
Energetic basis for calcium phosphate mineralization
by amelogenin variants: Insights into the origin of
amelogenesis imperfecta
Jinhui Taoa, Yongsoon Shina, Rajith Jayasinhaa, Garry W. Buchkoa,b, Sarah D. Burtona, Alice Dohnalkovaa,
Zheming Wanga, Wendy J. Shawa, and Barbara J. Tarasevicha,1

aPacific Northwest National Laboratory, Richland, WA 99354;Q:8 and bSchool of Molecular Biosciences, Washington State University, Pullman, WA 99164

Edited by David Baker, University of Washington, Seattle, WA, and approved May 20, 2019 (received for review October 1, 2018)

Small variations in the primary amino acid sequence of extracel-

lular matrix proteins can have profound effects on the biominer-

alization of hard tissues. For example, a change in one amino acid

within the amelogenin protein can lead to drastic changes in

enamel phenotype, resulting in amelogenesis imperfecta, enamel

that is defective and easily damaged. Despite the importance of

these undesirable phenotypes, there is very little understanding of

how single amino acid variation in amelogenins can lead to mal-

formed enamel. Here, we aim to develop a thermodynamic un-

derstanding of how protein variants can affect steps of the

biomineralization process. High-resolution, in situ atomic force mi-

croscopy (AFM) showed that altering one amino acid within the

murine amelogenin sequence (T21I, P41T, and P71T) resulted in an

increase in the quantity of protein adsorbed onto hydroxyapatite

(HAP) and the formation of multiple protein layers. Quantitative

analysis of the equilibrium adsorbate amounts revealed that the

protein variants had higher oligomer–oligomer binding energies.

MMP20 enzyme degradation and HAP mineralization studies

showed that the amino acid variants slowed the degradation of

amelogenin by MMP20 and inhibited the growth and phase trans-

formation of HAP. We propose that the protein variants cause

malformed enamel because they bind excessively to HAP and dis-

rupt the normal HAP growth and enzymatic degradation pro-

cesses. The in situ methods applied to determine the energetics

of molecular level processes are powerful tools toward under-

standing the mechanisms of biomineralization.

biomineralization | protein adsorption | amelogenin

The biomineralization of hard tissue structures is guided by
proteins that are excreted into extracellular spaces, initiating

nucleation and controlling mineral growth. Tooth enamel is an
exquisite example of a biomineral that is controlled by proteins,
primarily amelogenin, the dominant protein in the enamel ex-
tracellular matrix (1). In normal enamel formation, ameloblasts
secrete wild-type amelogenin and other proteins into the extra-
cellular matrix. Amorphous calcium phosphate (ACPQ:10 ) particles
nucleate and grow within the protein matrix to form long, thin
structures that are oriented parallel to each other and are sep-
arated by protein matrix (2). The needle-like structures continue
to grow lengthwise as the ameloblasts retract from the growth
front. In vitro (3) and in vivo (2) studies have shown that ame-
logenin monomers self-assemble into quaternary structures
called oligomers and nanospheres. These protein structures can
bind onto hydroxyapatite (HAP) and affect the growth (4),
crystallite aspect ratio (5), and spacing of the crystallites (6).
Enzymes are secreted during the secretory stage (MMP20) and
beginning of the maturation stage (KLK4) of amelogenesis and
proteolytically degrade the extracellular matrix proteins (7).
Protein degradation and removal corresponds to transformation
of the amorphous needles into HAP (8), the widening of the
crystals laterally, and a resulting structure that is 95% mineral.
Adjacent crystals coalesce into the unusually long and highly aligned

rods that contribute to making enamel one of the hardest minerals
formed biologically (1).
When ameloblasts secrete amelogenins altered by one amino

acid into the extracellular matrix, there are dramatic changes in
the enamel phenotype resulting in enamel that is defective and
easily damaged. This phenotype is called amelogenesis imperfecta
(9, 10) and can be caused by point mutations on the AMELX
gene (11, 12). The most commonly studied single amino acid
variants are T21I and P41T. For example, mice containing a
transgene resulting in the P41T variant of amelogenin resulted in
enamel that was rough and very thin (13). There is very little
known about how changing one amino acid residue in the protein
can affect the HAP mineralization process so drastically. The
protein variants could alter the important steps involved in normal
enamel formation: amelogenin binding to growing crystals, enzy-
matic degradation behavior, and crystal growth and morphology.
Previously, we employed high resolution, in situ atomic force
microscopy (AFM) to study the energetics of amelogenin binding
and the identification of adsorbed structures onto single crystal
HAP (100) to elucidate how protein binding can control enamel
formation (14). In this work, we aim to develop an energetic de-
scription of how single amino acid variants of amelogenin can
affect steps of the biomineralization process compared with wild-
type amelogenin. An understanding of how subtle changes in
biomacromolecule sequence affect mineralization processes can
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greatly contribute to an understanding of biomineralization and
the predictive synthesis of functional materials by macromolecular
design.

Results

Oligomer–HAP and Oligomer–Oligomer Interactions. The adsorption
of naturally occurring single amino acid variants T21I, P41T, an
experimental variant, P71T, and wild-type rpM179 (SI Appendix,
Fig. S1) onto single crystal HAP (100) surfaces was studied by in
situ AFM in real time (Fig. 1 and Movies S1–S7). Even though
the variants formed ∼25- to 30-nm-diameter (100- to 200-mer)
nanospheres in solution, as evidenced by dynamic light scattering
(DLS) (SI Appendix, Fig. S2), the adsorbates onto HAP were
smaller particles (5- to 6-nm height × 20-nm diameter), esti-
mated to be ∼21- to 45-mer oligomers (SI Appendix, Fig. S3).
Since it is well known that amelogenin nanospheres are com-
posed of oligomeric substructures (3), we propose that the var-
iant proteins adsorb by disassembly of the nanospheres into
oligomeric subunits, similar to the adsorption mechanism we
have shown previously for rpM179 and the histidine-tagged
amelogenin, rp(H)M180 (14).
The kinetics of protein adsorption onto HAP at 15.6 μg/mL

are shown in Fig. 2A, and at other protein concentrations in the
SI Appendix, Fig. S4. The protein coverage was determined from
the AFM-measured area of the oligomer (adjusted for tip di-
ameter) relative to the entire area. The protein coverage in-
creased with time until an equilibrium coverage was reached. At
low coverage, the adsorbates consisted of isolated oligomers or
small clusters of oligomers, and at high coverage, the adsorbates
formed dense monolayers of oligomers (Fig. 1). An analysis of
the equilibrium coverages of the various proteins over a range of
solution protein concentrations was found to fit the Hill model
(SI Appendix, Eq. S4), as shown in Fig. 2C, but not the Langmuir
model. The Hill analysis describes a cooperative effect on
binding quantified by the Hill coefficient, n, where protein can
bind to the surface by interacting with protein already adsorbed
when n is greater than 1 (15). Cooperative binding is consistent
with the tendency of amelogenin oligomers to self-assemble into
higher order structures.
Interestingly, more variant P41T and P71T protein bound to

HAP compared with rpM179, as shown in Fig. 2A at 15.6 μg/mL
protein concentration and in the Hill plots in Fig. 2C. A previous
study also showed the increased adsorption of P41T onto HAP
nanoparticles compared with the wild-type protein (16). Single
amino acid changes in the central and N-terminal regions of
amelogenin, therefore, led to increases in binding compared with
the wild-type protein.
At protein concentrations <63 μg/mL, adsorption resulted in

the formation of, at most, a single monolayer of oligomers at
equilibrium. Increasing the protein concentration to ≥63 μg/mL,
however, resulted in a striking change in adsorption behavior for
all of the variants, from the initial formation of a single oligomer
monolayer to the adsorption of a second protein layer, as shown
in Fig. 2B, SI Appendix, Fig. S5, and Movies S5–S7. At 125 μg/mL,
the first layer of oligomers was close to full coverage within

5 to 10 min, and then the second layer started to form. As many
as two layers were adsorbed for the variant proteins at a con-
centration of 250 μg/mL In contrast, rpM179 adsorbed primarily
as a single oligomer monolayer with a second layer at very low
coverage for concentrations as high as 250 μg/mL The variant
bilayer adsorbates were composed of oligomers with a broader
size distribution compared with the first layer (SI Appendix, Fig.
S3). Hill plots of the coverages of the second adsorbate layer as a
function of protein concentration also showed significant in-
creases in second layer adsorption for the variants compared
with the wild-type protein (Fig. 2D). An analysis of the second
adsorbed layer Hill plots in Fig. 2D was used to determine
thermodynamic parameters for oligomer–oligomer binding, as
shown in Table 1. The oligomer–oligomer binding energy was
significantly higher for the variants compared with rpM179.
In addition to obtaining important overall thermodynamic

information from the adsorption kinetics experiments, further
studies used solid-state NMR (ssNMR) spectroscopy to obtain
insights into the local structural features of the adsorbed pro-
teins. To accomplish this, amelogenin was isotopically 13C-,15N-
labeled specifically at the three lysine residues located near the N
terminus (K24) and C terminus (K173, K175). The lysines were
chosen because there are only three in the primary amino acid
sequence and they are located in the C- and N-terminal regions
thought to be important for protein binding to HAP and pro-
tein–protein interactions, respectively. The solid-state cross po-
larization (CP) dipolar-assisted rotational resonance (DARR)
13C-13C correlation spectra at 37 °C presented in Fig. 3 and SI
Appendix, Fig. S6A show interactions between lysine backbone
carbonyls (C′) and Cα, Cβ, and Cγ side chain carbons for the four
proteins bound to mineral. Relative to rpM179, the biggest spectral
difference was for the T21I variant that showed that the C′ in-
teraction with Cβ was not observed even at lower contour levels.
This indicates that the T21I variant has more mobility at the lysine
residues, indicating a weaker local binding interaction of the N-
and/or C terminus with HAP compared with the wild-type protein.
This interpretation is supported by measurements of the relaxation
values, T1p, for the carbonyl resonances of the lysines, as shown in
the SI Appendix, Fig. S6B. The lysine carbonyls of T21I relaxed the

Fig. 1. In situ AFM images of the first layer of amelogenin adsorbed onto the

HAP (100) face (pH 8.0) at different time points and a protein concentration of

15.6 μg/mL rpM179 (A), T21I (B), P41T (C), and P71T (D). (Scale bar, 200 nm.)

Fig. 2. Kinetics of protein adsorption at 15.6 μg/mL concentration for the

first adsorbed layer (A) and at 125 μg/mL concentration for the second

adsorbed layer (B). Hill plot analysis of ln (θ/1 − θ) versus ln C, where θ is the

equilibrium protein coverage and C is the solution protein concentration for

the first adsorbed layer (C) and the second adsorbed layer (D).
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fastest, suggesting that this region was the most dynamic and the
least tightly bound to the surface of HAP compared with the other
variants and rpM179.
All of the proteins contained C′-Cα cross peaks centered at

∼54 ppm, a Cα chemical shift removed from the ∼56.2-ppm
random-coil Cα chemical value for lysine (17). The upfield Cα

perturbations suggest that all three lysine resonances are in
β-sheet environments. Evidence for β-sheet structure in the C-
and N-terminal region of wild-type amelogenin bound to HAP
has been identified in other related ssNMR studies (18). Also,
Fourier transform infrared spectroscopy-attenuated total re-
flectance (FTIR-ATR) studies of mineralized protein samples
confirmed the presence of β-sheet structure in all of the proteins
(SI Appendix, Fig. S7 and Table S1).

Enzymatic Degradation. An important step in enamel formation is
the degradation of proteins by MMP20 secreted during the se-
cretory stage of amelogenesis. The degradation process results in
almost complete removal of protein and the growth of HAP
crystals to full size (1). We studied the degradation of amelo-
genin adsorbed onto HAP in the presence of MMP20 using in
situ AFM. Initially, we studied the degradation of the first
monolayer of protein adsorbed at 32 μg/mL. The protein cov-
erage was determined from the adsorbate areas and showed a
loss of coverage upon introduction of MMP20 into the AFM
solution cell for all of the proteins as shown in Fig. 4A. AFM
images revealed that the adsorbed oligomers decreased in di-
ameter over time, suggesting that the removal of protein initiated
at the outside of the adsorbed oligomers and moved inward (SI
Appendix, Fig. S8 and Movies S8–S11). The heights of the olig-
omers also decreased from the starting heights of 5 to 6 nm (SI
Appendix, Fig. S3) to 1 to 2 nm by 2 h of degradation time
(Fig. 4B).
Fig. 4 and Movie S8 showed that the rpM179 protein had the

fastest rate of degradation, resulting in the shrinkage of the
oligomers until they disappeared, leaving behind a layer of 1.5-
nm-height degradation products and a few undegraded oligo-
mers by 2 h. The loss of protein was significantly slowed for the
protein variants compared with rpM179. For P41T and P71T,
there was an initial linear rate of degradation followed by a
slower rate of degradation at longer times. The oligomers shrank
until they disappeared, but at a slower rate than rpM179, as
shown in Movies S9 and S10. By 90 min of degradation time, the
surface was covered with small degradation products and a
moderate amount of undegraded oligomers. The remaining
oligomers appeared to be clustered, suggesting that clustering
slows further degradation. Although the initial rate of T21I
degradation was faster than P41T and P71T, the degradation
slowed at longer times, corresponding to a slowing in the
shrinkage of the oligomers as shown in Movie S10. The slower
shrinkage rate is reflected in the larger distribution of degrada-
tion products in Fig. 4B compared with the other proteins. We

also performed several studies of the degradation of bilayers of
variant protein adsorbed onto HAP at 180 μg/mL, as shown in
the Movies S12–S15. The variant bilayer degradation rate was
significantly slowed compared with the degradation of the single
monolayer of rpM179.

HAP Growth and Morphology. Another important step in enamel
formation is the growth of calcium phosphate crystals in the
presence of amelogenin, the dominant protein in the extracel-
lular matrix. Mineralization behavior in the presence of wild-type
and variant amelogenin was monitored by changes in solution
pH and showed that there was an initial period of no significant
pH change (P1), a region of fast pH decrease (P2), followed by a
period of slower change in pH (P3) (Fig. 5A and SI Appendix,
Fig. S9). We found that stage P1 corresponded to the formation
of ACP nanoparticles that were 12 to 25 nm in diameter, as
shown in Fig. 5B. Stage P2 corresponded to the phase trans-
formation of ACP to HAP (Fig. 5C and SI Appendix, Fig. S10),
consistent with previous studies (19, 20), and stage P3 is likely to
represent further phase transformation and/or classical crystal
growth by ion-by-ion addition. The variant proteins had a sig-
nificant effect on each step of the growth behavior at 1.0 mg/mL
protein compared with the wild-type protein. The variants in-
creased the induction time for the ACP-to-HAP transformation
and reduced the total pH change between the start and end of
mineralization. The induction times for P2 at 1.0 mg/mL protein
increased in the order rpM179 ∼ T21I < P41T < P71T, and the
pH change increased in the order P71T ∼ P41T < T21I <

rpM179, as shown in the SI Appendix, Fig. S11. Since the pH
change relates to the amount of HAP growth and the degree of
ACP-to-HAP transformation, the variants inhibited the growth
and phase transformation of HAP compared with rpM179.
The transmission electron microscopy (TEM) Q:11images and

analyses showed that the 24-h crystallites were mostly ribbon-like
HAP with relatively high aspect ratios (2.5 to 3.4), except for the
controls without protein that had more plate-like crystals with
aspect ratios of ∼1.85 and T21I that had aspect ratios of ∼2.0 (SI
Appendix, Fig. S12 and Table S2). Even though T21I adsorbed
more protein than rpM179 because of the bilayers, there was
more growth in the width (b axis), resulting in more plate-like,

Fig. 3. Two-dimensional 13C-13C DARR spectra for protein mineral samples

collected at a 1H resonance frequency of 500 MHz (37 °C) showing the

intraresidue lysine carbonyl (C′) interactions with Cγ, Cβ, and Cα. Note that

C′-Cβ cross peaks were not observed for T21I even at lower contour levels.

Table 1. Hill coefficients (n) and binding energies (ΔG) for

oligomer–HAP and oligomer–oligomer interactions on the

HAP surface

Interaction n ΔG (kBT)

rpM179-HAP (100) 3.54 ± 0.28 −17.2 ± 1.9

T21I-HAP (100) 2.41 ± 0.52 −17.3 ± 5.2

P41T-HAP (100) 2.12 ± 0.21 −18.1 ± 2.5

P71T-HAP (100) 1.26 ± 0.12 −18.9 ± 2.3

rpM179-rpM179 0.40 ± 0.04 −7.5 ± 1.5

T21I-T21I 2.37 ± 0.32 −15.1 ± 2.9

P41T-P41T 0.78 ± 0.05 −15.6 ± 1.4

P71T-P71T 1.85 ± 0.05 −15.0 ± 0.6
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lower aspect ratio crystals. Less inhibition of growth in the b
dimension may be due to the weaker local protein binding in
regions around the N- and C-terminal lysines, as indicated by the
ssNMR data. The weaker local interactions may allow the in-
corporation of calcium and phosphate to step edges and promote
growth at a growth front bound by the protein. A change in
mineral crystal habit as a result of subtle effects of local protein
structural flexibility is striking and would be interesting to explore
further.

Discussion

Excessive Protein Adsorption by Variants. Protein adsorption is
believed to have an important role in the biomineralization of
enamel, allowing a highly controlled growth process that places
the calcium phosphate particles at regular intervals within the
protein matrix, allows the calcium phosphate ribbons to be ori-
ented parallel to each other, and limits growth until the protein is
removed by proteolytic enzymes. For normal enamel formation,
the wild-type amelogenin protein is completely removed by
proteolytic enzymes, and the resulting HAP is dense and thick.
Our studies show that altering one amino acid within the

amelogenin sequence (T21I, P41T, P71T) resulted in the ex-
cessive adsorption of oligomeric adsorbates onto HAP compared
with the wild-type protein as shown schematically in Fig. 6A. The
excessive protein adsorption occurred at low protein concen-
trations (<63 μg/mL) for P41T and P71T, where there was less
than a monolayer of adsorbates. Although the C-terminal region
has been suggested to be the main domain controlling adsorption
onto HAP for wild-type protein because it is highly charged and
is located on the exterior of the amelogenin oligomer (21), our
results suggest that regions near T41 or T71 have important roles
in promoting binding of these variants to HAP. There were no
significant changes in local protein charge or hydrophobicity for
variants with proline-to-threonine changes (SI Appendix, Fig.
S13); however, it is well known that proline residues impart ri-
gidity into a protein structure and that the removal of proline
residues leads to changes in structure that increase the confor-
mational flexibility (22). The FTIR-ATR data confirm that there
are changes in secondary structure for P41T and P71T compared
with rpM179. The proline-to-threonine change in P41T and
P71T, therefore, leads to a more flexible structure that can be-
come more accessible for binding to HAP (16). The changes in
flexibility may promote direct interactions between regions near
T41 and T71 and the HAP surface and/or may increase the ex-
posure of the N terminus, resulting in increased binding of the N-
terminal region. Fig. 6A shows a schematic of the proposed
binding domains near T41 and T71 for monomer subunits of the
adsorbed variant oligomers. The schematic picture of the adsor-
bed rpM179 monomer is based on literature evidence showing the

C-terminal domain on the outside of the monomer (3) and the N
terminus near the outside (23), yet slightly buried (24).
Excessive variant protein adsorption also occurred at higher

protein concentrations (>63 μg/mL) for all of the variants,
resulting in the formation of bilayers. Proline residues are
commonly found in the edge strands in β-sheets and function to
prevent β-sheet interactions between proteins that can lead to
uncontrolled aggregation (25). The prolines at P41 and P71 may
be located in edge strands of β-sheets in the N terminus that were
shown in the ssNMR studies. The removal of the proline and
substitution by threonine in P41T and P71T would reduce the
ability of the edge strands to prevent intermolecular aggregation.
This would lead to increased interactions between the β-sheet
domains in the N terminus of monomers on the outside of ad-
jacent oligomers and promote multilayer binding of oligomers
onto HAP. Previous studies have shown that the aggregation of
oligomers in solution was promoted for P41T at 37 °C (16). For
T21I, the threonine is changed to the more hydrophobic iso-
leucine that could increase oligomer–oligomer binding by in-
creasing the local hydrophobic interaction.

Effects on Enzymatic Degradation. The enzymatic removal of pro-
tein monolayer and bilayers adsorbed to HAP surfaces by
MMP20 was significantly slowed for the variants, as shown
schematically in Fig. 6A. Studies in the literature have shown that
the enzymatic degradation of rpM179 by MMP20 in solution is
initiated in the C-terminal region at F151 (23). A recent high Q:12-
performance liquid chromatography and NMR solution study
showed that MMP20 cleaved rpM179 in the C terminus at first
and then in the N terminus starting at 8 h (26). The literature
suggests that the enzymatic degradation in our AFM studies
would be dominated by C-terminal cleavage.
It is surprising that the monolayer degradation rate slows for

variant proteins that have changes at P41 and P71, when the
enzymatic cleavage is in the opposite end of the protein in the C
terminus. The ssNMR studies showed that there were no
changes in the C-terminal structure for the variant proteins,
changes that would promote variations in the C-terminal cleav-
age rates. Instead, we propose that the proteins have similar C-
terminal enzymatic cleavage rates but different protein de-
sorption rates. Enzymatic cleavage by MMP20 at the C-terminal
site would free the C-terminal domain into the solution. Since
the C-terminal region is believed to be the major binding domain
for rpM179, loss of this domain would cause the rest of the

Fig. 5. (A) Growth kinetics of calcium phosphate in the presence of 1.0 mg/mL

rpM179 (red), T21I (blue), P41T (green), and P71T (purple). The three

distinct growth phases of mineral growth, P1 through P3, are labeled for

P71T. TEM images from 0.2 mg/mL rpM179 solutions showing ACP nano-

particles at 30 min (B) and HAP crystals at 24 h (C). Insets are electron-

diffraction patterns.

Fig. 4. The enzymatic degradation of a single monolayer of amelogenin

adsorbed onto HAP (100) by MMP20, as measured by in situ AFM. (A) Cov-

erages determined from the area of the adsorbates over time. (B) The height

distribution of the adsorbates at the end of the degradation study. The

height of the black scale bar represents 10%.
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oligomer to desorb from the surface. This is consistent with re-
sults that show that amelogenin without the C terminus adsorbs
less than wild-type amelogenin (27). In contrast, the variants
have significant binding interactions between the P41T and P71T
regions and HAP in addition to the binding interactions between
the C-terminal domain and HAP. These variants are more
strongly bound to the surface because of the interactions in the
N-terminal side of the protein, so they desorb more slowly once
the C terminus is cleaved, as shown schematically in Fig. 6A. The
degradation of the protein monolayer, therefore, involves
cleavage in the C-terminal binding domain and protein de-
sorption due to loss of the binding interaction with HAP.
Although the initial degradation rate of the T21I monolayers

is relatively fast, the rate slows significantly over time. The loss of
the hydrophilic C terminus during enzymatic cleavage combined
with the isoleucine substitution may increase the hydrophobicity
of the protein enough to cause binding interactions between the
cleaved monomer and the oligomers. This would slow the de-
sorption of the cleaved monomers and block further enzymatic
cleavage. Also, there is some aggregation of the oligomers over
time that would decrease the surface area, further reducing en-
zymatic cleavage rates. Degradation is further slowed for the
variant bilayers formed at higher concentrations because of the
higher binding amounts and stronger oligomer–oligomer inter-
actions compared with the wild-type protein. Stronger oligomer–
HAP and oligomer–oligomer binding interactions resulted in the
incomplete removal of variant protein from HAP surfaces by
MMP20 in our study. The excessive variant protein adsorption
may lead to adverse effects on the normal enzymatic degradation
process in vivo, resulting in the excess protein found in mature
enamel in some cases of amelogenesis imperfecta (10, 12).

Effects on Mineralization. Mineralization studies revealed that
HAP formation was inhibited by the amelogenin variants, es-
pecially P41T and P71T. We propose that excessive protein ad-
sorption of the single amino acid variants slowed the growth and
phase transformation of HAP, as shown schematically in Fig. 6B.
It is well known that adsorbates can inhibit the ACP-to-HAP
transformation (28), and adsorbed amelogenin has been ob-
served to inhibit this phase transformation both in vivo (8) and
in vitro (29). There are no known studies of amelogenin ad-
sorption onto ACP, perhaps due to the instability of ACP and
the difficulties in studying adsorption onto small nanoparticles.
However, it would be reasonable to expect that the trends in
adsorption behavior we found for the variants onto HAP would
extend to variant adsorption onto the ACP nanoparticles. Vari-
ant proteins, therefore, may inhibit the ACP-to-HAP phase
transformation because of stronger protein binding onto ACP.

A recent study showed that the ACP-to-HAP phase trans-
formation involved the nucleation of HAP crystals onto the
surface of ACP particles, growth of HAP and local depletion of
ions, the dissolution of ACP because of the local under-
saturation, and then further growth of HAP (30). The variant
proteins might affect the ACP-to-HAP transformation by bind-
ing more strongly to ACP and inhibiting the nucleation of HAP.
Once HAP is nucleated, variant proteins would bind more
strongly to the nuclei, inhibiting HAP growth and, in turn,
inhibiting ACP dissolution. Variant protein may inhibit further
classical growth in phase P3 by binding to growing HAP crys-
tallites and blocking incorporation of ions to growth sites, a
mechanism well known for amelogenin and shown previously for
P41T (16).
Excessive protein adsorption by the single amino acid variants

resulted in the inhibition of the growth and phase transformation
of HAP in our in vitro studies. Previous in vivo studies have
shown that P41T and T21I variations in humans can disrupt the
normal mineralization process, resulting in a form of amelo-
genesis imperfecta (11, 12) where enamel is undermineralized,
porous, and soft. Excessive protein adsorption by the variants
might be a factor in explaining the reduced amount of growth in
this abnormal phenotype.
Although the in vivo environment is more complicated than

the in vitro studies shown here, our in vitro studies point to im-
portant physicochemical phenomena that can control bio-
mineralization in the extracellular matrix. Our studies show that
altering one amino acid in amelogenin significantly retarded HAP
formation and enzymatic degradation of the proteins, critical steps
in the biomineralization of enamel. The small changes in sequence
created large changes in adsorption behavior, and it is adsorption
that modulated the mineralization and enzymatic degradation be-
havior, a result that has important implications for biomineralization
and materials synthesis.
The in situ, high-resolution AFM methods we used are pow-

erful tools toward understanding the mechanisms of enamel
formation. They allowed us to determine oligomer–oligomer
binding energies and to use the thermodynamics of adsorption
processes to explain the mechanisms of abnormal biomineraliza-
tion behavior Q:13. Our studies suggest that changes in local structural
flexibility as a result of the proline-to-threonine variation and in-
creases in local binding interactions in the regions near the single
amino acid changes are very important and may be elucidated
further by the ssNMR techniques used here. An understanding of
how subtle changes in biomacromolecular structure can affect
mineralization processes will greatly contribute to an under-
standing of biomineralization and the predictive synthesis of
functional materials tailored by macromolecular design.

Fig. 6. (A) Schematic showing oligomers (com-

posed of monomer subunits) adsorbed onto HAP

under protein concentrations >63 μg/mL and the

formation of oligomer monolayers for rpM179 and

oligomer multilayers for the variants. The expanded

view of a monomer subunit of the oligomers

adsorbing onto HAP shows the C-terminal domain

as the proposed primary binding domain for

rpM179 and the C-terminal and the variant do-

main as the proposed binding domains for P41T

and P71T. A shows how excessive binding of the

amelogenin variants causes the inhibition of protein

degradation by the MMP20 enzyme. The expanded

view of a monomer subunit shows how desorption

of the variant monomer is slowed after C-terminal

cleavage compared with rpM179. B shows how the

excessive binding of the amelogenin variants causes

the inhibition of HAP formation due to longer

induction times for the ACP-to-HAP transformation (longer arrow) and less HAP formation compared with rpM179 (fewer HAP crystals). The

adsorbed protein involved in the ACP-to-HAP transformation is not shown for clarity.
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Experimental Section
Amelogenin Preparation and Purification. Full-length recombinant murine

amelogenin, rpM179, and the protein variants of rpM179, T21I, P41T, and

P71Twere prepared and purified as described previously (31). Our numbering

system for the variants uses the protein residue number shown in SI Ap-

pendix, Fig. S1 and not the revised mutation nomenclature also used in the

literature that begins with the signal peptide (32). Our numbering scheme of

P41T, therefore, would correspond to P70T in the revised mutation

nomenclature.

Protein Solution Preparation. Solutions of rpM179, T21I, P41T, and P71T were

prepared by dissolving ∼5 to 10 mg/mL protein in water at pH 3 to 4. After 1

to 3 d of dissolution, the concentrations of the protein solutions were de-

termined using UV-visibleQ:14 spectroscopy and the stock protein solutions were

diluted into 25 mM Tris∙HCl buffer adjusted to pH 8.0. These solutions were

used for the dynamic light scattering (DLS) and AFM studies. The net charge

and hydrophobicity of T21I, P41T, and P71T were calculated using the pro-

tein calculator at http://protcalc.sourceforge.net/ and ProtParam tool at

https://web.expasy.org/protparam/,as described in SI Appendix.

AFM Imaging. Details of the use of AFM to study amelogenin adsorption onto

micron-sized single crystals of HAP are described elsewhere (14). The ad-

sorption kinetics of proteins at a range of solution concentrations (15.6 to

250 μg/mL) were studied at ambient temperature and were obtained from

the coverage of adsorbates determined from the adsorbate areas calculated

by the Particle & Pore Analysis module included in the SPIP 5.1.4 software.

Equilibrium adsorption coverages for each concentration of wild-type and

variant protein were obtained from at least three experiments and most of

the data showed percentage errors of less than 10%. The degradation of

adsorbed protein by MMP20 was studied on single monolayers of adsorbed

protein adsorbed at 32 μg/mL and bilayers adsorbed at 180 μg/mL. Unad-

sorbed protein was flushed away with buffer, and then 400 μL of MMP20 at

4 μg/mL in Tris∙HCl buffered solution was injected into the liquid cell and the

in situ AFM images were collected.

NMR Mobility Studies. ssNMR samples of amelogenin mineralized with HAP

were prepared using previously establishedprotocols (3, 18). Briefly, amelogenin

was prepared that was uniformly 13C/15N labeled only at the lysine residues

(K24, K173, and K175). Mineralized protein samples were prepared, and the

resulting crystals consisted of ribbon-like HAP with predominant (100) faces.

The collected amelogenin–HAP complex was packed into a 4-mm ssNMR rotor.

All 1D and 2D NMR experiments were conducted at 37 °C on a Varian VNMRS

spectrometer with an 11.7 T narrow-bore magnet, operating at resonance

frequencies of υ0 (13C) = 125 MHz and υ0 (1H) = 500 MHz, equipped with a

triple-resonance, 4-mm, HXY Varian probe with variable temperature capabil-

ity. The T1rho tau delays were adjusted from 0.005 to 12 ms. The 2D DARR

studies (33) used a mixing time of 100 ms.

Mineralization Studies. Mineralization studies of calcium phosphate were

performed in the presence of rpM179, T21I, P41T, and P71T. Stock solutions of

protein were dissolved in water as described above and were diluted into

nitrogen degassed water to give final concentrations of 0.2, 0.4, and 1.0 mg/mL

protein. Aliquots of 50 mM CaCl2∙2H2O and 30 mM KH2PO4 stock solu-

tions in water were sequentially added to give final concentrations of

2.5 mM CaCl2 and 1.5 mM KH2PO4. The pH was increased to a final pH of 7.8

by slowly adding KOH. The sample vial was placed into a jacketed beaker at

37 °C, and the growth kinetics were monitored by changes in pH over a 6-h

time period using a Microelectronics combination electrode and Orion pH

meter, a method commonly used to monitor HAP formation (20). Samples

were kept at 37 °C for 24 h, cooled, and the final pH at ambient temperature

was recorded. Induction times for ACP-to-HAP transformation were

obtained from the pH change curves. Reported induction times and ΔpH

values were obtained over at least three experimental repetitions.
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