques have been developed to reuse existing datasets as boundary conditions for subdomain
modeling. The original datasets may have the necessary output but are recorded at temporal resolutions of
15 to 30 minutes, which is too coarse for meaningful subdomain boundary conditions. We consider the role
of higher order interpolation and smoothing of those results based on the following intuition: when results
are infrequently recorded, since they represent points along a relatively smooth solution to the shallow
water equations, it may be possible to recover any peaks that were inadvertently clipped—as the result of
coarse-resolution temporal output—using cubic splines, Fourier analysis, and/or other numerical
techniques.

Collectively, we consider four different interpolation approaches. The simplest of the approaches is one
that leaves wet-dry states unforced, but that is otherwise equivalent to subdomain modeling, an approach
we call SSM, or simplified subdomain modeling. Such an approach relies on linear interpolation of the time
histories of water surface elevations and velocities. As a variation on the SSM approach, we also include
results from SML+, a technique we define that uses linear interpolation, but that also adds points of
maximum water surface elevation into those time series. Of the higher order approaches, the simplest cubic
spline method, SMC, does not make use of the recorded maximum water surface elevation, whereas SMC+
does by inserting it into the time series. We compare the accuracy of subdomain solutions that make use of
each of the SSM, SML+, SMC, and SMC+ approaches.

For our case studies, we utilize two example problems forced by tides that are taken from the official
ADCIRC website, and two problems forced by winds that use the NC FEMA Mesh Version 9.98 as a large-
scale domain. These include: 1) Idealized inlet with tidal forcing (adcirc.org, 2019a), 2) Shinnecock Inlet,
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NY, with tidal forcing (adcirc.org, 2019b), 3) Cape Fear, NC, forced by Hurricane Fran (1996), and 4) Cape
Hatteras, NC, forced by Hurricane Isabel (2003). In each case, subdomains of three different sizes are
defined: small (S), medium (M), and large (L). Results of the simulations are evaluated by comparing the
water surface elevations of a subdomain at each node to that of the full domain at every output time step.
We present the cumulative distribution function (CDF) of the averaged error (AE) and maximum error
(ME) of the water surface elevations for storm surge and tidal cases.

ADCIRC-Neutrino coupling. We have developed, as a proof of concept, a methodology that
facilitates communication between the large-scale FE model, ADCIRC, and the small-scale SPH model,
Neutrino. Both models simulate propagation of a flooding front, either over a broad area of interest
(ADCIRC) or at the facility scale (Neutrino). While both models operate on distinctly different
spatiotemporal scales, they can interact meaningfully by having ADCIRC provide boundary conditions for
Neutrino runs. To do so requires bridging the gap between them in spatiotemporal scales, a disparity we
have addressed by improving the local spatial resolution of large-scale ADCIRC meshes within a
subdomain.

With respect to coupling, two case studies have been developed and used to evaluate the approach:

(1) Pseudo One-Dimensional Test Case, a highly idealized problem previously reported in the literature
and used to evaluate the fidelity of the movement of the wetting and drying fronts produced by large-scale
ocean circulation models.

(2) Alligator River National Wildlife Refuge, a more realistic study area located on North Carolina coast,
with surrounding topography that is relatively smooth and vulnerable to flooding.

Though local in the context of this study, the results at the Alligator River site were produced by large-
scale storm surge simulations on validated finite element meshes, in this case NC FEMA Mesh Version
9.98, produced through the North Carolina floodplain mapping program by the ADCIRC development
group. This particular mesh, for instance, models a domain that encompasses the western North Atlantic
Ocean, the Caribbean Sea, and the Gulf of Mexico. It consists of 620,089 nodes and 1,224,714 elements
and has a steady open ocean boundary condition along its eastern edge.

With respect to data exchange between models, we have developed and implemented Python scripts
that make use of ADCIRC solution outputs to produce inputs for Neutrino. A one-way handoff between
the two models allows for the ADCIRC (subdomain) simulation to be run to completion before beginning
the Neutrino simulation. Considering the difference between the formats of ADCIRC outputs and Neutrino
inputs, ADCIRC solutions are mechanically translated into a format that is compatible with Neutrino inputs
(see Appendix A).

Verification and validation. Coupling between a full domain and subdomain in ADCIRC is shown
to be mathematically equivalent to ADCIRC itself through a combination of informal proofs (Baugh et al.,
2015) and a static verification technique using state-based formal methods (Baugh and Altuntas, 2018;
Baugh and Dyer, 2018). To explore implementation choices and ensure soundness, we made use of Alloy
(Jackson, 2012), a declarative modeling language with tool support and an automatic form of analysis
performed within a bounded scope using a SAT solver. Using Alloy, we have modeled finite element
domains and simulations on them so we can experiment with and reason about the type of boundary
conditions that might be imposed on subdomain runs. The approach allows us to draw useful conclusions
about implementation choices and guarantees about the subdomain modeling extensions, that it is
equivalence preserving.
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6.7. Relationship within the Overall Project

ADCIRC models can produce highly accurate simulations, but they are computationally expensive,
making them impractical for iterative design scenarios that seek to evaluate a range of hypothetical
engineering design and failure scenarios of levees and other protective structures. Asaresult, and to support
other components of the IRP project, it is particularly important to have accurate and efficient deterministic
simulation approaches that can inform and feed into probabilistic risk assessments.

At the broadest level, deterministic simulations of this type are essential components in probabilistic
frameworks like JPM-OS (Joint Probability Method with Optimal Sampling) that consider the full range
and overall impacts of potential flooding scenarios by including variations in storm parameters such as
track, size, forward speed, and intensity (USACE, 2007). At a more local level, these deterministic
simulations are necessary if meaningful simulations of flooding are to be carried out at a nuclear power
plant facility.

Neutrino is an impressive tool, and one that is especially capable of this type of facility-scale
assessment, and yet it must be informed by a larger context. Our work aims to provide boundary conditions
for Neutrino from large-scale ADCIRC models to make Neutrino’s facility-level simulations more
meaningful. As a result, we have been working closely with Centroid Lab, and we are continuing to do so,
in order to provide perspective and appropriate data for loading into Neutrino so that simulations can be
carried out by their lab.

6.8. Technical Findings

We present a summary of our technical findings, highlights of our technical innovations, and
implications of the work with respect to our objectives of enhanced spatial resolution of subdomain meshes,
data libraries and reuse, ADCIRC-Neutrino coupling, and verification and validation.

6.8.1.Enhanced Spatial Resolution of Subdomain Meshes

Results of our three USACE case studies at Dyke Marsh Wildlife Preserve, Ike Dike, and New York-
New Jersey Harbor and Tributaries show that subdomain modeling provides computational savings of as
much as 83 percent, depending on the site and the size of the subdomain used. To compare subdomain
(SD) solutions with equivalent full domain (FD) solutions in cost and accuracy, without-project full domain
meshes (spatially unrefined and refined versions) are used to obtain boundary conditions using a simulation
time step of 50 seconds. This interval is selected to satisfy the recommendation that, for subdomain models,
boundary conditions should be recorded at intervals of around or less than one minute in time. This output
is used to enforce the boundaries of subdomains generated from refined with-project full domains. ADCIRC
solutions are then generated for these subdomains and compared against corresponding full domain
solutions (see Figure 6.1).

123



Small(S), Medium(M), and Refined FD with project
— Large(L) SDs, generated from _ —
et~ refined with project FDs P -

NY/NJ HARBO £, ‘; s
DYKE MARSH Q O S 51“’
Hl

IKE DIKE r~
O" e VR 2 M 3 TN

( PN : L)y
/ Wooan / Mooy
[ SN . %
i V3- T e
! — 7 o p .. L \ — °° e, #
h — J ) .._.. __ = p = " Y J B ..__, --,J- S e wet o
e - L e
i _ 2. BCs generated for 8Ds at ~~ e o2 ,,‘
chosen interval (50 seconds for N b 3

la. Unrefined FD without project this study). 3. generate ADCIRC solutions for

predetermined SDs and compare with

1b. Refined FD without project
proj corresponding FD solutions

Figure 6.1: (1a) use unrefined without-project full domain or (1b) refined with-project full domain to (2)
generate subdomain boundary conditions at a user defined interval of less than one minute (in our case 50
seconds), (3) the subdomain simulation is performed and compared against corresponding full domain
solutions.

These comparisons indicate that, for studies without multiple, spatially distributed flood control
structures, subdomain modeling can produce solutions within model tolerance levels of 15 to 30 cm. For
studies incorporating more than a single flood control measure, subdomains must be generated that are large
enough to encompass all structures, along with several layers of elements between the structures and the
subdomain boundaries. These larger subdomains result in a decrease in computational savings unless flood
control structures are spatially close enough together to be accommodated in smaller subdomains and still
result in solutions within model tolerance levels.

In general, our results support the use of the smallest possible size of subdomain for case studies such
as the Dyke Marsh, which are geographically isolated and incorporate relatively small project alternatives,
e.g., on the order of several miles. Where possible, smaller subdomains produce results that are more
accurate and with greater reductions in computational effort, a savings of at least 50 percent when compared
with the standard ADCIRC workflow. There is only an incremental benefit in solution quality when starting
from the refined without-project full domain to generate subdomain boundary conditions, as opposed to
starting from the unrefined without-project full domain. This benefit, though small, is likely a result of the
refined without-project full domain a) having enough resolution so there is less changed when a project is
inserted, and b) incorporating the higher resolution bathymetry data used in subsequent subdomain runs.
For larger project alternatives, e.g., those on the order of tens of miles, such as those incorporated in the lke
Dike case study, our results show that the most effective subdomain is one that encompasses the project
with a distance between the subdomain boundary and project site of at least one-and-a-half times the span
of the project itself. The largest sized subdomain used in the Ike Dike case study produces solutions that
are accurate within model tolerance levels and have a computational savings of about 36 percent, compared
with the standard ADCIRC workflow.

On problems like the NY-NJ HATS case study, which incorporate multiple, spatially distributed flood
control structures, solution quality is well outside of model tolerance levels. Since the largest subdomain
considered in this case study is smaller than the smallest subdomain in the Ike Dike case study, choosing a
larger subdomain size could prove beneficial, though at the cost of a further reduction in the computational
benefit, which we estimate to be about 36 to 39 percent. Even on these more challenging problems,
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however, subdomain modeling could be used as a screening tool for eliminating project alternatives from
further consideration, and their full domain simulations, since they provide sufficient accuracy to determine
whether or not project alternatives are able to meet performance objectives. In addition, subdomain
modeling could be used in such cases as a means of analyzing the interaction of various flood control
measures with each other.

Our results show that subdomain modeling can be a beneficial tool that substantially reduces
computational cost, and that ex post facto refinements to subdomains can be made to bring modeling results
closer to the facility scale needed by tools like Neutrino. Its use, however, requires engineering judgment,
and projects with multiple, spatially diverse protection measures over a large area see less computational
benefit, though these are more typical of regional flood control strategies, in contrast with more local ones
developed around nuclear power plant facilities.

Guidelines for Computational Benefits and Subdomain Sizing

Informed by these case studies above, we have developed a simple model for predicting the
computational benefit achievable by subdomain modeling, based on the number of project alternatives
considered, the number of nodes in a subdomain mesh, and the number of nodes in a full domain mesh.
Development of such a relationship for automatically determining subdomain size and placement, however,
is a more challenging issue. An a priori approach for subdomain sizing based on case study characteristics,
e.g., bathymetry, project size, and storm features, would require a more concentrated effort that looks at a
larger range of case studies to develop empirical guidelines, potentially using machine learning techniques.

Until such a study is conducted, however, it is nevertheless practical to generate subdomains of a variety
of sizes, simultaneously, without any additional computational cost. As demonstrated by the current study,
selection of multiple subdomains would only result in an incremental increase in data produced by an
already low-cost workflow. This approach results in the user having a range of subdomain sizes, such that
the user can force the selected domains with data from the first storm event, and then converge on the most
appropriate subdomain size before forcing other subdomains with data from the remainder of the storm
events.

6.8.2.Data Libraries and Reuse

Our approach to storm surge simulation introduces three modeling scales with one-way interactions
between them: ocean, subdomain, and facility scales. At the subdomain scale, boundaries are defined far
enough away from a nuclear power plant facility to be hydrodynamically independent of any design or
failure scenarios, but close enough to reduce computational effort by eliminating substantial parts of the
ocean domain from each subdomain simulation. Doing so enables the creation of validated datasets,
libraries consisting of spatially varying time series of water surface elevations, depth-averaged velocities,
and wet/dry status along subdomain boundaries.

The approaches we consider are based on a cubic spline interpolation of water surface elevations and
velocities. As an example of possible approaches, Figure 6.2 shows an actual, high resolution time history
of elevations, n(t), for a two-hour period (in red), with standard ADCIRC output produced on the half-hour
(black dots). The corresponding node is located near shore, and superimposed on the hydrograph is a
shallower, higher frequency component with a period of about 30 minutes.

We note that a straightforward use of the available output with linear interpolation would mean that,
between sample points A and B, the most substantial portion of the elevation forcing would be “clipped”,
resulting in an under-prediction of its surge effects, when used as a subdomain boundary condition. If the
maximum water surface elevation n(t¥) is available (the open dot), however, it can be inserted into the time
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series. Three possible cubic spline interpolation functions S are shown. Of the three, the best fit is obtained
when n(t¥) is inserted, so long as a condition S'(t+) = 0 is also added (in black). By way of contrast, if the
derivative at t* is not forced to be zero (in blue dots), the actual maximum is exceeded by spline S, and if
the maximum n(t*) is not inserted at all (in green dashes), the elevation forcing is still under-predicted, but
is nevertheless a modest improvement over linear interpolation. We also note that using the recommended
post-processing approach, we are able to recover boundary conditions that would be available from data
with a temporal resolution of 5 minutes as opposed to 30 minutes.
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Figure 6.2: Water surface elevation forcing on a boundary node using different interpolation techniques.
The cubic spline hydrographs are interpolated from water surface elevations that are sampled every half
hour, with and without maximum elevation.

In comparing the best cubic and linear approaches, SMC+ and SML+, we find that in all cases cubic
interpolation substantially outperforms linear interpolation. However, the absolute performance of the
SMC+ approach still depends on the nature of the problem being simulated, whether simple or more
complex, and whether boundary or meteorological forcing is used. In the idealized inlet case, the CDF
curves for water surface elevation are nearly the same for the cubic approaches, and likewise for the linear
ones, whether or not the maximum surface elevations are inserted; this is because the M2 tidal constituent
is the only boundary forcing and the bathymetry is simple, with no wetting and drying involved, and this
results in simpler hydrographs that are easier to recover without making use of the maximum water surface
elevations.

For more complex situations, the performance of the SMC+ approach is affected by other factors,
such as oscillations due to edge waves and ADCIRC’s wetting and drying algorithm. The Cape Hatteras
case is an example in which the process of edge waves form over a four-hour period at 30-minute intervals.
The long gravity waves imposed by the atmospheric pressure system propagate to the coastal area and are
trapped by the bathymetry, at which point they degenerate into a series of smaller scale longshore edge
waves. This process starts early on and lasts until the hurricane makes landfall. By extending subdomain
boundaries further out into the ocean, the effects of the edge waves can be contained, resulting in better
performance of the SMC+ approach. Although the expansion of the subdomain area requires more
computational resources, the use of oblong or other specially shaped subdomains can effectively reduce the
demand on computing resources. By positioning more boundary nodes further from the coastline, better
results can be obtained within the same computation time.
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6.8.3. ADCIRC-Neutrino coupling

With respect to prototype development and coupled simulations, our approach starts simply,
beginning with relatively smooth terrains, with the expectation that future work will draw on the lessons
learned here to develop more complex case studies, potentially adding topographic variety, protective
structures, and additional realism to capture hydrodynamic behavior around nuclear power plant facilities.

Pseudo One-Dimensional Test Case. This case study follows Luettich and Westerink (1995) and
subsequently Dietrich et al. (2004) and is chosen as a simple test case with linear bathymetry before moving
on to more complex test cases with complicated bathymetric profiles. In their study, Dietrich et al. (2004)
develop and present a nearly frictionless version of the true 1D test case simulated in their 1D
implementation of ADCIRC. Without access to a stable 1D implementation of ADCIRC, we follow
Dietrich et al. (2004) by developing a pseudo-one-dimensional test case that can be simulated in the
standard 2D implementation of ADCIRC.

Following Dietrich et al. (2004), the problem has the following parameters: a linear slope, a width of
10 m, an undisturbed length of 24 km, a bathymetric depth at the open ocean boundary of 5 m, a grid
spacing of 10 m, a time step of 0.5 s, and a tidal forcing amplitude of 0.25. The bottom friction parameter
cftau and the continuity equation parameter G are set to 0.001, and the wetting and drying parameters Hmin
and Umin are set to 0.01. Flow is imposed only in the x-direction, and an 80-m subdomain is selected
toward the shallow end of the full domain. Elevation and velocity time series at relevant stations/gauges
that are output every 10 s for a duration of 10 min. These outputs are passed through Python scripts that
translate data into a format suitable for Neutrino to use as inputs. A second mesh is developed with all
parameters left constant except for an increase in mesh resolution from 10 m to 5 m.

Alligator River National Wildlife Refuge. The study area features a smooth terrain located in
eastern North Carolina along the Atlantic Coast (Figure 6.3a). We select an area of 103 m x 116 m to refine
to a grid spacing of 10 m. This area of interest is located near the Alligator River National Wildlife Refuge
in a low-lying part of the domain that is vulnerable to flooding (Figure 6.3b) and forced by meteorological
input data from Hurricane Isabel (2003). We define 48 boundary nodes at about 10 m apart around an area
where the Neutrino domain is to be located. The area starts dry and floods in a 2-day simulation, from which
we extract 90 s of output data for Neutrino at 5 s intervals. These data values are passed through the Python
script and converted to a format suitable for use as input for Neutrino.
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Figure 6.3: (a) Location of Alligator River National Wildlife Refuge and (b) a finite element mesh refined
and laid over an area of interest located near the Alligator River National Wildlife Refuge
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Together, these case studies provide a basis for a methodology of one-way coupling between ADCIRC
and Neutrino that can inform additional, more complex, case studies in the future.

Results and Observations. Presented here are results from our efforts to implement and validate a
coupling methodology for ADCIRC with Neutrino. In what follows, we provide both quantitative and
gualitative comparisons between results from ADCIRC simulations and results from corresponding
Neutrino solutions.

We begin with the Alligator River case study, and show side-by-side qualitative comparisons between
ADCIRC solutions and Neutrino solutions. Figures 4 through 6 represent the status of the flooding front at
particular snapshots in time in ADCIRC (left) and Neutrino (right).

At a point 20 s into the simulation (Figure 6.4), ADCIRC has inundated more of the domain, in
comparison with Neutrino, where a faint flooding front can be seen aligned along its boundaries below and
to the right. In ADCIRC, the flooding front is moving diagonally from the southeast to the northwest; in
Neutrino, the shape of the front is clearly affected by the shape of its boundary, presumably indicating a
problem with the way in which boundary conditions are being imposed in the smoothed particle
hydrodynamics code.
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Figure 6.36: ADCIRC output (left) and Neutrino output (right) 20 seconds into the simulation. The
ADCIRC image includes velocity direction (black arrows) and boundary input (red dots) used by the
Neutrino domain.

At about 30 s into the simulation (Figure 6.5), the ADCIRC domain is about halfway inundated and
continues to maintain a nearly linear wetting front, whereas about a third of the Neutrino domain is
inundated; its wetting front continues to reflect the shape of its domain. At about 65 s into the simulation
(Figure 6.6), the ADCIRC is nearly fully inundated, and the Neutrino front continues to lag a bit.
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Figure 6.38: ADCIRC output (left) and Neutrino output (right) 65 seconds into the simulation.

In each of the snapshots, Neutrino shows a flooding front entering the domain from the southern and
eastern boundaries in a way that seems to reflect the shape of the domain. Further into the simulation, it
also seems to create an unusual artifact, an oblong build-up of water on a diagonal from the southeast corner
of the domain to the northwest corner of the domain, which does not appear in ADCIRC output. In order
to better understand the reason behind these discrepancies, we take a step back to the simpler pseudo-one-
dimensional case study.

In the pseudo-one-dimensional case study, similar to Dietrich et al. (2004), the ADCIRC tides-only
simulation on this domain results in minimums in water surface elevation (of about -0.3 m) when the wetting
and drying front is 18.7 km into the domain. These results agree with Dietrich et al., which report the same
minimum elevations and movement into the domain, though with marginally different timing, probably as
a result of the respective differences in the models used. Similarly, maximum elevations (of about +0.3 m)
occur when the wetting and drying front is 21.2 km into the domain. These results are again in agreement
with Dietrich et al., with marginal differences in timing.
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The discrepancies in the times to reach minimum and maximum elevations between our results and
those of Dietrich et al. may be due to (1) the fact that we are capturing two-dimensional physics in our use
of the production version of ADCIRC, as opposed to the simplified 1D model used by Dietrich et al., and
(2) the selection of the lateral eddy viscosity parameter. The lateral eddy viscosity parameter plays a crucial
role in 2D ADCIRC by allowing either slower or more rapid inundation, depending upon the selected value,
and its relationship with similar parameters in Neutrino requires further study to see if better agreement
may be had by doing so, either on the ADCIRC or the Neutrino side.

Continuing with the pseudo-one-dimensional case study, when comparing ADCIRC solutions with
Neutrino at a particular time step (Figure 6.7), water surface elevations in Neutrino are about 28 percent
lower earlier in the domain, and the gap between ADCIRC solutions and Neutrino increases progressively
from about 54 percent lower at 20.55 km into the domain, to 98 percent at 20.56 km, and finally to 100
percent at 20.57 km.
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Figure 6.7: Comparison of ADCIRC and Neutrino water surface elevations at various points in pseudo-
one-dimensional case study.

Discrepancies between ADCIRC and Neutrino in the pseudo-one-dimensional case study indicate the
need to better understand the quantitative relationships between the modeling parameters used in Neutrino
and ADCIRC (e.qg., lateral eddy viscosity, bottom friction, and tidal amplitude). In addition, the notion of
state captured in shallow-water models like ADCIRC is not easily transferred as boundary conditions to a
smoothed particle hydrodynamics code, which is being asked to handle arbitrary flow behavior along its
boundaries. Like most SPH solvers, Neutrino only handles the creation of fluid particles on one side of a
boundary and does not have the ability to handle arbitrary backflows, time dependent changes in the
magnitude and direction of velocities along its boundaries, and so on. Further work may be needed to
advance the state of the art in handling arbitrary boundary conditions in SPH codes.

6.9. Highlights of Technical Innovations

Beyond the broader innovations already described, we note the following concrete contributions made
during this project.
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A priori predication of computational benefits of subdomain modeling. We develop an empirical
relationship for percent reduction in computational cost achievable by subdomain modeling based on
comparisons of computational costs associated with the standard ADCIRC workflow and those associated
with the subdomain modeling workflow. The relationship is a function of the number of alternatives being
considered (N), the number of full domain nodes (nf), and the number of subdomain nodes (ns). With this,
the percent reduction achievable by subdomain modeling can be obtained.

Internal weirs in subdomains. ADCIRC supports several types of internal and external boundary
conditions types. Prior to this research effort, subdomain modeling lacked the capability to accommodate
island boundary conditions and internal weir boundary conditions. These boundary condition types are
regularly used (in the case of the island boundary condition type) to denote islands, and (in the case of
internal weirs) to represent project alternatives considered by United States Army Corps of Engineers
(USACE). Prior to this research effort, when generating subdomains, island boundary conditions or internal
weir boundary conditions would result in an error rather than a successful simulation. This research effort
involved enhancing and refining subdomain modeling scripts to incorporate island and internal weir
boundary condition types.

Smoothing and interpolation for subdomain modeling. Prior to this research effort, subdomain
modeling could not accommodate reuse of existing full simulation datasets, which are only available at 15-
or 30-min intervals, where subdomain simulations traditionally require boundary conditions at an interval
of about one minute or less. This research effort resulted in the improvement of subdomain modeling
scripts to include the recommended cubic spline interpolation with maximum surface elevation to generate,
from existing archived full simulation solutions, subdomain boundary conditions using this interpolation
technique.

Scripts for converting ADCIRC output to Neutrino input. ADCIRC deals with large-scale finite
element simulations where domains are in geographic coordinates and simulation run times are on the order
of several days. On the other hand, Neutrino deals with mesh-free simulations at facility-level scales where
domains are in cartesian coordinates and simulation run times are on the order of several minutes.
Considering the difference between the formats of ADCIRC outputs and Neutrino inputs, we have
developed a Python script as a method of communication between two different models with two different
paradigms. This script serves to take ADCIRC outputs and convert them to a format suitable for use as
input for Neutrino.

Validation of correctness models. To support the verification of scientific software, we developed a
web-based visualizer for state-based formal methods called Sterling. As an interface for lightweight tools
like Alloy, it provides advanced visualization capabilities that address the shortcomings of existing
approaches and includes the ability to visualize the types of dynamic and spatial relationships that are
needed for modeling scientific software.

6.10. Implications of the Work

The demonstrated ability of subdomain modeling to reduce computational cost led initially to an
internship opportunity and ultimately to a staff research position for PhD student Fatima Bukhari with the
US Army Corps of Engineers at its Engineering Research and Development Center (USACE-ERDC). Her
position with USACE-ERDC is based on this work, which she is now presenting to others at the center via
team talks and other collaborations within the center.

In addition, beyond this personal recognition, USACE is now undertaking an initiative to incorporate
our subdomain modeling approach in its regular workflow so that computational resources can be reduced
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while maintaining solution quality. In USACE’s current workflow, project alternatives are defined by
large-scale ADCIRC grids that differ locally in a geographic region of interest. These project domains are
forced by thousands of selected storms, and individual ADCIRC simulations are performed on each of
them. This results in thousands of full domain ADCIRC simulations per project alternative, after which the
results are analyzed and archived on a server. The running and archiving of these simulations results in a
significant burden on computational resources, which are expected to be reduced by incorporating
subdomain modeling and its approach to reuse in the workflow.

With respect to software verification, our Sterling tool has been adopted as the primary visualization
interface for Forge, a language built for teaching formal methods and model checking. Forge and Sterling
were used as the primary teaching tools in the Spring 2020 Logic for Systems undergraduate course in the
Computer Science department at Brown University.

6.11. Path Forward

We describe future directions with respect to our objectives of enhanced spatial resolution of
subdomain meshes, data libraries and reuse, ADCIRC-Neutrino coupling, and verification and validation.

Enhanced spatial resolution of subdomain meshes. In all test cases, a sampling interval of 50
seconds is used for recording boundary conditions for subdomain simulations. Conducting similar
experiments with a broader range of sampling intervals, both smaller and larger than 50 seconds, would aid
in providing a clearer relationship between computational savings and quality of subdomain solutions. A
repetition of these experiments with additional variety of subdomains could also prove fruitful. In addition,
future studies might benefit from a wider variety of real-world test cases, from which a wider range of
subdomain sizes could be generated and subjected to a broader range of sampling intervals for recording
subdomain boundary conditions. This would provide the tools necessary to develop an empirical
relationship for subdomain sizing based on case study characteristics. Finally, further exploration is
warranted for case studies with multiple flood control structures that are close together and case studies
with multiple flood control structures that are spatially separate.

In addition, in depth evaluation of subdomain modeling indicates that it produces solutions within
model tolerance levels and has resulted in the development of an empirical formula for the computational
benefit achievable by subdomain modeling. However, further investigation is necessary to develop
guidelines for subdomain sizing based upon case study characteristics.

Data libraries and reuse. The results of our smoothing approach for reusing large-scale datasets are
representative in the sense that subdomain boundaries are sized and placed without consideration given to
the hydrodynamic particulars of nodes appearing on subdomain boundaries. Additional improvements in
accuracy, however, could be obtained by treating the creation of subdomains as a modeling exercise,
looking for boundary placements that avoid regions with more complex hydrodynamics and higher
frequency components. Because such assessments can be made a priori, future work could focus on an
additional post-processing step that optimizes subdomain boundary placement.

ADCIRC-Neutrino coupling. A prototype approach for handing off data between ADCIRC and
Neutrino has been developed but needs further work. Preliminary models and a comparison of results
suggests a follow up study that would look more carefully at the physical parameters and types of boundary
conditions employed by SPH solvers to better match anticipated coastal flooding scenarios. In addition,
because our experiments began by focusing on relatively smooth terrains and simplified domains, future
work might successively add complexity by including more topographic variety; protective structures, such
as levees or dune systems; variations in storm parameters such as track, size, forward speed, intensity; and
finally, additional realism to mimic hydrodynamic behavior around nuclear power plant facilities.
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Verification and Validation. As we have noted, subdomain modeling has been shown to be
mathematically equivalent to ADCIRC through a combination of informal proofs and static verification
techniques using state-based formal methods, but much additional work remains on the topic of software
quality in scientific arenas. Despite broad and recognized impacts, meeting quality and reproducibility
standards is a growing concern, as is productivity. Not merely anecdotes, numerous empirical studies of
software thwarting attempts at repetition or reproduction of scientific results have been cataloged, along
with their concomitant effects, including a widespread inability to reproduce results and subsequent
retractions of papers in scientific journals.

6.12. Conclusions

Assessing the vulnerability of nuclear infrastructure to hurricane storm surge requires both high-
fidelity simulations and a methodology that accommodates the spatiotemporal scales over which hurricanes
operate. Our approach introduces three modeling scales with one-way interactions between them: ocean,
subdomain, and facility scales. For ocean and subdomain scales, we make use of the parallel, unstructured-
grid finite-element hydrodynamic code, ADCIRC, and for the facility scale, the mesh-free SPH model,
Neutrino.

We address both modeling and data exchange concerns, as well as the gap in resolution between
typically the coarsest Neutrino and finest ADCIRC models. The need for spatial—and therefore temporal—
refinement of large-scale ADCIRC simulations is made practical through the use of subdomain modeling.
These questions are explored within the context of three real-world case studies provided by the USACE
Engineering Research and Development Center (ERDC) in Vicksburg, MS. The sites are located along the
Atlantic and Gulf coastlines of the United States, and each has differing characteristics, with project
alternatives varying in size from on the order of several miles long to tens of miles long, and with both
single and multiple, simultaneous project alternatives considered. Our study shows that subdomain
modeling can in fact accommodate enhanced ex post facto refinements, and thereby reduce computational
effort substantially, making more practical the use of large-scale storm surge models in an iterative design
scenario.

In cases where the need for subdomain modeling is unanticipated at the time simulations are originally
performed, a post-processing step in the workflow has been developed so that existing, archived results can
be reused. We show that the coarse output ordinarily produced by ADCIRC still allows for subsequent
localized simulations of high quality when the datasets are post-processed using the techniques we describe.
Of those considered and evaluated, cubic spline interpolation works best at recovering water surface
elevations and velocity time histories, and modest additional improvements can be had when maximum
water surface elevations are available, as they typically are in ADCIRC output. Such an approach results
in the recovery of boundary conditions with a quality comparable to those obtained from temporally more
refined datasets. The approach enables a workflow that accommodates the construction, maintenance, and
reuse of large-scale simulation libraries.

Our coupling approach is based on a one-way handoff of data from ADCIRC to Neutrino, and tested
within the context of a pseudo one-dimensional problem and a more realistic case study at the Alligator
River National Wildlife Refuge. These studies start from validated, large-scale ADCIRC simulations,
which produce results that are then converted to a suitable format for Neutrino using a Python script for
data exchange. Preliminary datasets from both case studies have been developed and provided to the
Centroid Lab, which has successfully loaded them into Neutrino and performed the corresponding
simulations. Comparisons between the ADCIRC and Neutrino solutions indicate a need for further scrutiny
and study of the quantitative relationships between ADCIRC and Neutrino modeling parameters. Further
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sensitivity studies are suggested for exploring these relationships and the nature of the boundary conditions
supported by SPH solvers like Neutrino.
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7. Flooding Model Validation Experiment

7.1. Introduction

The safe production of power from nuclear facilities has always been a concern. In 1975 the NRC was
established to protect public health and safety relating to nuclear energy. One of the risk areas addressed
by the NRC is that of flooding. Several guides and evaluation methods have been published over time by
NRC to assist commercial nuclear facilities in verifying and improving flood safety. In 2008 the Regulatory
Guide 1.200 (https://www.nrc.gov/docs/ML0904/ML090410014.pdf) describes methods to meet technical
adequacy for PRA models, including internal and external flooding. Just before the Fukushima Tsunami
event of 2011 NRC published “Design-Basis Flood Estimation for Site Characterization at Nuclear Power
Plants in the United States of America.” (https://www.nrc.gov/docs/ML1132/ML11321A195.pdf). This
NRC document outlines the different types of flooding hazards and the process to evaluate the risk of each.
After determining the frequency of various events, the effects of those flooding events need to be evaluated.
The growth in computer power has enabled the development of advanced predictive modeling, referred to
as high fidelity modeling. The capabilities of high-fidelity modeling ultimately enable engineers develop
better understanding of the behavior of complex systems, based on multi-scale multi-physics simulation.
This understanding will translate into evaluating current designs and optimizing protective measures.
Realizing these benefits however continues to be handicapped by the conventional nature of the validation
process and how to account for uncertainties.

7.2. Requirements

There are seven main categories for flooding at nuclear facilities identified by the NRC:

. Local Intense Precipitation (LIP)
. Stream & River Rise Flooding

. Dam Failure

. Storm Surge

. Wave (Rouge, Tsunami, Seiche)
. Pipe Rupture

. Ice-Induced Flooding

Each nuclear facility has different items that it is susceptible to and must have assessed each risk. First
the facility evaluates the likely hood of events in the categories. If the risk is significant, then further analysis
is performed by developing probable flooding scenarios. Conservative estimates are often used in these
stages to make sure that uncertainty and other unknowns do not jeopardize the safety of the plant. Because
of this conservatism, some scenarios may have misleading importance and require mitigation efforts. To
avoid unnecessary and costly plant modifications, a detailed flooding analysis can be performed using
several tools available to the utilities. The development of advanced predictive modeling, referred to as
high fidelity modeling, with high levels of accuracy as compared to legacy codes. The premise of high-
fidelity modeling is that it will ultimately enable engineers develop better understanding of the behavior of
complex systems, based on multi-scale multi-physics simulation. However, this requires these tools to be
relevant and validated for the key aspects of the scenarios being evaluated and a methodology for
determining the confidence level when using multiple tools and crossing different domains. Facilities can
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now evaluate fields such as impact forces, water or wave height, debris flow, and splashing using these
advanced tools such as the SPH approach used in Neutrino and outlined in this report.

With these new capabilities available, a good framework for validation and evaluating the uncertainty
between tools needs to be available as well. Which tools can be used in the different scenarios, what
confidence level do they provide, and how does the confidence from individual codes or methods combine
to give and overall confidence level?

Historically evaluating flooding risk and protection methods involved data gathering and then expert
judgment. While we will never and should never, fully eliminate the need of human expertise, by following
a proper methodology and using these maturing technologies, comes the opportunity to minimize errors
and conflicts in expert judgement. Other modeling and simulation strategies have shown a “Human In The
Loop” approach is the most effective. In summary, the validation methodology outlined in this report allows
for the following key capabilities:

+  Site specific adjustments

» Varied detail level

» Scaling of validation data and uncertainties
« Simulation features uncertainty

»  Multi-Stage uncertainty propagation
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Figure 7.1 Proposed Validation Pyramid for Flooding Scenarios.

7.3. SPH Simulation Code

While performing validation studies of Neutrino code and the underlying SPH fluid models, we
obtained insights on key limitations faced by the Neutrino code version currently in use. In this section, we
describe the main enhancements and developments made during the project implementation to the Neutrino
code and SPH fluid model, in relation to the modeling of external-flooding scenarios. A large part of the
investigation and enhancements done were collaborative work with, on fluid-solid interaction capability,
the COSMER laboratory at the University of Toulon and, on coupling with shallow-water model, the
Department of Civil, Construction, and Environmental Engineering at North Carolina State University, the
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Department of Mathematics at Boise State University, and the Idaho National Laboratory. We emphasize
that most of the simulations run during the project did not benefit from these enhancements.

7.3.1.Wall boundary handling and fluid-solid interaction

Accurate fluid-solid interaction is crucial to account for debris impact and push further the flooding
risk assessment. Neutrino code incorporates a rigid-body solver and two-way couples it with the SPH fluid
solvers. However, we noticed difficulties to simulate floating and sinking bodies in water, especially when
the density ratio is close to 1, thereby advocating the need to enhance the wall boundary handling and fluid-
solid coupling.

There are two wall conditions imposed in the SPH fluid model: a slip condition and a pressure
condition. Correct choices of conditions and proper impositions are important to obtain reliable pressure
forces and friction forces. Initially, we were imposing a partial-slip condition and, for the pressure field, a
homogeneous Neumann condition. However, both are problematic. Firstly, the partial-slip condition
requires tuning a numerical parameter to decide on how much friction is applied to the fluid, and it is not
clear what would be a suitable default value for this parameter. Secondly, the homogeneous Neumann
condition on the pressure field neglects the acceleration of the solid body and effects due to all non-pressure
forces (from gravity and viscosity, in particular). To overcome these limitations, we added a no-slip
condition, that does not require any numerical parameter and could serve as a default setting, and we
replaced the pressure wall condition by a non-homogeneous Neumann condition, accounting for the solid-
body acceleration and the non-pressure force effects.

The way the Neumann boundary conditions are imposed was also problematic. We were using a
mirroring technique, which is computationally very efficient and consists in, in the SPH particle-particle
interactions, “mirroring” fields from the fluid particle to the boundary particle. Investigating the impacts
on particle pressures and pressure forces on a hydrostatic test case, we noticed that this technique yields
significantly over-estimated fluid pressures near the boundary, and especially at the corner of the fluid-solid
interface. We decided to implement and use instead an extrapolation technique based on Shepard’s method;
we observed that the hydrostatic solution is correctly reproduced, while still retaining the computational
efficiency [Gartner, Montanari, Richier, Hugel, Sampath, 2019].
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Figure 7.2. Evolution of particle pressures over depth for the analytical hydrostatic solution, Neutrino
with pressure mirroring and homogeneous Neumann boundary condition, and Neutrino with pressure
extrapolation and non-homogeneous Neumann boundary condition.
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We tested it further on dynamic test cases, such as a falling sphere in water, to which we derived an
approximate solution based on added mass and velocity damping [Gartner, Montanari, Richier, Hugel,
Sampath, 2019]; the results are encouraging but show that attention on numerical-parameter setting (choice
of smoothing kernel, interaction radius, etc.) is required, at least at coarse resolution, to reproduce the
expected dynamic behavior. We realized a few other, more minor enhancements, such as: more choices of
smoothing kernels (quartic B-spline, quantic B-spline, quantic Wendland); and a better time-step
synchronization between the SPH fluid solver and the rigid-body solver.

Efforts were also made on handling negative relative pressures (with respect to atmospheric pressure),
which may occur at the back-side of a solid body past the flow. It is challenging to design a SPH fluid
model that can deal with negative pressures for, mainly, three reasons: inter-particle pressure forces may
become attractive instead of repulsive, causing occurrences of the so-called tensile instability; the
imposition of the dynamical condition on pressure at free-surface, relative pressure = 0, becomes
challenging; and the matrix of the pressure Poisson equation loses interesting properties, such as the
diagonal dominance, some of which are requirements for the convergence of the linear-system solver
implemented in Neutrino. Although we were able to find a partial solution and to obtain encouraging results,
we have not been able yet to device a suitable method, that solves all three sub-problems simultaneously
and in a robust and stable manner, to handle the negative pressures.
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Figure 7.3. Speed and absolute error over time for the falling sphere in Neutrino against an approximate
solution based on added mass and velocity damping. We tested two numerical settings, which differ in the
choice of smoothing kernel (cubic B-spline or quantic B-spline) and the ratio between interaction radius
and particle size.
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7.4. Topography and coupling with shallow-water models

Preliminary work has been done on a one-way coupling from shallow-water models to 3D Navier-
Stokes SPH models in Neutrino, resulting on a proof-of-concept of the methodology [Montanari, Sampath,
Calhoun, Prescott, Smith, 2018]. However, no rigorous validation study had been undertaken and not all
necessary modeling tools to deploy it in the industry have been implemented yet.

We implemented a new node, called Rigid Topography in Neutrino code [Montanari, Sampath,
Calhoun, Prescott, Smith, 2018], that is specifically intended to model the solid surface of the ground or
sea floor. It can produce a high-quality triangle-mesh of the solid surface from topography data by
performing a 2D Delaunay triangulation. The triangle mesh is then sampled with boundary particles used
in the SPH framework to model wall boundaries and impose the pressure wall condition and slip condition.
We also added a mesh visualization based on the relative elevation.

Topography data comprises elevations of the ground surface or sea floor at many locations. Similarly,
simulation output data from shallow-water code consists of the water height and horizontal velocity fields
sampled at different locations. Generally, these locations of topography data and shallow-water data are
specified in latitude-longitude-height (LLH) coordinates defined for a given geodetic system, which
approximates the Earth’s surface as a certain sphere or ellipsoid. We added the support of two widely used
geodetic systems: the world geodetic system (WGS) 84, defined with respect to the average of stations all
over the world and used by the global positioning system; and the North American datum (NAD) 83,
designed to be particularly accurate for points on the North American Plate. Conversely, the much smaller
scale of the simulation domains in Neutrino is more simply handled using 3D Cartesian geographic
coordinates. One convenient choice is, for instance, the local north-east-up (NEU) coordinate system, which
is defined on a local plane tangent to the Earth’s surface. Therefore, to make use of topography data and
shallow-water data in Neutrino, we enabled converting the locations from an LLH coordinate system to a
local NEU coordinate system. This conversion is a multi-step process; indeed, it also requires: an
intermediate conversion to the Earth-centered, Earth-fixed (ECEF) geocentric coordinates, which
correspond to a Cartesian system that is geocentric instead of being local; and a reference location to define
the local NEU coordinate system.
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Figure 7.4. Visualization in Neutrino of a topography mesh generated from topography data after
geographic coordinate conversion and Delaunay triangulation. The color represents the relative elevation
of the ground surface and sea floor with respect to the average elevation of the topography.

We improved the method to couple from shallow-water code to 3D SPH fluid model. There were
significant deviations between the flow rates prescribed by the shallow-water code and the ones modeled
through the SPH particle representation in Neutrino, eventually causing large errors in the total mass and
total volume simulated in Neutrino. The issue comes from the fact that the fluid height at the coupling
boundary is unavoidably approximated as the closest multiple of particle size. To enforce the right flow
rate, at each time step we apply an adjustment process in two steps: first, the flow-rate deviation is
computed; then, the rate of particle emission is adjusted to account for the flow-rate deviation. If, at the
coupling boundary, the number of fluid particles along the vertical direction is higher than the prescribed
fluid height, then the rate of particle emission is decreased accordingly; conversely, if the number of fluid
particles along the vertical direction is lower, then the rate of particle emission is increased by a right
amount. We tested this coupling-method improvement on a tidal simulation run first using ADCIRC over
a large domain then refined in Neutrino on a small subdomain and a 10-min time slice. The results show a
superior behavior after adjustment, without any pseudo-oscillation-like evolution of the accumulated fluid
volume error anymore. Note that it appears a drift, regardless the adjustment is used or not; the cause has
not been clearly identified, but it could simply be an artefact coming from the approximations done when
calculating the reference accumulated fluid volumes.
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Figure 7.5. Fluid height, flow speed and flow rate over time in the tidal simulation for ADCIRC (input of
the coupling) and Neutrino (output of the coupling) with and without adjustment. The flow rate, which
combines fluid height and flow speed, is correctly recovered by adjusting the rate of particle emission

(governed by the flow speed).
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Figure 7.6. Absolute and relative accumulated fluid volume errors over time in the tidal simulation for
Neutrino with and without adjustment. The errors are calculated with respect to the prescribed flow-rate
time series; the reference accumulated fluid volume is estimated by integrating over time the prescribed

flow rates and approximating using a Riemann sum with middle point rule.

7.5. Turbulence modeling

We incorporated a large-eddy simulation (LES) turbulence model to the SPH fluid models. It is a
simple turbulent modeling based on a spatial filtering of the Navier-Stokes equations; it makes use of the
mixing-length and turbulent viscosity concepts and is parametrized by the Smagorinsky constant.

Such SPH-LES fluid models have been used to simulate with satisfactory results in coastal and ocean
engineering. However, recent research demonstrated that several extra terms appear in the SPH equations
when adopting the Lagrangian viewpoint (as conventionally done with SPH) and properly applying a spatial
filtering to the Navier-Stokes equations [Montanari, Sampath, Calhoun, Prescott, Smith, 2018] [Di Mascio,
Antuono, Colagrossi, Marrone, 2017]. It appears that some of these extra terms significantly affect the
simulation accuracy, which strongly advocates towards the need to rework our SPH-LES model to account
for it.

7.6. Definition of validation experiment

7.6.1.Basic Geometry
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The experimental facility is based on a rectangular tank mounted on linear bearing to allow forcing
in the horizontal direction by oscillating the entire tank. It is expected that this configuration will allow
for many oscillations, thus enabling the acquisition of repeat iterations to obtain statistics of pnenomena of
interest. This approach should prove more efficient in instrumenting and acquiring validation data than the
traditional approach of running individual dam break runs (for example).

The rectangular shape was chosen because this geometry is simpler and easier to build. The tank will
also be wide enough to allow for significant 3D flows, as encountered in real situations.

The choice of the forcing type (entire tank) instead of a more traditional wave paddle on one end was
motivated by the following factors:
» Better excitation (more control) than wave paddle type.
» Can impart more energy to the fluid.
» Could be used for studying seismic effects (on spent fuel pool or liquid metal/salt pool reactor) in
the future, presenting a better investment of DOE resources.

7.6.2.Principle of operation

Unlike a dam break experiment, waves can be generated continuously by oscillating the whole tank
as described above. The continuous operation will allow recording many datasets in a single run in order to
obtain good statistical convergence of the data. This is possible only if the flow has returned to a similar
initial state between each event.

The design plans for a relatively long tank so that the 3D effects introduced by the obstacle are
dissipated and the flow returns to 2D for the next event. Preliminary simulations will also play a key role
in checking this aspect of the design.

7.7. Preliminary Design with NEUTRINO
7.7.1.Modeling tools
We aimed to use neutrino in assisting in the design of the facility (determining its optimal dimensions,

type of motions, etc). Preliminary work focused on getting the software running and getting familiar with
its functions. An example of dam break impacting a rigid body was computed following a tutorial:

Figure 7.7. dam break impacting a rigid body configuration.
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A rectangular tank was then modelled, and an external forcing was implemented. The waveform of the
forcing is prescribed in Python programming language which allows a wide range of expression, including
mathematical equation and conditional statements which can be varies as function of time during the
simulation. For instance the expression:

prop = vec3f(0,0,0.2*(math.cos(1.15*Scene.ElapsedTime)-1))

oscillates the tank horizontally following a cosine function with an amplitude of 0.2 m and period of
271/1.15=5.464 s.

Figure 7.8. Tank oscillation schematic.
These first tests allowed checking that the wave phase velocity is in agreement with the theory for
gravity waves in shallow water, given by the following dispersion equation: w? = gk Tanh(kh).

The analytical solution for this type of flow is given below for the free surface profile (Ibrahim 2005):
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This theory is only for linear (i.e. low amplitude) waves. Such solutions were not used further because
the present study focuses on large amplitude event, and because of the limited spatial resolution of SPH
(limited by particle size). A better way to validated Neutrino results is with experiments of more advanced
non-linear numerical simulations.

7.7.2.Comparison to experimental data
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The resulting flow is visualized in Neutrino. Useful data such as velocity and pressure then have to
be exported and processed with a different software such as Matlab. For an oscillating tank, an example of
velocity field is shown below:
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Figure 7.9. Oscillating tank velocity field

The experiment by Faltinsen et al. ("Multidimensional modal analysis of nonlinear sloshing in a
rectangular tank with finite water depth." Journal of Fluid Mechanics 407 (2000): 201-234) was used as a
benchmark for investigating large amplitude 2D free surface flows.

The below figure shows a very good agreement over the first 10 seconds of forcing. After that, the
Neutrino solution departs from the experimental results in term of amplitude, which is likely due to viscous
dissipation. The latter is sometimes increased in simulations (artificial viscosity) to help with stability.
Identifying and improving this aspect is an example of how experiment can help improve simulation
accuracy.

Nevertheless, these results are deemed satisfactory to use Neutrino for developing a preliminary
design of the experimental facility.
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Figure 7.10. Left: Faltinsen’s experimental test section and geometry. Right: Experimental data (black)
vs. Neutrino data (red) for the free surface elevation at FS3 location.
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7.8. Design of the Experiment

7.8.1.Neutrino simulation results

A wide range of tank size, water level, object (if any), forcing amplitude and frequency were
modeled in Neutrino. The following table shows some of the forcing studied in term of period (T), and
forcing amplitude (X). Of particular interest for the design is to estimate the resulting force required to move

the tank.
T(s) (nglmp X(m) |[V(m/s) |a(m/s?) | Force(N)
Designl 4 1 0.06 0.094 0.30 1,777
Design2 8 1 0.06 0.094 0.30 1,777
Design3 2 1 0.06 0.094 0.30 1,777
Design4 1 1 0.06 0.094 0.30 1,777
Design5 1 1 0.1 0.157 0.49 2,961
Design6 6 1 0.1 0.157 0.49 2,961
Design6_1 |5 1 0.1 0.157 0.49 2,961
Designé 2 |5 1 0.1 0.157 0.49 2,961
Design6 3 |45 |1 0.1 0.157 0.49 2,961
Design6 4 |45 |1 0.1 0.157 0.49 2,961
Design6 5 |48 |1 0.1 0.157 0.49 2,961
Design6 6 |48 |1 0.1 0.157 0.49 2,961
Design6é 7 |47 |05 0.1 0.314 1.97 20,844
Design6 7b | 4.7 |05 0.1 0.314 1.97 18,844
Design6 7c¢ | 4.7 |05 0.1 0.314 1.97 20,844
Design6 8 | 4.7 |03 0.1 0.524 5.48 44,899
Design7 1 |47 |03 0.1 0.524 5.48 32,899
Design9 3 |4 0.6 0.2 0.524 2.74 16,449
Design9 4b | 5 0.6 0.2 0.524 2.74 22,449

Below are shown a few examples of tests, with an object representing a structure to study at various
locations. The initial tests are coarse and preliminary to keep the processing time short and allow many
cases to be studied in a reasonable amount of time. As the results are analyzed, the model is refined and

becomes more complex.

Design 6_1
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Design 6 7

Design 9 4

3T 4008 |«

Figure 7.11. Design 9_4b (with tank CAD model shown and surface rendering).

For this last case, the impact for on the object (the grey cuboid on the left) was reported for 15
cycles, and is plotted below:
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Figure 7.12. Top: Force of the structure (raw/blue smoothed/black) and forcing motion (orange). Left:
Zoom-in one cycle. Right: Phase averaged mean and RMS.

timestep

The reported force on the object is very repeatable from cycle to cycle, which is a necessary condition
to gather good statistical data from both experiment and simulation. When validating the simulation with
the experiment, it will be invaluable to have access to not one, but hundreds of events to assess the
uncertainties due to random error. For the above results, the deviation from the calculated mean force is

shown as a histogram plot:

350

300

250

2001

150

# of datapoints

100

501

]
-15 -10 -5 0 5 10 15

Deviation from the mean (N)

Figure 7.13. PDF of the deviation to the mean. Red curve is Gaussian (normal) distribution.

When the experiment is running, similar data will be collected. The correlation between PDFs will
inform on the agreement between experiment and simulation and will determine to which degree the

numerical model is validated.
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The various simulations pointed to a successful tank geometry of 20 feet long by 8 feet wide by 4 feet
high. This design is shown in the previous figure of design_9 4b. This choice of size was driven by the
following factors:

o Maximize the size to match as well as possible the scale of real-world events.

e Size limited by the area of the available strong floor in Tompkins Hall at GWU.

e Cost of the actuator limited the maximum force that can be imparted to the tank.

It is planned to have the nominal water depth at 2 feet, which represents a volume of about 10 m2.

Various types of forcing were also studied: pure sine wave, rectangular function, sine wave with
off-times, etc. The behavior of the flow was studied, as well as the required acceleration and speed. For
instance, a perfectly rectangular function would require unrealistic infinite acceleration.

Using Fourier analysis, the frequency components of each type of forcing were analyzed to make
sure the actuator could deliver such forcing. See below an example for the following forcing amplitude
function:

dizptacemant (m)

time (&)

Figure 7.14. example of forcing amplitude function.

Here is the spectral analysis showing the corresponding acceleration for each frequency component.

aing
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Figure 7.15. Acceleration for each frequency component.
In this case, the max frequency is below 8 Hz and the corresponding acceleration is quite low (<0.01 m/s?).
7.8.2.Components Selection

The experiment is composed of several main components:
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e Hydraulic actuator and supporting hardware (i.e., pump, controller)
o Tank
e Reaction frame supporting the tank and the actuator.

A few companies selling hydraulic test actuators offer turn-key systems for 1D forcing including hydraulic
system and reaction frame. The tank would have to be added on top of these systems. The following table
summarizes two such systems that we considered:

Manufacturer | Size Forcing capacity Price
MTS 5’x 5 | 167, 11 kips, 4,000 lbs payload $450k
ETS solution | 4’ x4’ | 3.5, 4.4 kips, 660 1bs payload $140k

In fact, we had proposed to buy a turn-key system from ETS solution for the proposal. However, once
the funds were awarded and we started sizing the system, the sale representative from ETS solution realized
that they had made a mistake in the initial quote of $100k and they could not honor it. This forced back to
the drawing board. By leveraging several legacy pieces of equipment left in a new laboratory space that
we were given to us (controller MTS hydraulic actuator, load cell, worth more than $70k at current list
price), we realized that we could do a much more capable system for a fraction of the price than any turn-
key system.

These systems do not match the final size (20’ x 8”) or forcing capacity (10,000 Ibs.) of the system we
designed. The pricing is also prohibitive considering the tank is not included.

It was therefore chosen to build a custom system. Furthermore, the new laboratory has a strong
floor and, the tank and the actuator can be directly mounted on the floor, which remove the need for a
reaction table. The tank would then simply sit of linear rails mounted to the floor.

Hydraulics

The hydraulic system is the most expensive and arguably the most important component of the
experiment. We worked with MTS Corporation since we already have a MTS controller and load cell. We
selected 22 kips (22,000 Ibs.), 10” amplitude actuator with a 30 GPM 3000 psi hydraulic pump. We also
added an accumulator to take advantage of the forcing off-time for increasing actuator velocity during on-
time.

Figure 7.16. MTS 22 kips actuator

The actuator was delivered in January 2018.
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Rails

Rails and linear bearing carriages have been selected based on the required loads and speed and ordered
from Schneeberger. They arrived in February 2018. Structural I-beams will be used to connect these rails
to the strong floor.

Figure 7.17. Linear bearing carriage on rails.

Tank

The tank will be built of carbon steel and acrylic. The steel will form a frame to support the
structural load on the water and forcing, and the acrylic will allow optical access to all sides of the
experiment. The previous figure of design9_4b showed the steel frame with the acrylic side and bottom
wall panels. The tank sits 0.6 m above the linear bearings. While this complicates the structural design, it
enables the deployment of optical systems (lasers, cameras, etc) below the tank. Thus, the facility was
designed to be modular and allow the deployment of a broad class of diagnostics.

The steel frame and acrylic panels were designed and dimensioned using a combination of analytical
and FEM analysis with the software ProE, as described in the next section.

7.8.3.Structural Design
The frame is subjected to the following loads:

Gravity

Water weight on the bottom walls

Water hydrostatic load on the side walls

Horizontal acceleration of 5 m/s? (max from the design table)
Water load (estimated with Neutrino) on the end wall

Using an iterative approach, the tank frame design was refined to minimize deflection, while making
sure the maximum stress (Van Misses) remains well below the elastic limit of carbon steel (250 MPa).
Below are a few examples of iterations. Maximum stress is typically located where the carriages are
attached, while maximum deflection can be found in the center of the tank floor, and top of side and end
walls:
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Figure 7.18. Version 4. Displacement map (amplitude of displacement is magnified for visualization
purpose). Max displacement is on the order of 2.5 mm

Figure 7.19. Version 4. Stress map. Max stress is below 50 MPa (limit is 250 MPa)
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Figure 7.20. Version 8. Displacement map. Max displacement on the order of 1.2 mm. Structural
elements have been added to stiffen the end wall assembly without adding too much weight.

- 2455000

Figure 7.21. Version 15b (final). Displacement map. Max displacement is on the order of 0.85 mm
(neglecting the rods at the bottom that are made to release load on the linear bearings.
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Figure 7.22. Version 15b (final). Stress map. Max stress on the order of 50 MPa. Localized higher stress
is a result of mesh size and singularities at sharp edges.

The acrylic walls will be 17 thick on the side panels, and 1.5” thick at the bottom. Metal threaded
inserts on the acrylic (on a 6” x 6” pattern) will allow mounting on structures and other objects in the tank.

7.8.4.Integration and sample tests

Figure 7.23. Tank installed on rails connected to the strong floor with I-beams. Actuator (red) is also
connected to the strong floor and to the tank. The overall tank is 8’ high. Manikin shown for scale
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Drawings were generated for acrylic and metal frame components and sent for fabrication in January
2018. The list of drawings was 93 pages long for the frame and 18 pages long for the acrylic panels. We
approached several companies and ended selecting a supplier we have worked successfully with in the past
and which was the most competitive.
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Figure 7.25. Tank side panel welding instructions.
7.9. Assembly of the facility
7.9.1.Tank Frame

The tank frame is composed of 13 main components, weighting up to 1,700 Ibs. and up to 20 ft long.
A team of riggers were hired to bring these parts into the basement of the Engineering building and assemble
the facility in April 2018.
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Figure 7.26. Test facility assemble.

4/24/2018 2:24 PM

Figure 7.27. Test facility assemble.

The tank frame was carefully aligned to be level (with 1.2 mm) and positioned on the linear rails
supported by I-beams mounted to the strong floor.

Precise alignment of all 6 carriages ensured that the tank could move with minimum friction. In fact,
a single person could move the whole tank (4,000 Ibs.) by hand.

7.9.2.Hydraulics
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The hydraulic actuator was then fitted to the experiment. MTS performed on-site calibration and
commissioned the hydraulic system. Some troubleshooting took place to avoid cavitation in the oil line,
limit oil compressibility oscillations, and maximize the flow rate. Shakedown tests of the hydraulic system
and tank frame were performed to verify the performances were as expected. This was completed in late
May 2018, with the final problem (cavitation in the hydraulic return line) resolved by October 2018.
Cavitation was limiting only the largest forcing and would start acquiring data for smaller forcing.

Figure 7.28. Actuator connected to the tank and strong floor support.
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Figure 7.29. Examples of shakedown test results

7.9.3.Acrylic Panels

Once the tank framed moved correctly and the actuator performed well, the acrylic panels were
installed. A special adhesive (Sikaflex 295UV, typically used for marine application) was used to bond the
acrylic to the steel. Such adhesive also ensures water tightness and form a seal thick enough (1.2 cm) to
allow some small relative motion between tank and panel (to accommodate for differential thermal
expansion for example).
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Figure 7.30. Bottom acrylic panelbeing prepared for installation. Drainage holes are visible.
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Figure 7.31. Installation of the side wall panels.

The acrylic installation took place during June 2018. The adhesive then required one month of
curing time before water could be added in the tank mid-August 2018. A very small leak was identified and
patched. The tank has been leak-free since.
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Figure 7.32. Operational tank with 6” of water (design allows for up to 24” depth)
7.10.  Instrumentation

7.10.1. Tank Motion

The computer generates a waveform that is executed by the actuator which is rigidly connected to the
tank. The displacement control is a closed loop based on LVDT feedback (and force stabilization to damp
oscillations due to oil compressibility). The LVDT voltage signal is sampled at 2,048 Hz with a 16-bit
LabView DAQ. The accuracy in the tank motion is assessed by comparing a perfect input function (pure
sine wave) to the actual measurement obtained through the LVDT sensor. Any difference between the two
can be attributed to the control system or to the LVDT. The calibration report of the LVDT indicates
accuracy better than 0.52 mm (0.41 % of full range). The 16 bit -10V/+10V DAQ results in a 0.3 mV
digitalization, which translates into a resolution of 0.004 mm, which is negligible.

The position accuracy is evaluated using 183 cycles of a 4” (101.6 mm) 0.11 Hz sine wave. The
difference between requested and measured displacements over the entire sequence is as follow:
e 0.814 mm peak deviation (0.8 % of amplitude)
e 0.384 mm RMS deviation (0.38% of amplitude)

These results are also consistent with the LVDT accuracy.

The accuracy on the forcing frequency is evaluated by comparing the time of position zero-crossing
versus pure sine wave for the same sequence.

The difference between requested and measured timing over the entire sequence is as follow:
e ms peak deviation (0.01 % of period)
o 0.72 ms RMS deviation (0.008% of period)

These values are consistent with the sampling frequency.

7.10.2. Surface Elevation
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Initial profile (water at rest)

The water in the tank is allowed to come to a rest before each run. The level of disturbances is
characterized using the RMS of the surface slope. The latter is measured by reflecting a laser beam on the
surface of the water near the center of the tank. A camera records the reflected beam imaged on a screen.
The camera resolution is 0.4 mm/pixel, and a subpixel (1/50™) accuracy fit yields a precision of 2x10*
degrees on the surface slope.
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Figure 7.33. Surface slope as function of time: Natural decay of surface disturbances.

The slope of the disturbances decays exponentially, by a factor of 10 every ~200 seconds. The total
time to reach a particular level of disturbance depends on the initial level of disturbance (1 degree in the
above example due to FOV limitations). After 1000 s, the equivalent amplitude of the surface waves is
below 10 pm.

2D Profiles

This is recorded with a single camera pointing at the long side of the tank, fitted with a wide angle
lens that allows the entire tank length to fit in the frame. As a result of the large FOV, the spatial resolution
is limited to ~5 mm/pixel. The surface profile is extracted with an image processing code that locates the
location of the surface based on the intensity gradient. No subpixel analysis is performed, thanks to temporal
over-sampling, temporal averaging allows improving the accuracy by a factor of YN, with N the number of
samples over which the averaging is conducted in a boxcar manner. The final accuracy is estimated at 2
mm. This is sufficient for a coarse characterization of the evolution of the surface profile at a full tank
length scale.
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Figure 7.34. Raw image used for surface profile identification at large scale
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Figure 7.35. Example of 2D surface elevation map as function of time

7.10.3. Pressure

The pressure at the end wall of the tank is measured at several elevations using the following
pressure transducers:

Omega PXM309-0.14G10V (140 mBar gauge range) and Omega PXM309-0.35G10V (350 mBar
gauge range). The linearity/hysteresis/repeatability (called accuracy in Omega datasheet) is 0.25% of full
scale (35 Pa and 70 Pa, respectively).

In the experiments, the reading will depend on the ambient atmospheric pressure. By setting the
pressure to zero in absence of water at the beginning of a run, we can take advantage of the very good
linearity/hysteresis/repeatability for our measurements.

The 16 bit -10Vv/+10V DAQ results in a 0.3 mV digitalization, which translates into a resolution of
0.43 Pa and 1.07 Pa, for the respective transducers, which is negligible compared to the sensor accuracy.

When recording a static signal, the noise level is on the order of 5 Pa RMS and 10 Pa RMS for the
respective transducers, which is below the static accuracy stated.

As mentioned earlier, we focus our study on the gauge pressure (relative to ambient). The precision
of the measurement with respect to ambient pressure is much better and is estimated at 35 Pa for the 140
mBar sensor and 70 Pa for the 350 mBar sensor. Pressure is sampled by the DAQ at 2,048 Hz, which is
twice the cut-off frequency (time response) of the sensor.
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Figure 7.36. Left: Pressure transducer. Right: Mounting locations on the tank endwall.
7.11. Results
7.11.1. Tank modes

A repeatable flow can be obtained by exciting waves with a frequency that matches the natural
frequency of water wave in the tank. The phase velocity of a water wave in shallow water defined as follow:

_ glt h(Znh)
¢= |5 tanh{—

with A the wavelength and h the water depth.

For a successful amplification, the wavelength is constrained by the tank length: The crest of a wave
must be at one end of the tank, while the trough of a wave must be at the other end (because on one side
the tank moves towards the flow, while it moves away at the end side). Therefore, the following relation
between wavelength and tank length must be satisfied:

L=2 +’1—,1( +1)
TS =AM

With n a positive integer that specifies the mode. At any time, there are 2n + 1 waves traveling in the
tank. To be able to amplify a wave (until breaking for instance), the tank must move towards the wave
every time a crest impacts the end wall. Therefore, the forcing frequency must match the time it takes for a
wave to travel back and forth along the tank, multiplied by the number of waves:

c
f:Z(ZTL'i'].)

Combining these equations, the tank frequency becomes
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The following figure shows f as function of h for the first 6 modes:
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Figure 7.37. Frequency function of height.

Due to the tank motion, the effective tank length is slightly smaller than the physical length. Because
the tank moves towards the waves as the crests approaches, the effective length is:

with A is the forcing amplitude.

Example of mode 1 (n=0):
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Figure 7.38. Measured 2D profile evolution (mode 1).

Example of mode 2 (n=1):
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Figure 7.39. Measured 2D profile evolution (mode 2).

7.11.2. Panel Deflection

The effect of tank panel deformation on the pressure measurements was investigated using an
accelerometer. The main concern was that water impact would induce vibration of the panel that holds the
transducer, and that the resulting acceleration would lead to spurious reading of the pressure. Another
important reason for monitoring the panel deformation for the purpose of validation is because the pressure
resulting from the impact on a compliant structure is significantly lower than that on a rigid structure.

During a typical wave impact, the panel oscillates at ~120 Hz, with acceleration up to 0.5 g. This
translates into a deflection of ~9 pm. As shown below the pressure spectrum does not correlate with the
acceleration spectrum, which means that oscillations of the panel do not induce spurious pressure
measurements.

However, the deflection of the panel will still affect the physical pressure during the impact; therefore,
the deflection must still be monitored.

Future tests could look into making the panel stiffer (with metal braces for instance) and studying the
effect on the pressure data.
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Figure 7.40. Temporal pressure and acceleration profiles (left) and frequency spectrum (right).

7.11.3. Repeatability
Repeatability and sensitivity of the pressure measurement was evaluated for the following conditions:

e Forcing: 4.000” (101.6 mm), 0.1100 Hz (mode 1)
e  Water depth: 6 (152 mm)

The flow that develops consists into a breaking wave that goes back and forth along the tank, with
a period that matches that of the forcing (mode 1). Pressure is collected using the 350 mBar sensor located
at z=4” (101.6 mm) above the tank bottom (2” below mean water level). The flow is initially 2D, but slowly
becomes 3D as the breaking event generates 3D structures. Four tests are conducted:

Run h(mm) |f(Hz) A (mm) | Comments

1 152.4 0.11 101.6 Reference run

2 152.4 0.11 101.6 Identical to Run 1

3 152.4 0.11 102.108 | Change of the forcing amplitude by 1%
4 153.4 0.11 101.6 Change of the water depth by 1 mm

The change of the water depth by 1.0 mm was done by adding a precisely measured volume of
water to the tank. The frequency was not modified as the uncertainty analysis showed that this parameter
is very accurately controlled (better than 0.01 %).
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Figure 7.42. Ten cycles moving average for the first 10 minutes.
For the first 10 cycles, the difference is on the order of the precision (70 Pa), except for the peak

pressure. Even for identical condition (runs 1 and 2), the pressure timeline starts diverging after about 20
cycles, because of turbulence and other chaotic processes. The main findings are as follow:
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e The comparison between experiment and simulation must be limited to the first 10-20 cycles or
look at the overall envelop of the pressure during the impact.

e Over the first 10-20 cycles, modifying an initial condition by an amount similar to the respective
uncertainty does not affect the repeatability. Therefore, the initial condition are well-enough
characterized for the purpose of validation and repeatability (for this particular set of tests).
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Figure 7.43. Time evolution of the pressure profile for the first 20 cycles of each runs.

7.11.4. Wave Impact Statistics

The four runs presented in the previous section were aggregated, which resulted in 459 single wave
impact events from which good statistics can be extracted.

The first metrics to be studied are: the average pressure profile during an impact, the standard deviation
(RMS), and the minimum and maximum pressure, as plotted below:

Mean Mean+RMS, Mean-RMS Min, Max
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Figure 7.43. Average pressure profile during an impact.
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The variation in the measured profile is mostly due to several factors: random turbulent unsteady bubbly
flow and 3D waves. The percentile bound are also plotted below. These may be more appropriate for
studying the spread of data with a non-normal distribution.
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Figure 7.44. Percentile bound of pressure profiles.

The variation in the measured profile is mostly due to several factors: random turbulent, unsteady
bubbly flow, and 3D waves. These curves show that the pressure evolution is bounded between quantified
intervals. Compared the percentile graph with the min max graph, one can see that there are a few events
that largely deviate from the mean values, mostly near the peak pressure. These correspond to event for
which the wave impact happens exactly at the time of wave breaking. This highlight the need to preforms
hundreds of cycle to be able to characterize the frequency of occurrence of such rare events.

The cycle plotted above is discretized in 9 segments of 1 second each, and the distribution of the
pressure around the mean is plotted as a histogram:
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Figure 7.45. Pressure histograms.
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This highlights the larger (non-Gaussian) distribution of pressure during the impact phase (=1 to 2 s).

The distribution of the first and last segment is skewed. This is because the pressure sensor is
momentarily above the water surface at these times, which causes a bias toward P = 0 Pa.

7.11.5. Pressure-Impulse

When studying the failure of a structure, the main parameter is the maximum stress (or pressure) that
can be withstood. However, for short transient, the peak pressure can exceed the static limit for a brief
moment without causing failure. This is due to the dynamic response of the structure (inertia) which acts
as a low-pass filter. For such event, the occurrence of failure is better predicted by the impulse, which is
defined as:

after

Fix) = j i, ndi

befows

The threshold for failure for a given structure can then be given by a pressure-impulse (P-1) diagram:
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Figure 7.46. Pressure-impulse (P-1) diagram.

From the experimental data, the maximum pressure and impulse are calculated from each cycle,
see a sample below:
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Figure 7.47. Maximum pressure and impulse.
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It should be noted that while the max pressure shows large fluctuation (as discussed earlier), the
impulse is remarkably consistent, as noted by Peregrine 2003. These data-points can then be plotted in a P-
I diagram. The failure limit shown in red is arbitrary and for illustrative purposes only. The few outliers on
the max pressure are related to breaking modes of waves on the wall. The physical processes describing
this will be highlighted in the next section.

7000

6000

1000

0 1000 2000 3000 4000 5000 6000 7000
Impulse (Pa.s)

Figure 7.48. Maximum pressure versus impulse.

7.11.6. Pressure Peak and Bubble-Induced Pressure Oscillations

The few occurrence of very large peak pressure was investigated. The following figure shows the
pressure time history for two consecutive waves during run 1:
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Figure 7.49. Pressure history.
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The overall profiles are similar, except for the initial peak Here is a magnified view of that first peak:

run 1|

530.25 530.3 53035  530.4 530.45
t(s)

Figure 7.50. Zoomed-in pressure history.

This shows large pressure oscillations at a frequency of 70 Hz. Further tests showed that the large
pressure peak occurs when the wave break exactly on the wall. This was studied by Chan and Melville

(1988):

Figure 7.51. Schematic of breaking waves incident on a surface wall.

However, pressure oscillation and large peak pressure are not correlated; one can occur without the
other.

The oscillations are caused by the presence of bubbles in the flow. This was studied using high speed
imaging. The following image shows the flow in the direct vicinity of a pressure transducer during wave
impact.
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Figure 7.52. High speed movie snapshot. Pressure transducer is on the right. For scale, the arrow is 1.25”.

The effect of bubbles on the pressure oscillations is shown in the following two sets of figures. In
the first set, oscillations are limited in amplitude. The high speed image shows a few small bubbles. In the
second set of figures, larger pressure oscillations are recorded, and many larger bubbles are visible near the
pressure port. This supports the hypothesis that the oscillations are caused by bubbles.

Figure 7.53. Top: Raw image. Bottom: Corresponding pressure plot
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Figure 7.54. Same as above for a different impact event

In nearly all the wave impact data acquired so far, the waves become too steep in the tank and spilling
breakers develops as the wave travels between the walls. However, in a few cases, the wave reaches the
wall without breaking first and breaks on the wall directly. In the first phase of the impact, a large air cavity
is trapped and its compression by the breaking wave results in the much higher peak pressure observed
occasionally in our runs. In fact the peak pressure during those events is about 3 times larger than during
impacts when the wave “spills” on the way to the tank edge.

7.11.7. Comparison with simulation

The statistical results are used for comparison with the Neutrino simulations.
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Figure 7.55. Neutrino results overlaid with the experimental data.

The SPH simulation captures remarkably well the general envelope of the pressure time-history.
The match is very good for the first 90s (top left panel). The percentile plot and impulse are also presented

below:
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Figure 7.56. Simulation results: pressure and impulse.

The left plot shows that the simulation results are more consistent from cycle to cycle than in the
experiment. For instance, the 50% band is narrower in the simulation than in the experiment. This difference
is explained in part by the 3D effect (spanwise waves, turbulence, bubbly flow, etc.) not being fully captured
by Neutrino. On the other hand, Neutrino captures well the impulse, with an error of about 4%.
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Such comparisons between experiment and simulation are extremely useful to identify the limitations
of a code for real scenarios. In the context of RISMC, we need to define a way to quantify the performances
of the code. For multivariable and multidimensional quantities, advanced metrics are being explored.
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Figure 7.57. Left: Convergence of the L1 error. Right: Comparison of the pressure distributions at one
instant in time (blue is simulation, orange is experiment).

Comparison of the pressure distribution allows computing metrics based on the histogram overlap (K-
L Divergence and Hellinger metrics).
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Figure 7.58. K-L divergence.

This example shows large discrepancy at the beginning and end of the cycle. When looking at the time
history of the pressure (see figure below), these correspond to the absence of impact, i.e. only hydrostatic
pressure, which is a region of the pressure time history that is not relevant for validating neutrino in flooding
scenarios:
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Figure 7.59. Region of large discrepancy highlighted in red circles.

The reason for the large discrepancy there is because the relative error is large (~100%). However,
the absolute error is about 50 Pa, which is on the order of the sensor accuracy, and correspond to a
hydrostatic head of 0.5 cm, which is smaller than the particle size in the simulation. Therefore, this
emphasizes the importance of choosing the correct metric(s), and correctly interpreting its results.

7.11.8. Scaling Analysis

We seek a way to estimate the behavior of the flow at large scale from the data we collect in the
experiment, in other words, looking for a physics-based argument to extrapolate between validation and
application domain. Doing so involves identifying scaling parameters for the impact pressure. In single
phase regimes (when there is not air entrapment during the impact), the dynamic pressure normalizes the
pressure, P:

P
P =

20
The characteristic velocity is that of the shallow water wave: V = ¢ = ,/gh. The equation becomes:
P* = —P
1
5 Pgh
The denominator is half the hydrostatic pressure at the bottom of the tank (or the hydrostatic pressure
at half depth), which means that for shallow water wave, we can use either dynamic pressure or hydrostatic
pressure for normalizing.

This result shows that the impact pressure for shallow wave should scale directly with the water depth.
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Figure 7.60. Max impact pressure distribution at z=0.101 m for h=0.152 m. z is the sensor elevation and h
the mean surface elevation.

The mean of max impact is around 1600 Pa. We now double the depth. We would expect the impact
pressure to double as well. We conducted tests are twice the depth (0.304 m) and the histogram is shown
below (the histogram is coarser as we have taken fewer runs):
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Figure 7.61. Max impact pressure at z=0.101 m for h=0.304 m.

The mean is close to 4200 Pa, which is more than double. The main discrepancy appears to be due to
the sensor location. The physical location is the same is both cases, but what appears to matter is the sensor
depth relative to the surface elevation. If the latter is different, an offset results due to the difference in
hydrostatic pressure. When correcting the data above for the hydrostatic pressure, one obtains:
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Figure 7.62. Max impact pressure at z=0.270 m for h=0.304 m.

The mean max pressure is ~3200 Pa, or twice that of the 0.152 m depth case when the sensor is at the
same depth (5 cm below the mean surface elevation) which agrees with the scaling presented above. More
data will be acquired for h=0.304 m and other depth to confirm scaling.

7.12. SPH Neutrino benchmark

7.12.1. Experimental setup

A large-scale oscillating tank was designed and constructed at the George Washington University.
The tank measures 5.951 m long x 1.2 m high x 2.468 m wide. The tank is constructed of a steel frame and
acrylic walls and bottom. The tank is oscillated through a sine-forcing function using a hydraulic actuator
capable of amplitudes up to 0.25 m and velocities up to 0.5 m/s. Additionally, a pressure transducer is
located at the end-wall of the tank, 0.1016 m above the tank bottom, to measure the pressure from wave
impacts.

The experiment for the end-wall pressure measurement consisted of a water depth of 0.1524 m. The
forcing function had a 0.1016 m amplitude, with a 0.11 Hz frequency. The experiment ran for 60 cycles
and was repeated four times, with minor variations to account for some uncertainties. Two of the runs were
identical; one run varied the depth by adding a precisely measured volume of water to the tank, and the last
run varied the forcing function amplitude. Table shows the variations on the four experimental model runs.

Table 7.11: Experimental model run variations.

Run | Water Depth (m) | Frequency (Hz) | Amplitude (m) | Variation

1 0.1524 0.11 0.1016 Reference run

2 0.1524 0.11 0.1016 Identical to Run 1

3 0.1524 0.11 0.102108 Change of forcing amplitude by 1%
4 0.1534 0.11 0.1016 Change of water depth by 1 mm

7.12.2. Smoothed Particle Hydrodynamics
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The fluid-simulation code Neutrino was investigated and used to numerically reproduce the
experiment. An incompressible SPH solver was selected, considering its high computational efficiency
(Sampath et al. 2016). It solves the incompressible Navier-Stokes equations for isothermal, single-phase
flows in a Lagrangian, velocity-pressure formulation. The water-air mixing and surface-tension effects,
with air entrainment and formation of bubbles and foam, as occur from wave breaking, are not modelled.
To avoid excessive complexity, only the water phase is considered, and the air-water interface is
approximated as a free surface. The SPH method is well suited to simulate violent flows with a highly
evolving free surface. Thus, it is expected to perform well for water waves and oscillating motions.

In accordance with the physical properties of water, the fluid is assumed to be Newtonian, with
viscosity constant in both space and time. The water is discretized into a set of fluid particles, with fixed
mass and volume that move along with the flow. Because SPH is a mesh-free numerical method, there is
no explicit inter-particle connectivity. Instead, the spatial-differential operators are approximated by
modeling inter-particle interactions. Using a Gaussian-like function, smoothing kernel, with compact
support, the respective contributions of each interacting particle-pair are weighted based on the inter-
particle distances. In this work, the smoothing kernel used is the cubic B-spline.

7.12.3. Simulation Setup

The Neutrino model was constructed to match the experimental setup as closely as possible. The
oscillating tank experiment can be characterized as a two-dimensional (2-D) experiment, resulting in the
simulation tank having the same length and height dimensions, but a smaller width of 0.2 m. By reducing
the width of the simulation tank, the computational runtime of the simulation is also reduced without
compromising accuracy. A simulation with a particle size of 0.01 m (181,387 fluid particles total) takes
about 16.7 hours for 30 cycles using an Intel Xeon central processing unit E5-2683 v3 @ 2.00 GHz with
28 core and 56 logical processors.

The simulation tank was filled with particles to the correct fluid depth. The number of fluid particles
was carefully controlled to ensure that the numerical volume of the fluid simulation corresponds to the
correct physical fluid depth. A measurement field is used to measure the pressure on the end-wall. This
measurement field compares to the pressure transducers used in the experimental setup. Figure 9.2. shows
the large-scale oscillating tank on the left and a cross-sectional view of the simulation setup on the right.

Figure 7.63. Large-scale oscillating tank at the George Wéshington University (left) and Neutrino
simulation setup (right).

Once the simulation setup was complete, the simulation tank and end-wall measurement field
needed to be oscillated at the same forcing function as the experiment. To create these oscillations, a python
script for each object was created and added to the position of the object as a dynamic expression. The
python scripts adjust the position of the items based on Equation 7.9.2.
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z(t) = Asin (2rft) (Eq.7.1)

where z is the new position, t is the time, A is the amplitude, and f is the frequency. The amplitude and
frequency values are set in the python script to match the experimental values, and the time is extracted
from the simulation. The equation allows for the movement of each object to be continuous and evaluated
for every time step of the simulation. Without using the equation and, instead, using a dataset of positions,
the movement of the objects may not shift smoothly with the time step, causing jumps with overlapping
particles, which results in erratic or explosion-like behavior from the simulation tank impact.

7.12.4. Validation Simulation Conditions

Several parameters were varied to match the simulation to experimental results. Those parameters
included particle size and measurement-field size and location. The first parameter that was varied was
particle size. Three different particle-size values were used to determine the effect of spatial resolution on
the pressure results. The three values used were 0.03, 0.02, and 0.01 m. Each cycle of the simulation results
was then sorted and analysed to determine the 90% and 50% bounds (the point at which 90% [or 50%] of
the data are within that band). Figure shows the 90% pressure bounds for the different particle sizes on the
left and the 50% pressure bounds on the right.

Figure 7.64. Particle size pressure bounds comparison.

As shown in the plots in Figure , the pressure bounds shift to the right as the particle size becomes
larger. The left-most pressure bound using 0.01 m particles matched the experimental results with enough
accuracy that smaller particles were not tested. Therefore, a particle size of 0.01 m was selected for both
accuracy and acceptable run times.

Next, the measurement field size and location were adjusted. A particle size of 0.03 m was used for
these comparisons to reduce the computational runtime. For changes to the measurement field size, the y-
axis height of the measurement field stayed constant at a value equal to the particle size (0.03 m) because
the field must be at least the size of the particles. The x-axis width value also stayed constant at 0.15 m
because the experiment is considered 2-D. The z-axis length of the experiment was adjusted to see the effect
on the results. Two z-axis length values were used: 0.15 m and 0.1 m.

For the location changes, only the x-axis position was varied to determine if a slight shift in location
had an effect though the experiment is considered 2-D, particles are still 3-D in nature, and a shift may
cause more or less particle interaction on the measurement field. The y-axis position was not adjusted
because its location is based on the location of the pressure transducer in the experiment. The z-axis location
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also was not varied because it must stay on the end-wall of the tank. Figure 7.65 shows the measurement
field length comparison on the left and the measurement field x-axis location comparison between centered
and shifted 0.015 m on the right. These plots show the last 10 cycles of the 60 cycle simulation averaged
together.
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Figure 7.65. Measurement field size and location pressure comparison.

Based on the plots above, there is nearly no difference between the varied sizes and locations of the
measurement field. Therefore, the measurement field was left centered in the simulation tank, and the size
of the measurement field for the results below was 0.05 m long by 0.05 m wide by 0.01 m high. These
dimensions were scaled down from the 0.03 m particle size results to a 0.01 m particle size.

The values selected for each of these parameters were based on a brief parametric study of the
parameter. More parameters could be adjusted, which might affect the simulation results. The following
section will discuss these other parameters as well as the methodology for determining their significance.
7.12.5. Significant parameter determination
Investigated Parameters

More than 30 parameters or settings are associated with a Neutrino simulation as well as parameters
associated with the experiment. However, not all of these parameters have an effect on the accuracy of the
simulation. Table 7.12 shows a list of the parameters and an initial discussion on whether the parameter
was investigated to determine its significance. Highlights show parameters that were investigated.

Table 7.12: Parameter discussion table.

Parameters Importance Discussion

Time step pressure iteration Important, but not investigated because it is expected to be soon

coefficient deprecated after replacing the pressure solver

Non-static reference frame Not important because it only affects simulations with fast-moving
dynamic solid objects

Stop criterion Important, but not investigated because the default value is known
to be optimal

Stop threshold Important because it affects the level of incompressibility
enforcement.
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Minimum number of iterations

Important, but not investigated because the default value is known
to be optimal

Maximum number of iterations

Not important because it is only used to prevent occurrence of
infinite loops due to non-convergence of the pressure solver

Relaxation factor

Not important because default value leads to optimum
convergence (Sampath et al. 2016)

Old pressure weight

Important, but not investigated because the default value is known
to be optimal

Particle shifting

Not important because particles should not be enforced to a
particular configuration

Buoyance model

Not important because it only affects simulation of non-isothermal
flows

Density computation

Important, but not investigated because the default value is known
to be optimal

Enable negative pressures

Not important because it only affects the fluid-solver interaction
with dynamic solid objects

Enable tensile instability control

Not important because it only affects the fluid-solver interaction
with dynamic solid objects

SPH Laplacian for viscosity

Not important because it is known to yield very similar
simulations

Wall boundary pressure method

Important, but not investigated because the default value is known
to be optimal

Wall boundary extrapolation

Important, but not investigated because the default value is known
to be optimal

Wall hydrostatic pressure
correction

Important, but not investigated because the default value is known
to be optimal

Wall viscous correction

Important, but not investigated because the default value is known
to be optimal

Free-surface density correction

Important, but not investigated because the default value is known
to be optimal

Free-surface pressure correction

Important, but not investigated because the default value is known
to be optimal

Near-free-surface identification
coefficient

Important, but not investigated because it only affects simulations
with free-surface correction, which is not used

Open boundary extrapolation

Not important because there is currently only a single choice and
would only affect simulations with open boundaries

CFL number

Important, but not investigated because the default value is known
to be close to optimal

Time step diffusion coefficient

Not important because it only affects simulations with highly
viscous flow

Clamp to multiple of Solid-Solver
time step

Not important because it only affects fluid-solver interaction with
dynamic solid objects

Adaptive time step

Important, but not investigated because the default value is known
to be optimal

SPH kernel Important, but not investigated since the same methodology can
used to other smoothing kernels.
Particle size Important because it changes the resolution of the simulation.

Interaction-Radius to Particle-
Size Ratio

Important because it changes the number of particles influencing
the particle of interest.

Fluid settling uncertainty

Important because it effects the fluid depth.
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Fluid depth uncertainty Not important because the correct number of particles for a given
fluid depth can be calculated.

Fluid properties Not important because they will match the fluid properties of the
experiment.

Measurement field size Important, but not being investigated due to initial research
results.

Dimension uncertainty Important, but not investigated due to very small uncertainty
range.

Forcing function amplitude Important because it effects the forcing function of the simulation.

uncertainty

Forcing function frequency Important because it effects the forcing function of the simulation.

uncertainty

Pressure transducer location Important because it effects the measurement field location in the

uncertainty simulation.

Based on Table 7.12, 7 of the 37 parameters were investigated to determine their significance. These
seven parameters were analyzed using the method described below.

7.12.6. Methodology Using Risk Analysis Virtual Environment (RAVEN)

RAVEN is an Idaho National Laboratory developed analysis software. It can run external codes and
performing analysis on the results. RAVEN has a wide range of capabilities, a few of which include reduced
order models, advanced sampling methods, data post-processing, and model parameter optimization (Rabiti
etal. 2017). The Neutrino and RAVEN coupling was used so that RAVEN would sample parameter values,
modify the Neutrino’s input file, and run Neutrino continuously without any user need after running the
RAVEN input file (Ryan and Pope 2019).

The methodology for determining the significance of parameters consisted of, first, randomly
sampling across the range of possible values of a single parameter. The values were sampled from a uniform
distribution across the range of values using a Monte Carlo sampler. The value range for each parameter
was selected based on previous simulation investigation or the uncertainties associated with the physical
experiment. The results were then analysed to determine whether the parameter caused a change in the
results. If the different parameters values did not cause a change in results, then the parameter was
considered insignificant. Table shows the range of values for each parameter, as well as the default value
that was used when other parameters were being sampled. These ranges are all considered uniform although
many have other distributions.

Table 7.13: Investigated parameter value ranges and default value.

Parameters Value Range Default Value
Stop threshold 0.0001t0 0.01 0.001

Particle size 0.007 mt0 0.02 m 0.01m
Interaction-radius to particle-size ratio 20t024 2.0

Fluid settling uncertainty -0.45, to 0.40* 0

Forcing function amplitude uncertainty | 0.1012 m to 0.102 m 0.1016 m
Forcing function frequency uncertainty | 0.1099868 Hz t0 0.110011 Hz | 0.11 Hz
Pressure transducer location uncertainty | 0.1006 m to 0.1026 m 0.1016 m

* where Oy is the particle size
7.13. Results
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7.13.1. Validation

The 90% and 50% pressure bounds for the experiment and simulation were compared. Additionally,
the pressure of each cycle was integrated over time to compare the pressure impulse. Figure shows the
pressure bound comparison with the 90% bound plot on the left and the 50% bound plot on the right.
Figure shows the absolute percentage error plots between the simulation and experiment upper and lower
bounds for the 90% bounds on the left and the 50% bounds on the right.
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Figure 7.66. Pressure bounds comparison plots.
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Figure 7.67. Pressure bounds simulation error plots.

The above plots show that both the 90% and 50% simulation pressure bounds mostly fall within
the experimental bound. A few exceptions do occur in the low-pressure areas at the very beginning of the
cycle (~40% difference) and the very end of the cycle (~40% difference); however, these low-pressure
differences are typically insignificant for applications. The peak pressure tends to have a short but high
initial peak variation (~75% difference) compared to the experiment. Overall, the simulation results match
well with the experimental results for most of the time. However, refinement of parameters could possibly
increase the accuracy of the simulation.

The simulation impulse pressure was compared to the pressure impulse for each experimental run.
The absolute percentage difference between the simulation and each experimental run was also computed.

Figure 8 shows the impulse pressure comparison plot on the left and the absolute percentage difference plot
on the right.
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Figure 7.68. Impulse pressure comparison plots.

The absolute percentage difference plot shows that the pressure impulse of the simulation is within 10%
of all four experimental runs. However, for two of the runs, the simulation is within 5% of the experiment.
This shows that the simulation pressure impulse matches the experimental very well.

7.13.2. Significant Parameters

The parameters and their range of values identified above were sampled five times using RAVEN.
The pressure results for all five runs were compared to determine whether the parameter is significant. To
reduce the computational runtime, 30 rather than 60 cycles were simulated. Table shows the five sampled
values for each parameter and Figure .69 shows the average pressure plot comparison for the different

parameters.

Table 7.14. Sampled values for each parameter.

Parameter Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5
Stop threshold 0.005188 | 0.009604 | 0.000482 | 0.008365 | 0.004260
Particle size 0.009004 | 0.009710 | 0.018166 | 0.011869 | 0.017700
Interaction-radius to particle-size ratio 2.083384 | 2.149816 | 2.013502 | 2.042695 | 2.089326
Fluid settling uncertainty 0.027887 | 0.920035 | -0.922877 | 0.669684 | -0.691674
Forcing function amplitude uncertainty | 0.101436 | 0.101541 | 0.101956 | 0.101291 | 0.101270
Forcing function frequency uncertainty | 0.110007 | 0.110008 | 0.110011 | 0.109989 | 0.109992
Pressure transducer location uncertainty | 0.102298 | 0.102340 | 0.101516 | 0.102578 | 0.101047
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Figure 39.69. Average pressure comparison plots for each investigated parameter.

Based on the plots above, all seven parameters influence the simulation results. However, some of
these parameters seem to be more important based on the amount of fluctuation that occurred between the
results. For example, the particle size, interaction-radius to particle-size ratio, and fluid settling plots
showed greater fluctuation than the stop threshold, amplitude, frequency, and pressure transducer location
plots. This indicates that more research is needed to quantify the significance of each parameter.

7.14. Conclusions

A large-scale oscillating tank experiment was conducted and then used to validate the SPH code
Neutrino, as well as determine parameters that affect the simulation results. The 90% and 50% end-wall
pressure bounds were compared, as was the pressure impulse. The simulation bounds fell mostly within the
experimental bounds, with exceptions at the beginning of the cycle (~40% difference), at peak pressure
(~75% difference), and at the end of the cycle (~40% difference). The simulation pressure impulse matched
the experiments well and was within 10%. Additionally, seven parameters were identified and investigated
to determine their significance. All seven parameters were identified as significant. However, the particle
size, interaction-radius to particle-size ratio, and fluid settling seem to have a greater effect due to larger
fluctuation in their results.

The next step is to quantify the significance of each parameter. Once this is done, those parameters
that have the greatest effect on the simulation results can be optimized. The optimization goal would be to
increase the accuracy of the simulation results while still accounting for the computational runtime of the
simulation. This optimization will also depend on the scenario and a valid parameter range vs result criteria
needs to be established.

7.15. Lessons Learned and Revision of Methodology

7.15.1. Issues and Challenges

First, one challenge of SPH validation is to define validation goals and requirements for all involved
phenomena, processes, and components from the perspective of risk analysis. In this chapter, for
clarification, the validation goals of each numerical benchmark are defined by accuracy and calculated by
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validation or error metrics. Furthermore, they are assumed to be the same for all involved phenomena.
However, for RISMC applications, the requirement on model accuracy is subject to change given uncertain
scenarios. For scenarios where facilities have enormous safety margins, the tolerance for simulation
uncertainties can be much larger than scenarios that have the fragile equipment. In addition, for scenarios
that have risks with severe consequences, the requirement on model credibility will be more stringent than
scenarios that have slight effects. Second, for complex scenarios with multiple phenomena, processes, and
components, the requirements on model accuracy in simulating each separate effect should be inferred
rigorously according to the requirements for integral behaviors. In CSAU and EMDAP framework, none
of such connection has been explicitly discussed. Besides, the subjective components of model credibility
in nuclear safety-related applications cannot be ignored when external hazards are analyzed, and the
uncertainties are significant. To be specific, the subjective component is mainly introduced by two aspects:
scaling analysis and physical pattern recognition. The first aspect mainly depends on the similarity
(sufficiency, relevancy, and distortion) of the validation database to prototypic conditions. The second
aspect depends on the understanding of all involving physics and their interactions. Both aspects require
subjective assessments and their criteria for success depend on the subjective confidence level. With the
same validation goal, scenarios with complex physics require higher confidence in the scaling analysis and
physical pattern recognition than those with simple phenomena, such that the model can be used for full-
scale applications. However, neither CSAU or EMDAP has formalized or explicitly discussed such
situations.

Second, there is no framework or procedure in the previous validation that formalizes the decision-
making process for validation adequacy. Although Error! Reference source not found. shows a schematic
structure with all inputs, detailed information, like relative importance, dependency, acceptance criterion,
etc., are not explicitly discussed. At the same time, due to a lack of data from integral facilities under
prototypic conditions, adequacy of simulation models must be decided according to their performances in
predicting data from separate phenomena and reduce-scale facilities. Considering the complexity of
scenarios and the multitude of evidence, human assessments can be heuristic and obscure. As a result, to
remain convincing, the adequacy decision-making process needs to be formalized and represented
transparently. At the same time, the formalization needs to be consistent and robust, such that the decision-
making process can be defendable and satisfactory across a wide range of plausible situations. Besides, for
scenarios that evidence has not been exhaustively collected, the formalized decision-making process should
be theoretically improvable when new knowledge and data become available.

Third, SPH methods are found to be insufficient in predicting various high-rank phenomena. Although
an “excellent” performance is desirable for every phenomenon, it can hardly be achieved for SPH methods
based on the previous assessments. When an insufficient performance is found for high-rank phenomena,
SPH methods can still be considered adequate despite the deficiency if (1) the phenomenon can
subsequently be demonstrated to not have the dominant influence on the course of the application or (2) an
appropriate method can be demonstrated for quantifying the calculational uncertainty resulting from the
deficiency, and the uncertainty is acceptable. The database in this study is not sufficient for verifying the
PIRT, efforts are devoted to the uncertainty quantification of SPH methods. Regular UQ methods require
separations of total uncertainty with respect to sources and properties and assumes that each source is scale
invariant. However, all sources of uncertainties, including discretization errors, simulation errors, model
form errors, and input errors, are tightly coupled, and characterizing each of them by independent error
distributions is difficult. Besides, it is found that the simulation error of SPH methods depends on the
characteristics of scales. Moreover, the uncertainties of situations, where the regular UQ methods apply,
are much smaller than those of external-hazards scenarios. Therefore, new UQ methodologies are needed
for estimating total simulation uncertainties under large uncertainties. At the same time, the new
methodologies are expected to propagate (interpolate and extrapolate) the uncertainties from reduce-scales
to full-scale conditions.
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7.15.2. RISMC Model Validation Framework

Since the objective of this study is to assess the credibility of NEUTRINO and to improve the EMDAP
framework. New methodologies discussed in this chapter are incorporated into the EMDAP framework for
(1) Identifying credibility requirements in validation process; (2) formalizing the decision-making process
in the validation process (3) quantifying the uncertainty of SPH simulations in a transparent, consistent, and
robust manner. Figure shows a schematic flowchart for the improved EMDAP framework. The solid blocks
(Elements #1 - #4) are inherited from the EMDAP framework, meanwhile, new components in bold fonts,
including sufficient accuracy, data-driven validation, and PCMQBN are developed and included. The
dashed blocks are defined with respect to their scopes and requirements.
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Figure 7.70. A schematic flowchart of the improved EMDAP framework. The solid blocks are mainly
inherited from the well-established EMDAP framework, and three of them have been improved with new
methodologies (in bold font). The definitions and case studies of bold methodologies have been
demonstrated in this study. The scopes and requirements of dash blocks have been defined for the dashed
blocks.

7.15.3. Revised Blocks

The concept of sufficient accuracy is applied to Element 1. The validation goal, represented by maturity
level and corresponding subjective beliefs, is determined according to the safety goal, where a critical belief
and a range of acceptance domain for model credibility are identified. The transparency and consistency of
this process is ensured by formalized procedures and mathematical derivations. At the same time, by
admitting the subjective nature of validation and introducing qualitative validation goal, the robustness of
this process is ensured by achieving a designated level of “credibility” across the validations and
assumptions that are consistent with known facts. The PCMQBN is applied to the element for adequacy
decision. The validation decision-making process is first defined as an argument process. Next, aiming at
three components (evidence, structure, and acceptance criterion) of the validation arguments, PCMQBN
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further represents the argument process with Bayesian Decision theory: the evidence is characterized
according to the concept of sufficient accuracy; the argument structure is constructed according to the
validation cubic model; and the acceptance criterion is made according to the sufficient-accuracy-guided
validation goal. Again, the transparency and consistency are ensured with formalized procedures and
mathematical representations. The robustness is ensured by a formalized Bayesian sensitivity analysis, also
known as Robust Bayes. The Data-Driven Uncertainty Quantification is applied to Element 4. The
uncertainty of SPH simulations are quantified with techniques of PEML, where a surrogate model is
constructed between the local physical features and simulation uncertainties. Presently, Random Forest is
used as the major algorithm for constructing the surrogate model. Meanwhile, the capabilities of constructed
PEML are tested for both the interpolated and extrapolated scenarios. The transparency is ensured by the
opensource simulation engines and the open-access validation data management system. Meanwhile, the
consistency is ensured by treating the surrogate model as a fast data extraction from high-fidelity database.
The robustness is mainly ensured by the reliability and robustness of modern machine learning algorithms.

Validation Data Plan (VDP) is “a dynamic planning instrument to guide, and potentially optimize
activities on data production and acquisition, data analysis and management, and data usage so that they
enable effective support for development, assessment and application of simulation tools intended for
challenge problem”. In the flowchart of Figure 7.70, VDP refers to a decision model that (1) integrates
information from all related validation activities, and (2) prioritizes data activities, based on cost-benefit
analysis of possible activities. In this study, the cost-benefit analysis is performed based on the value of
information theory, and a decision tree is used for calculating the expected value of sample information
(EVSI). The EVSI refers to the expected increase in utility or monetary value that a decision-maker could
obtain from gaining access to a sample of additional observations before making decision. A synthetic
example is prepared for demonstrating the procedure of calculating EVSI according to the adequacy
maturity from PCMQBN and a “postulated” new model. For the vent overflow model that has been
discussed in previous milestone (M2NU-16-NC-NCSU-030401-153), it is assumed that a postulated model
is designed such that the maturity level of validation result is improved as in Figure .
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It is further assumed that the chance of getting such an improvement is 40%, and there is 60% chance
that a model as bad as the SET-Calibrate model is obtained. A decision tree, shown in Figure , can be built
for determining the expected increase in monetary value by having an improved model rather than having
the TDMI-calibrated model. In this scenario, the expected value is found to be negative, and it indicates
that the efforts devoted to the development of such new model are more than those being already obtained.
Therefore, the VDP for such a model is not preferred.
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Figure 7.72. Decision tree for calculating the expected increase in the monetary values by having a
postulated new model rather than having the IET-calibrated model.

Another block being developed is the error propagation, where the simulation uncertainty will be
propagated from validation to application scenarios. Data-driven methods are used to construct a correlation
between local physical features and simulation uncertainties. Detailed works can be found in the previous
milestone (M2NU-16-NC-NCSU-030401-153). Since the biggest challenge of such propagation comes
from the scaling analysis, such error propagation is also named as uncertainty scaling. The objective is to
(1) characterize the applicability of reduce-scale validation to full-scale application. (2) construct a
mathematical relationship between the simulation error and the characterized applicability. In previous
section, a qualitative relationship has been constructed between the PEML corrected simulation error and
the dimensionless number. An initial study has been performed for constructing a mathematical relationship
between the simulation uncertainty and the similarity index. Presently, for the case study of lid-driven
cavity, similarity indexes refer to the Reynolds ratio and symmetric Kullback-Leibler Divergence, and their
goal is to identify the similarity of training and testing scenarios. The Reynold ratio is estimated by the ratio
of Re;, while the symmetric Kullback-Leibler Divergence is estimated by probability distributions of local
physical features. In this study, the Reynold ratio r*is defined in Eq. 7.19, while the symmetric Kullback-
Leibler Divergence Dg; is defined in Eq. 7.21.

rt = Retarget/mtraining Eq. 7.19
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Etraining = z Re; /n Eq. 7.20
i

D (P,Q) = ZP(l)log<Q8>+Q()l (ggi) Eq. 7.21

1 yl]

where Regq,gec 1 the Reynolds number of the target scenario; Reyygining is the average Reynolds number
of the training scenarios calculated by Eq. 7.20; P(i) and Q(i) are the probability density distribution of
physical features y approximated by multivariate kernel distributions; k(+) is the one-dimensional kernel
smoothing function; x is the d-dimensional random vector for the physical features. N is the number of
samples drawn from each group of physical features. 7.73 shows the plot of L2 relative error norm for the
corrected velocity field against the Reynolds ratio * and symmetric K-L Divergence Dg; when the target
scenario has Re;qrgec = 10000. However, no strong mathematical correlation has been found between the
suggested representation of similarity and the PEML performance.
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Figure 7.73. Plot of NMSE for the corrected low-fidelity simulation against the Reynolds ratio * and
K-L Divergence when the target scenario has Re;qyger = 10000.
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8. Adequacy Evaluation of Smoothed Particle Hydrodynamics Methods for
Simulating the External-Flooding Scenario

8.1. Summary

In modern nuclear risk analysis for external-flooding scenarios, Computational Fluid Dynamics (CFD)
tools are used to simulate the generation, propagation, and interactions of Nuclear Power Plants (NPPs)
with the nuclear Systems, Structures, and Components (SSCs). Smoothed Particle Hydrodynamics (SPH),
as a Lagrangian and mesh-free method, is one of the particle-based CFD methods. Since SPH methods can
effectively handling large-scale fluid simulations with complex interfacial structures, SPH-based software
has been used to simulate the impacts of external flood onto nuclear facilities, and the simulation results
have been used to support nuclear safety analysis. However, previous risk analysis assumes that SPH
methods and the corresponding simulation packages are applicable to the external-hazards risk analysis,
and their simulation uncertainties do not affect the confidence of safety decision. Considering the high
consequences to nuclear safety induced by simulation errors, a systematic and complete validation process
is needed to evaluate the adequacy of SPH simulations in informing related safety decisions.

In this study, a scoping-stage assessment is performed for SPH’s adequacy in simulating the real-scale
external flooding scenarios, especially in predicting the surface-wave impacts on SSCs at NPP sites. To
ensure the completeness and consistency, validation frameworks, Code Scalability Applicability and
Uncertainty (CSAU), and its regulatory guide, Evaluation Model Development and Assessment Process
(EMDAP) are followed to guide validation activities and to make final code adequacy assessment. First, an
external-flooding scenario is designed, and SPH simulations are performed with an SPH-based software
named Neutrino. A Phenomenon Identification and Ranking Table (PIRT) is created, and the surface-wave
impacts are identified as one of the high-rank phenomena. At the same time, a performance measurement
standard is created for measuring the code adequacy in informing safety decisions consistently and
transparently. At the scoping stage, these criteria are selected based on authors’ knowledge and reviewed
by researchers in related fields. Next, numerical benchmarks are designed for assessing the code adequacy
of SPH methods and corresponding software implementations on Neutrino. Next, code accuracy is
evaluated by comparing simulation results from Neutrino against experimental measurements in each
benchmark. Meanwhile, a scaling analysis is performed to determine a group of dimensionless number for
characterizing important physics and to assess the applicability of validation database collected in reduced-
scale facility to the prototypic scenario. Finally, results from all activities are brought together to make an
adequacy decision. It is found that, based on the current evidence, SPH methods and associated Neutrino
software can predict the unbroken surface-wave peak pressure onto stationary rigid with reasonable
accuracy if the suggested sizes of particles are used. However, the available evidence is not sufficient to
support the decisions of SPH’s adequacy in predicting impacts force on dynamic rigid.

8.2. Introduction

Since the Fukushima accident and other site flooding events in the United States, the risk of NPP due
to external flooding has drawn attention from both regulatory and research departments. Responding to the
concerns of NPP safety due to external flooding, U.S. Nuclear Regulatory Commission (NRC) has
developed recommendations for further regulatory actions in the seismic and flooding designs, and
emergency preparations. In addition, U.S. NRC also requests a flooding reevaluation at NPP sites from
power reactor licensees and holders of construction permits. One task of the Risk-Informed Safety Margin
Characterization (RISMC) methodology is to develop methods for systematically analyzing the risk and
accurately determining the safety margins. In RISMC, advanced simulations are used for capturing the
propagation and impact of hazards on NPPs. Meanwhile, validation frameworks, including Code
Scalability, Applicability, and Uncertainty (CSAU) and Evaluation Model Development and Assessment
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Process (EMDAP), are needed for assessing the adequacy of selected simulation methods and tools in
simulating high-ranked phenomena.

Researches on the RISMC methodology were formulated as a pathway in the U.S. Department of
Energy’s Light Water Reactor Sustainability program in 2008 (Hess, Dinh, Gaertner, & Szilard, Risk-
informed safety margin characterization, 2008), and its application scope has covered a wide range of issues
in nuclear safety analysis and risk management [2] [3] [4]. RISMC has also been conducting research and
development for advanced methods and tools to support NPP safety assessments and management. Within
an identified issue space, RISMC analyzes the system’s Quantities of Interest (Qols) and the corresponding
safety margins probabilistically, where a broader range and type of uncertainties are considered.
Considering the complexity of external flooding, advanced simulation tools are needed for a comprehensive
analysis of scenario progressions. Because the RISMC approach explicitly couples probabilistic approaches
(the “scenarios”) with phenomenological representations (the “physics”) through a modeling-and-
simulation-based approach, it is ideally suited to serve as a framework to address the interactions of external
hazards on NPPs and their potential impacts on the NPP safety.

In previous works [4], RISMC has been applied to analyze the risk induced by flooding hazards, and
an SPH-based CFD tool named Neutrino is used for simulating the generation, propagation, and interaction
of floods with NPP sites. Next, based on the information from Neutrino, the system code can predict the
thermal-hydraulic status inside the reactor core. Next, the scenario-based and risk-informed safety margin
can be obtained for the reactor and facilities using the statistical analysis. Though Neutrino has shown great
capability in performing large-scale fluid simulations [5], due to the complexity of involving physics and
phenomena, the simulation’s adequacy remains unknown. Although SPH, with sufficiently refined
particles, can be used to perform Direct Numerical Simulation (DNS), the computational cost is too high to
be practical in the RISMC analysis. As a result, a comprehensive validation is still needed to accurately
characterize the adequacy of SPH simulations. Meanwhile, it is also necessary to consider the simulation
efficiency as another important code adequacy criterion.

The Code Scaling, Applicability, and Uncertainty (CSAU) evaluation methodology was introduced in
1989 [6] to accommodate the revised rule on the acceptance of the Emergency Core Cooling System
(ECCS). The objective is to demonstrate a method that “can be used to quantify uncertainties as required
by the best-estimate option described in the NRC’s 1988 revision to the ECCS Rule (10 CFR 50.46) [6]”.
Evaluation Model Development and Assessment Process (EMDAP) is a regulatory guide developed by
U.S. NRC based on CSAU methodology [7]. The objective is to describe an acceptable process of
developing and assessing the evaluation models that are used to analyze transient and accident behavior
within the design basis of a nuclear power plant. The CSAU/EMDAP framework is mainly composed by
five activities:

¢ Identify the importance and adequacy of mathematical model, code and data for all related systems,
components, processes, and phenomena;

Establish standards against which code models and adequacy can be measured;

Construct code-assessment case studies and database;

Perform code assessment by comparing the code results against the standards;

Perform scaling analysis for database in terms of their relevance and sufficiency for the intended
application.

After the implementation of all activities, an adequacy decision will be made, and suggestions on model
forms and parameters are provided. Next, the simulation code will be “frozen” and applied to the accident
scenario for reactor transient and risk analysis. CSAU/EMDAP framework has been successfully applied
to assess the adequacy of RELAP-5 simulation code for the Small Break Loss-of-Coolant Accidents of
APG600 [8]. In this study, CSAU/EMDAP framework will be followed for the systematic and consistent
assessment of SPH methods and the corresponding software Neutrino.

198



8.3. Smoothed Particle Hydrodynamics

In 1977, SPH was first invented to deal with astrophysical problems in three-dimensional open space
[9], and it is found that the collective movement of particles can be used to represents the fluid flow. Since
then, SPH has advanced tremendously in hydraulics with a large amount of work being performed both
theoretically and computationally. Though mesh-based methods are still the dominant tools for multi-phase
simulations, SPH has built its fidelity in simulating fluid problems with complex and irregular interfaces
[10]. Recently, SPH has grown popular and become an essential part of the numerical arsenal of several
industrial and laboratory institutions, and its capability has been assessed for high-wind [11], micro-boiling
[12], etc. For RISMC analysis of flooding hazards, as a Lagrangian method, SPH can predict the particle
motion through space and time with no requirement for any underlying mesh. This brings some key
advantages with SPH in the field of long surface-wave production and development [13] [14], sloshing [5],
floating objects [15] [16], surface-wave impacts and interacting force estimate [17] [18], which is perfectly
suitable for the RISMC simulation in flooding scenarios. In general, the success of SPH in these fields relies
on its capabilities in simulating scenarios with nonlinear and multi-scale phenomena. In addition, as
suggested by D. Violeau and B.D. Rogers, [19]: “SPH has been able to generate results in close agreement
with reference solutions/data in validation tests, without highly sophisticated algorithms required in mesh-
based schemes.” Since SPH is likely to provide more promising futures in complex free-surface and very
large-scale flow simulation than mesh-based methods, it is selected as the major simulation tool for RISMC
analysis in flooding.

In SPH, the elements are represented as particles, while the physical properties are distributed and
smoothed across a spatial distance (smoothing length) by certain rules (e.g., kernel function). Therefore,
the physical quantities of any particle can be obtained by summing the relevant properties of all the particles
lying within the range of kernel. In SPH, the summing of property or function f is governed by:

F) = f FEYWE =7, )7 533

where h is the smoothing length; W (# — #', h) is the kernel function. The kernel function assigns weights
to discretized properties f(#") at different locations 7’ and takes an interval in its supporting length h. The
objective is to approximate the real function values at location 7. It is argued that when the kernel function
becomes a Dirac delta function, the left-hand side and right-hand side of Eq. 8.23 will be equal. The
smoothing function W has a finite range of «h, where k is a constant that defines the support domain of the
smoothing function. In general, the properties of the weight function can be summarized as:

- >y =1 Eq
fW(r—r,h)dr =1 8.94
. - -7 _ - =7 Eq
limW@G@E —7",h) =60 —
lim (rF—r'"h) r—r" 8 25
W(# —7',h) = 0 when |F —7'| > kh Eq.
8.26

Regarding the properties of kernel functions, Eq. 8.24 represents the normalization property, Eq.
8.25 represents the Dirac delta function property, and Eg. 8.26 represents the compact condition. If the
equation is further approximated with particles, which means to represent the problem domain with a set of
particles and estimate the field variables based on these particles, Eq. 8.23 becomes Eqg. 8.27:

F@ =) fEIWE =7, ) AV, Fg.
4 .
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where b represents any discrete region within the affecting region. If each discrete region has mass, which
can be represented as pdV, the equation will then be written as:

o~ my .. S S E
)= Yy —f@EI)WGE, =1, h g.
F@@) Zpbfm (o = T 1) Eq
my and p, represents the mass and density of each particle. Eq. 8.28 is usually referred as “summation
interpolation”, which is the basis of all SPH formalisms. Since mass and density are introduced during the
particle approximation, it makes SPH very suitable for hydrodynamic problems where mass need to be
conserved, like multiphase flow. Similar technique can also be applied for approximating the divergence
V - f(¥) and gradient V£ (7).

Vf(r)’“pz <f(rb)> (@)] VW (T — 75, h) g.%g
7 fE) —--Zmb(f fo) - VWG =T ) 830

In this work, the cubic B-spline kernel function, as shown in equation Eq. 8.31, is applied, with g = r/h.

(1——q + q, 0<¢g=<1
Eq. 8.31
W) =
) 1Th34 Z(Z—q)?’, 1<qg<2
0, 2<q

8.4. 1ISPH Discretization of the Navier-Stokes Equations

In this study, a single-phase, isothermal, incompressible and Newtonian fluid flow is considered, and
an Implicit Incompressible Smoothed Particle Hydrodynamic (IISPH) algorithm is used to solve the
governing fluid equations. Meanwhile, the viscosity is assumed to be constant in space, and the surface
tension forces are ignored. The Navier-Stokes equations can be written as

dv 1

- _Z 254+ 4 Eq. 8.32
T pr+UV v+g q
dp
L= _HV-D Eqg. 8.33
T pV - v q

where 7, p v, g represent velocity, pressure, kinetic viscosity, and gravitational acceleration respectively.
/dt /at + v - V is the Lagrangian derivative. At the preliminary step, the density of all SPH particles
are calculated based on Eq. 8.34.

Pa(®) = ) Wy (8) Eq.8.34
b

200



where t represents the time, a represents the target particle, b represent the surrounding particles, W, is
the kernel function values calculated based on the distance between each pair of particles a and b. Eq. 8.34
is also a SPH discretization of the continuity equation (Eg. 8.33) with exact time integrations. The pressure-
velocity coupling is solved by splitting the momentum equation Eqg. 8.32 into two steps:

(1) The intermediate velocity ¥; is calculated by solving momentum equation without pressure term.
The Monaghan artificial viscosity formulation [20] is used for particle discretization, while the
explicit Euler scheme is used for time integrations.

2= B () + At(— Z My Ty VW, () + §) Eq. 8.35

b
Hab - min((vagt) —Vp Et)) . (xa(t) — Xp (t)), 0) Eq 8.36
| %, (£) — %, (t)|2 + 0.01h2

where v is the viscous factor that equals to 2¢h , a is the artificial viscosity coefficient.
v is the viscous factor that eq /pa(t) + py(ty @ 18 the ATt y
Next, the intermediate densities are computed with Eq. 8.33 and the implicit Euler scheme:

pa = pa(t) + Atz my, (Vg — V) VWap (1) Eq. 8.37
b

(2) The momentum equation is calculated with only the pressure term, while it is combined with the
mass equation to ensure the incompressibility condition dp/dt = 0. The Poisson equation is used

to solve the pressures p,:

*
Po— Pa

D
V2pa(t) = =1 Eq. 8.38

More details of solving the Poisson equation can be found in [5] [21]. At last, the new velocity and
position are computed with Euler-Cromer scheme for the time integration:

- - pa(t) pb(t)
v, (t + At =v*+Ath + VW, (t . 8.
a( ) a 4 b(pa(t)z pb(t)z) ab( ) Eq 8.39
Xq(t+ At) = X4(t) + Atv, (t + At) Eqg. 8.40

The time step At is updated based on the Courant-Friedrichs-Lewy (CFL) condition At.r; and an empirical
correlation for At,,,,,, which is designed to avoid unreasonable numbers of iterations in the pressure solver:

At = min(AtCFL, Atmax) Eq 841

ACFLh ACFLh

[Umax]”y 191

AtCFL = min

where Az, is the CFL coefficient, A,,,4, is a coefficient for At,, 4y, and 7,4, is the maximum velocity for
all particles. The calculation of particle properties depends on properties of neighboring particles, and a
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neighborhood searching algorithm is constructed in Neutrino with a combination of compact hashing and
Z-curve index sorting. More details can be found in [5].

At the boundaries, the kernel support domain of fluid particles can be insufficiently sampled, and
it leads to an underestimation of densities. As a result, the neighboring boundary particles are also taken
into account when densities and forces are calculated for fluid particles. The surface of rigid objects is
sampled by a single layer of boundary particles, and they are implemented based on the directly analytical
shapes or the mesh of rigid objects [22]. The spacing of the boundary particle is, wherever possible,
enforced equal to the rest particle distances of fluid particles. To avoid density peaks because of the
boundary-particle oversampling, a relative contribution factor ¥ for boundary particles s is calculated as:

Po
Y, = Eqg. 8.42
ST T W (0 q

where k represents boundary particle neighbors. The boundary particles contribute to the densities of fluid
particles a as:

Pa (t) = Z myWap (t) + Z YsWas (t) Eq. 8.43
b s

Two wall boundary conditions are imposed, constraining the velocity and pressure fields: a partial-
slip condition and a homogeneous Neumann boundary condition, ap/(,r = 0, with 71 as the unit vector

normal to the boundary. As a result, the pressure force Fap&s and friction force F s applied from a boundary
particle s to a fluid particle a are expressed as:

BP = —m,¥, plgti VW, (1) Eq. 8.44
P
Fav<—s == =M Wsllqp VWgs (1) Eq. 8.45

where 1, is calculated by Eq. 8.36 with a reformulated viscous factor v = Jh/zp ) ° is the fluid-solid
a

coefficient, which is tuned for each solid surface to impose a partial-slip condition and account for different
levels of rugosity, similarly as the Manning coefficient. Moreover, incorporating the fluid-rigid boundary
handling requires modifications for solving the intermediate velocity ¥, and density p;:

17(1* = ﬁa(t) + At(— Z mp Il VWep (t) - Z l’”snabVWas(t) + g) Eq. 8.46
b N

Pl = Palt) + B8 D my (s = T)WWap(©) + ) Wi = 5)WWas(®)  Eq. 847
b s

In addition, the fluid-rigid pressure is also considered to update the velocity at t + At:

B, (t + At) = 75 + At Z my ( pa((tt))z 5:((;))2

pa(t)
+Z y, 3 S VW, (1)

> VWab (t)
Eq. 8.48
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With the fluid-rigid boundary handling scheme, the SPH software, Neutrino, is able to predict the
hydrodynamic forces onto solid objects from the surface waves by calculating the pressure Eq. 8.44 and
friction Eq. 8.45 forces. Moreover, by incorporating a solid-mechanistic solver, Neutrino is able to simulate
the motion of dynamic objects and solid deformation. More details can be found in [22].

The free-surface conditions are implicitly imposed without the need of boundary particles. The
kinematic condition and dynamic condition on the tangential stress are automatically satisfied with,
respectively, the Lagrangian approach and an appropriate choice of SPH operators [23], while the dynamic
condition on the pressure is indirectly imposed by:

(1) Defining the pressure as the relative pressure with respect to the atmospheric pressure, so that when

the fluid pressure equals to the atmospheric pressure, a zero relative pressure is exerted.

(2) Clamping all negative pressures to zero due to the incomplete fluid neighborhood at the free-surface

during the execution of the pressure-solving algorithm.

It can be seen from equation Eq. 8.27 — EqQ. 8.48 that the information from neighboring particles is
crucial to the final results. Theoretical error analysis has been performed for the mathematical formulation
of SPH methods in [24]. The goal is to identify sources of error for SPH simulations. Meanwhile, the
numerical error analysis is an important input towards the adequacy assessment of the SPH methods in
predicting application quantities of interest. It is found that the particle size is the major source of
uncertainty for SPH methods. Since the properties are assumed to be homogeneous for every single particle
and smoothed across its neighboring particles, low particle number density will result in significant errors.
Therefore, the particle size is a major source of uncertainty. It is also found that the continuous Lagrangian
operator has a second order of accuracy for approximating an arbitrary scale (or vector) field and gradients
of any order. However, most errors come from the discretization process, and the particle distribution
deviates from a perfectly regular configuration after simulation starts. As a result, the math to derive the
error in the general case turns to be more complicated than for mesh-based methods. In [24], a theoretical
error analysis is performed given that the particles are uniformly distributed, and the second order of
accuracy can be achieved with SPH approximations. However, it is found from a simple laminar scenario,
where particle distributions are relatively uniform, that SPH methods with weakly compressible SPH
formulation have the first order of accuracy. In general, to confidently apply SPH’s simulation results to
external-flooding simulations and nuclear safety analysis, the adequacy of SPH needs to be analyzed
systematically for the intended uses.

8.5. SPH Adequacy Assessment with CSAU/EMDAP Framework

To systematically assess the adequacy of SPH methods for the external flooding, the CSAU/EMDAP
framework is applied, with four key activities. Figure 8.40 shows the scheme of such process, and results
from all activities lead to the decision for the adequacy of SPH methods in designated applications.

Both the verification by theoretical error analysis and the literature reviews for SPH have been
performed in [24], and the corresponding software package Neutrino has been verified in [25]. The rest
components, including target applications, performance measurement standards for code adequacy, code
assessments, and scaling analysis will be further discussed. Finally, a code adequacy decision will be made
together with a summary of findings and lessons learned. In addition, Figure 8.40 also suggests that the
code adequacy assessment is an iterative process, and efforts are continuously required in achieving
sufficient levels of details, improving models, collecting new data, etc. Error! Reference source not
found. defines phases of code adequacy assessment based on the sources of uncertainties and their
consequences in supporting safety-related decisions in applications. This study is currently at the scoping
stage, and the objective is to qualitatively evaluate the adequacy of SPH methods and the corresponding
package Neutrino in simulating important phenomena in external flooding. Comparing to the maturation
stage, the scoping stage potentially has large uncertainties and biases. Regular code assessments usually
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start with phase #1, and it mainly aims to focus the issues and maximizing effectiveness in addressing them,
including appropriate research efforts, databases, requirements, decision analysis, and assessment process.
The completion of phase #2 would take place outside and after sufficient resolutions have been achieved.
At the same time, the adequacy results are reinforced by target applications. That is, phase #2 can be
regarded as confirmatory, but can only be judged on a case-by-case basis.

Scaling Analysis of
Experimental Database

Performance Measurement

Standards \
Agreement with Data . Is data
* Excellent .

applwcable?

* Reasonable
* |nsufficient

e

What is
Adequacy important?
How well do Decision
Code Assessments the code do?

* Theoretical Error Analysis - RISMC
* State of the art review Is code adequate? — .

. Analysis
* Numerical benchmarks

* Accuracy (error) assessment

No

Y
Issue Identification and
Resolution

Go tlack to corresponLing
elements for improvement

Figure 8.40. Demonstration of adequacy decision process.

Table 8.1. Definition of phases of assessment

Phase # Sources of Uncertainties Consequence
Important phenomena are identified and ranked with L
X Co . ) Uncertainty in the
potentially large uncertainties and biases; final code adequac
The assignment of acceptance criteria could be ; equacy
. . . i is large, and it could
1 Scoping uncertain and biased, :
- e potentially alter the
Adequacy decisions are qualitative; L
A . . decisions in
Validation data and evidence are potentially I
: L applications
insufficient;
Important phenomena are identified and verified Uncertainty in the
The assignment of acceptance criteria is verified,; final code adequacy
2 Maturation | Verified adequacy decisions with acceptable is negligible
uncertainties; compared to the
Validation data and evidence are sufficient; defense-in-depth

8.5.1. Scenario Description

There are several different types of flooding scenarios evaluated by the nuclear industry, and each may
have multiple criteria for adequacy acceptance. For this external-flooding example, the analysis purpose is
to assess if the code adequacy of SPH to model impact forces when simulating the scenario of “floods
damage the building structures, enter the room, and cause diesel generator (DG) malfunctioning” is
acceptable. Detailed event progressions are listed as follows:
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o Ifthere is external flooding after a dam breaching, water overflows the NPP site, and the AC power
fails immediately.

o If the water reaches the DG building, and the peak forces acting on the building exceed a limit,
water starts to penetrate the room.

The corresponding Qols include the response time and the structural loads on Systems, Structures, and
Components (SSCs) by floods. In this study, the response time is the time for the external floods to reach
the DG building and to potentially fail the DGs. The response time is crucial for the nuclear safety analysis,
including estimating the decay heat, initiating emergency procedures, and determining responses of SSCs,
etc. The structural loads on stationary SSCs are important for determining the structural integrity and
operational status of SSCs during external-flooding scenarios. For example, if the load exceeds the
regulatory limits, certain SSCs need to be shut down; if the force exceeds the operational limits, certain
SSCs malfunction or fail. Additionally, the structural loads on moving objects are important for the
flooding-induced debris analysis, including the debris transport and its impacts on SSCs. Figure 8.41 shows
a postulated scenario of external flooding induced by dam failures. Flooding simulations have been
performed with Neutrino, and some key configurations for this simulation are listed in Table .

Figure 8.41. Demonstration for a postulated external flooding scenario induced by dam failures. A full-
scale simulation is prepared with Neutrino software package.

Table 8.2. Scenario configurations, Neutrino setups, and predicted Qols

Scenario Configurations

Water level at the dam breaching | 5m
Breaching width 10m
Distance to buildings 20m
Neutrino Setups

Particle size 2cm
CFL number 0.6
Predicted Qols

Response time | 20min
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| Peak force | 400N |

At the scoping stage, this study does not design new facilities, and validation data is collected from
existing literature. To ensure the data applicability to the application scenarios, a scaling analysis is needed
to ensure the relevance and sufficiency for all collected data. Error! Reference source not found. shows
the PIRT high-rank phenomena for the FoMs of response time and structural loads, where the shaded areas
represent the FoMs. Since SPH has been applied to simulate the violent flow for a long time [19], its model
and code are adequate for generating the surface wave with a wave generator [26] [27], surface-wave
propagation, and force estimation on static objects [28]. Comprehensive reviews for SPH methods and
codes in simulating these phenomena can be found in the reference documents [29]. Therefore, most
rankings for these phenomena are “High” except for the math model and code adequacy of structural loads.
SPH methods have shown good agreements in predicting the hydrodynamic forces. Although, the results
can be unstable and additional smoothing techniques are usually needed, they are ranked as “Medium”
since these issues are considered moderate. For the phenomenon of vortex shedding, the math model and
code in SPH is very limited, and they are all ranked as “Low”. To achieve a comparable accuracy to mesh-
based simulations, SPH either needs to refine its particle to DNS scales or to be incorporated by closures.
However, since the number of neighboring elements (particles) for an SPH element (particle) is typically
3-4 times more than that for a mesh cell in mesh-based simulations, SPH methods are more computationally
expensive than mesh-based methods in DNS scales. Besides, since the nature of particle-based methods
deviates from the mesh-based methods, most well-known closure models in established CFD studies may
not be perfectly suitable for SPH. Therefore, better SPH closures are still needed for such phenomenon
from the aspects of math and model adequacy. Finally, the data of full-scale solitary surface wave can be
obtained analytically, while the data from aerospace engineering for large-scale vortex shedding
phenomenon are quite adequate. Therefore, the ranking of data adequacy for solitary surface wave and
vortex shedding is “High”. But for the rest of phenomena, there is a lack of large-scale data.

Table 8.3: PIRT process and lists of numerical benchmarks designed for each phenomenon in external
flooding scenarios.

Adequacy
Math
ID | Phenomenon Description | Imp | Model | Code | Data
A | Response Time
Solitary Surface Wave H H H H
Surface-Wave Propagation | H H H L
Vortex Shedding H L L H
B | Structural Loads
Hydrodynamic Force
on Stationary Structures H M M L
Hydrodynamlc Force H M M L
on Moving Structures

Considering the limitation of databases from literature, this study only assesses the adequacy of Neutrino
in predicting hydrodynamic forces on stationary structures.

8.5.2. Performance Measurement Standards
To decide if the code is adequate for the specific application, standards need to be established, against

which code models and adequacy can be measured. In this study, the standards are described as — the code
is considered adequate for each separate phenomenon or process if:
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The code state of the art is known, documented, and acceptable.

The code is generally acceptable for simulating each separate phenomenon of the application.
The code predicts the high-fidelity data from separate effect tests with acceptable accuracy.
The code is acceptable for the scale of the specific target applications.

The code is considered adequate for integral scenarios if:

e The field equations represent the key processes and phenomena.

e The code is generally acceptable for simulating the application scenarios with various phenomena
and processes.

e The code predicts the behavior of important phenomena as observed in appropriate integral effects
tests with acceptable accuracy.

e The code represents the interactions of between phenomena, process, and system components.

To provide a quantitative measure for the term “acceptability,” criteria are needed for assessing the
code accuracy and quality of the validation database. In this study, the code accuracy is measured by
simulation errors in predicting selected Qols, while the quality of the validation database is measured
according to the attributes of scaling analysis. Error! Reference source not found. shows the accuracy
standards measured by error (L, relative error norm) in predicting selected Qol. At the scoping stage, the
acceptance criteria for code accuracy are made by authors’ knowledge, and they have been reviewed by
researchers in relevant fields. In the refinement stage, the acceptance criteria will be adjusted based on the
code adequacy and risk analysis results. The L, relative error norm is defined by

QOIpreds - QOImeas
QOImeas

Ly =| Eq. 8.49

where Qoly,,¢qs and Qoly, .45 represent the predicted Qol by simulations and measured Qol by experiments.
Considering the limitations of this study, current error analysis is at preliminary stages with simple
uncertainty quantification metrics. Advanced metrics and the corresponding quantification methods [30]
[31] will be evaluated.

Table 8.4. Simulation code accuracy standards measured by error in predicting selected Qols

L, Relative Error Norm

in Predicting Selected Qols
Excellent Accuracy < 10%

Reasonable Accuracy | < 20%

Insufficient Accuracy | > 20%

Accuracy Statement

A systematic scaling analysis [6] is composed by “top-down” and “bottom-up” analysis. The
scaling analysis is tightly coupled with the model assessment process. Starting from the Phenomenon
Ranking and Identification Table (PIRT), the physical characteristics are identified, and the
interconnections among system components, phenomena, and processes can be understood. Meanwhile, by
identifying important phenomena, necessary data can be collected with required physical characteristics. In
this study, the dimensionless groups are used to represent the physical characteristics that governs the
system responses. Next, the relative importance of the dimensionless groups is investigated through various
code assessment process until a relationship is developed between the selected phenomena and the
dimensionless groups. Next, simulations will be validated by comparing results against databases until the
code adequacy is acceptable. Once validation is finished, it can be claimed that all data involved in this
process have been “compressed” into the simulation codes. As a result, the scaling process is to find the
“encodings” for the database, and the model assessment processes can be treated as an adequacy and
applicability test for the condensed form of data. The adequacy is decided based on collected data and
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validation results, while the applicability is verified according to the sufficiency of databases. In this study,
the dimensionless number of experiments are compared to the applications, and the sufficiency is verified
if the test data envelops the application behavior. In another word, the dimensionless number in applications
should be covered by the min-max range of dimensionless groups in the database. However, since the PIRT
process relies on expert knowledge of systems, phenomena, and processes, the selected physical
characteristics can be only peculiar to the experiments and is not expected in the applications. Such an issue
is usually known as scaling distortion [6]. To avoid distortions, a relevance analysis is needed for the
database to ensure that all selected phenomena are also typical under prototypic conditions. At the same
time, the distortion needs to be evaluated by making model predictions at different spatial and time scales.
Next, uncertainty analysis is performed with respect to each scale. If the uncertainty of model predictions
can be bounded, the scale distortion is claimed as acceptable. Error! Reference source not found. shows
general descriptions of three attributes in scaling analysis and corresponding acceptance criteria. In this
study, when the code adequacy is evaluated, the acceptance criteria of scaling analysis (Error! Reference
source not found.) and code accuracy (Error! Reference source not found.) will be considered at the
same time. Although, scaling and code accuracy are correlated since model is treated as a compact form of
data, this study assumed them to be independent. Such an assumption is valid under the condition that the
current SPH model and the software package Neutrino are developed without scaling analysis. However,
in the later stage, as SPH models become sophisticated during the iterative development and assessment
process, sophisticated techniques are needed to further improve model accuracy, data sufficiency,
relevance, and distortion.

Table 8.5. Attributes and criteria of systematic scaling analysis.

Attribute Criterion
- The physical characteristics of database bound those for
Sufficiency S
applications.
The physical characteristics of database are relevant to
Relevance

those for applications
The uncertainty of model predictions can be bounded
when it is propagated through scales

Distortion

Considering the previous discussion on code accuracy and scaling analysis, the general standards for
code adequacy can be identified as:

Excellent — For the high-rank phenomena, the accuracy in predicting the quantity of interest is
excellent. The code can also be confidently used in similar applications, and the accuracy in predicting
corresponding quantities of interest should also be excellent.

Reasonable — For the high-rank phenomena, the accuracy in predicting the guantity of interest is
reasonable. The code can also be confidently used in similar applications, and the accuracy in predicting
corresponding quantities of interest should also be excellent.

Insufficient — For the high-rank phenomena, the accuracy in predicting the quantity of interest is
insufficient. The errors of most predictions lie outside the uncertainty bounds, and major modifications are
needed before the code can be used in similar applications with sufficient confidence.

In this study, the minimum standard for acceptable code in terms of code adequacy is “reasonable”.

Meanwhile, due to a lack of data from integral effect tests, this study focuses on the code adequacy
assessment of SPH methods for separate phenomena.
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8.5.3. Develop Assessment Base and Evaluation Model

To ensure the data applicability to the application scenarios, a scaling analysis is needed to ensure the
relevance and sufficiency for all collected data. Table shows the list of related numerical benchmarks for
all high-rank phenomena collected from various sources, while the Qols for each benchmark are also listed.
In this study, not all benchmarks have been demonstrated, but at least one benchmark will be discussed for
each phenomenon.

Table 8.6. Numerical benchmarks for all high-rank phenomena. Benchmarks in blue and italic fonts are
investigated but not discussed in this study.

. Numerical

ID | High-Rank Phenomena Benchmarks Qol

A | Response Time
Solitary Surface Wave Wave Piston Machine [26] [32] E'lézl;a&e-Wave
Surface-Wave Propagation Dam Break [33] [34] -II:-(')TCZ of Peak
Vortex Shedding Flow around Cylinder [28] Velocity Field

B | Structural Loads
Hydrodynamic Force on .
Stationary Structures Dam Break [33] [34] Force Magnitude

. . Moving Solids in Static Fluid [35]; .
;{S;)Ségam'c Force on Moving Flow-Induced Motion of Floating Bodies _'\I_/IrZYJSSDr
with Wave Maker; [36] ! y

8.5.4. Code Assessment and Scaling Analysis

In flooding scenarios, since the force exerted by the flow to the structures is an important quantity to
measure, dam break is selected to test the capability of SPH methods in predicting force magnitude and
flow propagation. The first simulation is designed based on the setups from S.J. Cummins, et al. [33] The
simulation is one-to-one scale to real experiments and set up as in Figure 8.42 according to Cummins work
[33]. The scene consists a rectangular tank with 0.61m width, 1.6m length, and 0.75m height; a vertical
column with a 0.12m squared base; and a planar gate for suddenly releasing water. The rigid column is
located 0.9m from one of the tank boundaries, and the gate is located at a distance of 0.5m from the rigid
column. A water column with 0.3 height is initially contained behind the gate. In Neutrino, a gate is first
put in position and held for 1 sec until all fluid particles are settled down. Then the gate is completely
opened, and fluid collapses driven by gravity. Figure 8.43 shows the evolution of fluid over the surface.
The maximum Reynolds number for this case is around 1.68 x 10> with characteristic length equal to the
width of the dam. The particle size ranges from 5mm to 50 mm, and there are around 64k fluid particles
when particle size is L0mm. The time stepping parameters A-p; and A,,,,, are setto 0.4 and 0.5 respectively.

z Y 1.6 .
gate 0.12 square

) /" column
0.4 0.5 /

0.24

0.61

0.25

v x

™ 0.01 water depth

Figure 8.42. Schematic diagram of the dam geometry from Cummins et al. 2012 [33].
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Figure 8.43 shows the evolution of water collapsing and hitting the rigid column. The gate is removed
at the beginning of the simulation, and a surface wave is induced by gravitational effects. The first (primary)
surface-wave impact happens at around 0.3s, then, the wave reaches the other end at 0.6s. The surface wave
is reflected back and hitting the column again at 1.5s. The impact forces for the primary and reflected
surface waves are measured and compared against the experimental measurements.

(a) (b)

() (d)

Figure 8.43. Evolution of the water collapse and interaction with the column simulated by Neutrino. (a)
start of simulation; (b) primary surface wave hitting dam structure; (c) surface wave reflected; (d)
Reflected surface wave hitting dam structure;

The transient comparison of simulation results again experimental data can be found in previous work
[28]. The time step is affecting little on the results, as long as the CFL number is lower or equal to 0.5.
Figure 8.44 shows the convergence plot of particle size in predicting different Qols, including the maximum
force of primary and reflected surface wave exerting on the structure, the time of those maximum forces.
The percentage represents the relative error of simulation results against experimental data. When particle
size reaches 0.01m, further refinement does not continue to improve the accuracy. Comparing to the force
magnitude, contacting time of surface-wave propagation is affected more by the particle size.

100

:l3 x

= 80

z : ‘

5 60 + Magnitude of primary shock
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—
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Particle Size (m)

Figure 8.44. Particle size convergence plot for force magnitude and contacting time of primary and
reflected surface wave.

Figure 8.45 shows the plot of relative error against the computational time. When the particles are
refined, better results are obtained with more computational time needed. Note that when particle size is
0.02m, the simulation results are better (70% improvement in magnitude of primary surface-wave impact;
60% in the time of primary surface-wave impact; 34% improvement in magnitude of reflected surface-
wave impact; 33% improvement in time of reflected surface-wave impact) but consuming less time (5%)
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than the one with 0.025m particle size. Because the CFL condition is applied for every time step, the
simulation with coarse particle size is not as stable as the one with finer size. Therefore, using a finer particle
size requires smaller time step and longer time to simulate.
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OTime of reflected shock
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tHBO X
(33
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Figure 8.45. Plot of relative error against computing time for force magnitude and contacting time of
primary and reflected surface wave.

Table shows the list of simulation parameters that have the error of simulated Qols fall into the bounded
region. The yellow shaded row represents the parameter combination with lowest computational time,
which is suggested as the optimal simulation parameters for numerical benchmarks.

Table 8.7: Simulation parameters with 20% bounded absolute relative error for the case of dam break.

. . . . . . . L, Relative Error Norm (%o)
Particle Size (m) | Simulation Time/Physical Time Max. Force Magnitude | Time of Peak force
0.05 11.96 19.58% 93.55%
0.025 265.8 16.16% 40%
0.02 252.4 3.58% 12.73%
0.01 1929 7.66% 10.53%
0.005 57364.5 7.26% 11.43%

In addition, a second simulation is performed according to experiments by F. Aureli [34], where forces
with respect to various water height are measured, and the optimum particle size identified by the previous
study (0.02m) is used for all simulations. The Aureli’s data can also be used to verify the scaling analysis.
In this study, it is found that the Qols, the peak pressure force magnitude, are proportional to the design
wave heights without exhibiting impulsive breaking wave pressures of high intensities [37]. The design
wave height refers to the highest wave height expected under the given wave condition. In dam-break
benchmarks, the design wave height equals to the initial water depth h, which is the highest wave height
during the transient.

To investigate the sufficiency and distortion of database for dam break, the initial depth h is non-
dimensionalized as x* by Eq. 8.50, where L is the distance between the gate and the stationary object. Figure
shows the comparison of the measured against SPH predicted peak force with different dimensionless ratios
x* (Eq. 8.50). At the same times, linear functions are fitted to both datasets, based on which an error plot is
made with respect to the dimensionless ratio x*.

x* = h/L Eg. 8.50
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Figure shows the plot of error for predicting peak force with respect to the dimensionless ratio x* given
the same particle size as 0.02m. When the x* is larger than 0.2, the error can be properly bounded and
reasonably accepted.
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Figure 8.7. Comparison of the measured against SPH predicted peak force with different dimensionless
ratio x*.

1.2

= =
o oo -
o]

=
=
o

L1 Relative Error Noarm

0.7 = = == = ¢ SN S K N —
g
o
Gopq oo
OOOOOOOOOOOOOOO

0.1 0.2 0.3 0.4 0.5

}(*

Figure 8.8. Plot of L, relative error norm for predicting the peak force versus the dimensionless ratio x*
with particle size as 0.02m.

Considering the effect of particle size and dimensionless ratio, the error in predicting the peak force
by SPH can be propagated to the application scenario. Assuming that the dimensionless ratio is the major
physical characteristic that measures the similarity, suggestions of simulation parameters can be made
according to previous studies on particle size and dimensionless ratio. Table shows the suggested
simulation parameters for the application scenario based on the SET analysis. Since this study does not
have data that has the same dimensionless ratio but different facility sizes, the particle size is suggested to
be the same as or smaller than 2cm, such that the L, relative error norm for the predicted peak force is less
than 20%.
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Table 8.7. Simulation parameters that are scaled from numerical benchmarks to a postulated scenario with
the same dimensionless group.

Numerical Scenario

Benchmarks | Simulation
Water height 0.1~0.13m | 5m
Distance to the static structure 0.51m 20m
Dimensionless ratio x* 0.2~0.26 0.25
Suggested particle size 0.02m 0.02m
Predicted peak force error (L, relative norm) 5%~20% 3.6%
Predicted time of peak force error (L, relative norm) | 4%~18% 12.73%

Since this study does not focus on experimental developments, the adequacy of Neutrino is assessed
only for the phenomenon of hydrodynamic forces on stationary structures. Dam break is selected to test the
capability of SPH methods in predicting force magnitude and flow propagation. An assessment has been
performed for Neutrino based on the Cummins [33]’s data. It is found that the accuracy of Neutrino
prediction for the magnitude of peak force is reasonable when the particle size is 2cm; the accuracy is
excellent when the particle size is less than or equal to 1cm. Although particle refinements provide better
accuracy, the computational expenses grow drastically. Considering the minimum acceptance criteria,
particle size is suggested to be 2cm for better efficiency.

In order to evaluate the accuracy of moving solids in flow, simulations with falling and floating
block in the fluid are set based on the experiments by T.R. Wu, et al [35]. A rectangular tank with 140mm
width and 140mm height is used for both simulations, and it is filled by water with density equal to
997 kg /m3. For the case of falling cube, a cubic block with density equals to 2120 kg/m3 is used. The
cube is initially held half submerged in the water with depth equal to 131mm. Next, the block is released,
and it falls to the bottom of the tank. For the floating block, a rectangular wooden block with density equal
to 800.52 kg/m3 is initially held at the bottom of the tank. The tank is filled by water with depth equal to
52mm. When simulation starts, the wooden block is released and floated to the water surface. The block
will oscillate sometimes and finally become stable. For the falling case, the time it takes for the cube to
reach the bottom is measured; For the floating case, the time it takes for the block to reach maximum height
is measured. Both quantities are then compared against experimental measurements. Figure 8.46 shows the
dimensions of the water tank and cube for both the falling and floating experiments. Different particle sizes
are sampled for both cases, which range from 0.5mm to 6mm. The time stepping parameters A¢g; and A,
are set to 0.4 and 0.5 respectively.

2120kg/m?
20mm
20mm
L
131mm 52mm 800.52 kg/m*
48mm
140mm 140mm

213



Figure 8.46. Dimensions of the water tank and cube for both the falling and floating experiments

Figure 8.47 shows the plot of the cube vertical displacement against the time from both Neutrino
simulation and experiment. Note that both the displacement and time have been non-dimensionalized,
where t* and z* are defined in Eqg. 8.51 and Eq. 8.52. Three different particle sizes are tried with the
simulation and a good agreement is found when the particles are 2.5mm. In this case, the falling time of the
cube, defined as the non-dimensional time spent for the heavy cube to reach the bottom of the tank from its
initial position, is selected as the quantity of interest.

z*=2z/H Eg. 8.51
2H

t* = 1:/ — Eq. 8.52
g

Experimental data

m particle size = 2.5mm
X particle size = Smm
particle size = 6mm

XAXKREXXXKXXKX

0 2 ¥ 4 6
Figure 8.47. Comparison of vertical displacement of falling block simulated by LAMMPS and Neutrino

Table shows the L1 relative error norm by comparing the simulated cube falling non-dimensional time
against the measured data. Error is decreasing as the particle being refined, and the heavy cube will fall
slower as the particles get larger. If the particle size is larger than 6mm, the heavy cube will float on top of
the fluid. Because the mass of cube is constant and the insufficient number of particles will cause high
simulation error, especially in pressure calculation, large particle size will result in unphysically high
buoyance forces.

Table 8.9: List of particle sizes in Neutrino simulations for falling cube, and the L1 relative error norm of
each simulation in predicting the cube falling time.

Particle Size | L1 Relative Error Norm (%0)
6mm >100%

5mm 52.73%

2.5mm 5.52%

Figure 8.48 shows the time transient of block’s non-dimensional vertical displacements from Neutrino
with three different particle sizes. However, the oscillations are dampened faster than experiments, since
the numerical diffusion of SPH simulation tends to be larger than expected. Because a large deviation is
found between the simulated results and experimental measurement, and the current computing power
doesn’t allow Neutrino to have more refined particle size, LAMMPS 2D [38] simulation is executed with
0.5mm particles.

214



—Experimental Data
m particle size = 2.5mm
X particle size = Smm
particle size = 15mm

4 particle size = 0.5mm
(LAMMPS)

4 6 8 10
t*
Figure 8.48. Comparison of vertical displacement of floating block simulated by LAMMPS and Neutrino
Table shows the L1 relative error norm by comparing the simulation result against the measured data

for selected Qol. Error is decreasing as the particle being refined, and a very good agreement is found with
very refined particles in LAMMPS simulation.

Table 8.10: List of particle sizes in Neutrino simulations for floating cube, and the L1 relative error norm
of each simulation in predicting the cube floating time and oscillation period.

Particle Size L1 Relative Error Norm (%0)
6mm 54.64%

5mm 45.57%

2.5mm 39.67%

0.5mm (LAMMPS) | 4.41%

Both simulations suggest that particle size is crucial to the accuracy of SPH in predicting the falling
and floating time, which is affected by the force balance between gravity and the buoyance force. The
accurate prediction of buoyance force depends on the particle intensity around the cube. Therefore, for the
moving object calculation, the cube density ratio (p* defined in Eq. 8.53) and the ratio between cube volume
and average particle volume (V* defined in Eq. 8.54), are selected as the dominant physics. V,, is the

average particle volume defined by Eq. 8.55 [39], and d is the initial particle diameter:

pr = pcube/p}:luid Eq. 8.53
v = cube/Vdp Eq. 8.54
Vap = d3 Eqg. 8.55

Suggestion on particle size will be made with these parameters being kept constant. Table shows the
suggestion on particle size selection for corresponding scenarios. For the case of falling cube, the simulation
with 2.5mm particles is selected for scaling, while the simulation with 0.5mm particles is selected for the
floating cube. However, since there is only one dataset for this phenomenon, the dimensionless group
cannot be verified, and the dimensionless parameters for application scenarios are assumed to be the same
as the numerical benchmarks.
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Table 8.11. Simulation parameters that are scaled from numerical benchmarks to a postulated scenario with
the same dimensionless group.

| Numerical Benchmarks | Application Scenario
Falling object
Cube volume 8000mm?® 8m’
Density 2120kg/m’ 2120kg/ m?
Density ratio p* 2.1 2.1
Volume ratio V* 512 512
Suggested particle size 2.5mm 0.25m
Predicted error L;relative norm) 5.52% ~5.52%
Floating object
Cube volume 56448mm® 451.584m’
Density 800.52kg/m’ 800.52kg/ m®
Density ratio p* 0.8 0.8
Volume ratio V 451584 451584
Suggested particle size 0.5mm + Equation of State 0.1m
Predicted error (L, relative norm) | 4.41% ~4.41%

In above sections, simulations of dam break and moving solids have been run, and the results are
compared against experimental measurements. For both cases, SPH has shown good performances in
predicting the selected Qols, including the force magnitude, water propagation speed to dry surface, falling
and floating time, and the errors are properly bounded. By requiring the predicted Qols in scenario
simulations to have less than 20% absolute relative error, simple scaling has been performed for both cases.

For the external-flooding scenario, the FoMs are the response time and structural loads on SSCs. Next,
according to the PIRT process, all high-rank phenomena are identified, and numerical benchmarks are set
correspondingly. Next, the accuracy of SPH methods in simulating each scenario is assessed by comparing
the SPH predicted Qols against the measured data. Table shows the assessment results of all numerical
benchmarks for both scenarios, and their code adequacy is rated by the performance measurement
standards.

Table 8.12. Comparison of measured and SPH predicted Qols for high-rank phenomena of external-
flooding scenarios.

Numerical Benchmarks | Qol Accuracy
Dam break Force magnltud_e ; Excellent
Water propagation speed
Falling cube Falling time Excellent
. Floating time;
Floating cube Oscillation period Excellent

8.5.5. Scaling Analysis

To determine the relevance and sufficiency of database for the intended applications, a scaling
analysis is needed. A systematic scaling analysis is composed by “top-down” and “bottom-up” analysis. As
discussed previously, the scaling analysis is tightly coupled with the model assessment process. Starting
from the PIRT, the identifications of physical characteristics require complicate procedures such that the
interconnections among system components, phenomena, and processes are well understood. In this study,
the dimensionless groups are used to represent the physical characteristics that govern the system responses.
Next, the relative importance of the dimensionless groups is investigated through various code assessment
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process until a relationship is developed between the selected phenomena and the dimensionless groups. A
combination of various relationships is usually known as a “workable form”. Next, the workable form will
be validated by comparing against data until a final form is determined. Until this point, it can be claimed
that all data involved in this process have been “compressed” into an equation-based workable form. As a
result, the scaling process is to find the “encodings” for the database, and all the model assessment process
is to test the applicability of this form. At the same time, scaling also aims to verify that the database is
sufficient.

When estimating the structural loads exerted by water waves, there are three parts of forces being
considered: the static pressure, the dynamic pressure, and impulsive forces. When the structure is placed
such that the incident waves are unbroken, the standing wave will exist seaward of the wall, and only the
static and dynamic forces will exist. In such situations, the forces can be approximated based on the linear
wave theory. Tadjbaksh et al. first drived the third order approximation in terms of pressure due to standing
waves [40], Based on their approximation, Goda [41] extended it to the fourth order approximation.
Meanwhile, a series of laboratory tests are conducted to calibrate parameters in the model and it is found
that the pressure forces are proportional to the design wave heights h [37], and the correlations between
the peak pressure forces and water wave depth can be simplified into Eq. 8.56 [42].

P = woh(a; + a; cos? B) Eq. 8.56

where a; and a, are empirical parameters, f is the angle of wave approach, wy is a constant as the
specific weight of the water (9.807kN/m?®). Such a relationship has been verified in various scales, including
experiments with monochromatic waves [43] and field measurements [44]. In the dam-break benchmark,
the peak pressure force is assumed to be linearly correlated with the initial water depth h, which is non-
dimensionalized by the distance L between the gate and the stationary object. It is reasonable to build the
relationship in small-scale dam break benchmarks and extend it to large-scale water waves.

Next, the dimensionless number of experiments are compared to the applications, and the sufficiency
can be verified if the test data envelops the application behavior. In another word, the dimensionless number
of a sufficient validation database should cover those numbers in the application scenarios. Otherwise, the
selected phenomena can be only peculiar to the experiments and is not expected in the applications. Such
issue is usually known as the scaling distortion. As a result, a relevance analysis is needed for the database
to ensure that all selected phenomena are also typical under prototypic conditions. Finally, the model
predictions are made for the applications, and an uncertainty analysis is performed with respect to each
evaluated phenomenon. Error! Reference source not found. shows general descriptions for the attributes
and criteria of scaling analysis.

Table shows the summary of numerical benchmarks and their physical characteristics for external-
flooding scenarios. Compared to the list of benchmarks in Table , some cases are not discussed due to a
lack of validation data. It is known that the phenomena of turbulence and vortex shedding are governed by
the Reynolds number that are differently defined. For the rest phenomena, the dimensionless groups are
characterized based on author’s best knowledge, and verification is still needed. For phenomena of
hydrodynamic force on stationary structures, the Qol (peak force) is found to be linearly related to the initial
height of water column according to Figure . In this study, the initial column height is non-dimensionalized
by Eq. 8.50 Since the values of dimensionless group in the postulated full-scale scenario are covered by the
range of experimental database, simulation errors are expected to be less than 10% with particle size equals
to 0.02m. A similar analogy also applies to the phenomenon of surface-wave propagation, where the time
of peak force is the Qol. Differently, the simulation errors are expected to be less than 20% with particle
size of 0.02m. However, more data from facilities with different configurations are still needed to verify
the scalability of dimensionless group. For the phenomenon of hydrodynamic force on moving structures,
the density ratio p* (Eq. 8.53) and volume ratio V* (Eq. 8.54) are used, and they are assumed to be same in
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application and experiment scenarios. However, such a theory is not verified, and more data from different
facilities and configurations are needed. Furthermore, this study assumes that the values of dimensionless
group in the postulated full-scale scenario are the same as those from experimental database.

Table 8.13: summary of numerical benchmarks and their physical characteristics for external-flooding
scenarios

Dimensionless Group
Symbolic Validation
Representation | Database

Phenomenon Numerical

Description Benchmarks Application

Response Time
Surface-Wave Propagation | Dam Break | x* (Eq.8.50) | 0.2~0.26 | 0.25
Structural Loads

;ﬁ%ﬁaﬁg""gﬁctuggce OV Dam Break; | x* (Eq. 8.50) 0.2~0.26 0.25
Falling p*=10.38 p* =108

Hydrodynamic  Force  on | Objects p* (Eq. 8.53) V* =512 V* =512

Moving Structures Floating V" (Eq. 8.54) p*=21 p*=21
Objects V/* = 4.5E5 V* = 4.5E5

Based on the criteria in Error! Reference source not found. and the dimensionless group, outputs
of scaling analysis can be determined. Table shows qualitative judgements for the sufficiency, relevance,
and distortion obtained from the scaling analysis.

8.5.6. Adequacy Decision

To decide the adequacy of SPH methods in simulating the designated external-flooding scenarios,
results from reviews, theories, assessments, PIRT, and scaling analysis are combined by the scheme in
Figure 8.40. Since the database is mainly collected from literature, this study focuses on the accuracy
assessment of separate phenomena, while the integral code adequacy has not been properly measured.
Although a scaling analysis has been performed, the dimensionless groups and their relationships to Qols
are not verified. Table summarizes the results from various components. Meanwhile, suggestions for
particle-size selections are included according to the results of accuracy assessments and scaling analysis.

Table 8.14. Validation results for SPH methods in simulating the external-flooding scenario

Phenomenon Code Accuracy Sl i) PSS ggggiﬁed
Description Adequacy | (L1error) | Relevance | Sufficiency | Distortion Size
Response Time
Surface-Wave Reasonable
Propagation Reasonable (12.7%) Yes Yes Bounded | 0.02m
Structural Loads
Hydrodynamic
Force on Excellent
Stationary Excellent (3.6%) Yes Yes Bounded | 0.02m
Structures

. Falling - | Excellent Falling -
Hydrodynamic . 0
Force on Moving Insufficient | (5.52%) Yes No N/A 0.25m
Structures Floating — | Excellent Floating —

Insufficient | (4.41%) 0.1m
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For the scenario of “floods damage the building structures, enter the room, and cause diesel generator
malfunctioning”, SPH methods can predict the hydrodynamic force on both stationary and moving
structures with acceptable accuracy. For the phenomena with stationary structures, the present analysis
suggests that the particle size of Neutrino simulation should be less than or equal to 0.02m. At the same
time, according to the scaling analysis by dimensionless group x*, the database is sufficient for predicting
a similar phenomenon in full-scale scenarios. However, the present decision is limited to predicting peak
pressure force under unbroken surface waves. The validity of such conditions in the target application needs
evidence from larger scales. At the same time, it has been suggested by the independent reviewers that other
important phenomena, like turbulence, can be critical in predicting the target Qols in addition to the static
and dynamic pressures [45]. For the phenomena with moving structures, the suggested particle size for a
postulated scenario is 0.25m for falling cubes and 0.1m for floating cube. Since there is only one dataset
for this phenomenon, distortion analysis is not applicable (N/A).

8.6. Conclusion

The present study demonstrates a validation of SPH methods and the corresponding software Neutrino
in simulating a designated external-flooding scenario. To ensure the consistency and completeness,
validation frameworks CSAU, and its regulatory guide EMDAP is followed. An external-flooding scenario
is defined, and a PIRT process is performed, which identifies the surface-wave impacts on rigid structures
as one of the high-rank phenomena. At the scoping stage, acceptance criteria of 20% is set based on authors’
knowledge and reviewed by researchers in relevant fields. Two numerical benchmarks are designed, and
the simulation results are compared against the experimental measurements. It is found that for all
benchmarks, SPH methods can predict the hydrodynamic force acting on both stationary and moving
structures with excellent accuracy, where the L, relative error norm is less than 10%. At the same time, for
the phenomenon of surface-wave propagation, SPH simulation accuracy appears reasonable (L, <20%). For
each case, suggestions on particle-size selections are also made according to the results of the convergence
study. Next, a scaling analysis is performed for identifying the sufficiency, relevancy, and distortion of
validation database from the perspective of the full-scale applications. In addition, dimensionless groups
are suggested for evaluating the full-scale behaviors based on the existing database. It is found that SPH
can be used to predict unbroken surface-wave peak-pressure impacts on stationary structures with adequate
performance, while evidence is not sufficient to justify its adequacy in predicting forces onto moving
objects. Meanwhile, independent reviews suggest that the validity of major assumptions in target
applications need to be evaluated with large-scale experiments, and the relevancy of other phenomena like
turbulence need to be identified with more benchmarks. Consequently, additional validation-grade
experiments and high-fidelity simulations must be collected for new data. Meanwhile, it is recommended
that an adequacy decision model is needed to assess code adequacy and to reduce uncertainties due to the
lack of data and heuristic biases.
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9. Validation of SPH for Nuclear Power Plant Scenarios using Neutrino

9.1. Summary

The validation of Smoothed Particle Hydrodynamics (SPH) has many different facets such as impact
forces, wave formation, turbulent flows, etc. Additionally, in the nuclear power industry, there are many
different types of flooding concerns with different factors affecting the protection features. The purpose of
this area of work was to determine applicable or correlated test cases, develop experimental validation
methods and then perform some validation cases against experimental results on a large scale in order to
provide data for scalability.

The critical validation factors of SPH for flooding scenarios are Impulse pressure, Duration, Wave
Height, velocity, and Turbulence. Different validation factors are applicable for varying flood scenarios
and protection strategies. This work provides a method for determining those factors so that the correct
uncertainty factors can be used in the overall data driven methodology for uncertainty.

Historically several validation cases for SPH have been done to both small scale experiments and
numerical comparison of results vs CFD. The impact validation case of wave impact forces was chosen for
initial validation. George Washington University constructed the wave tank and performed necessary
experiments and Neutrino’s SPH code was used for the fluid simulation [3].

Both experimental and simulation parameter variations can affect the validation results. To minimize
uncertainty and optimize simulation costs in simulation results, modelers need guidance on parameter
values. Along with experimental parameters, Neutrino has over 30 different parameters that can be adjusted,
using expert judgement this was reduced to 7 parameters, to perform importance measures on including:

e Stop Threshold
Particle Size
Interaction-Radius to Particle-Size Ratio
Fluid Settling uncertainty
Forcing function amplitude uncertainty
Forcing function frequency uncertainty
Pressure transducer location uncertainty

The most significant parameters were particle size, fluid settling, and interaction-radius to particle size
ratio.

Using the optimal parameter values for computation time and accuracy, the impulse pressure of the
experiment and simulation results were compared (Figure 9.1). The simulation results averaged around 3-
4% difference from the experiment results, with a max of less than 10% for the four different experimental
runs. The experiment results varied 2-3% with a max of 8% variation. This data combined with other
validation results, including scaling factors can then be used in the overall data driven methodology.
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Figure 9.1. Experimental and simulation impulse.
9.2. Introduction

Mitigation efforts are often designed or retrofitted into structure to reduce the damage to critical
areas—i.e., removable barriers or dikes. Since floods will always be a concern, improvements or new tools
to optimize the cost of mitigation efforts are always valuable. Simulating flooding events is conducted
through many different methods and at varying levels of detail. These tools help determine general flooding
inundation height, down to the specific components or infrastructure that might be damaged. Modelling can
help guide mitigation efforts to prevent damage from occurring. However, for these simulations to be
useful, they must match reality, which requires code validation. Because there are many different flooding
scenarios, from barrier overtopping to debris impact, there are also many different features that need
validation, and one code could be very effective for simulating overtopping but not work at all for debris.
The following PIRT style table lays out scenario types and the key factors for validation which can then be
used for proper uncertainty analysis of that scenario type.

Pressure | Duration | Max Height
limpulse 1 Splash
Door Failure High - - - -

Barrier Over- - High Med Med -
Top

Barrier Failure  High *Low - - *Med
Penetration - High - High -
Exhaust Vent - - High - -
Ducting High - - = -
Debris Impact - - Low High Med

.....

Type Dependent

To develop the methodology and generate initial data, different experiment cases were established using
the large-scale oscillating designed and constructed at George Washington University. The tank measures
5.951 mlong x 1.2 m high x 2.468 m wide and is constructed of a steel frame and acrylic walls and bottom.
The adaptive design allows for attaching structures inside the tank and both pressure transducers and high
imagery cameras measure forces and fluid movement. The tank is oscillated through a sine-forcing function
using a hydraulic actuator. The first validation case chosen was wave impact force as this is a common case
and would provide additional data for scaling analysis.

By recreating the physical tank and experiments using SPH we can then determine a few critical aspects
of the simulation. First, what features of the experiments is the SPH code able to recreate with sufficient
accuracy and speed. Second, what SPH parameters are critical for good simulation results? To do this a
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virtual tank was set up using Neutrino, matching the physical model of the tank. A forcing function using
the same oscillation formula as the physical tank was used to move the virtual tank model, in order to most
closely match the actual movement.

The results of the experiment vs simulation and parameter importance can then be used to help
determine the confidence for a specific type of flooding scenario and contribute to the data driven
validation.

9.3. Scope of Work

The main objective of this work consisted of simulation validation with two test areas. First, the
comparison of SPH simulation results to experiment results for the wave oscillation tank. Second, the
importance of specific SPH parameters affecting the accuracy of the simulation. The next objective was the
application of this validation data in how to correctly apply uncertainty results.

Experiment data was generated by using wall pressure transducers set at a depth of 0.1524m. The
experiment ran for 60 cycles and was repeated four times with minor variations as shown in Table . Of the
60 cycles, the last 10 were averaged for the result, to establish a steady state for the results.

Table 9.1. Experimental model run variations.

Run | Water Depth (m) | Frequency (Hz) | Amplitude (m) | Variation

1 0.1524 0.11 0.1016 Reference run

2 0.1524 0.11 0.1016 Identical to Run 1

3 0.1524 0.11 0.102108 Change of forcing amplitude by 1%
4 0.1534 0.11 0.1016 Change of water depth by 1 mm

The Neutrino model was constructed to match the experimental setup as closely as possible. The
oscillating tank experiment can be characterized as a two-dimensional (2-D) experiment, resulting in the
simulation tank having the same length and height dimensions, but a smaller width of 0.2 m. By reducing
the width of the simulation tank, the computational runtime of the simulation is also reduced without
compromising accuracy. A simulation with a particle size of 0.01 m (181,387 fluid particles total) takes
about 16.7 hours for 30 cycles using an Intel Xeon central processing unit E5-2683 v3 @ 2.00 GHz with
28 core and 56 logical processors.

The simulation tank was filled with particles to the correct fluid depth. The number of fluid particles
was carefully controlled to ensure that the numerical volume of the fluid simulation corresponds to the
correct physical fluid depth. A measurement field is used to measure the pressure on the end-wall. This
measurement field compares to the pressure transducers used in the experimental setup. Figure 9.2. shows
the large-scale oscillating tank on the left and a cross-sectional view of the simulation setup on the right.
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Figure 9.2. Large-scale oscillating tank at the George Washington University (left) and Neutrino
simulation setup (right).
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Once the simulation setup was complete, the simulation tank and end-wall measurement field
needed to be oscillated at the same forcing function as the experiment. To create these oscillations, a python
script for each object was created and added to the position of the object as a dynamic expression. The
python scripts adjust the position of the items based on Equation 9.9.2.

z(t) = A sin (2nft) 9.2

where z is the new position, t is the time, A is the amplitude, and f is the frequency. The amplitude and
frequency values are set in the python script to match the experimental values, and the time is extracted
from the simulation. The equation allows for the movement of each object to be continuous and evaluated
for every time step of the simulation. Without using the equation and, instead, using a dataset of positions,
the movement of the objects may not shift smoothly with the time step, causing jumps with overlapping
particles, which results in erratic or explosion-like behavior from the simulation tank impact.

The RAVEN software developed at INL [1] along with a coupling module [2] was used for
performing advanced sampling, parameter optimization, and run the Neutrino simulation and then post-
process results. The methodology for determining the significance of parameters consisted of, first,
randomly sampling across the range of possible values of a single parameter. The values were sampled
from a uniform distribution across the range of values using a Monte Carlo sampler. The value range for
each parameter was selected based on previous simulation investigation or the uncertainties associated with
the physical experiment. The results were then analysed to determine whether the parameter caused a
change in the results. If the different parameters values did not cause a change in results, then the parameter
was considered insignificant. Table shows the range of values for each parameter, as well as the default
value that was used when other parameters were being sampled. These ranges are all considered uniform
although many have other distributions.

Table 9.2. Investigated parameter value ranges and default value.

Parameters Value Range Default Value
Stop threshold 0.0001 to 0.01 0.001

Particle size 0.007 mt0 0.02 m 0.01m
Interaction-radius to particle-size ratio 20t0 2.4 2.0

Fluid settling uncertainty -0.43; to 0.45,* 0

Forcing function amplitude uncertainty | 0.1012 m to 0.102 m 0.1016 m
Forcing function frequency uncertainty | 0.1099868 Hz t0 0.110011 Hz | 0.11 Hz
Pressure transducer location uncertainty | 0.1006 m to 0.1026 m 0.1016 m

* where d; is the particle size
9.4. Key Findings

The 90% and 50% pressure bounds for the experiment and simulation were compared. Additionally,
the pressure of each cycle was integrated over time to compare the pressure impulse. Figure shows the
pressure bound comparison with the 90% bound plot on the left and the 50% bound plot on the right.
Figure shows the absolute percentage error plots between the simulation and experiment upper and lower
bounds for the 90% bounds on the left and the 50% bounds on the right.
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Figure 9.4. Pressure bounds simulation error plots.

The above plots show that both the 90% and 50% simulation pressure bounds mostly fall within
the experimental bound. A few exceptions do occur in the low-pressure areas at the very beginning of the
cycle (~40% difference) and the very end of the cycle (~40% difference); however, these low-pressure
differences are typically insignificant for applications. The peak pressure tends to have a short but high
initial peak variation (~75% difference) compared to the experiment. Overall, the simulation results match
well with the experimental results for most of the time. However, refinement of parameters could possibly
increase the accuracy of the simulation.

The simulation impulse pressure was compared to the pressure impulse for each experimental run.
The absolute percentage difference between the simulation and each experimental run was also computed.
Figure shows the impulse pressure comparison plot on the left and the absolute percentage difference plot

on the right.
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The absolute percentage difference plot shows that the pressure impulse of the simulation is within 10%
of all four experimental runs. However, for two of the runs, the simulation is within 5% of the experiment.
This shows that the simulation pressure impulse matches the experimental very well.

The parameters and their range of values identified above were sampled five times using RAVEN. The
pressure results for all five runs were compared to determine whether the parameter is significant. To reduce
the computational runtime, 30 rather than 60 cycles were simulated. Table shows the five sampled values
for each parameter and Figure shows the average pressure plot comparison for the different parameters.

Table 9.3. Sampled values for each parameter.

Parameter Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5
Stop threshold 0.005188 | 0.009604 | 0.000482 | 0.008365 | 0.004260
Particle size 0.009004 | 0.009710 | 0.018166 | 0.011869 | 0.017700
Interaction-radius to particle-size ratio 2.083384 | 2.149816 | 2.013502 | 2.042695 | 2.089326
Fluid settling uncertainty 0.027887 | 0.920035 | -0.922877 | 0.669684 | -0.691674
Forcing function amplitude uncertainty | 0.101436 | 0.101541 | 0.101956 | 0.101291 | 0.101270
Forcing function frequency uncertainty | 0.110007 | 0.110008 | 0.110011 | 0.109989 | 0.109992
Pressure transducer location uncertainty | 0.102298 | 0.102340 | 0.101516 | 0.102578 | 0.101047
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Particle Size Comparison

P (P
P (P

P (Pa)

228



Pressure Transducer Location Comparison

Fluid Settling Comparison Amplitude Comparison

ts) ts) t(s)

Frequency Comparison

P (Pa)

Figure 9.6. Average pressure comparison plots for each investigated parameter.

Based on the plots above, all seven parameters influence the simulation results. However, some of these
parameters seem to be more important based on the amount of fluctuation that occurred between the results.
For example, the particle size, interaction-radius to particle-size ratio, and fluid settling plots showed greater
fluctuation than the stop threshold, amplitude, frequency, and pressure transducer location plots. This
indicates that more research is needed to quantify the significance of each parameter.

These results can then be used for uncertainty in the categories of the PIRT diagram for use by specific
scenarios feed into the PCMQBN framework. For example, the experiment results show above provide the
pressure validation this can be used for door failures. Validation data from the experiment could be used as
a whole, but any data that does not fall into the range of causing a door failure is irrelevant (Figure 9.7). In
this case the validation attribute of concern is the difference band of the simulation peek pressure or the
band above a threshold in impulse pressure vs the experiment. If the simulation is significantly different for
low pressures but accurate for higher pressures, the simulation outcome uncertainty would be very low.
However, if the simulation were accurate for low pressures, but more inaccurate for higher pressures, using
the overall uncertainty would indicate the outcome results better than what they are.
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9.5. Conclusions

The validation results of the SPH simulation provided several aspects of data for the data-driven

methodology: general uncertainty values; data for scaling; and bands of applicable validation data. Through
varying the SPH parameters it was shown that the particle size, interaction-radius to particle-size ratio, and
fluid settling are important factors can have a large influence on the uncertainty of the results.
The process used for this research can be used in developing validation cases against experiments for the
flooding scenario areas of pressure, duration, max height/splash, and turbulence. The resulting uncertainty
can then be used in correlation with scenario applicability in the PCMQBN data driven methodology for an
overall model confidence rating.
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10.System Thermal-Hydraulics Model Validation Experiment

10.1. Summary

This work is part of an integrated research project (IRP) titled “Development and Application of a
Data-Driven Methodology for Validation of Risk-Informed Safety Margin Characterization Models”
supported by the U.S. Department of Energy Office of Nuclear Energy’s Nuclear Energy University
Program (NEUP) to develop a data-driven validation methodology for risk-informed safety margin
characterization (RISMC) models. The primary purpose of this study is to demonstrate an application of
the data-driven validation methodology. The work presented in this report is to establish experimental
facilities, conduct experiments, and provide data support for the data-driven validation methodology
development.

Compared to the traditional validation practices, data-driven validation relies on data from experiments
(and advanced computational analyses) that are specifically designed for the model and use state-of-the-art
methods to rigorously map and bound the simulation uncertainties in the domain of intended model use.
Therefore, data-driven validation presents a significant shift from the current validation practices based on
expert-determined scale distortions.

The work introduced in this report is to design and establish an experimental facility (or facilities),
conduct experiments, and provide data support for the validation of a system thermal-hydraulics (STH)
code based on the proposed data-driven validation methodology. RELAP-7 was proposed as the STH code
of interest in the original proposal. However, since RELAP-7 is not available for validation, COBRA-TF
(CTF), a subchannel analysis code, was chosen as the subject of STH code validation. In addition, based
on the literature and feedback from the STH code validation subgroup, dispersed flow film boiling (DFFB)
regime, where droplets are dispersed in a continuous superheated vapor phase, was chosen as the
phenomenon focus of our study.

Three phases for the experimental investigation were proposed. In the first phase (Phase 1), an air-
water experiment was to be carried out at room temperature to test necessary optical instrument for droplet
measurements and to develop proper experimental procedures, which serve as guidelines for elevated-
temperature and pressure experiments. The second and third phase (Phase 1I/111) experimental work would
involve modification of the Phase | experimental facility and proper configuration of components, which is
not included in this report. Data processing was completed using LaVision ParticleMaster package and in-
house computer codes to obtain polydispersed droplets diameter and velocity statistics. Additionally, the
particle diameter distribution was modeled using a lognormal distribution. The distribution uncertainty was
used to represent the data uncertainty quantification. Also, the estimated parameters’ confidence interval in
the distribution model fitting process was provided based on bootstrap resampling and central limit theorem.
Finally, SMD calculation results based on two approaches, namely data-based and distribution-based, were
provided. The processed data and quantified uncertainty from Phase | experiments would be valuable to the
validation process in the data-driven model development.

10.2. Introduction

An integrated research project (IRP) titled “Development and Application of a Data-Driven
Methodology for Validation of Risk-Informed Safety Margin Characterization Models” was initiated in
October 2016 under the support of the U.S. Department of Energy Office of Nuclear Energy’s Nuclear
Energy University Program (NEUP). The project aims to develop and demonstrate a data-driven
methodology for validation of advanced computer models for nuclear power plant safety analysis.
Specifically, the advanced computer models are those in the toolkit developed to support the risk-informed
safety margin characterization (RISMC), an integrated deterministic/probabilistic safety analysis
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methodology developed in the Department of Energy’s Light Water Reactor Sustainability (LWR-S)
program.

One major challenge in model validation is lack of relevant data, including lack of confidence in the
applicability of models and their supporting data in prototypic reactor conditions. It is possible to improve
how we acquire and use the data for model validation. In particular, a new physics-guided validation
strategy based on first principles physics will rigorously map and bound the simulation uncertainties in the
domain of intended model use. To our knowledge, this represents a first-of-a-kind approach for the
determination of the validation domain in the nuclear engineering community that presents a significant
shift from the current approach for expert-determined scale distortion uncertainties. The project team plans
to apply the developed validation methodology within this project to guide the validation of computer
models for flooding hazard analysis and for system thermal-hydraulics (STH) analysis. In the original
proposal, the RELAP-7 reactor system simulation code that has been under development at the Idaho
National Laboratory was chosen as the STH code for validation. However, the code did not appear to be
at the maturity level for a meaningful validation when this IRP was initiated. Therefore, COBRA-TF (CTF)
was then chosen as the STH code of interest in this project.

Nucleate boiling is a highly efficient and desirable cooling mechanism in high power density systems.
However, it is well known that the heat transfer capacity of a boiling system will be substantially reduced
when the heat flux on the boiling surface exceeds the heat flux value corresponding to the departure from
nucleate boiling. Such a critical heat flux (CHF) phenomenon and subsequent post-CHF scenario represent
major limits for light water reactor (LWR) operation and safety. Therefore, modeling and prediction of
post-CHF scenario, and the validation of these models are vital for the reactor safety analysis.

CTF [Salko et al. 2015] uses separate flow models for boiling heat transfer and two-phase flow, which
consists of three fields, i.e., the liquid droplets, liquid film, and vapor. Supported by closure relations, CTF
numerically solves the three sets of conservation equations of mass, momentum, and energy, one for each
field, to obtain Quantities of Interest (Qol) of a certain scenario.

CTF decomposes a certain flow and heat transfer scenario into multiple flow regimes and heat transfer
regimes. Criteria are set up to determine the transition between different regimes. For a given regime,
multiple closure relations are incorporated into the conservation equations to make them numerically
solvable. In CTF [Salko et al. 2015] the dispersed flow film boiling (DFFB) heat transfer regime is
activated when the wall temperature is above both the critical heat flux temperature and the minimum film
boiling temperature, and when the void fraction is higher than 0.95.

In the DFFB regime the heat transfer is a combination of three major mechanisms: convective heat
transfer from the heated wall to the vapor phase, radiative heat transfer from the wall to vapor and liquid
droplets and boiling/evaporative heat transfer when liquid droplets collide with the heated wall. The
dynamics of liquid droplets plays a vital role in the DFFB heat transfer as it influences not only the radiative
heat transfer, but also the boiling heat transfer. In the current practice of CTF, the radiative heat flux from
the wall to the liquid droplets is modeled as:

¢, =

wl

(T4 _ T4

w sat

), (Eq. 10.1)

where Fy is the gray body factor that is determined by the interfacial area, wall emissivity and other
properties of the liquid droplets. The determination of Fu relies on empirical correlations, which generally
lack a comprehensive validation.
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The boiling heat transfer flux in DFFB is calculated as the maximum of the CHF ¢” in CTF and the

droplet de-entrainment heat flux term ¢” . The latter is calculated as:

,
de

¢ =hC G (Eg. 10.2)

de fo de g’

which is simply the product of the latent heat hy, a de-entrainment coefficient Cqe, and total droplet mass
flux Gy. The coefficient Cqe also relies on empirical correlations.

Since the modeling of DFFB in CTF still heavily relies on empirical correlations and the correlations
are not well validated in the current practices; it is vital to design validation experiments that specifically
aim to demonstrate application of the data-driven validation methodology with the ultimate goal of
improving the modeling of DFFB in CTF.

Based on the modeling approach of DFFB in CTF, validation experiments are designed to provide
high-fidelity data with well-quantified uncertainties that cover the major physical parameters that are
considered sensitive to the Qols in DFFB predicted by CTF. Such designs are summarized in the following
chapters.

10.3.  Scope of Work

The validation experiments were performed in a phased approach. Phase | experiments were designed
to operate newly constructed experimental facility and obtain experimental data under room-temperature
without heat transfers involved. The experimental facility for Phase | experiment is to use air-water to
investigate the hydrodynamics of the water droplets in the DFFB flow regime. This phase of experiment
is adiabatic in nature to verify the instrumentation for droplet measurements. There are four major systems
of components, which are the test section, liquid supply system, air supply system and instrumentation. In
the test section the primary data measurement and collection are made with proper instruments. The first
three systems are connected with each other through tubing to form a hydraulic loop in the facility. Since
no heat transfer is considered, the operating temperature and pressure are ambient conditions in the lab. A
schematic of the facility is shown in Figure 10.49.

A platform was made available to accommaodate all necessary optical instruments and synchronization
and data acquirement system called ParticleMaster provided by LaVision. The platform is shown in Figure
10.50, and the configuration is shown in Figure 10.51. The platform consists of a rail system where all
equipment is placed, including an LED light source, a high-speed camera with a microscope attached, a
calibration plate along with a dummy plate, and the test section where the measurement is taken. The rail
system allows the camera and light source to move in both x and y direction (parallel and perpendicular to
the camera), which significantly enables physical adjustment of the camera and the light source for
measurement. On one of the y-direction rail there is a dummy plate which is a piece of acrylic material with
the same optical properties and thickness as the test section wall. Additionally, the calibration plate is placed
between the light source and the dummy plate. During the calibration process, the calibration plate is placed
at the location where the desired focal plane is in the test section flow channel, and the camera is then
adjusted focused on the calibration plate. The presence of the dummy plate is to ensure the accurate location
of the focal plane.
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Figure 10.49. Schematic of the Phase-1 experimental facility

Figure 10.50. Images of the optical instruments and the platform
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Figure 10.51. The configuration of the platform

10.4. Key Findings

10.4.1. Experimental Data

The objective of Phase | experiments was to obtain experimental data for air-water operating
conditions. Figure 10.52 illustrates where the measurement was taken. The entire test section is divided into
multiple areas, which are 4x4 mm square as majority, 4x2 mm in the periphery and 2x2 mm at corners.
Within the red square are the measurement included in the dataset, as illustrated in Figure 10.52. Some
measurement out of the red box is also included in the dataset.

4mm

Y axis

4mm

2mm

X axis

Figure 10.52. The dataset measurement in the test section (red dashed square)
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There are several operating conditions in the measurement. Under each operating conditions there are
three focal planes in Y axis (y = -4 mm, y = 0 mm and y = 4 mm). At each focal planes, there are 4 FOV's
(the center of each FOV is x = -6 mm, X = -2 mm, x =2 mm and x = 6 mm). In each FOV, there are three
measurement sequence, each representing 4 seconds of the flow. Therefore, there are 108 measurements in
all. The test matrix is shown in Table 10.15. All measurements are only for the polydisperse droplets. The
nozzle that generates the droplets are slightly off aligned with the very center of the test section, as shown
in Figure 10.52. The potential negative effect of such situation is unknown and needs further investigation.

Table 10.15. Operating conditions of the measurement (square duct D = 28 mm).

Item SYMBOL UNIT #1 #2 #3
Droplet Diameter d mm 0.75 0.75 0.75
Droplet Velocity Ud m/s 5 1 10
Feedwater Flow Rate Qo mL/min 120 120 145
Air Reynolds Number Rec n/a 17,785 25,610 17,785
Air Flow Rate Vair L/min 240 290 240
Inlet Pressure p psig 115 18.0 115

Images taken in a typical measurement are no less than 4000, and each image is processed through the
software with specified data processing parameters. Particles can be detected and recognized by shadow
areas. Velocity information is automatically calculated through double frames in each image. However,
since the dispersed flow is confined in a small square channel (28%28 mm) and the light has to go through
two channel walls (front and rear wall), the droplets attached on the wall may have a negative effect on the
image. Those unwanted droplets may project a vast grey area on the image as they are out of focus and
present very blurry with no specific perimeter, which makes them look like part of the background. The
drops-on-the-wall effect was not eliminated during the measurement, but the problem can be potentially
solved by implementing heating close to the wall to quickly evaporate the drops or applying special wall
that prevent drops retention.

Figure 10.53 show two typical example images with detected moving drops, background, interference
and other complication. The left one shows two moving particles with diameter of 603.6 and 418.0 um.
They are very close to the exact focal plane as the shadow areas have sharp rim. Additionally, the
interference from the drops on the wall is very noticeable as it presents several vast grey areas. One out-of-
focus particle moving across the middle interference area is detected and recognized by the software, and
the diameter is provided (430.6 pm), which becomes a false detection. Therefore, the presence of
interference area (grey area) may inadvertently generate false detection and thus alter the detection
accuracy. The right image shows another complicated situation: an out-of-focus drop moving across the
camera projects irregular shadow area that presents three falsely detected particles. The reason of the
irregularity of the shadow area is unclear. It is possible that the background which presents a grey area may
interfere with the drop’s shadow area. In general, particles that are slightly out of focus must satisfy the set
criteria in order to be detected. One of the criteria is the minimum slope (which is discussed in the next
section). As is shown, a particle that is out of focus is detected with diameter of 347.5 um.

236



et ]

BEREERE

HEEE

Figure 10.53. Example image

Position [pm]

¥ position [um]

Interference

Sonter b

418.0 ym

‘4.795 m/s

RN E

BEEENN

B

different timing.

347.5 ym

.4'590 ms

B w0

Interference

sownen b

W o0 se

P

o

s that are taken in the same flow condition and at the same location but

tranes) Lpmana sbens

“¥ ¢ 8 8 § § § £ § § @ & & ¥ @ §

In addition to particle images, the output data includes a complete list of particles detected with
information such as diameter, perimeter, centricity, velocity, and statistical weight, etc., a histogram, a table
of cumulative statistics and scatter plots as wanted (Figure 10.6). The histogram is usually about the
diameter (or particle size) distribution, where the bin width is adjustable. Scatter plots are created for
different use, but here it shows the particle detection locations. It is noticeable that the largest interference
area is deficient in detected particles, which confirms its strong interference. Information provided in the
cumulative statistics is consistent with the one calculated by the adopted data reduction method.
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Figure 10.54. Example data including an image from the measurement, a histogram of diameter

distribution, a scatter plot of particle detection location and cumulative statistics.
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10.4.2. Uncertainty of Measurement

Measurement uncertainty is defined as the aggregate of all factors that affect the measurement of
particles on the image deviating from the true dimensional scale. Since there are multiple procedures
involved in the data collection that inevitably cause the uncertainty of in the measurement, the effect and
sensitivity need to be further investigated. Some of the identified uncertainty associated with the
measurement inaccuracy of particles’ diameter include the algorithmic bias of particle detection in the
image processing, the non-uniform distribution of light source on the image, the interference of both
neighboring droplets and out-of-focus droplets’ shadows to the measured particle image, the imperfect
synchronization of the camera and light source, etc. Preliminary study on the calibration plate and its image
indicates that the dots’ diameters are consistent with a normal distribution, which means an individual
particle measurement uncertainty (or estimated standard error) can be determined by its standard deviation
of measurement, i.e., the particle diameter.

10.4.3. Uncertainty of Distribution Fitting

When we mention the uncertainty of droplets distribution, it can refer to the statistical quantities such
as the mean and variance of one sample. Eventually, the uncertainty of droplets measurement is defined as
the uncertainty of droplets diameter distribution. Therefore, it is important to determine the distribution
function. There are two distributions considered in the data processing and analysis: normal distribution
and log-normal distribution [Johnson et al. 1994], which is shown as follows:

1( x- g
f(x)= L ez["#] (Eq. 10.3)
oN2r
and
Inx —
f(x):xl-alzﬂ exp —% . (Eq. 10.4)

The probability density function (pdf) of the distribution is identified as a log-normal distribution based
on literature review and collected data’s observation. The recommended bin width selection method can be
described as below:

IQR
Bin Width :2Q—(X) , (Eq. 10.5)

o

where IQR(x) is the interquartile range of the data and n is the number of observations in the sample. The
statistical distribution fitting is used, which is to model the probability distribution of a single variable. The
maximum likelihood method is commonly used for most statistical distribution fitting. Figure 10.55 shows
the distribution comparison in a linear scale. It is shown that the distribution is consistent with different
operating conditions and different location of measurement for the statistical model method. The
uncertainties are listed in Table 10.16
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Figure 10.55. The droplet diameter distribution of 9 selected cases.

Table 10.16. The uncertainty analysis of 9 selected cases.

CASE NO. PARAMETER PARAMETER MEAN VARIANCE RELATIVE SAMPLE
M N ERROR SIZE
1 4.83 0.91 190E+02  4.721E+04  4.98% 525
2 481 0.90 1.84E+02  4.231E+04  3.83% 852
3 4.94 0.90 2.10E+02  5.535E+04  4.15% 725
4 4.78 0.86 1.73E+02  3.223E+04  5.10% 416
5 4.78 0.91 1.79E+02  4.103E+04  4.10% 759
6 4.87 0.92 199E+02  5.325E+04  4.23% 751
7 5.36 0.75 2.83E+02  6.047E+04  2.06% 1780
8 5.38 0.75 2.88E+02  6.232E+04  1.51% 3291
9 5.45 0.75 3.11E+02  7.398E+04  1.99% 1942

A natural question will be how to quantify the uncertainty of the distribution fitting parameters such as
parameter i and v. A statistical method called bootstrap, based on resampling and the central limit theorem,
is proven to be effective in determining the confidence interval of the parameter’s estimate [DiCiccio et al.
1996]. This is because the bootstrap method creates a distribution of parameter estimates that follows a
normal distribution. Due to the affordable computational requirement of the bootstrap method, it is hence
used to calculate the confidence intervals for the uncertainty analysis.

There are generally two required parameters in bootstrap: the size of the resample from the available
dataset and the repeated times of the distribution model fitting. Figure 10.56 shows a case study of the effect
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of resampling size and number of resampling on the parameter estimation. The original dataset has 1,942
data points. It indicates that the increase of resampling size significantly reduces the estimated standard
deviation of the parameter estimation distribution, yet the benefit for a better parameter estimate diminishes
as the mean value of the estimate converges to a certain value. Similarly, a sufficiently large number of
resamples result in a significantly narrow spread of the parameter estimate, but there exists a balance
between accuracy and computational cost. Therefore, a sample size equal to 50% of the original dataset
size and a number of resampling 1,000 is used for the uncertainty analysis.
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Figure 10.56. (Left) The effect of resample size and (middle) number of resamplings; (right) The
estimated parameter exp(u) follows a normal distribution.
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There are three distribution parameters to estimate, which can be referred to as: the location, which dictates
the translation on the variable axis; the scale factor, which is related to the scaling of PDF; and the shape
factor, which dictates the overall shape. As it is introduced beforehand that the PDF of a lognormal
distribution, we can have a more general formula according to (Eq. 10.4):

) (In(D-D)-u)’
f(D) 1 2s?
= e
(D -D,, )s\2z
1 n? (D - DIOCJ (Eq. 10.6)
ex
_ exp(u) exp| P 1,
S D-D,. \/z 25
exp ()
- - D - DI 1 -
with a transformation of X = ———2 and f (D) =—— _f (x) , We can then obtain:
oxp 1 oo 1)
[ In’x
)= 2L o [2"2]. (Eq. 10.7)
O X217

This indicates that exp(u) is the scale factor; Dio is the location; and o is the shape factor. With the
bootstrap method, we can obtain these three parameter distributions, which follow a normal distribution.
Figure 10.57 shows box plots of the three parameters in nine groups of data. The location and scale factor
are in um, whereas the shape factor is in um. The box represents the interquartile range, and the middle
line shows the sample mean. Additionally, dots represent the outliners. Box plots not only can show the
overall distribution, but also illustrate the confidence interval range. Case (Group) 1 to Case (Group) 6
dataset’s location parameters, for instance, has narrow spread, whereas their shape factors have relatively
large uncertainties.
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Figure 10.57. Distributions of parameter estimates: (left) location, (middle) scale and (right) shape factor.

The distribution model with the estimated parameters needs to be compared with the histogram that
visualizes the distribution. Figure 10.58 shows such comparison, which is considered a good match. A more
commonly used method to determine the goodness-of-fit is through the Kolmogorov-Smirnov test.

The Kolmogorov-Smirnov test can be served as a goodness-of-fit test [Massey 1951]. This is because
that it is very likely that a distribution model does not perfectly match a real-world dataset. As can be seen
in Figure 10.58, the g-q plot suggests that the distribution is heavy-tailed, asymptotic to a certain value,
which makes it extremely right-skewed. This is consistent with the Kolmogorov-Smirnov test results, which
suggests rejecting the null hypothesis. However, if we only look at the range with theoretical quantiles
smaller than 2500, which covers most size range of particle diameters, we find that the overall goodness of
fitting is satisfactory, also substantiated by the additional hypothesis test on that subset of data. The heavy
tail can be explained by the fact that actual particle diameter has a physical upper bound. Literature [Ishii
and Hibiki 2011] suggests a critical Weber number being around 12 dictates the upper limit of a liquid
droplet in a continuous-phase flow. In fact, large droplets tend to disintegrate and become unstable. This is
consistent with the observation from the available data. On the other hand, the lognormal distribution is a
sheer mathematical expression of an idealized distribution. Therefore, the fitted distribution model can still
be used to describe particle population smaller than around 1300 um. This analysis can be generalized to
other datasets, which is not shown here due to the length of this paper.
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Figure 10.58. Distributions of parameter estimates: (left) location, (middle) scale and (right) shape factor.

10.4.4. Uncertainty of Characteristic Diameter

SMD (Sauter Mean Diameter) is selected to be calculated as the characteristic diameter of a DFFB
flow. There are two available approaches to determine SMD: the calculation based on the dataset, according
to the following equation [Kowalczuk et al. 2016]:
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D3
sMD = 2D (Eq. 10.8)

Z| lnlDl2

where n; is the number of drops in i th diameter size class, D; is the diameter. and the one based on the
obtained distribution models. The former approach suffers the potential lack of sample size of the
population, thus the calculated SMD may not represent the true value; however, the latter one trades with
the accuracy because of the heavy right-skewness towards large diameter, which is the nature of an idealized
statistical model. A ‘cutoff” value is imposed on the fitted distribution for the distribution-based SMD
calculation to counter the heavy tail effect. The calculated SMD in both methods are presented in Table
10.17.

Table 10.17. Calculated SMD and nominal flow conditions

Items Casel Case?2 Case3 Case4 Case5 Caseb6 Case7 Case8 Case9
S 439.3 469.7 473.3 380.8 473.7 629.2 548.0 538.4 575.7
(dataset)

SMD/um

(distribution 480.3 3358 3989 377.8 341.1 423.5 523.9 535.8 562.9
model)

Air flow

rate/SLPM 317 317 317 430 430 430 317 317 317
water = flow | 105 900 120 120 120 120 145 145 145
rate/mLPM

10.5. Path Forward

The next step would be the Phase 11/111 experiment, which would involve modification of the facility
used in Phase I. The purpose would be to use heating components to study steam-water droplet heat transfer
mechanisms in DFFB regime. Phase-1I and 111 experiments share most of the facility so the description of
the facility is essentially the same. The facility shares some of the systems and components used in the
Phase-I facility. However, due to the nature of heating elements, the majority of piping and tubing will be
made of stainless steel. Thermal insulation will also be applied. The Phase-1I facility consists of five major
systems of components, four of which are similar to the Phase-1 facility, i.e., the test section, liquid supply
system, steam supply system and instrumentation. The last one is the electric heating system. Similarly, the
primary data measurement and collection will be made in the test section with proper instruments. The first
three systems are connected in an open hydraulic loop. There is no pump used in the facility, so the liquid
and steam supply systems are pressurized to provide required hydraulic driving head. Saturated steam is
generated in a boiler in the steam supply system. Additional heating elements are installed to heat up the
steam to appropriate superheated state. The operating pressure ranges from the atmospheric pressure to 200
psi (14 bar). A schematic of the test facility is shown in Figure 10.59.
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Figure 10.59. Schematic of Phase 1I/111 experimental facility

10.6. Concluding Remarks

This report presents a major effort to provide procedures and approach for liquid droplets diameter
and uncertainty analysis at a synthetic DFFB scenario. Key findings from the experimental data were
summarized. Phase | facility with an optical instrument system was developed to facilitate the imaging
which contains numerous droplet particle information. Data processing was completed using LaVision
ParticleMaster package to obtain polydispersed droplets diameter and velocity statistics. Additionally, the
particle diameter distribution modelling, i.e., the widely used lognormal distribution, was presented with
discussion on the uncertainty quantification technique. The estimated parameters’ confidence interval in
the distribution model fitting process is properly quantified based on bootstrap resampling and central limit
theorem. In the end, SMD calculation results based on two approaches were provided. It is believed that
the characteristic parameters needed for a validation process include the fitted distribution of the population
of polydispersed particles, uncertainty of the distribution as well as confidence interval of the distribution
parameters, and calculated SMD based on the distribution. Also, along with the experimental data and its
processing and analysis, significant experimental experience was accumulated for the future Phase Il and
111 experiment, which would involve heat transfer testing.

10.6.1. Uncertainty quantification for multiphase flow simulations supported by high-resolution
experiments

As a part of this work, the team (Liu et al., 2018, 2018, 2019, 2021) developed a machine learning-
based Bayesian approach to inversely quantify and reduce the uncertainties of multiphase computational
fluid dynamics (MCFD) simulations for bubbly flows. The proposed approach is supported by high-
resolution two-phase flow measurements, including those by double-sensor conductivity probes, high-
speed imaging, and particle image velocimetry. Local distributions of key physical quantities of interest
(Qols), including the void fraction and phasic velocities, are obtained to support the Bayesian inference. In
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the process, the epistemic uncertainties of the closure relations are inversely quantified while the aleatory
uncertainties from stochastic fluctuations of the system are evaluated based on experimental uncertainty
analysis. The combined uncertainties are then propagated through the MCFD solver to obtain uncertainties
of the Qols, based on which probability-boxes are constructed for validation. The proposed approach relies
on three machine learning methods: feedforward neural networks and principal component analysis for
surrogate modeling, and Gaussian processes for model form uncertainty modeling. The whole process is
implemented within the framework of an open-source deep learning library PyTorch with graphics
processing unit (GPU) acceleration, thus ensuring the efficiency of the computation. The results
demonstrate that with the support of high-resolution data, the uncertainties of MCFD simulations can be
significantly reduced.
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11.High-fidelity Interface Capturing Simulations of the post-LOCA Dispersed
Flow Film Boiling Regime for a Data-driven Modeling Framework

11.1. Introduction

The objective of developing a data-driven methodology, the focus of the current IRP project, implicitly
necessitates the generation of a high fidelity, high resolution, and validated data archive, both from
experiments and simulations. Recently, Chang et al [1] documented an extensive list of possible
frameworks for a data-driven modeling approach. Further, to provide examples, several recent
developments have demonstrated the applicability of machine learning approaches to turbulence modeling
[2-4], boiling heat transfer prediction [5], mesh optimization [6] and coarse grid CFD error prediction [7].
All machine learning applications for model development underscore the demand for high volume of data
for improving the predictive accuracy of these models.

The rapid advent of technology in the high-performance computing (HPC) arena, resulting in a
substantial increase of large-scale computation capabilities, has enabled high resolution studies of complex
flow phenomena which hitherto remained elusive, or prohibitively expensive, to be scrutinized by
experiments. Direct numerical simulations (DNS) enable resolution of all relevant scales of turbulence
without resorting to any closure models, thus providing high fidelity computations of the phenomena under
investigation. Recently, DNS coupled with interface capturing method have been used to simulate multiple
two-phase flow regimes in pressurized water reactor (PWR) sub-channels [8,9]. The dispersed flow film
boiling (DFFB) regime, which exists under post loss-of-coolant accident (LOCA) conditions, is of extreme
significance to safety margin characterization of PWRs [10]. Thus, data-driven closure modeling for system
thermal hydraulic (STH) codes and turbulence modeling pertinent to DFFB flow conditions were a priori
identified as the target applications for the demonstration of the RISMC [11] (risk informed safety margin
characterization) framework under the IRP.

The DFFB regime is inherently transient, characterized by both mechanical and thermal non-
equilibrium [12,13]. Phenomenologically speaking, it is best conceptualized by a mist type flow, with
polydisperse droplets, corresponding to high void fractions (> 0.8). Heat transfer in the DFFB regime is a
convoluted interplay of several different mechanisms. There is not an apparent single dominant heat transfer
path, which, understandably, renders extreme complexity to the task of modeling/accounting for these
phenomena in STH codes. As noted by Hochreiter et al [14], these mechanisms include, convection to
superheated vapor from rod surface, surface radiation from rods to vapor and droplets, interfacial heat
transfer between droplets and superheated vapor, direct contact heat transfer between the wall and entrained
liquid (quenching), convective enhancement of the vapor by the entrained droplets and impact of spacer-
grids to heat transfer enhancement due to flow acceleration and droplet break-up. In a recent publication
Bajorek et al [15] presented their observations from the rod bundle heat transfer (RBHT) facility [16]
experiments, summarizing key results from almost a decade of experimental tests of the post-LOCA regime.
They emphasized the predominant effect of spacer-grids on the thermal hydraulics of the DFFB regime.
All of the tests conducted at the RBHT facility, irrespective of high or low flooding rates, recorded a sharp
increase in the heat transfer coefficient in the immediate downstream vicinity of the spacer-grid structures,
contributing a significant proportion to the overall heat transfer of the core. Convective heat transfer
enhancement was recorded for the initial single-phase experiments by Hochreiter et al [17], based on which
Miller et al [18] and Riley et al [19] developed empirical correlations to account for the phenomenon in the
system thermal hydraulic code COBRA-TF (or CTF) [20]. For the DFFB regime, several additional factors
provide a positive feedback to heat transfer near the spacers, all owing to the droplet interaction with spacer-
grid structures. Note that based on the flooding rate conditions, the phenomenology at the spacer-grids is
quite different, resulting in different heat transfer mechanisms [21]. For high flooding rates, a film of
coolant encapsulates the spacer grid structure due to de-entrainment from the bulk flow. For low flooding
rates, on the other hand, the void fraction in the bulk is too high for a stable water film to develop on the
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spacer surface. Sharp heat transfer augmentation is observed at the trailing edge of spacers, decaying
exponentially with respect to the downstream distance [21-23]. The primary contribution comes due to the
inertial impact of the droplets on the spacer-grid, resulting in breakup or deformation of the droplets and a
drastic increase in the overall surface area. The heat transfer increase has been correlated with the observed
decrease in the Sauter mean diameter (SMD) of the droplets. Ratio of the immediate upstream and
downstream SMD, with respect to the spacer-grids, is an extremely important parameter used in modeling
of the DFFB regime. A simplified mechanistic model was developed by Cheung et al. [24] to predict the
downstream SMD of the droplets based on conservation of mass, kinetic and surface energies. A limited
number of empirical correlations also exist in literature for SMD, subsequently used in modeling the
interfacial source terms for closure relations in thermal hydraulic codes.

Other components, besides convective enhancement and decreasing SMD, through which the spacer-
grids contribute, directly or indirectly, to the overall heat transfer in the DFFB regime, include direct
radiation from the fuel rods to the spacer surface, thermal boundary layer separation and re-attachment and
guenching due to impacting droplets. As a testament to their significance, not accounting for the spacer-
grids in STH codes results in an over-prediction of the cladding temperature [25]. For modelling these
phenomena or reducing the uncertainty of related models in STH codes, highly detailed insights into the
droplet and fluid dynamics is imperative.

Thus, the overarching objective of the work documented herein is conducting high-fidelity, single
phase and interface capturing, representative simulations of the post-LOCA DFFB regime. More
specifically, large scale simulations are designed to resolve the droplet and fluid dynamics in the vicinity
of spacer-grids. Large scale simulations are performed, realized by PHASTA [26], a strong scaling finite
element method based numerical solver for the Navier-Stokes equations, on the Mira supercomputer at
Argonne National Laboratory (ANL) [27]. Several ad hoc functionalities are implemented in PHASTA to
make the simulations viable. Further, through the implementation of advanced MPI (message passing
interface) routines, including MPI sub-communicators and MPI parallel 1/0, high fidelity data is collected
from the simulations enabling unprecedented insight into the flow physics of a PWR subchannel, including
the effect of mixing vanes on downstream turbulence and anisotropy, the axial evolution of downstream
SMD and the droplet feedback to turbulence. The data is archived and intended to be used for the
development of data-driven turbulence and STH models, serving the broader goals of the IRP [28].

11.2.  Scope of Work

Large scale simulations running on massively parallel supercomputers, which constitute the major
objective of current research, pose several problems for their successful execution and subsequent, or in-
situ, post-processing and data analysis. Major challenges with the simulations performed herein with
PHASTA were, understandably, of a logistical nature, which required efficient data management code,
either integrated as subroutines within PHASTA using advanced MPI libraries or developed as separate
programs capable of handling large volumes of data.

The technical objectives of the large-scale simulations can, thus, be outlined as,

e Implementing code functionalities in PHASTA to make DFFB simulations feasible. This includes
suite of tools to assign fully turbulent inflow boundary conditions, droplet injection at the upstream
spacer-grid location and scalable MPI I/O routines for high data throughput.

o Single-phase and two-phase simulations on large scale supercomputers for a range of operating
DFFB conditions, including different flow Reynolds numbers and droplet collision Weber
numbers.

o Data collection, post-processing and analysis from single and two-phase simulations.

o Study of turbulent flow features including mean flow properties, Reynolds stresses and
turbulent anisotropy to gain insight into the effect of spacer-grids and mixing vanes.
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o Analysis of the axial evolution of droplet volume, interfacial area and Sauter mean
diameter, for different Weber numbers, and comparison with existing correlation in the
STH code COBRA-TF [20] and empirical correlation from prior DFFB experiments,
conducted at the rod bundle heat transfer facility
o Data archival to support future developments on data-driven, machine learning based turbulence
and STH modeling.

This section provides an overview of the setup details for the single and two-phase simulations,
including the accompanying assumptions. The section also includes a brief discussion on the technical and
logistical challenges and the functionalities implemented in PHASTA for their resolution, especially the
code implementations relevant to high resolution data collection, essential for data driven modeling.

11.2.1. Simulation Setup Details and Assumptions

The geometry used for both single and two-phase simulations in this work comprises a PWR sub-
channel with spacer-grids and mixing vanes, shown in Figure 11.60. Fully developed turbulent profile is
prescribed at the axial cross-section upstream of the spacer-grid structure and natural outflow boundary at
the opposite longitudinal end. The hydraulic diameter of the sub-channel is D, = 12.976 mm, while the
total axial length is 3.08 D,,. Periodic boundary conditions are prescribed across the lateral faces precluding
the modeling any cross-flow, as is the case in realistic PWR conditions. This is the primary assumption of
the simulations including that the flow is incompressible. The level-set interface capturing method is used
for modeling the two phases, which allows for a smooth transition of properties across the interface
informed by a contour field (see Saini [29] for details on numerical method).

The mesh for single and two-phase simulations consists of 55.8 and 367.5 million tetrahedral elements,
respectively. It is designed to ensure that all relevant scales of turbulence, based on a priori estimates [30,31]
made using bulk Reynolds number, are resolved. For two-phase simulations, it is imperative for the
resolution of droplets and their collision with spacer grid structures to employ a finer mesh with extended
boundary layer region near the walls. The mesh resolution was ensured to follow prior established
guidelines for two-phase simulations by Fang et al [32]. Comprehensive details on the mesh design for all
simulations are presented in Saini [29].

velocity Magnitude
0.000e+00 2322 464 6967 9.28%9e+00

Figure 11.60: PWR sub-channel geometry with spacer-grid and mixing vanes (primary domain). Quasi-
steady turbulent flow in periodic auxiliary domain (right).
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Table 11.18: Properties for representative DFFB (two-phase) simulations.

Properties @ 30 psi, steam
. . _air | SUperheat 100K
Properties Single phase We55-Air We20 \Ve55 We80
(Steam) (Steam) (Steam)
Pg
Density ratio (p;/pg) =1.185kg | 1000 1029.59
/m®
Pg
Viscosity ratio (u;/1g) =9.1 48 13.49
x 107° Pa. s

Bulk Reynolds number,
Re, = pgu%neanDh/.ug
Friction Reynolds number,
Re, = uTth/3/'lg
Collision Weber number,
We, = p,Dud/o
Aerodynamic Weber number,
Wegq = piDufrean/0
Injected absolute droplet velocity,
ug (m/s)
Injected droplet diameter,
D (mm)
frtj)rface tension coefficient,a (N/ | 0.091 0.118 0.086 0.059

Gravity, g (m/s?) -9.81

11822

242.539

- 0.319 0.253 0.348 0.507

2.05 1.97

Two single-phase simulations are performed for Re;, = {5000, 11000}, which correspond to the
near operating limits of the DFFB regime, as described by the experiments by Hochreiter et al [14]. For the
two-phase simulations, all flow parameters and characteristic dimensionless numbers are listed in Table
11.18. One simulation was performed for air-water system properties at atmospheric conditions, which has
higher viscosity ratio, while three other simulations were performed for steam-water system properties at
system pressure of 30 psi and 100K superheat. The controlled parameters in all two-phase simulations are
the bulk Reynolds number, Rey, and the collision Weber number, We,., of the injected droplets. To obtain
a desired We,, the surface tension coefficient is varied for different cases. The upstream injected droplets
are assumed to be monodisperse and spherical, i.e., they all have a diameter, D =1mm. Further, the initial
velocity of the droplets, u,, is assumed equal to the terminal velocity, estimated from the drag correlation
by Morrison [33]. Finally, it is assumed that the droplets do not intersect at their inception point, maintained
at a distance of 1.5D from each other and at a minimum distance of 0.75D from the sub-channel walls.
These assumptions are informed by prior experimental observations of the flow dynamics in the DFFB
regime [12,14,16,24,34,35]. Discussion on the rationale for selecting flow properties can be found in Saini
[29].

11.2.2. Turbulent Inflow Boundary Conditions

The DNS scale turbulent flow CFD simulations in reactor sub-channels are often performed on
relatively long domains computational domains with periodic boundary conditions across the axial ends of
the domain [36] (x/D;, > 1). With a large enough domain, such that the largest scale eddies are reasonably
resolved, periodic boundaries can emulate infinitely long sub-channels and generate a fully developed
turbulent flow profile. For the ensuing DFFB simulations, however, we are concerned with droplet
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interactions with the spacer-grids and mixing vane structures (Figure 11.60). The presence of these internal
structures and axially evolving droplet dynamics compromises longitudinal periodicity of the domain,
irrespective of the length used for the simulations.

To address the issue of specifying inlet boundary condition we use the, so called, boundary conditions
transient (BCT) suite of tools, initially developed by Feng [37]. Straightforward conception of the
application of BCT can be summarized as capturing the fully developed turbulent flow profile on the
auxiliary flow domain, shown in Figure 11.60, and applying to the inlet cross-section of the primary
domain. To achieve this, virtual “probes” are placed in the auxiliary domain, which correspond to the exact
mesh node location of the primary mesh. Thus, a total of 29,389 probes were used to capture the
instantaneous velocity field, which necessitated writing high volume of data output. This was enabled
through the implementation of advanced MPI 1/O routine in PHASTA, addressed in Section 11.2.3. For
further details on BCT implementation refer Saini [29].

11.2.3. MPI Sub-communicators and MPI Parallel 1/0

File I/0 remains the most expensive operations for large-scale computations. For this reason, the
simulation restart files are, often, sparingly written to the disk [38]. This imposes constraints on the post-
processing analysis and the meaningful information that can be extracted from the simulations. In order to
capture the turbulent velocity profile without loss of spatial resolution, as discussed in the previous section,
all the computational nodes at the inlet cross-section of the primary mesh are used as velocity capturing
probes on the auxiliary mesh, resulting in very large /O buffers to be written to the disk at each simulation
time step, which severely affects code performance.

Advanced MPI libraries were, therefore, implemented in PHASTA to greatly enhance the speed of
write operations. The implementation involves a combination of MP1 Sub-communicators and MPI parallel
1/0. Details of the 1/O algorithm are included in Saini [29]. Table 11.19 provides details on the PHASTA
speed enhancement obtained from the MPI routines on the Cetus supercomputer at ANL, with a simulation
running on 256 nodes and mesh split into 16,384 partitions. Comparison of number of simulation time steps
with different number of probes, for collecting data, are made against single phase simulation without any
data output. It is evident that without MPI enabled write operations, the penalty imposed on PHASTA by a
single processor output made the simulation infeasible. This functionality not only made it possible to
impose turbulent inflow boundary condition, but also enabled high resolution data collection, which is
indispensable for data-driven modeling.

Table 11.19: Number of time steps performed during 1 hour of wall-clock time on Cetus.
Single Processor 171 Processors
Number of probes | Time steps | Penalty factor | Time steps | Penalty factor | Speed up ratio
0 (No recording) 2887

5000 1267 2.28 2027 1.42 1.6
10000 75 38.5 1920 15 25.6
29839 9 320.78 1440 2.0 160.0

11.3. Key Findings
11.3.1. Single-phase Simulations

Single-phase steam experiments performed at the RBHT facility have demonstrated the effect of
mixing vanes on enhancing the downstream turbulent kinetic energy [17], which serves as a strong
component in augmenting heat transfer coefficient. Based on these experiments, Miller et al [18] and Riley
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et al [19] developed empirical correlations to account for the phenomenon in CTF. Motivated by
experimental findings, DNS simulations were conducted for Re;, = {5000,11000} (or Re, = {110, 230})
and a large volume of data, from probes shown in Figure 11.61, was collected to gain further insight into
the turbulent flow features in the primary domain.

Figure 11.61. Probe configuration for data collection on a plane (left). All planes, along axial length,
shown on right, totaling 84,908 probes.

11.3.2. Comparison with existing DNS Data

For comparison with existing DNS data, we focus on the results obtained for the plane at the inlet
of the primary domain. Most widely used benchmark DNS data in literature is provided by Lee et al [39]
for a typical flow channel. To enable a direct comparison with this data, the coordinate system is rotated,
for each probe location, as shown in Figure 11.61, from y — z to t — n, (rod) wall tangential-normal
direction, with the normal pointing into the sub-channel.
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Figure 11.62. Comparison of normalized mean streamwise and TKE profile with DNS data for a sub-
channel by Fang et al [40] and channel data by Lee et al [41].

Figure 11.62 shows the comparison of normalized mean streamwise velocity (Ut = U/u;) and
turbulence kinetic energy (TKE* = u/ul/2u?) with that of flow between parallel plates [39] and sub-
channel [40], albeit for different Re, values. Excellent agreement is obtained near the wall (y* < 5) for
both cases with existing DNS data, ensuring that the mesh resolution and selected probe resolution captures
the essential viscous sub-layer profile. The sub-channel results show the same trend of a decrease in the U+
value with increasing Reynolds number as that of channel data in the log-layer region (30 < y* < 100).
For the linear log law of the wall, k = 0.44 and 0.43 was obtained for Re,=110 and 230, respectively,
which are close to the widely accepted parameter, as given by Pope [42]. More relevant to the present study,
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Fang et al [40] provided k = 0.43 and 0.42, while B = 6.7, for their simulations in a PWR sub-channel
with similar dimensions, for Re, = 29,079 (Re, = 530) and 80,774 (Re; = 1300), respectively. The
normalized principal Reynolds stresses in the streamwise and tangential directions are shown in Figure
11.63, compared with the results of Lee et al [39]. Although a direct comparison is not feasible due to
difference in geometry and Re, values, the TKE and Reynolds stress profiles reveal important trend
similarities, especially in the near wall region with channel simulations. Similar to a simple channel, most
of the energy for the sub-channel geometry is contained in the streamwise fluctuations. Further, the TKE
and R,, values peak at approximately the same wall distance, (10 < y* < 15), and then decline through
the log-layer region. The log-layer trend for the tangential component R, is also very similar to the channel
data, with a peak obtained at y* ~ 40 for both geometries. However, the R, profile plateaus towards the
outer layers for the sub-channel more rapidly as compared to the channel data.
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Figure 11.63. Comparison of normalized streamwise and tangential Reynolds stress profile with DNS
data channel data by Lee et al [41].

11.3.3. Effect of Mixing Vanes on Downstream Turbulence

From the perspective of modeling the effects of spacer grids and mixing vanes on the convective heat
transfer enhancement, it is imperative to understand their effect on the downstream dynamics of the flow.
Figure 11.64 shows the normalized mean streamwise and tangential velocity profiles at two upstream
(including the inlet) and six successive downstream locations. Note that the trailing edge of the mixing vane
is located at the dimensionless axial distance of x/D, = 1.4. Evidently, the mixing vanes transfer a
significant amount of axial momentum of the flow to tangential components. The change in the streamwise
velocity profile is not significant in the near wall region (y* < 30), however, it is significantly reduced in
the immediate wake of the mixing vanes. The axial momentum is recovered to some extent as we move
further downstream from the trailing edge. There is a distinct transition in the lateral velocity profile at a
half distance, y* =~ 100, from the wall. The tangential velocity witnesses a very sharp increase in the near
wall region (y* < 20), followed by a decline in the transition layer region. At further distance downstream,
the tangential velocity in the near wall regions approaches zero, however, it is sustained in the bulk, in the
opposite direction.
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Figure 11.64. Comparison of upstream and downstream, relative to spacer-grid, normalized mean
streamwise and tangential velocity profiles.

Observing the normalized principal Reynolds stress profiles, shown in Figure 11.65, it is evident
that the mixing vanes impart a significant increase in energy to all components at the downstream
location. The gradients of R, and R, are increased in the near wall regions (y* < 10), as compared to
the upstream profile, and decrease progressively downstream. Further from the wall (30 < y* < 100)
the trend for downstream profiles of R, is similar to the upstream profile, however, further towards the
center of the sub-channel another component is added due to the presence of mixing vanes. An especially
sharp increase can be seen in the immediate wake of the mixing vanes. While the tangential component
is insignificant in the upstream region, it shows an almost five magnitude order increase in the region
y*t ~ 10.
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Figure 11.65. Comparison of upstream and downstream, relative to spacer-grid, normalized streamwise
and tangential Reynolds stress profiles.

A relatively dense distribution of probe planes, as shown in Figure 11.61, allows the study of axial
evolution of turbulence features. This data is pertinent to modeling in system thermal hydraulic codes, like
CTF, since they involve cross-sectionally averaged governing equations. Figure 11.66 shows the axial
evolution of principal Reynolds stresses and TKE for the Re, = 230 case. A sharp increase in the turbulent
energy is evident at the leading edge of the spacer and along the mixing vane profile, while the TKE
decreases monotonously in downstream region.
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Figure 11.66. Axial evolution of plane averaged, normalized principal Reynolds stresses and TKE for
Re; = 230 case.

Further details and comprehensive discussion on the mixing vane effect on downstream turbulence,
including the wall normal component of velocity and Reynolds stresses, the secondary stresses and
anisotropy can be found in Saini [29].

11.3.4. Two-phase Simulations

Among the critical observations and results presented by Bajorek et al [15] for experiments conducted
at the RBHT facility, the effect of heat transfer enhancement due to droplet collision with spacer-grid and
mixing vane structures was particularly underscored. Droplet collision and subsequent breakup and/or
deformation results in a very sharp increase in the interfacial area, which provides a positive feedback to
several heat transfer paths. The reported increase in heat transfer coefficient has been empirically correlated
to the Sauter mean diameter, which in turn was found to have a strong dependence on the upstream collision
Weber number.

The steam-water system cases, as listed in Table 11.18, were run for a total simulation time of ¢t =
{14.75,13.65,13.35}ms for We40, Web5 and We80 cases, respectively. The droplet volume fraction for
the cases at these time stamps were {3.14, 3.12, 2.91}%, respectively. Instantaneous velocity contours for
the steam-water system case with We, = 40 att = 14.75 ms and We,. = 80 att = 13.35 ms, are shown
in Figure 11.67. For the We40 case the observed diameter of the droplets at the downstream location is
evidently larger than the We80 case. For the former case, the droplets tend to coalesce into larger blobs
while for the We80 case smaller droplet diameters, but a larger number of individual droplets can be seen
in the domain, which is indicative of lower SMD value. Further, for the We40 case the droplets show a
greater tendency to develop a liquid film over the leading edge of the spacer-grid structure, owing to a
higher surface tension coefficient.
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Figure 11.67. Axial evolution of plane averaged, normalized principal Reynolds stresses and TKE for
Re, = 230 case.

11.3.5. Axial Evolution of Droplet Dynamics

To quantify the axial evolution of droplet dynamics from the two-phase simulations, the domain is
partitioned into 20 equi-spaced axial regions. The total droplet volume and interfacial area are captured at
each simulation time step for each partition, which then allows for the calculation of SMD and studying its
axial profile.

Figure 11.68 shows the time and cross-sectionally averaged profile of droplet volume and
interfacial area in axial partitions. A sharp increase is evident at the leading edge of spacer-grid owing to
droplet accretion due to collision, while a monotonous decrease is seen downstream of spacer-grid structure.
This is a result of the higher acceleration experienced by the daughter or deformed droplets due to increased
drag force relative to the gravitational force. The SMD profile is shown in Figure 11.69 and compared with
the empirical correlation suggested by Cheung et al [24] based on RBHT data. Figure 11.70 shows the
instantaneous SMD and time averaged profile for the We80 case, also compared with the existing CTF
correlation [43]. The results show good agreement of time averaged SMD with these correlations at the
downstream locations, Partition 14-19.
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Figure 11.68 Axial profile of time averaged droplet volume (left) and interfacial area in axial partitions

for all two-phase cases.
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Figure 11.69. Axial profile of time averaged SMD in axial partitions for all two-phase cases. The
values obtained with the RBHT correlation by Cheung et al [24] are also annotated.
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11.3.6. Effect of Droplets on Downstream Turbulence

The presence of droplets in the computational domain decreases the effective hydraulic diameter for
the steam/vapor flow. Thus, for the same flow rate maintained at the inlet cross-section, the droplets throttle
the bulk flow, which is expected to increase the overall turbulent kinetic energy. From Figure 11.71 it is
evident that the presence of droplets increases the streamwise velocity magnitude in the near wall region.

The effect is more pronounced for the immediate downstream location Di= 1.54 and the further
h

downstream location past the vanes, with the near wall U} profile at Di = 2.77 being almost identical. For
h

the tangential component, however, the presence of droplets attenuates the momentum imparted due to
- - - - - X

mixing vanes, as compared to single phase case, in the wall region at = 1.54. Away from the wall the
h

droplets do not seem to have a significant effect on the mean components besides some re-organization of
momentum.
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Figure 11.71. Comparison of normalized streamwise and tangential velocity for the single-phase and
We80 case.
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Figure 11.72. Comparison of normalized streamwise and tangential Reynolds stress for the single phase
We80 case.

The presence of droplets imparts a significant positive feedback, across the y* distance, to the
streamwise and tangential Reynolds stress components, especially at the immediate downstream location.
The feedback is attenuated as we move further downstream, nevertheless an increase in the streamwise and
tangential components is registered even at the x/D, = 2.77 location. The massive feedback at the
immediate downstream location can be owed to the mixing vane profile, which forces both the droplets and
the bulk flow towards the peripheral regions. The results highlight the importance of considering droplet
feedback to turbulence flow features and the need for modeling it in the DFFB regime.
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11.4. Path Forward

The objectives achieved in this project clearly demonstrated the value of high-resolution simulations
when the design and execution is implemented in collaboration with model developers and
experimentalists.

In the future, the data generated and the capabilities developed will be applied to relevant problems in
nuclear engineering thermal-hydraulics, including reactor operation and safety modeling problems. Of
particular interest is the application of novel machine-learning based methods for model development and
for gaining insight into flow physics.

The extensive data set provided (see data management, Section Error! Reference source not found.)
will allow future data mining efforts for advanced model development, as well as investigating new
algorithms for this data. The process, in turn, may identify additional fields and parameters which could be
extracted from high resolution simulations in the future.

To summarize, given the potential future funding, the following objectives can be addressed in future
projects:

e Apply and enhance interface tracking approach for a wide variety of two-phase flow problems
in nuclear reactor relevant geometries.

e Utilize DNS for many advanced reactor designs.

e Enhance data collection algorithms to be suitable for a variety of modern ML-based methods.

e Develop scalable training databases for ML algorithms to continuously improve the models as
more high resolution numerical and experimental data becomes available.

e Adding heat transfer / phase change effects (recently implemented in PHASTA) will greatly
enhance the range of problems which can be studied using this approach.

11.5. Conclusions

The key conclusions from this project contribution are:

e The research herein highlights the capability of PHASTA, coupled with level-set method, to
simulate the post-LOCA DFFB regime. Simulations with unprecedented resolution and fidelity
were performed to illuminate droplet dynamics in this critical PWR regime.

e Advanced high-resolution data collection tools are implemented in PHASTA which enable detailed
study of turbulence from DNS scale simulations, optimized for large scale supercomputers.

e The high spatial and temporal resolution of data collected from the single-phase and two-
simulations is archived and would, potentially, serve as a data mine for the development of machine
learning based turbulence and STH models.

e The results from single-phase simulations highlight the effect of spacer-grids and mixing vanes on
convective enhancement. Further, invariant analysis of the data reveals that the mixing vanes
modify the state of turbulence in the downstream region.

e The results from two-phase simulations emphasize the importance of considering droplet feedback
to turbulence, in addition to the enhancement provided by spacer-grids and mixing vanes. The SMD
results at the downstream locations match well with experimental data, establishing confidence in
PHASTA and the incorporated level-set method in simulating the DFFB regime.

o All tools are in place for a more extensive parametric study of the DFFB regime, with a range of
bulk Reynolds number and collision Weber numbers. Single droplet collision studies are
recommended for characterizing uncertainties associated with collision events.

e The most limiting assumption of the current simulations, in contrast to the real DFFB conditions,
is the lack of heat transfer modeling. Consideration of heat transfer mechanisms requires more
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extensive development efforts in PHASTA, including methods for phase change, conjugate heat
transfer and modeling of radiative heat transfer.
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12.Data-Driven Modeling and Validation Methods & Tools

This Chapter highlights key developments (by the project team and collaborators) in data-driven
methods for thermal-fluid modeling, error evaluation, validation, uncertainty quantification, and scaling
(scale bridging), including both STH and CFD.

12.1. Data-driven modeling (Hi2Lo)

Chih-Wei Chang and Nam Dinh, “Classification of Machine Learning Frameworks for Data-Driven
Thermal Fluid Models”, International Journal of Thermal Science, 135, pp.559-579, 2019.

Thermal fluid processes are inherently multi-physics and multi-scale, involving mass-momentum-
energy transport phenomena at multiple scales. Thermal fluid simulation (TFS) is based on solving
conservative equations, for which — except for “first-principles” direct numerical simulation — closure
relations (CRs) are required to provide microscopic interactions or so-called sub-grid-scale physics. In
practice, TFS is realized through reduced-order modeling, and its CRs as low-fidelity models can be
informed by observations and data from relevant and adequately evaluated experiments and high-fidelity
simulations. This paper is focused on data-driven TFS models, specifically on their development using
machine learning (ML). Five ML frameworks are introduced including physics-separated ML (PSML
or Type I ML), physics-evaluated ML (PEML or Type Il ML), physics-integrate ML (PIML or Type I11
ML), physics-recovered (PRML or Type IV ML), and physics-discovered ML (PDML or Type V ML).
The frameworks vary in their performance for different applications depending on the level of
knowledge of governing physics, source, type, amount and quality of available data for training. Notably,
outlined for the first time in this paper, Type Il models present stringent requirements on modeling,
substantial computing resources for training, and high potential in extracting value from “big data” in
thermal fluid research.

The current paper demonstrates and investigates ML frameworks in three examples. First, we utilize the
heat diffusion equation with a nonlinear conductivity model formulated by convolutional neural
networks (CNNs) and feedforward neural networks (FNNSs) to illustrate the applications of Type I, Type
I, Type 111, and Type V ML. The results indicate a preference for Type Il ML under deficient data
support. Type Il ML can effectively utilize field data, potentially generating more robust predictions
than Type | and Type Il ML. CNN-based closures exhibit more predictability than FNN-based closures,
but CNN-based closures require more training data to obtain accurate predictions. Second, we illustrate
how to employ Type | ML and Type Il ML frameworks for data-driven turbulence modeling using
reference works. Third, we demonstrate Type | ML by building a deep FNN-based slip closure for two-
phase flow modeling. The results show that deep FNN-based closures exhibit a bounded error in the
prediction domain.

Yang Liu, Nam Dinh, Yohei Sato and Bojan Niceno, ‘“Data-driven modeling for boiling heat transfer: using
deep neural networks and high-fidelity simulation results”, Applied Thermal Engineering, 144, pp.305-320,
2018

Chih-Wei Chang, Jun Fang and Nam Dinh; “Reynolds-Averaged Turbulence Modeling Using Deep
Learning with Local Flow Features — an Empirical Approach”, Nuclear Science and Engineering, VVol.00,
pp.1-15, 2020 (online January 2020).

Yangmo Zhu, Nam T. Dinh, Nadish Saini, Igor A. Bolotnov, “An adaptive knowledge-based data-

driven approach for turbulence modeling using ensemble learning technique under complex flow
configuration: 3D PWR sub-channel with DNS data”, Submitted for review, 2020
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This work describes a new approach to increase the accuracy of Reynolds- averaged Navier—Stokes
(RANS) in modeling turbulence flow leveraging the machine learning technique. Traditionally, different
turbulence models for Reynolds stress are developed for different flow patterns based on human
knowledge. Each turbulence model has a certain application domain and prediction uncertainty. In recent
years, with the rapid improvements of machine learning techniques, researchers start to develop an
approach to compensate for the prediction discrepancy of traditional turbulence models with statistical
models and data. However, the approach has deficiencies in several aspects. For example, the amount
of human knowledge introduced to the statistical model couldn’t be controlled, which makes the
statistical model learn from a very naive stage and limits its application. In this work, a new approach is
developed to address those deficiencies. The new approach uses the “ensemble learning” technique to
control the amount of human knowledge introduced into the statistical model. Therefore, the new
approach could be adaptive to the multiple application domains. According to the results of case studies,
the new approach shows higher accuracy than both traditional turbulence models and the previous
machine learning approach. Furthermore, the new approach shows better performance in predicting the
error caused by applying coarse mesh (insufficient mesh resolution) to the computational fluid dynamics
(CFD) simulation, which indicates the potential of the approach to save the computational expense of
RANS to the coarse-mesh level.

12.2. Data-driven error evaluation

Botros Hanna, Nam Dinh, Robert Youngblood, and Igor Bolotnov, “Coarse-Grid Computational Fluid
Dynamic Errors Prediction by Machine Learning”, Progress in Nuclear Energy, Vol.118 (2020) 103140
(online September 2019)

Computational Fluid Dynamics (CFD) is one of the modeling approaches essential to identifying the
parameters that affect Containment Thermal Hydraulics (CTH) phenomena. While the CFD approach
can capture the multidimensional behavior of CTH phenomena, its computational cost is high when
modeling complex accident scenarios. To mitigate this expense, we propose reliance on coarse-grid CFD
(CG-CFD). Coarsening the computational grid increases the grid-induced error thus requiring a novel
approach that will produce a surrogate model predicting the distribution of the CG-CFD local error and
correcting the fluid-flow variables. Given sufficiently fine-mesh simulations, a surrogate model can be
trained to predict the CG-CFD local errors as a function of the coarse-grid local flow features. The
surrogate model is constructed using Machine Learning (ML) regression algorithms. Two of the widely
used ML regression algorithms were tested: Artificial Neural Network (ANN) and Random Forest (RF).
The proposed CG-CFD method is illustrated with a three-dimensional turbulent flow inside a lid-driven
cavity. We studied a set of scenarios to investigate the capability of the surrogate model to interpolate
and extrapolate outside the training data range. The proposed method has proven capable of correcting
the coarse-grid results and obtaining reasonable predictions for new cases (of different Reynolds
number, different grid sizes, or larger geometries). Based on the investigated cases, we found this novel
method maximizes the benefit of the available data and shows potential for a good predictive capability.

Han Bao, Nam T. Dinh, Jeffrey W. Lane, and Robert W. Youngblood, “A data-driven framework for error
estimation and mesh-model optimization in system-level thermal-hydraulic simulation”, Nuclear
Engineering and Design, Volume 349, 1 August 2019, Pages 27-45

Over the past decades, several computer codes have been developed for simulation and analysis of
thermal-hydraulics and system response in nuclear reactors under operating, abnormal transient, and
accident conditions. However, simulation errors and uncertainties still inevitably exist even while these
codes have been extensively assessed and used. In this work, a data-driven framework (Optimal
Mesh/Model Information System, OMIS) is formulated and demonstrated to estimate simulation error
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and suggest optimal selection of computational mesh size (i.e., nodalization) and constitutive
correlations (e.g., wall functions and turbulence models) for low-fidelity, coarse-mesh thermal-hydraulic
simulation, in order to achieve accuracy comparable to that of high-fidelity simulation. Using results
from high-fidelity simulations and experimental data with many fast-running low-fidelity simulations,
an error database is built and used to train a machine learning model that can determine the relationship
between local simulation error and local physical features. This machine learning model is then used to
generate insight and help correct low-fidelity simulations for similar physical conditions. The OMIS
framework is designed as a modularized six-step procedure and accomplished with state-of-the-art
methods and algorithms. A mixed-convection case study was performed to illustrate the entire
framework.

12.3. Data-driven validation and uncertainty quantification

Yang Liu and Nam Dinh, “Validation and Uncertainty Quantification for Wall Boiling Closure Relations
in Multiphase CFD Solver”, Nuclear Science and Engineering. pp.1-19, 2018 (online Sep 2018)

Yang Liu, Nam Dinh, Ralph Smith, and Xiaodong Sun, “Uncertainty Quantification of Two-Phase Flow
and Boiling Heat Transfer Simulation Through a Data-Driven Bayesian Modular Approach”, International
Journal of Heat and Mass Transfer, Volume 138, August 2019, Pages 1096-1116

Yang Liu, Xiaodong Sun, and Nam T. Dinh, “Validation and Uncertainty Quantification of multiphase-
CFD solvers: A Data-Driven Bayesian Framework Supported by High-Resolution Experiments”, J. Nuclear
Engineering and Design, 2019, Vol.354, 110200, pp.1-19.

Yang Liu, Dewei Wang, Xiaodong Sun, Yang Liu, Nam Dinh, and Rui Hu, “Uncertainty quantification for
Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by
high-resolution experiments”, Reliability Engineering and System Safety, 2021 (in press).

In this paper, we developed a machine learning-based Bayesian approach to inversely quantify and
reduce the uncertainties of multiphase computational fluid dynamics (MCFD) simulations for bubbly
flows. The proposed approach is supported by high-resolution two-phase flow measurements,
including those by double-sensor conductivity probes, high-speed imaging, and particle image
velocimetry. Local distributions of key physical quantities of interest (Qols), including the void
fraction and phasic velocities, are obtained to support the Bayesian inference. In the process, the
epistemic uncertainties of the closure relations are inversely quantified while the aleatory uncertainties
from stochastic fluctuations of the system are evaluated based on experimental uncertainty analysis.
The combined uncertainties are then propagated through the MCFD solver to obtain uncertainties of
the Qols, based on which probability-boxes are constructed for validation. The proposed approach
relies on three machine learning methods: feedforward neural networks and principal component
analysis for surrogate modeling, and Gaussian processes for model form uncertainty modeling. The
whole process is implemented within the framework of an open-source deep learning library PyTorch
with graphics processing unit (GPU) acceleration, thus ensuring the efficiency of the computation. The
results demonstrate that with the support of high-resolution data, the uncertainties of MCFD
simulations can be significantly reduced.

12.4. Data-driven scale bridging

Han Bao, Nam Dinh, Linyu Lin, Robert Youngblood, Jeffrey Lane, Hongbin Zhang, “Using Deep Learning
to Explore Local Physical Similarity for Global-scale Bridging in Thermal-hydraulic Simulation”, Annals
of Nuclear Energy journal Volume 147, November 2020, 107684
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Current system thermal-hydraulic codes have limited credibility in simulating real plant conditions,
especially when the geometry and boundary conditions are extrapolated beyond the range of test
facilities. Because mesh size is one of the model parameters for these coarse-mesh codes with simplified
boundary-layer treatments, the mesh-induced error and model error are tightly connected, which makes
it difficult to evaluate mesh effect or model scalability independently, as in classical scaling analysis.
This paper proposes a data-driven approach, Feature-Similarity Measurement (FSM), to establish a
technical basis to overcome these difficulties by exploring local patterns using machine learning. The
underlying local patterns in multiscale data are represented by a set of physical features that embody the
information from a physical system of interest, empirical correlations, and the effect of mesh size. After
performing a limited number of high-fidelity numerical simulations and a sufficient amount of fast-
running coarse-mesh simulations, an error database is built, and deep learning is applied to construct and
explore the relationship between the local physical features and simulation errors. As a result, a data-
driven model can be developed to provide an accurate estimate on the simulation error even when global-
scale gaps exist. Case studies based on mixed convection have been designed for demonstrating the
capability of data-driven models in bridging global-scale gaps.

12.5. Concluding Remarks

At the time of the IRP proposal submission (2015-2016), data-driven methods in thermal fluid applications
were in infancy. The investigations conducted in this project were exploratory; the developments were
cutting-edge, building on advances in artificial neural networks (ANN), particularly “deep learning”.
During the last three years, we witness a wave of interests in machine learning applications in thermal-fluid
process modeling, validation, and uncertainty quantification. There is a critical mass of interests, talents,
and technical capabilities to explore and exploit the potential of this new approach. However, it also
becomes evident that data, both quantity and quality, present a bottleneck in data-driven methods’ success
in new and complex applications.
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13. Data Management Infrastructure to Support Validation Activities

13.1. Introduction

High-fidelity simulations (including CFD and DNS) and advanced experiments produce an
unprecedented amount of data. However, the conventional framework was developed in the era when data
storage and transfer were a weaker link. As a solution, empirical correlations were developed through
experts’ insight of the physics model. While methods of the formula and equation-centric era still remain
important, they face increasing challenges from rapid data explosion. Their incapability in capturing and
handling massive data, data irregularities, and complicated data interrelationships have resulted in
considerable amount of data archives, experimental and computational, becoming corrupted,
misinterpreted, and partially or completely lost over time.

To find solutions and address this problem, a complexity reduction approach is considered that would
allow analysts to use high-fidelity models without having to develop empirical formulas. While the high-
fidelity models can describe the system behavior at the finest scale, the range of model applicability often
introduces numerous constrains, significantly reducing the effective dimensionality of the resulting
datasets. This implies that the datasets are highly correlated with their true dimensionality much smaller
than their nominal dimensionality. It has been shown by Bang, et. al. that reduced order modeling
techniques can be used to identify so-called active degrees of freedom that can be used to reconstruct the
big datasets from other datasets of much smaller dimensions, with the reconstruction errors being upper-
bounded by preset tolerances over the wide range of conditions expected for model application (Bang, et
al., 2012). This tactic not only affords a computationally efficient approach to processing and storing
datasets, but also allows for much smaller number of metrics that can be used as a basis for the validation
of large volume datasets associated with the high-fidelity models.

In the conventional equation-centric paradigm, four steps are involved in the workflow, i.e., (i) data
analysis, (if) model/correlation development, (iii) validation against data and quantification of uncertainty,
and (iv) relevant data. In the new data-centric paradigm employed in the data-driven methodology, the
workflow skips the two middle steps and goes directly from (i) data analysis to (iv) relevant data.
Significant biases associated with (ii) and (iii) are thus eliminated. As more relevant data become available,
the simulation becomes increasingly accurate. There is no data wasted in this framework. Validated
simulations per se also become “data”. Simulation control becomes knowledge management. Furthermore,
it generates an incentive for community collaboration, with the common goal of reducing uncertainty
through data sharing, experimental and computational alike. It follows that this new paradigm requires
analytical capability to manage the data and complicated data interrelationships to ensure correct
interpretation, extraction, and use of the data.

To achieve the data-driven goals, an advanced data management system is required to systematically
collect, process, and manage data, and support all the relevant data operations on massive machine-readable
data records. The system must meet the following requirements:

1. For infrastructure, tools, and protocols it should provide:

e A web-accessible, searchable, quality-assessed, and user-friendly Database Management
System.

e Asecure and access-controlled knowledgebase in compliance with partners-agreed technology
control plan protocols.

e A sustained platform enabling data (experimental, industrial, computational) collection,
qualification, and preservation for a broad range of users, including non-developers and
posterity.
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e An efficient system with high traceability, accountability, and advanced data manipulation
functionalities.

e Application Programming Interfaces (APIs) customized for intended simulation codes and
Verification and Uncertainty Quantification (VUQ) analytical tools for data analytics, data
mining, and data assimilation.

2. VUQ-enabling functionalities must be provided to ensure viable, effective workflows and protocols
for collecting, assessing, processing, and managing validation data.

3. A Data File Warehouse is needed to support the following functions:
e Data identification for preservation.
e Data collection (primary sources of data in various types of electronic files such as
spreadsheets, videos, photos, etc.).
e Data tracking (data provenance and pedigree).
e Data qualification (data quality assessment).

4. A Relational Digital Database is required to offer high traceability, accountability, and advanced
data manipulation functionalities.

5. The system must provide functionalities that support predictive models (specified bounds for
predictions):

e Systematic and iterative evaluations.

e Data characterization, i.e., assess, categorize, and rank the scalability, relevancy, and
uncertainty of data for use in total data integration.

o Data reconfiguration, i.e., converse/homogenize data of different types to formats compatible
with VUQ methods, including converting raw data in analog media into digital data formats,
reprocessing legacy data, and reformatting data as needed.

e Interoperability, i.e., directly exchange data between the Relational Digital Database and the
VUQ or simulation software in an automated fashion, with searching, sorting, and filtering
capabilities.

6. The system must provide features that facilitate verification and validation activities:
e Amenable to processing (with statistical and optimization methods and tools)

Specialized strict input, flexible, unlimited output/extraction

Creating dataset guided by questions Graphic User Interfaces (GUIs)

Knowledge accumulation (accumulative experience of using datasets)

7. The system must support integration of new and legacy experimental data for use in VUQ and
M&S.

8. Compatible with engineering practice (current, and provision for future), e.g., VUQ methodologies
including NRC regulatory guide.

Development of such a system requires considerable resources and time, which is obviously beyond
the scope of the present project. A pragmatic approach would be to piggyback on an existing system and
leverage its sustained resources and administrative support.

During the proposal preparation of the present project, the Department of Energy (DOE) was initiating
the Nuclear Energy Knowledge and Validation Center (NEKVAC) in response to the strong support and
recommendations from stakeholders at an Atlanta workshop organized in 2015 by DOE and the ldaho
National Laboratory (INL) to brainstorm for developing such capabilities and particularly for advancing
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the theory and practice of simulation code validation in the service of the nuclear industry. The NEKVAC
was organized to operate through a Directorate composed of the Steering Committee, the Methods and
Guidelines Committee, and a Knowledge Management Committee, with stakeholder members from
government, academia, and industry organizations (Gougar, 2015). In addition to the three committees, the
workshop also recommended establishing a knowledgebase and simulation code validation system using
the Nuclear Energy Knowledgebase for Advanced Modeling and Simulation (NE-KAMS) Demo and the
Radiation Safety Information Computational Center (RSICC) resources at the Oak Ridge National
Laboratory (ORNL) to provide a tangible framework to support NEKVAC development and operation. It
followed that as NEKVA took off, NE-KAMS would provide an ideal infrastructure to host the data for the
present project, ensuring their compatibility with validation and uncertainty quantification, and most
importantly, serving as a Validation Data Management System (VDMS) to implement the new data-centric
paradigm. The homepage for NE-KAMS login is presented in Figure 13.1.

" NF-KAMS

U.S. DEPARTMENT OF

ENERGY

Nuclear Energy

Logon

Figure 13.1. Homepage of NE-KAMS for authorized user login at http://nekams.ornl.gov/

The NE-KAMS Demo was sponsored by the DOE Nuclear Energy Advanced Modeling and
Simulation (NEAMS) Program specifically to support verification and validation of advanced modeling
and simulation [Lee, et. al., 2012; Ren, 2012; Lee, et. al., 2013]. Its development at the time was focused
on a Data File Warehouse section to store and manage fluid dynamics and thermal hydraulics data files as
foundation for further development of a Digital Database section to manage machine-readable digital data
records. Standards and requirements for fluid dynamic code verification and validation data were also
developed and archived in the NE-KAMS Data File Warehouse (Mousseau, et. al., 2011). To strive for
time and cost efficiency, the NE-KAMS Demo was created in DOE’s Gen IV Database Infrastructure that
supports the Gen IV Materials Handbook project to manage nuclear materials data contributions from
Canada, China, European Union, France, Japan, Korea, South Africa, Switzerland, and United States for
international collaboration in development of the Generation IV Nuclear Energy Systems [Ren, 2008; Ren,
2013]. Over a decade of evolution, the infrastructure successfully fostered development of several other
database and knowledgebase systems to support various programs, which included the Nuclear System
Materials Handbook Database for all existing domestic reactor systems, the ASME Materials Properties
Database for codes and standards of the American Society of Mechanical Engineers (ASME) (Ren, et. al.,
2011a), and the Nuclear Concrete Materials Database for the Light Water Reactor Sustainability Program
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(Ren, et. al., 2010; Ren, et. al., 2011b). To support the NEKVAC, a sophisticated implementation plan was
developed for expansion and operation of NE-KAMS Demo (Ren, et. al., 2015). The plan considered
prospective NE-KAMS users from government, academia, and industry organizations, offering an excellent
opportunity for leverage by the present project.

13.2.  Scope of Work

The Oak Ridge National Laboratory would provide the NE-KAMS System to support the present
project in data collection and management, verification and validation of simulation results, as well as other
related activities. Documents generated from the project, including publications, presentations, and
important project files considered worth preserving, would also be uploaded to NE-KAMS and maintained
in a well-organized fashion for posterity retrieval. Based on the collected simulation and experimental
results, reliable predictions or development of new experiments would be suggested by NE-KAMS through
its data mining functionality. Authorized participants of the present project would be provided with
different access privileges needed for conducting their tasks. The developed was expected to create a NE-
KAMS-based archive of validation data for scenarios considered in two Risk-Informed Safety Margin
Characterization (RISMC) applications, i.e., flooding hazard simulation and analysis; and reactor system
thermal-hydraulic analysis. Because these applications would involve new data types and unique
information management functionalities and tools, requirements from RISMC methods and toolkit would
necessitate modification and adaptation of the NE-KAMS System. Further, the development was also
expected to provide advice and support in formulating requirements of RISMC-VDMS as a knowledge
management system that is scalable and improvable, with growth potential through RISMC applications.

In the blueprint for development and implementation of RISMC-VDMS, the RISMC-VDMS was
designed to initially consist of a validation data file warehouse, relational digital databases and associated
interfaces and utilities, to provide support for a range of activities, namely (a) collection, documentation,
and preservation of validation data into one data repository; (b) analysis, qualification and characterization
of data; (c) processing, formatting, and archiving data for rapid and coherent access and use in VUQ
activities and advanced M&S development via the construction of relational databases. Structural design
of the system is presented in Figure 13.2.

NEKAMS

‘ Web Service Interface

‘ e |
: | |
Verification | N

Validation

"' Computational Result UQ

Experimental - . ‘ g . ey Ivsi
\ Tests ———"" Data Processing — Simulations Analysis

Data Flow Work Flow

Figure 13.2. Structural design of the RISMC-VDMS of integrated data management, processing, and
analysis workflow with NE-KAMS
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Obviously, the desired development and implementation of RISMC-VDMS would require
considerable effort in NE-KAMS structural and functional expansions. Since NE-KAMS was developed
under the sponsorship of DOE for the specific purpose of supporting nuclear data collection and knowledge
management, with the preparation of NEKVAC intensely underway, it was reasonably assumed that its
further development under NEKVAC would provide adequate resources to support the needed expansion
that could be leveraged by the present project.

13.3. Key Findings

To support the present and other DOE projects, the NE-KAMS Demo was upgraded to NE-KAMS
Version 1.0 consisting of the following compartments with evolutionary expansions whenever resources
became available under a piecewise development strategy.

Operation Instructions
Reports

Experiment Unit Files
Material Property Files
Fluid Property Files
Test Data Files
Information Permit
Quality Assessment
Quality Assurance
External Resources
Presentations
References
Terminology Definitions

Each compartment is composed of a specific database schema that matches the data structure of the
specific information domain. For example, Compartment Experiment Unit Files includes the following
headings each containing a unique group of attributes:

General Information
Facility Information
Structure and Geometry
Surface Roughness
Invasive Instrument
Non-Invasive Instrument
Data Acquisition System
Test Control System
Related Records

Record Management Information
Further Information

The access control system of NE-KAMS has been configured with two types of access privileges for
the present project, i.e. READ users who can review and download data, and EDIT users who can review,
download, upload, and edit data. Some project team members that needed NE-KAMS have been identified
and granted access. NE-KAMS compartments that are applicable to the present project have also been
configured with areas for “NCSU Released” and “NCSU Preparing,” respectively. The “NCSU Released”
areas are dedicated to data generated from this project that are qualified for public access. All NE-KAMS
users can access such data. The “NCSU Preparing” areas are dedicated to data still under preparation. Only
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the project EDIT users can access such data before the data are ready for release and moved to the “NCSU
Released” areas.

Using the “NCSU Released” and “NCSU Preparing” structure in the Test Data Files Compartment,
some test data file files were prepared, uploaded, and released. Asshown in Figure 13.3, expandable folders
named “NCSU/Thermal Hydraulics Test Data Files/Released” and “NCSU/Thermal Hydraulics Test Data
Files/Preparing,” respectively, are found in the compartment directory of the left pane. The first test data
record is displayed in the right pan with test parameters and downloadable test result data files, as shown
in Figure 13.3 (a). The records are hyperlinked at the bottom, as presented in Figure 13.3 (b), to their related
records in other compartments so that users can browse conveniently through the information chain to
understanding the data interrelationships and correctly interpret and use the data.
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Figure 13.3. Data released and preparing areas for the present IRP in the Test Data File Compartment
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Because a lot of important information of the project is summarized and reported in the periodic review
meetings, a compartment for preservation of the meeting presentations was also developed for this project,
as shown in Figure 13.4. These presentations provide auxiliary information for monitoring the project
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progress, and more importantly, for understanding of the rationales of the validation data generation to
ensure correct interpretation and use of the data, particularly for posterity who most likely will not have the
full background knowledge that the present project participants have.

Validation of Advanced Modeling and
Simulation: an Imperative

ics Model i Vorkshop
NCSU, Raleigh

Lo HMsssseaeeeReEEE . - 515

June 27-29, 2017

Figure 13.4. The Presentation Compartment and a record for the welcome and opening presentation for
the Multiphysics Model Validation Workshop hosted by this IRP at NCSU in June 2017.

As the first step to provide APIs customized for the intended simulation codes and VUQ analytical
tools for data analytics, data mining, and data assimilation, a data exchange web service interface was
developed and successfully tested, in which the web service interface enabled a project participant at NCSU
to access NE-KAMS data at ORNL from his computer at NCSU, and retrieved the data to remotely upload
the data into a server at NCSU.

As previously discussed, the NE-KAMS structural and functional expansions required for
development and implementation of RISMC-VDMS for the present project would largely rely on the NE-
KAMS development under NEKVAC for adequate resources. With the initiation of NEKVAC intensely
underway at the time, it was reasonably assumed that the required support would become available.
Unfortunately, the situation did not pan out the desired way. NEKVAC was put on hold and eventually
dissolved, despite the strong needs and the serious lack of effective information and knowledge
management for advance modeling and simulation.

The dissolution of the NEKVAC had a significant negative impact on the present project. The
ongoing development of schema for experiment data and simulation data was forced into a halt, and the
work on V&V database infrastructure was also slowed down. Eventually it became clear that the desired
structural and functional expansions of NE-KAMS could not be fully implemented during the period of this
present project.

To prevent information loss and prepare for future opportunities, documents generated from the
present project such as R&D reports, dissertations, and technical publications were preserved in NE-
KAMS. For test data of large volumes, index records were created in NE-KAMS with descriptions of the
data, background information, data structures, and hyperlinks to the data depositories so that posterity can
correctly understand the information generated from the present project and easily locate the data when
needed.
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13.4. Path Forward

In order to ensure successful further development of the data-driven methodology, a major issue that
must be addressed is the current lack of efficient knowledge management systems customized with a
validation data structure. One of the major characteristics that made NE-KAMS stand out from the crowd
during the INL-led nationwide survey of existing database systems for developing such a system was its
customizable management of data and data interrelationships based on the data structure of interest [Lee,
et. al., 2012]. The importance of customizable management of data and data interrelationships can be
illustrated using Figure 13.5, where each circle represents a model, which may comprise multiple sub-
models; and each line indicates a relation between the two models. The sub-models and sub-
interrelationships multiply inside each circle. Data from the models and sub-models reflect the complex
structure. Obviously, to fully develop the data-driven methodology, the complicated data interrelationships
must be accurately maintained so that the information can be correctly interpreted, understood, and used
with confidence.
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Figure 13.5 A schematic of multi-fluid dynamics modeling and simulation that demonstrates complexity
of interrelationships among data generated.

Another major issue that must be addressed for successful development in the data-driven
methodology is the sparse of validation data. This issue mainly has two folds: 1) the lack of qualified data,
and 2) the lack of awareness about existing data. As more projects are conducted, more and more data will
be generated to gradually improve the lack of qualified data situation. However, without a go-to focal point
that registers and manages the characteristics and locations of all the generated data on a national or
international scale, many datasets generated at high cost and stored in various places can quickly fade into
oblivion.

In preparation for NEKVAC, a detailed implementation plan was developed by ORNL to delineate
path forward in modernizing knowledge management for advanced simulation and modeling [Ren, et. al.,
2015]. Today, the major principles and strategies discussed in the plan still provide valid guidance for path
forward to support the data-driven methodology and other simulation and validation activities.
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14.Project Data Management

14.1. High-Fidelity Simulation to Support System Thermal-Hydraulics Model Validation
Data Access

The data repository from the single and two-phase simulations is archived on the twophase system at
North Carolina State University’s (NCSU) Nuclear Engineering department. To access the repository a user
account needs to be created on the system. Contact Nadish Saini (nsaini3@ncsu.edu) or Igor Bolotnov
(igor_bolotnov@ncsu.edu) for access to the machine and appropriate data archive.

To log into the machine from within the NCSU network, ssh using (replace ‘user’ with your username):

ssh -Y user@twophase.ne.ncsu.edu

If the user is outside the NCSU network, contact the above administrators for further instructions on getting
access.

Repository Location
The single-phase instantaneous data for probe locations shown in Figure 11.61 are located at:
/home/nsaini3/CASES/summer2019/singlephasethermal

The above directory includes four Reynolds number cases € Re, = [5000, 20000]. The binary files for
instantaneous data for any given case are in:

/home/nsaini3/CASES/summer2019/singlephasethermal/Re11000/newvarts
Data for the two-phase cases have a similar directory structure. They are located at:
/home/nsaini3/CASES/summer2019/twoPhase
Data Format
The instantaneous data is written from PHASTA in big endian binary format. Each single-phase
contains data collected from 84,908 probes, with 28 variables written for each probe. The variable

arrangement for a probe is as follows:

ou 0v ow Ou 0v ow du dv Ow OT OT OT dp dp dp 0%u 0%v 0*w
DUV, W, AL —,—— = e e e e e e e e e e e

Here x,, y,, z, are the probe coordinates, p and T are pressure and temperature, respectively, while the
other variables are self-explanatory. Each instantaneous data file contains data written for 100 simulation
time steps.
For the two-phase simulations, 9 variables were recorded arranged as,

D, U, v,w,At, xp, Yy, Zp, ¢

where, ¢ is the local level-set field value at the probe location.

273


mailto:nsaini3@ncsu.edu
mailto:igor_bolotnov@ncsu.edu

Data Processing: Extracting Turbulent Statistics

Python scripts for extracting turbulent statistics are located at the following Github repository:
https://github.com/nandu90/dataDriven_IRP.

Owing to the large amount of instantaneous data and required memory requirements, the data is
processed for each probe plane, as shown in Figure 11.61, separately. The necessary input file for running
the Python script is inputs. txt. Details of the inputs are specified in the file. The most important inputs
are described below:

inistep 5500 #Initial time step of binary file

laststep 9500 #Final time step of binary file

nprobes 84908 #Total number of probes

nsteps 100  #Total time-steps in each file

nplot 0 #Index of plane for which data is #to be extracted (0-29)

Rotate 0 #Rotates coordinate system to #tan-norm system with respect to #fuel rod walls

In the above example, the total number of time steps considered for averaging is 4000 (laststep-
inistep). nplot parameter specifies the index of the plane, starting from the inlet of primary domain, Figure
11.60, for which the user chooses to extract the mean quantities. Rotate is a flag used to rotate the lateral
coordinates to tan-norm system as described in Figure 11.61, necessary for comparing the statistical results
with the existing DNS data, for instance the results shown in Figure 11.62. All output files are written in
the output/pln_** directory. It contains CSV files for probe coordinates, mean velocities and Reynolds
stresses.

14.2. Experimental Data to Support System Thermal-Hydraulics Model Validation

The processed data was properly stored for the future usage. Three ways of data storage were used:
the virtual container in the DataFrame format supported by Pandas (for numerical values), which is a python
package, cloud storage (for imagery information), and the one in compliance with the Nuclear Energy
Knowledgebase for Advanced Modeling and Simulation (NE-KAMS). The list of large datasets is as
follows:

Table 14.1. List of large datasets.

Dataset Description Type Size Storage
(Gb) Location

YOOP1 y = 0 mm, operating condition 1 Images, Numeric 2.1 Pandas, Cloud
YOOP2 y = 0 mm, operating condition 2 Images, Numeric 2.5 Pandas, Cloud
YOOP3 y = 0 mm, operating condition 3 Images, Numeric 3.1 Pandas, Cloud
YOOP4 y = 0 mm, operating condition 4 Images, Numeric 2.9 Pandas, Cloud
YOOP5 y = 0 mm, operating condition 5 Images, Numeric 3.6 Pandas, Cloud
Y-40P1 y = -4 mm, operating condition 1 Images, Numeric 2.7 Pandas, Cloud
Y-40P2 y = -4 mm, operating condition 2 Images, Numeric 2.3 Pandas, Cloud
Y-40P3 y = -4 mm, operating condition 3 Images, Numeric 2.2 Pandas, Cloud
Y-40P4 y = -4 mm, operating condition 4 Images, Numeric 3.5 Pandas, Cloud
Y-40P5 y = -4 mm, operating condition 5 Images, Numeric 3.7 Pandas, Cloud
Y40P1 y =4 mm, operating condition 1 Images, Numeric 1.7 Pandas, Cloud
Y40P2 y =4 mm, operating condition 2 Images, Numeric 2.6 Pandas, Cloud
Y40P3 y =4 mm, operating condition 3 Images, Numeric 3.4 Pandas, Cloud
Y40P4 y =4 mm, operating condition 4 Images, Numeric 3.2 Pandas, Cloud
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Y40P5 | y = 4 mm, operating condition 5 Images, Numeric 2.7 Pandas, Cloud
14.3.  Multi-Level Simulation to Support External Flooding Model Validation

14.3.1. Enhanced Spatial Resolution of Subdomain Meshes

Hundreds of terabytes of data are generated in ADCIRC full domain and subdomain simulations.
These datasets include maximum elevation data, elevation time series, velocity time series, and boundary
condition data. Considering the size of these datasets, they are archived and stored on servers at the United
States Army Corps of Engineers, which have the capacity to store them.

Each case study considered is organized as follows:
Directory Name: StormName_Case StudyID/
Subdirectories:
(1) RefinedFull_NoProject

Input Files
a. ADCIRC mesh,
b. Meteorological data,
c. Nodal attributes file,
d. Full domain control file?

Output Files
e. Elevation time series
f.  Velocity time series
g. Maximum Elevation data
h. Boundary conditions for all specified subdomains

(2) RefinedFull_WithProjectl

Input Files
a. ADCIRC mesh,
b. Meteorological data,
c. Nodal attributes file,

Output Files
d. Elevation time series
e. Velocity time series
f.  Maximum Elevation data

(3) RefinedFull_WithProject2

Input Files
a. ADCIRC mesh,
b. Meteorological data,
c. Nodal attributes file,

1 Recorded in this file are boundary node numbers of subdomains mapped to full domain node numbers
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Output Files
d. Elevation time series
e. Velocity time series
f. Maximum Elevation data

(4) RefinedFull_WithProject3

Input Files
a. ADCIRC mesh,
b. Meteorological data,
c. Nodal attributes file,

Output Files
d. Elevation time series
e. Velocity time series
f. Maximum Elevation data

(5) Subdomains_WithProject:

Input Files
a. Shape file (geometry using subdomain modeling scripts)
b. ADCIRC sub mesh,
c. Subdomain mapping files?
d. Meteorological data,
e. Nodal attributes file,

f.  Subdomain boundary conditions file
Output Files

g. Elevation time series

h. Velocity time series

i. Maximum Elevation data

ADCIRC-Neutrino coupling. For this effort, the case studies considered are relatively simple and
small. Thus, datasets are stored on desktop computers at USACE by Bukhari.

Each case study considered is organized as follows:
Directory Name: Case StudyID/

Subdirectories:

(1) Full domain includes the following files:

Input Files

a. ADCIRC mesh,

b. Meteorological data,

c. Nodal attributes file,

d. Full domain control file
Output Files

e. Elevation time series

f.  Velocity time series

2 Includes information of how subdomain nodes map to full domain nodes
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g. Maximum Elevation data
h. Boundary conditions for all specified subdomains

(2) SubdomainAroundNeutrinoDomain:

Input Files
a. Shape file (geometry using subdomain modeling scripts)
b. ADCIRC sub mesh,
c. Subdomain mapping files
d. Meteorological data,
e. Nodal attributes file,

f.  Subdomain boundary conditions file
Output Files
g. Elevation time series
h. Velocity time series
i. Maximum Elevation data

(3) ADCIRCSubDataToNeutrinoData:
Input Files
a. convertAdcirc2Neutrino.py
b. stations.dat
c. elevation time series
d. velocity time series

Output Files
e. SWhData.csv

14.3.2. Verification and Validation

Datasets, models, and tools are maintained online in publicly accessible repositories, as described below.
Alloy Case Studies on Scientific Computing

Hurricane storm surge, sparse matrix computations, and other verification studies are maintained here:

https://people.engr.ncsu.edu/jwb/alloy/

Sterling Visualizer for Alloy

Sterling is Alloy extended to include visualizations generated using the alloy-js library. A local
webserver is created when Alloy is initialized, and instance data is served automatically as solutions
are found. The alloy-js library and supporting web pages are included to generate visualizations in the
browser automatically.

The focus of this project is bringing better visualization techniques to Alloy, and so the name Sterling
seemed particularly appropriate. After all, sterling silver is an alloy of silver that is generally used to
make things that look nice.

Sterling website: https://sterling-js.github.io/

Github repository: https://github.com/alloy-js/sterling
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Components and Directory Structure
We make use of the following tools:

Gradle: Build tool responsible for gathering dependencies and generating the JAR file.
Shadow: Gradle plugin used to create a fat JAR.

Spark: Small webserver framework used to communicate with the browser.

Alloy: Currently using Alloy 5.0.0.1

The project is laid out as follows (italicized items are not included in the repository but are generated
by building the project):

e Dbuild/
o libs/
= Sterling-*.jar - The Sterling JAR file
e gradle/ - Gradle wrapper directory (more info)
e libs/ - Directory containing regular Alloy JAR files

e src/
o main/
= java/
— gui/ - The main Alloy GUI (alloy4whole)
— server/ - The Spark server code for communicating with the browser
— sterling/ - Entry point and various Sterling specific classes
— viz/ - The Alloy visualization window (alloy4viz)
= resources/
— public/ - Directory containing all web pages and Javascript to display
visualizations
o build.gradle - The gradle build file that contains dependencies and build instructions
e gradlew - The gradle wrapper script (more info)
e gradlew.bat - The gradle wrapper script for Windows (more info)
e README.md - This file
e settings.gradle - The gradle settings file

14.4. SPH Simulation to Support External Flooding Model Validation

e Asimulation with a particle size of 0.01 m (181,387 fluid particles total) takes about 16.7 hours for
30 cycles using an Intel Xeon central processing unit E5-2683 v3 @ 2.00 GHz with 28 core and 56
logical processors.

e Pressure data from the experiments was provided in 4 CSV format giving the time and pressure
value for the four test cases. For validation 6 neutrino scene files were generated and used to reach
optimal results. Results files from the simulations generated 6 pressure field result files.

e For the significant parameter work modified one main neutrino scene file into 35 varying scene
files. The simulations resulted in 35 pressure field result files.
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