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2 Fastener surrogate modeling motivation

Part of Sandia's mission is predicting performance of systems and structures subjected to abnormal environments

Fasteners are an integral connector in many of these system and structures

This is a complicated problem...

Numerous fasteners exist in these systems and can be:

u Different sizes

o Loaded at various rates

Subjected to diverse loadings

Difficulties:

It is infeasible to test all fasteners

Model fidelity requirements of system models are restrictive.

Modeling fasteners is difficult, time-intensive, and repetitive.

Goal: Develop machine learning surrogate models that are

efficient, predictive, robust, and easy to implement.



3 Fastener challenges
Want to capture the mechanical behavior of the fastener and joint

Load-Displacement Response

o Failure

o Stiffness

o Preload

o Etc.

Perform tests and calibrate a mechanical material model (relate stress to strain)

L.,Test data does not span all possible loadings or conditions
10000

oCalibration tools are limited
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FEM PROBLEM SCHEMATICS:
model and material

• Bolt and Flange assembly modeled: crucial sub-structure
of a bigger structural component

• Model : Rectangular flanges with M8 bolt which forms
lap joint

• Material Used: Stainless Steel 304 L (industry grade)
Plasticity material data obtained from literaturel

1Blandford, R. K., et al. "Tensile stress-strain results for 304L and 316L stainless steel plate at

temperature." ASME 2007 Pressure Vessels and Piping Conference. American Society of Mechanical

Engineers, 2007.



FEM PROBLEM SCHEMATICS:
boundary conditions

• Boundary Conditions applied as displacements
on input and side surfaces

• Displacements (3 components) defined at each
of the 8 corner nodes using Gaussian processes

• Corner displacements used to determine
boundary conditions for nodes on the 4 surfaces
using bilinear interpolation 
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FEM PROBLEM SCHEMATICS:
corotational formulation

• Corotational formulation is required to include frame indifference in the component during prediction.
• Compute rigid body motion (translation and rotation) and removing its contribution from the total displacement.

• Equations and Schematic:

At center of
element
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1Battini, Jean-Marc. "A non-linear corotational 4-node plane element." Mechanics research communications 35.6 (2008): 408-413.



FEM PROBLEM formulation: summary

< CAD, Material model

• Mesh

FEA Assembly

C—
Displacement

samples C—
Boundary
conditionsC

• Compute rigid body < For all displacement
motion and subtract samples, run quasi-

• Generated as from total • Applied on side static analyses using
Gaussian Processes

‘.. J displacement

\—

surfaces using
bilinear interpolation

\...

ABAQUS

Corotational Generate
displacement training samples



ML APPROACH: overview

Data from
FE

simulations

Test Data

preparation H Data model

training

Machine
Data Training learning

# #

L 1

.

•

TUsing Artificial Neural
Networks (LSTM) for
history retention of
damage/plasticity

information ]
Validation

or

Model
deployment



ML APPROACH: model architecture

Recurrent Neural Networks (using Keras)

• Similar to Feedforward Neural Networks (FNN) but

they allow connections to earlier layers

• They have memory!

Recurrent Neural Network Details

• 2 LSTM layers of size 200 are used with 3 Dense

layers of size 200 and final Dense layer of the

output size

• Model is trained with 9000 samples with a

validation split of 20%

• Adam optimizer and mean squared error is

used for loss calculation

FIRST
LAYER

SECOND
LAYER
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THIRD
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Training Data Details

• Input: - Displacements ( 3 components) at 8 corner nodes

- Initial plastic strain

• Output: - Forces (3 components) at 8 corner nodes

- Max. equivalent plastic strain



RESULTS

• Results indicate good prediction when validated for a test case (unknown to the trained network) and
compared with FEA results obtained from commercial software (ABAQUS).

• Left figure: prediction of x, y and z displacement components for a particular node.

• Right figure: maximum equivalent plastic strain history.
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Results post-process

• Force values are invariant of translation

• To obtain everything back in global frame,

F liTF9 pred

• Validation results by running new cases from Fg
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Assembly of two lap-joints
SET UP (work in progress)

FEA set-up:

•

Common Side surface:

Displacement compatibility

Corner nodes with
displacements from Gaussian
processes

Surfaces with displacement
boundary condition using
bilinear interpolation

ML representation:
A

Lap-joint Cell 1

Common

side

Equilibrium of

forces at four

common nodes

Lap-joint Cell 2 410



FEM PROBLEM SCHEMATICS:
bilinear interpolation (boundary condition)

• For accurate interpolation to cover account for entire side surface,
we assume a bigger (rectangular) space

• Interpolation formulation:

Y 
(Q12)

Y2

Y2 — y y — yi 
S2) (Q 
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Ve.V/

Y2 — y1   
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y = n l co — dinates

Known values of displacement

from Gaussian processes

Unknown values computed

using above formulation

Q22
I"  

SIDE SURFACE 1

1 1

•

Q21

• The obtained Q11 and Q22 are used in above formulation for
computing f(x,y) for all nodes on defined boundary surfaces

 0



14 Open questions / future directions

Productionize (make it usable)

How to choose calibration dataset?

Reduce network size and memory?

Enforce more known mechanics?



1 5 I Machine learning the constitutive response for foam RVEs

Dan Bolintineanu, Kevin Long, Sharlotte Kramer. Sandia National Laboratories



ML on BCC RVEs
16

Input:
Microstructure, 3D strain

(later add history, strain rate...)

stress_n
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Output:
3D stress state
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Brute force approach: sample
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However, assuming isotropy, only need to sample in principal space:
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Furthermore, axes are symmetric, only need to sample space where
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17 I Convincing calibration

1.5 1 

LC

L model: simple 3-layer fully connected neural net

., Train, IV = 0.99990

Test, R 2 = 0.99990
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18 I Boundary value problem test using ML model
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19 Boundary value problem test using ML model
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20 Boundary value problem test using ML model
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21 I Boundary value problem test using ML model
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22 Future considerations

• Alternative regression models (Gaussian processes, boosted gradient regression
trees); likely minimal improvement, since R2 > 0.9999 for current neural net, but
GPs provide uncertainty bounds

• Additional approaches to physical constraints (e.g. 'soft' via loss function penalty, or
`hard' via changes to network architecture)

• Expand space of training data and dimensionality of model:
• More porosities, loading states
• Other microstructural variations besides porosity, e.g. anisotropy
• Variations in solid polymer parameters (e.g. lock-up)



23 I Nonlinear multiscale homogenization

• Multiscale analysis
• Plane strain problem

MAIN IDEA:
Solve a quasi-static multi-

scale problem using:

• High-fidelity result (from a
concurrent multiscale

model)

• Data-Driven result (from a

Smart Constitutive Law
(SCL)

GOAL

Find an efficient method to
reduce computation time in

real life applications

i

i'--- Microestructure 

 }

1 Quasi-static
I displacement
1
Ls,
1
1
1
1

*
Every integration
point

FE of the
macro-scale



24 I Nonlinear multiscale homogenization

• Multiscale analysis
• Plane strain problem

MAIN IDEA:
Solve a quasi-static multi-

scale problem using:

• High-fidelity result (from a
concurrent multiscale

model)

• Data-Driven result (from a

Smart Constitutive Law
(SCL)

GOAL

Find an efficient method to I
reduce computation time in

real life applications
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26 I Introduction

Presentation Outline
. Sandia National Laboratories Overview

. Brief Examples of ML in Mechanics of Materials at Sandia

. Deep Dive Example of ML for Polymer Foam Mechanics

o Discussion Points on Use of ML for Mechanics of Materials

What is Machine Learning?

"A computer program is said to learn from experience E with respect to some class of tasks T

and performance measure , if its performance at tasks T, as measured by .11 improves with

experience E.

- Tom Mitchell, Machine Learning, 1997



27 How Does Machine Learning Work?

Data / Experience

MOM

Model

Y f(x)

Loss Function

6= IT/1 Ert1=0 g(f (xi) - Yi)

Learning Algorithm

Other Potential Features:
• Uncertainty Quantification
• Domain Knowledge

AllParameterized Modeli
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Sandia Has Five Major
28 Program Portfolios
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Sandia's Mission Needs

• High-consequence decisions
• Typically designing to very high reliability requirements

o Need to assure trust in our solutions

• Need to characterize & communicate uncertainty of decisions

• Algorithms need to be interpretable and explainable

• Challenges:
• Often have limited, unknown, or no ground truth (no labeling and little to no

positives)

High dimensionality can lead to extremely sparse datasets

- National security missions can require decisions to be made in a very short time
frame (milliseconds to minutes)

• Many applications require methods to adhere to or account for first principle
physics

• Need to account for potential adversarial issues
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30 I Connecting Mechanics of Materials and Machine Learning

Mechanics of Materials Today

. Complex relationships and multi-scale mechanics

. Potential for spatially and/or temporally dense data

. New and advanced materials

. High cost of experiments —> low sample numbers

. Sometimes high-consequence applications

Traditional human-in-the-loop methods lacking the
ability to cope with "big" and "sparse" data

1
1

How Machine Learning May Help

- Dimensionality reduction of data

Connections between disparate data types

- Model improvement with more data

Efficiency of trained model

Physical intuition present in the model sometimes

Opportunities of uncertainty quantification — relative
confidence in decisions based on ML models

Machine Learning Challenges Upfront

• ML model may not provide new physical intuition

• Extrapolation beyond training space is tenuous

• Sometimes laborious model training process

ML can be a disruptive capability in mechanics if used with care.



31 Examples of Machine Learning for Mechanics of Materials



32 Machine learning for 3D tomography to computational meshes
PI: Scott Roberts

Goal: Credible Automated Meshing of micro-CT Images

CT scan slice ML se • mentation Uncertainty map

CNNs for image segmentation and uncertainty quantification for very

large 3D materials datasets from XCT, FIB/SEM, etc.

Automated meshing techniques
from ML output of a Bayesian

CNN, propagating UQ through to

physics predictions.
Exemplars: Battery materials,

woven composites, laser welds.

Incrementally trained Deep-Learning (DL)

model segments to high accuracy, higher than

human labels in some cases

DL inferences
takes minutes
on GPU vs.

hours to days
manually!

[ 

..,' ,...- ' • ; ...- i 1.W T ,•
. r --"N
k ' v 41 - . . ,

.4°' ' '.4 I •4, t ... - n

6.,.... • .r t '
4.1 1 .. -•,..,4y -,,,,‘
• A' l'r-,-.-Air:
i,- • -•'"" 1 : -'s, .,1 A.,,r.

.
•
1 ' ?. ."")-e . ,It; „...,,,,A.,,.„,- ,...

4 . .... 7,4_ .. -.1 1, ...
%

Slice from

CT image of

graphite
electrode

Human label
(orange)

overlaid on CT
scan of battery

Deep learning

label (orange)
overlaid on CT
scan of battery

This work proves DL models are capable of flexible and accurate image segmentation
with rigorous per-voxel UQ estimates (but still requires labor-intensive training data).



33 Mechanical Properties Mapping to AM Build Plate Location
PI: Laura Swiler

Goal: Correlating many material properties

together with AM build plate location

Salzbrenner BC, et al (2017) High-throughput stochastic
tensile performance of additively manufactured stainless

steel. J Mater Process Technol 241:1-12
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o High-throughput testing for many replicates of tensile tests, here for
additively manufactured stainless steel.

• Use of k-means clustering to identify sets of feature values correlated
to location on the build plate

o The four clusters identified over 15 material properties are projected
onto two of the material properties showing a delineation of the
clusters. The four clusters were mapped onto the build plate, showing
some correlation of clustering with respect to build location.
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ML methods can correlate many specimens across several mechanical properties.



I Neural network models of plasticity for metals with microstructure

PI: Reese Jones

Goal: Utilize crystal

microstructure to

predict deformation

Synthetic data based on crystal
plasticity simulations from 4
grain structures (grouped by
color in stress-train plot) with

varied grain orientations
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This research involved design of novel neural networks to
model plastic flow of metals with microstructure

• Employing traditional representation theory allows the
networs to preserve symmetries and physical constraint
exactly instead of learning them imperfectly [1].

Convolutional layers allow the models to discover what
features in the initial microstructure are needed to predic
the mechanical

MICROSTRUCTURE TRUE STRESS 
Stress field predictions of a novel convolutional neural network

ri
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[1] Jones, RE et al. "Machine learning models of plastic flow based on representation theory", Comp.Mod,Eng.S ci., 2019
[2] Frankel, A et al. "Predicting the mechanical response of oligocrystals with deep learning." Comp.Mat.S ci., 2019
[3] Frankel, A et al. "Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model." arXiv, 2019

Two different ML methods were developed/applied to model homogenized and local stress
responses based on synthetic crystal plasticity data.



35 Machine Learning for Polymer Foam Mechanics



36 Extreme Deformation of Foams

Inspiration: Crash Scenario at 65 mph

Tirne: 0.0e+00 s Eqv. Plastic Strain True Volume Strain
0 -0.1 -0.2 0.3 0.36 -1.4 -1 -0.5 -0.056

ml

Metal Pieces Foam Ring

Modeling Approaches:

Phenomenological empirical fits generally, with a few
micromechanics-based models for low-density foams

Lacking microstructural understanding generally

Lacking solid polymer physics understanding

Typical u-s profile for PU foam

Linear

elastic

Plateau

Densification

(Lockup)%

Strain

•

Foam Research Areas:

Fundamental understanding of role of microstructure in
large deformation mechanics for all densities

- Utilization of full-field experimental data to inform
development of new models and calibration of them

There is little literature on large deformation of polymer foams, particularly of moderate density.

Current models are cumbersome and require calibration for every density.



I37 Technical Approach •
Project Objective: Discover how the large deformation behavior in polymer foams is governed by the

interplay of foam microstructure and solid polymer behavior

Experiments

Solid
Polymer

10 10 to, 10-2 10, le le le 103 le 1 5
time (s)

Foam (Flexible PU)

RVE Simulations

(Microstructural Analysis
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Learning
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( Machine-Learned Model

INPUTS 
Exx, Eyy Ezz

111.

OUTPUTS 
axx, gyy Grzz

Constitutive Model

Pfo-n e
foarn — *foam E, 0, 11-' solid 1 7 c 2 • • •

Psolicl

1



38 Machine Learning Tools for Foam Mechanics

Goals: (1) Discover the important microstructural metrics and their evolution with deformation

(2) Develop a constitutive model given a set of microstructural descriptors

Spatial
Statistics, PC?

♦
PCA, etc.
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39 I Microstructural Analysis: Spatial Autocorrelation and Anisotropy

Strength of

correlation

between two

points separated

by vector r

N

N

A r)/(x))1— (1-(x))2
= (I(x) (I(x)))2

N

Step 0

Step 0

y

Microstructure and ACF for 15-pcf PU

Foam in Three Orthogonal Orientations
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— 0.8

— 0.6

— 0.4

— 0 2

0 0

• Moment of inertia (MOI)
tensor of level set of ACF

• Anisotropy = 1- (kmin/ kmax),
where kmin, kmax are the min
and max eigenvalues of the
MOI tensor
This method is not sensitive
to level set choice and does
not require image
segmentation
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Undeformed —28% strain
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Compression is along vertical direction

Angle From Load Axis

The ACF and MOI analyses allow for physical insight regarding evolution of anisotropy with

deformation and for dimensionality reduction.



40 k Segmentation

Original grayscale data: does
not directly distinguish

pore/solid phases

Binarized data: separate pore/solid
(thresholded data / semantic

segmentation)

Labeled data: separate
individual pores

(instance segmentation)

m
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Eccentricity vs. Ave. Pore Size
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Distance transform at medial axis
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of distance between pores

Distribution of solid

phase 'thickness'

Pore phase

Citiompression

0 1

Distance Imm)

Two-Point Correlation (S2)

Probability

two points
are in the
pore phase

5.(r)
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Measures of topology/connectivity,
e.g. probability of percolation as a
function of subvolume length scale:
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4- 0.4 -

,•44,
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10° 10'

Distance linm)

Segmentation is standard in quantitative image processing, but can also be thought of as
`data preparation/pre-processing'. It enables more physically intuitive metrics.



Automated Feature Extraction with Principal Components Analysis
41 (PCA)

Challenge
Systematically discern/describe differences between multiple structures due to:

1. high dimensionality of metrics
2. potentially subtle differences between metrics across structures

x3

Principal components analysis (PCA) of ACF*:

Polyurethane compression scans

x2
PC1

• • • 1 1 0.4

0.3

I- 0.1

0.2

*Method from Kalidindi et al, JONI 63.4 (2011), Choudhury et al, Acta Mat 110 (2016)

0.0 -
. 6 8 10 12 14 16 18

# components retained

20+ components required to explain variance

(better than 500^3)

Compression
ste p

5.0
•

.•
2.5

.°—2.5 • 1 
• •
°•••—5.0  
— 5 0 5

PC1
Correlation of first two components are

different for rise and transverse orientation of

foams relative to compression

  Rise

Transverse

•
• • • • 4,

[20

15

10

- 5

1

PCA can help order the relative magnitude of effect of principal components on mechanical

response, but connecting the principal components to microstructural feature is nontrivial.



42 1 Future Work and Challenges for Unsupervised Learning on Foam

0 Future Work:
0 Comparison of X-ray CT scans/DVC with RVE
simulations

° Deep learning/CNN model to predict local strains given
undeformed scan

o Variational auto-encoder (VAE) for dimensionality
reduction/feature extraction of CT scans

Challenges:
ACF/S2/PCA —> lots of "needles in the haystack" that
may not link to physical quantities

O Little/no physical intuition from reduced
dimensionality features at face value

• Need for a copious amount of data for different
boundary value problems, requiring reliance on
simulations that are difficult at large deformations

Unknowns of how key microstructural descriptors
evolve with generalized motion, not just the boundary
value problems tested

Example of DVC Data From in situ XCT Scans
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(O/C) 
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Unsupervised learning techniques support dimensionality reduction, but interpretation of the results

are nontrivial and difficult to connect to physical quantities to build new insights.



43 Mechanics Modeling Approaches

Physics-Based Constitutive Modeling
Typically relatively few parameters, in principle measurable
from very few simple experiments

Extrapolates beyond calibration data (but can fail if

assumptions of physics-based model are broken)

Accuracy tied to quality of physical model as well as

calibration data

UQ more challenging due to model form error

0.00 0.01 0.02 0.03 0.04 0.05

Stra n

Phenomenological Modeling
Utilizes experimental data to drive the form of the model,
requiring extensive data for a comprehensive model

Requires mechanics constraints be met (usually)

Extrapolation beyond the calibration data is tenuous

Assumptions (like isotropy, etc.) can lead to poor fitting of

the data

UQ challenging due to model form error

Data-Driven Machine Learned Modeling
Potentially very large numbers of parameters, require large

datasets

Extrapolates poorly beyond measured data

Accuracy relies solely on measured data, thus bias and

measurement errors can lead to errors in the model

UQ potentially more tractable

100
4)06'.

80

60

40
•

, go 

•Al
y = mx + b

20

0
iv •

0.00 0.01 0.02 0.03 0.04 0.05

Strain

Modeling Moving Forward: Each regime can be improved by the other —

more physics in data-driven methods and more data in traditional methods.



44 Proof of Concept: RVE Simulations and

RVE Simulations (Microstructure + Polymer Physics)
Seeding Machine-Learned Modeling

stress,
6 57..6

15 5.0450.6

2 22226+6

5 620+5

-2.1oae.5

INPUTS 

fi, cxs 7 7 ZZ

OUTPUTS 

rizz, o-zz

— 5.6

4.06

Exploit Material Symmetry: Work In Principal Space

1.0

TO 0.5 -

Train, R2 = 0.991

Test, R2 = 0.987 a
z
sr

1.0

0.5 -

0.0 - 0.0 -

—0.5 -

8_
—0.5 -

z —1.0 - • — z —1.0 -

—1.5 —1.5  
—1 0

FEA result (MPa)

1

Use of Physical Insight

Preliminary Results

Tried simple, fully connected neural networks with 1-3

hidden layers

• Data with excessively large stresses are excluded

• 80% of data used for training, 20% held out for testing

• Loss function modified in all cases to minimize total

relative error:

=•_L

YprsrUctsd _lacr..Jrzi!)

Yagrarzi:

• Results for all pairings of porosity, stress 4 strain
Crxx cr

YY

—1 0 1

FEA result (MPa)

OZZ

—1 0

FEA result (MPa)

• NN fits to data are encouraging, but even simple

loadings (BVPs) give unphysical results

1

The first attempt at ML modeling here demonstrates that simple ML modeling provides results with

relatively low errors, but sometimes unphysical stresses, requiring improvements in our approaches.



45 I Future Work for Modeling on Foam

Input:
Microstructure, 3D strain

(later add history, strain rate...)

11111111. ML model _,„.. Output:

3D stress state

• Expand space of microstructure beyond porosity (e.g. anisotropy, correlation length scale, material thickness)

• See about Gaussian process models to provide uncertainty of prediction

- Incorporate history via e.g. recurrent neural networks

• More realistic microstructures for training data

Augment training data with experimental data, investigate different weightings to reflect different relevance of

experimental and simulation data

Incorporate insights from ML modeling into a traditional physics-based constitutive model and compare performance

Machine learning for foams in an age of high-dimensional data is natural, but modeling of the

deformation behavior requires physical insight and mechanics constraints.



46 Summary and Discussion Points



47 I Summary: Examples of ML and Mechanics at Sandia

ML Related to Images

Automated

Mesh

Generation
from CT-Scans

Microstructural

Analysis of

Polymer Foams

ACF
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ML Supporting Connections Between Data Types
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48 Opportunities and Challenges for ML in Mechanics of Materials

Opportunities

Dimensionality reduction of data

. Connections between disparate data types

. New paradigm of constitutive modeling that can incorporate
physical constraints, data of disparate types, and data of
varying size/density (sparse, high-dimensionality, and/or
vast quantities)

. Model improvement with more data

. Efficiency of trained model

. Physical intuition present in the model sometimes

. Opportunities of uncertainty quantification — relative
confidence in decisions based on ML models

. Potential for greatly reducing human-in-the-loop at certain
stages of engineering analysis (not upfront)

Challenges

. Need for discovery of new physical intuition that can be difficult
to find with many ML methods

. Credibility of ML for decision making for high-consequence
applications, particularly based on sparse training data

. Use of ML to speed-up decision making that is defendable

. Need for physics-constrained models that adhere to mechanics
principles

. Extrapolation beyond training space is tenuous

. Sometimes laborious model training process

. Generalizability of ML models (do new interactions dominate in
generalized motion not explicitly tested in training space)

. Interpretability of UQ — what does it mean for decision making

. Education of mechanics community on appropriate use of ML
methods

I
1
I

ML can be a disruptive capability in mechanics if used with care.



49 Summary

° Sandia Mission Space:

O High-consequence decisions

O High-dimensional data and low number of samples

° Examples of ML at Sandia

O Identification of phases from micro-CT scans for
automated finite element meshes

• Clustering of mechanical behavior characteristics and
AM build plate

O Neural network models from plasticity

O Large deformation polymer foam mechanics

o Unsupervised learning for microstructural analysis

O First attempts of regression ML for constitutive
modeling

Merge:

0



50 Modeling material variability with ML

Computational Mechanics and Physics of Solids Seminar Series,
University of Colorado, 6 March 2019, Boulder, CO USA

Image based neural networks for physical modeling

Reese E. Jones, A. Frankel
Sandia National Laboratories, Livermore, CA 94551, USA

ID Sandia Natinnal 1.aborator'as

MICROSTRUCTURE TRUE STRESS

STRESS-STRAIN PREDICTED STRESS

TIME

rjones@sandia.gov
U.S. DEPARTMENT OF

'ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and

Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S.

Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525.



51 Image based neural networks for physical modeling

Reese Jones, Ari Frankel



52 Outline

Introduction
Motivation
Challenges

Variability models
Machine learning models
Conclusion

Current work

please ask questions as we go

Sandia
National
laboratories

U.S. DEPARTMENT OF

ENERGY



53 Objectivity and representation theory

We want to embed fundamental symmetries in the NN structure
— so that they are exact and not learned.

Material frame indifference for constitutive function M(A)

GM(A)G 7- = M(GAGT) ,

for every member G of the orthogonal group.
Based on the spectral A=r23 1 Aiai 0 ai , and Cayley-Hamilton
theorems

A3 — tr(A)A2 + 
1 
—
2 
(tr2 A — tr A2) A + det(A)I = 0

one can obtain a compact general representation:

M(A) = coMI + ciMA + c2(/)A2 = >_: MA'
1

in form of unknown coefficient functions of invariants and a
known tensor basis. Inputs: scalar invariants 1 & tensor basis 13.



54

If we observe initial microstructures and mechanical tests:

a*, 1200

sclij 1000
4.•J

120 800

•Fu
a.)c 600
.gb

4

Engineering Strain (%)
12

can we predict particular stress-strain averages or full field

evolution of a polycrystalline material or a material with

microstructure in general?

14



To predict the evolution of the average stress we augment the
CNN with a channel that incorporates and processes the loading

The RNN is a layer that uses
a causal time filter to process
history information. We use a
particular kind called a Long
Short Term Memory (LSTM)
unit which has better perfor-
mance than a standard RNN.

m icrostructu res

Convolution

Pooling

flatten w
•

Encoder

nfeatures

strain history

Recurrent NN

+
stress history



56

Even with high-throughput tests we cannot current generate more
that a 102 tests, we need about 104 tests.
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We generated realizations of oligocrystals with di erent textures
(crystal orientations) and run crystal plasticity simulations with a
variety of loadings.



57 Predicting the particular response to microstructure

Using data from the ensemble of polycrystals, we can make
predictions of the crystal plastic mechanical response that are
significantly better than traditional homogenization theory.

corr = 0373
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58 Machine learning for failure predictions

Kyle Johnson, John Emery, Demitri Maestas



59 I Available data
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60 Failure

I think we can define failure like this:

1. peak load (geometric instability) before y displacement

2. failure to carry x load

3. Failure to stay below z overall_max(EQPS) value through y displacement

4. Failure to stay below z overall_max(EQPS) value through z load

I think x load, y displacement and z overall_max(EQPS) are somewhat arbitrary

for our purposes, but it seems we'd like to define them so that failure is

moderately unlikely. (Demitri's preference for training is 50/50.



61 500 samples "failure" {Fmax, D(Fmax), maxEQPS(Fmax)}
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62 Project Overview

Objective: Quickly and accurately predict
failure initiation in component designs using
deep learning (DL) pattern recognition. For
our initial study we are using Max EQPS as
failure indicator.
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Sample Meshes Based on Porosity Distributions from Jay Carroll's LDRD
63 CT data
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64 Sample Tensile Results
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65 Approximately 900 Training Tension Simulations Have Been Run
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66 Equivalent Plastic Strain (EQPS) Shows Large Variability
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Update from Deep Learning Group

Progress has been made on three thrusts:

• Synthetic data generator
Provides capability to mimic the
converted mesh with specific properties
to check performance as we add model
and task complexity

• Deep learning model implementation
Implementation of a 3D CNN for binary
failure classification

• Conversion tool from exodus mesh to
NumPy arrays



Synthetic Data Generator

• Makes 723 I-Beams mimicking mesh
converter output
• Allows larger kernel sizes to fit in

memory
• Flaws (empty spaces) are generated in the

central column of the beam to denote a
failing instance

• Data generator is modular, allowing custom
flaw configurations to be generated with
specific distributions

• Next steps: Designing more configurations to
mimic real data distribution

■

An I-Beam generated by the data generator
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Trained model to run inference on real data. Below are confusion matrices for the training (99% accuracy) and held back test-set (73.8%
accuracy).
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