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Outline of talk )

= Motivation: Improving dissipation-delay efficiency in SCE
= Appears limited in existing SCE logic families (as well as in CMQS)
= Can we find a new SCE logic style that may give a path forward?

= Approach: Reversible computing without clocking overhead?
= Adiabatic SCE logic families have dissipation/op « 1/(transition time)
= Typical in classical adiabatic processes: e.g. resistance, friction, viscosity
= However, guantum adiabatic processes can do better than this!
= Exponential adiabaticity of Landau-Zener transitions in scattering procs.

= Can elastic scattering of fluxons do ballistic reversible computing?
= Use Asynchronous Ballistic Reversible Computing model of computation

= ACI/ACS-funded project at Sandia:

= Review of progress to date: LJJ interconnects, RM cell, test chip

= Project plan looking forwards:

= Continued technology development (more circuits / experimental tests)

— Also investigating whether theoretical methods of superadiabaticity /
shortcuts to adiabaticity (STA) might be applied in fluxon-based systems




Project Plan Outline (from Proposal)

Three main technical thrusts:
= Theory, Modeling, Applications
= Pl - M. Frank
= Devices, Circuits & Simulation
®= Co-PI—=R. Lewis
= Fabrication, Measurement
= Key Personnel: N. Missert

University subawards:
= Design Tools (FAMU/FSU)
= Matloob, Allen, Corces, Hardy

= Fundamental Physics (Brown)
= K. Shuklaw. J. Xu

= Circuit Analysis (Purdue)
= R. Biswas & D. Woods

One year base period and two
one-year option periods

Project Year

|h]
)
Thrust 1: Thrust 2: Thrust 3:

Theory, Modeling, Device Physics, Device Structures,

Applications & Circuit Layout, Fabrication

Design Automation Simulation, & Process,

(PI — M. Frank)

Electrical Testing
(Co-PI —R.
Lewis)

& Metrology
(N. Missert)

BASE PERIOD

Year 1: Initial
discovery /
exploration

Budget
request: $350K

Categorize 3-port
polarized ABRC
functional elements.
Finish developing
SCIT (Superconduct-
ing Circuit Innova-
tion Tool).

Work w. collaborat-
ors on circuit model-
ing & reversible
physics.

Develop capability
to design, simulate
and test SFQ-based
circuits containing
multiple elements.
Work w. remote
collabs. on device
& circuit models

Develop
adaptations to
Sandia’s in-house
fabrication process
to minimize
dissipation in JJs
with Ta-N and AIN
barriers for initial
designs of ABRC
circuit elements

OPTION PERIOD 1

Year 2: Create novel
logic technology.

Budget
request: $400K

Utilize SCIT to
create optimized
circuit designs for
selected functional
elements.

Create optimized
logic architectures
based on simplified
primitives.

Work w. collaborat-
ors to assess capacity
for superadiabaticity
to occur in SFQ-
based ABRC.

Layout and test
optimized func-
tional element de-
signs.

Begin measuring
energy efficiency
of designs.

Work w. remote
collaborators to
improve circuit
models based on
measurement re-
sults.

Incorporate AIN
barriers into JJs,
SQUIDs, and LJJs.
Supervise fabrica-
tion of first ABRC
test circuits.

Work with external
fabrication lines to
obtain circuits
incorporating AlOx
JJs if needed.

OPTION PERIOD 2

Year 3: Create novel
digital
architectures.

Budget
request: $400K

Design and optimize
useful functional unit
designs using the
new logic elements
(e.g., 4-bit adder).
Work w. collaborat-
ors to identify ways
to amplify superadia-
batic scaling in more
advanced designs.

'

Layout and test op-
timized functional
unit designs (e.g.,
4-bit adder).
Characterize
energy efficiency.
Continue working
w. collaborators to
further improve
circuit models.

Further improve
capacity, reliability
of updated in-house
fab process.
Supervise fabrica-
tion of complete
ABRC demonstra-
tion chips.
Consider next steps
for in-house fab
capability.




Dissipation-delay Efficiency (DdE) )

Laboratories

= A key motivating Figure of Merit (FOM) in the present study.

= For asingle primitive transition of the digital state of a system
between two distinct informational states, consider:
= The energy dissipation D incurred by that transition process.
= Relates to real-world costs associated with supply of energy and cooling.
"= The delay d, defined as the time interval from start to end of process.
= Relates to costs associated with achieving a given level of parallel performance.

= Then define the dissipation-delay product DAP = D - d.

= Note that since D refers specifically to energy dissipation, not to energy
invested in the signal, in reversible processes, it is not subject to the
“guantum speed limit” (QSL) lower bound of ~h! (E.g. Margolus-Levitin)

= No fundamental lower bound to DdP is yet known!
— Infact, it would be identically zero for any perfectly-known unitary time-evolution.

= Of even more general interest than DdP per se is dissipation as a function of
delay, D(d), considered over a range of practical (tolerable) delay values...

= We'd like to extend the pareto frontier of this function within the useful range.

= Dissipation-delay efficiency (DdE) of a given computing technology just
refers to the reciprocal of DdP, 1pg = (Dd) L.
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Exponential Scaling of Efficiency?  @&sx.

J. Low Power Electron. Appl. 2018, 8(3), 30; https://doi.org/10.3390
= Can we do better than ipea8030030
linear scali nNg of dissi pation Exponentially Adiabatic Switching in Quantum-Dot
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Application)

atomic scattering problems

v=0.05, AE. = 5 eV

—2nl’ *h

with a missed level crossing... Pp=e PRy =08 A =y
= Shows that the probability of exciting the . {:;:‘ e
(dissipative) high-energy state scales down h s
exponentially as a function of speed... . ‘3;3\ e
= This exponential adiabaticity is a commonly- N %, transferred to system
seen feature of many quantum systems! e ‘ig\‘
. . . 8 108 \‘\'
= . Dissipation-delay product has no lower =« LY
bound for quantum adiabatic transitions! oot L5
= Also... With superadiabaticity a.k.a. shortcuts Bosem g, e’ "3’:.
to adiabaticity, we can do even better! 1070} g
= Approach O diabaticity even @ very fast speeds!

_ = 10- 1 1 1 1 1 J
More on this later... 0 5 10 15 20 25 30




Ballistic Reversible Computing 0

Can we envision reversible computing as A
a deterministic elastic scattering process?

Historical origin of this concept:
=  Fredkin & Toffoli’s Billard Ball Model of
computation (“Conservative Logic,” IJTP 1982).
= Based on elastic collisions between moving objects.
= Spawned a subfield of “collision-based computing.”
— Using localized pulses/solitons in various media.

No power-clock driving signals needed!

= Devices operate when data signals arrive.

= The operation energy is carried by the signal itself.
= Most of the signal energy is preserved in outgoing signals.

However, existing design concepts for ballistic computing invoke implicitly
synchronized arrivals of ballistically-propagating signals...

=  Making this work in reality presents some serious difficulties, however:
= Unrealistic in practice to assume precise alignment of signal arrival times.
— Thermal fluctuations & quantum uncertainty, at minimum, are always present.
= Any relative timing uncertainty leads to chaotic dynamics when signals interact.
— Exponentially-increasing uncertainties in the dynamical trajectory.
= Deliberate resynchronization incurs an inevitable energy cost.

Can we come up with a new ballistic model that avoids these problems?

B
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Asynchronous Ballistic Reversible Computing

in Superconducting Electronics (LDRD at Sandia)

Problem: Conservative (dissipationless) dynamical
systems generally tend to exhibit chaotic behavior...

= This results from direct nonlinear interactions between
multiple continuous dynamical degrees of freedom (DOFs)

= E.g., positions/velocities of ballistically-propagating pulses

Core insight: In principle, we can greatly reduce or
eliminate this tendency towards dynamical chaos...
= We can do this by avoiding any direct interaction between
continuous DOFs of different ballistically-propagating signals
Require localized pulses to arrive asynchronously—and
furthermore, at clearly distinct, non-overlapping times

= Device’s dynamical trajectory then becomes independent of
the precise (absolute and relative) pulse arrival times

= As a result, timing uncertainty per logic stage can now
accumulate only linearly, not exponentially
— Only occasional re-synchronization will be needed

=  For devices to still be capable of doing logic, they must now
maintain an internal discrete (digitally-precise) state variable
No power-clock signals, unlike in adiabatic designs
= Devices simply operate whenever data pulses arrive
= The operation energy is carried by the pulse itself

= Most of the energy is preserved in outgoing pulses
— Signal restoration can be carried out incrementally

Goal of current project: Demonstrate ABRC principles in

an implementation based on fluxon dynamics in SCE

Sandia
m National

Laboratories
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WRSsPICE simulations of discrete

= Preliminary effort completed in FY18
= ASC (Sep. ‘18)
Modeled buildable test structures in Xic

| @ Sandia
ﬁ(%ﬁ National

) Laboratories
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| Simplest Fluxon-Based ABRC Function [@

Another FY18 task was: Characterize the simplest nontrivial ABRC device functionalities,
given a few simple design constraints applying to an SCE-based implementation, such as:

= (1) Bits encoded in fluxon polarity; (2) Bounded planar circuit conserving flux; (3) Physical symmetry.

Determined through theoretical analysis that the simplest such function is the following

1-Bit, 1-Port Reversible Memory Cell (RM): =—— RM Transition Table ==
= Due to its simplicity, this is the preferred target for Input Output
our detailed circuit design efforts looking forwards... Syndrome Syndrome
RMicon: ——() +H1(+1) o (+1)+
: (=) — (1)l
Stationary “1(+1) = (=1)+1
Moving -1(-1) — (D1

fluxon

Some planar, unbiased, reactive SCE circuit (to be

%7

‘/
O .- designed) w. a continuous superconducting boundary
- Only contains L's, M’s, C’s, and unshunted JJs
* Junctions should mostly be subcritical (avoids R,)
» Conserves total flux, approximately nondissipative

Ballistic interconnect (PTL or LJJ)

Desired circuit behavior (NOTE: conserves flux,

9<

respects T symmetry & logical reversibility):
If polarities are opposite, they are swapped (shown)
If polarities are identical, input fluxon reflects
back out with no change in polarity (not shown)
Elastic scattering type interaction: Input fluxon

kinetic energy is (nearly) preserved in output fluxon
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“Y Sandia

RM—First working implementation! @z,

= Erik DeBenedictis: “Try just strapping a JJ across that loop.”
= This actually works!

= JJsized to = about 5 LJJ unit
cells (~1/2 pulse width)
= | first tried it twice as large, &
fluxons annihilated instead...
7) “If a 15uA J) rotates by 2,
maybe % that will rotate by 4nt”
= Loop inductor sized so 1 SFQ
will fit in the loop (but not 2)

= ]J a bit below critical with 1

= WRspice simulations with +/-1
fluxon initially in the loop
= Uses ic parameter, & uic
option to . tran command

Produces initial ringing due to
overly-constricted initial flux

— Can damp w. small shunt G

12



WRspice simulation results )

]
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Polarity mismatch - Exchange Polarity match - Reflect (=Exchange)
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Resettable version of RM cell

= For testing—apply current pulse of appropriate sign to flush
the stored flux (the pulse here flushes out positive flux)

= To flush either polarity = Just do both (=) resets in succession




SPICE simulation of RM cell reset

= Simulates as expected (one-polarity reset shown)
= Reset of an already-flushed cell is a no-op

Transient analysis
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Sketch of SQUID-based test setup

Read-out SQUID LJJ has I.L K @,
@ * 1 RMhas I.L = &,

E
SFQ-to-DC DC
DC-to-SFQ I -
Converter %{::z:l\: Converter readout

| LJJ will contain [
many segments,
only 3 are drawn




Test Circuit Layout ) i,

= Circuit elements were rescaled for operation @ 4K (10 X larger I. values)

= Complete test circuit layouts were generated for SeeQC’s 4-layer Nb process
= Low J. = 1 puA/um? increases layout dimensions, reduces manufacturing variation

= A5X5mm die with 4 test circuits was taped out on Feb. 17t

DC-SFQ &
SFQ-DC
designs are
from SeeQC
(obscured

due to NDA)
Reversible Memory Cell

+ SQUID Detector

l S
(% SQUID -

i Detector

(

806

8] Q'E; l:la“
000000006

I} Reversible Memory Cell | )|

i,

|
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Some Next Steps re: RM Cell )

Laboratories

= Detailed design & empirical testing of a physical prototype.
=  Experimentally measure the fabricated circuits in our lab.

= Need to understand better, at a theoretical level, the engineering
requirements for such circuits to work properly.

= And, can we generalize this understanding to more complex cases?
= Goal: Design circuits for a wide variety of other ABRC functions.

= Carry out further elaborations of design to fine-tune dynamic
response for high-fidelity preservation of pulse shape.

= Should be able to use 3D physics modeling, solve inverse problem to craft
a very high-quality custom layout (similar to metamaterials).

= |nvestigate applications, e.g.:

= (Can this be extended to become the basis for a dense memory fabric?
= Develop row/column interface logic

= Optimize the cell design for more compact area
— Try smaller loop inductance, larger I, in 1/O junction

= Can this cell have utility in quantum computer control circuits?
= See next slide



RM Cells for Qubit Control? ) S,

|dea by Rupert Lewis

\RM cells can be reconfigured with nearly zero energy dissipation near the qubit! ,

Y
RM1 M

fYY\IYY\fYY\ —

I E 3
MTW* L
flux biasing of a transmon

Note: Entire structure scales well to a low-/, process . .
for decreased fluxon energy and even lower energy qubit tunes its frequency
dissipation, while maintaining good noise immunity

at QC temperatures (~10s of mK)




.| Related Work at LPS

= Kevin Osborn (w. W. Wustmann —— ===
& L. Yu) at LPS have recently ——
also begun exploring stateful ]

gates in the ABRC family... E/T

= This one is functionally similar to =] |

the RM cell, except the output fa ™ 3 it i’ il
comes out a different port e = 7 | |
= Function was verified in (=t
detailed simulations = == ;
= Error margins are >30% %/
= Peak efficiency 290% E L -
(Related to our T _I_IC_CJ I _Li—’\ /N
1-bit gates) IC*CJ >|( X_T CbB -|-_>‘< * *
@
U/ ./ ./ /| \_/ \/ \
Inductor loop L/2 XK
= h d” .th CB IB 113 .
precharged wi J c Forward-scattering
1 SFQ.

L [reversible] shift
Ls allows storage of/\/UUU register cell”
one SFQ, at most I



| Automation of Circuit Discovery @ |

Undergraduate outreach — Work currently delegated to a senior design |
team at the ECE department, FAMU-FSU College of engineering

= Due to the novelty of our new logic style, the principles to design
much improved/more complex ABRC circuits aren’t obvious...

= Solution: Automate our circuit-discovery methodology!

= Started developing a new tool, named SCIT
= Superconducting Circuit Innovation Tool

= Qutline of the SCIT processing flow:
Define circuit design requirements

Enumerate possible circuit topologies
= |n order of increasing complexity

Delegate topologies to MPC nodes
Sweep over device parameter space
Generate a netlist for each test design
Simulate netlist locally (in e.g. WRspice)
Interpret & summarize resulting traces ‘
Filter for results with desired properties |

Facilitate visualization of candidate designs Simulator (WRspice

SCIT Software Architecture

£ =

3

Generate ~ Interpret

DB E =W




i} | SCIT Effort — Present Status

Circuit Requirements

Multi-year Senior Design projects in ECE Department,

FAMU-FSU College of Engineering

Department chair Sastry Pamidi and course instructor
Jerris Hooker have some superconductivity expertise

= College has historical ties with adjacent Mag Lab (NHMFL)
= This year’s students:
= Fadi Matloob, Frank Allen, Oscar Corces, James Hardy

Present status:

= Some software components already functional
Project temporarily stalled due to university shutdown

= Project file server not accessible ®

Circuit Search

Block Topology
ranking by

complexity

topologies

A Sweep component =
Enumerate circuit ilas foranh Generate WRspice

Parameters
WRspice
netlist

for

WRspice
netlist

Software Tool
LEVEL 2

netlist
topology
Go back to sweep I
fter bad circuit are Good circuit
filtered paramt

Circuit Test &
Display Block

Simulation
output

Visualize output by
capturing circuit
parameters and

Working Circuit

Circuit Visualiza

Dt Valid

@




_| Superadiabaticity /
Shortcuts to Adiabaticity (STA)

= Aline of fundamental physics research showing that we can
theoretically attain or approach 0 diabaticity (dissipation)
even in evolutions occurring at fast, constant speeds.
= This relates to my more general point from earlier about the
fundamental dissipationlessness of known unitary evolutions.
= Some (at least theoretical) applications of this so far:
= Fagst Carnot-efficient heat engines!

= Fast general thermodynamic engines for manipulating the state of
guantum systems (e.g. Maxwell’s Demon type setups).

= Faster superconducting circuits for controlling qguantum computers!

= Why not also investigate whether these methods can be used
to achieve fast classical dissipationless reversible computing?

= And whether this theory can translate to engineering practice...

(M
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Population in the instantaneous eigenstates

0.8

0.6

04

0.2

Example Use of STA: Fast Dissipationless
Transitions of a Quantum Dot System

Credit: David Guéry-Odelin (U. Toulouse)
Example system:

= A quantum-dot system previously described by Lent for use in reversible logic, undergoing an (externally-driven)

transition between two different Hamiltonians.

Figures show occupancy of ground (top) & 15t excited eigenstate (bottom).
= tisthe total time over which the transition takes place (adjustable)

- tmax
which dissipation is near maximum)

If system later relaxes from an excited state = state energy will be dissipated.
=  But, we assume here that the relaxation time is large compared to the transition time itself.

Both figures below show an example calculation at which transition speed = 1/5 maximum
=  But, the same method works in principle to achieve zero dissipation at any speed!

< Ground state
occupancy

t= probability

5tmax

< Excited state
occupancy
probability

0 0.2 0.4 0.6 0.8 1

Normal quantum adiabatic process:
Substantial excitation/dissipation

Population in the instantaneous eigenstates

0.8

0.6

04

0.2

< Ground state
occupancy
probability

Excited state
< occupancy
probability

| n . L 1 . . . 1 . L . 1 L L L |

0 0.2 0.4 0.6 0.8

Using counterdiabatic protocol:
Zero net excitation/dissipation

is a somewhat arbitrary duration when the system is transitioned at certain designated “maximum speed” (at




.| Open Problems in STA for RC

= Can any of the various STA protocols that theorists have
described actually be implemented practically?
= Need more exploration of engineering mechanisms for doing so.
= What are the limits on these methods’ efficiency in practice, if any?

= Canthe STA protocols be applied (in a complete way) to
various specific examples of physical implementations of
reversible computing?

= |n particular (for our project): Is there any way to apply them to
fluxon dynamics, specifically in ABRC-type circuits?
= Certain classical-qguantum equivalences suggest maybe yes!
— See next slide

= Could an appropriate counterdiabatic Hamiltonian be introduced
spatially, through appropriate tailoring of the structure at which the
fluxon dynamics occurs?

= However, best way to proceed is still very unclear!
= This is a wide-open research area...
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. | Shortcuts to Fluxon Adiabaticity? ®

Work in progress with Karpur Shukla (CMU / Flame U. / Brown U.)

= Jarzynski ‘88 [1] discusses dissipationless classical driving,
which can be viewed as an example of a classical analogue to
guantum shortcuts to adiabaticity (STA)

= Prescribes theoretical modifications to driving Hamiltonian

= Okuyama & Takahashi ‘17 (10.7566/JPSJ.86.043002) builds a
more complete theory of classical STA on this foundation...

= Korteweg-de Vries (KdV) hierarchy characterizes conserved quantities

= Gesztesy & Holden ‘97 [2] show how to modify the KdV hierarchy as
needed to model the sine-Gordon equation—describes fluxons in LJs!

= Takahashi ‘19 (10.7566/JPSJ.88.061002) goes on to discuss
methods for Hamiltonian engineering in the context of
adiabatic QC...

= Can apply to engineering classical reversible transformations also?
= Needs more study...

[1] C. Jarzynski, Phys. Rev. A 88, 040101(R) (2013)
[2] F. Gesztesy and H. Holden, arXiv:solv-int/970710




‘ Conclusion

= Some path to further increase dissipation-delay efficiency of
superconducting circuits over the long term is needed.

= No fundamental limit on this quantity is yet known!

= |nspired by collision-based computing, we have simulated the first
concrete working example of an SCE circuit implementing one of
the reversible functions in the new ABRC model of computation.
= Thisis a reversible memory (RM) cell functionality requiring just 1 JJ.

= Some of the key next steps for the RM cell development include:
= Empirically test our first test chips once we get them back.
= Design additional test chips for purposes of measuring energy dissipation.

= |dentify additional functions in the ABRC model that may be amenable to
producing similarly straightforward implementations.

= Finish implementing circuit search tool (SCIT) for more rapid discovery of
circuits for more complex ABRC functionalities.

= |n the bigger picture, there is a significant need to begin
investigating new quantum (or quantum-inspired) techniques for
reducing dissipation in reversible computational processes.
= Shortcuts-to-adiabaticity (STA) is just one example of such an approach
= Otherideas: Harness topological invariants, quantum Zeno effects, etc.

=  Many possible paths still remain to be explored for continuing to
improve dissipation-delay efficiency far into the future.




