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, | Fastener surrogate modeling motivation

Part of Sandia’s mission is predicting performance of systems and structures subjected to abnormal environments

Fasteners are an integral connector in many of these system and structures

This is a complicated problem...

Numerous fasteners exist in these systems and can be:
o Different sizes
o Loaded at various rates
o Subjected to diverse loadings

Difficulties:

o Itis infeasible to test all fasteners

o Model fidelity requirements of system models are restrictive.
o Modeling fasteners is difficult, time-intensive, and repetitive.

Goal: Develop machine learning surrogate models that are
efficient, predictive, robust, and easy to implement.




3 | Fastener challenges

Want to capture the mechanical behavior of the fastener and joint
o Load-Displacement Response
- Failuvre S
o Stiffness
oPreload

o Etc. N

Perform tests and calibrate a mechanical material model (relate stress to strain)
o Test data does not span all possible loadings or conditions
o Calibration tools are limited
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[2] Mersch, J. P., Smith, J. A., Johnson, E. P., Bosiljevac, T., “Evaluating the Performance of Fasteners Subjected to Multiple Loadings and Loading Rates and Identifying Sensitivities
of the Modeling Process,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA SciTech Forum, AIAA2018- 1896, Kissimmee, FL, 2018.




FEM PROBLEM SCHEMATICS:
model and material

Bolt and Flange assembly modeled: crucial sub-structure
of a bigger structural component

Model : Rectangular flanges with M8 bolt which forms
lap joint

Material Used: Stainless Steel 304 L (industry grade)
Plasticity material data obtained from literature?

1Blandford, R. K., et al. "Tensile stress-strain results for 304L and 316L stainless steel plate at
temperature." ASME 2007 Pressure Vessels and Piping Conference. American Society of Mechanical
Engineers, 2007.




FEM PROBLEM SCHEMATICS:
boundary conditions

Boundary Conditions applied as displacements
on input and side surfaces

Displacements (3 components) defined at each
of the 8 corner nodes using Gaussian processes

Corner displacements used to determine
boundary conditions for nodes on the 4 surfaces
using bilinear interpolation

Displacement

Boundary surface definition

Sample Gaussian
processes for 4
nodes




FEM PROBLEM SCHEMATICS:
corotational formulation

e Corotational formulation is required to include frame indifference in the component during prediction.
e Compute rigid body motion (translation and rotation) and removing its contribution from the total displacement.

* Equations and Schematic:

Ui = Z%%Nj
-I X; =) X§N;
J
oU; _ e % et 1 e
Ozy, ;u*’aack u; = gz%ij
/ J
oU; ‘ g o . |
L U= ¥IEF ug = R(uf — uf* + X5 — X¢) — (X{ — X¢)
et 5] l
F =RU Corotational displacement?

1Battini, Jean-Marc. "A non-linear corotational 4-node plane element." Mechanics research communications 35.6 (2008): 408-413.



FEM PROBLEM formulation: summary

(. CAD, Material modep

* Mesh

P FEA Assembly

Displacement
( samples

* Generated as
Gaussian Processes

(o Compute rigid body b
motion and subtract
from total
displacement

\ Cprotational
displacement

Boundary
( conditions

e Applied on side
surfaces using
bilinear interpolation

(o For all displacement\
samples, run quasi-
static analyses using
ABAQUS

. J

\ Generate
training samples
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ML APPROACH: overview

Using Artificial Neural
> 1 Test Data Networks (LSTM) for
history retention of
damage/plasticity
information

Machine

Data Training learning . Model
: Validation
preparation Data model deployment

training

Data from
FE

simulations

I————————
oo o e -



ML APPROACH: model architecture

FIRST SECOND THIRD
LAYER LAYER LAYER

Recurrent Neural Networks (using Keras)

e Similar to Feedforward Neural Networks (FNN) but
they allow connections to earlier layers

OUTPUTS

e They have memory!

Recurrent Neural Network Details

e 2 LSTM layers of size 200 are used with 3 Dense

layers of size 200 and final Dense layer of the Training Data Details
output size
* Input: - Displacements ( 3 components) at 8 corner nodes
* Model is trained with 9000 samples with a - Initial plastic strain

validation split of 20%
e Qutput: - Forces (3 components) at 8 corner nodes
* Adam optimizer and mean squared error is - Max. equivalent plastic strain

used for loss calculation




RESULTS -

Results indicate good prediction when validated for a test case (unknown to the trained network) and
compared with FEA results obtained from commercial software (ABAQUS). |

Left figure: prediction of x, y and z displacement components for a particular node.

Right figure: maximum equivalent plastic strain history.
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Results post-process

 Force values are invariant of translation
* To obtain everything back in global frame,

Fy = R Fpreq

samples len=100
L . 1 1 1
* Validation results by running new cases from U,— F, pre il I (mmwa») — > (Fa —ij)z)
o 3 j=1
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Avg. RMS error in plastic strain is 0.0015




Assembly of two lap-joints
SET UP (work in progress)

FEA set-up:

4 o

o z
~~ _~~ Common Side surface:

Corner nodes with
displacements from Gaussian
processes

Surfaces with displacement
boundary condition using
bilinear interpolation

-~ Displacement compatibility

ML representation:

Equilibrium of
forces at four
common nodes

Lap-joint Cell 1

Lap-joint Cell 2

I D e



| FEM PROBLEM SCHEMATICS: |

bilinear interpolation (boundary condition)

* For accurate interpolation to cover account for entire side surface,
we assume a bigger (rectangular) space

* Interpolation formulation:

‘ _ vy, |
—- — f(Qu1) + —

f(w2,y)= "]

f(z,y) = function of z and y ( displacement )

z,y = nodal co — ordinates

O — Known values of displacement : ------------- .:
f(x1,y)

from Gaussian processes f%,,y)
1
, Unknown values computed z ; I

using above formulation
Q,; Q

* The obtained Q,; and Q,, are used in above formulation for
computing f(x,y) for all nodes on defined boundary surfaces



14 I Open questions / future directions

O

O

O

O

Productionize (make it usable)
How to choose calibration dataset?
Reduce network size and memory?

Enforce more known mechanics?
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Machine learning the constitutive response for foam RVEs

Dan Bolintineanu, Kevin Long, Sharlotte Kramer. Sandia National Laboratories



ML on BCC RVEs

Input:
Microstructure, 3D strain Output:
(later add history, strain rate...) 3D stress state
stress_xx B 0.3 _0 4
85766406 £ v
E i 0.4 o
*?590459+6 l 146407
Eazsyem F—le+7
1Y E z
{5 =5.62e+5 -VI —5e+6 %
ks E ¥
-2.109e+06 0
l-249+06

Brute force approach: sample

Ozz [MPa]

€Cxxy Cxy, Cxzs Cyy, Eyz,y €22

However, assuming isotropy, only need to sample in principal space:
émm 3 g’yya é’zz
Furthermore, axes are symmetric, only need to sample space where
gwm < 6@4@; < g:zsz




17 I Convincing calibration

ML model: simple 3-layer fully connected neural net
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18 I Boundary value problem test using ML model

Uniaxial strain: tension

Exx>0,£yy=£zz=o
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19 I Boundary value problem test using ML model

Uniaxial strain: compression

Exx=£yy=0,£zz<0
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20 I Boundary value problem test using ML model

Uniaxial strain in tension

£Xx>0,£yy=£zz=o
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oxx (MPa)

Boundary value problem test using ML model

Uniaxial strain in compression
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Future considerations

» Alternative regression models (Gaussian processes, boosted gradient regression
trees); likely minimal improvement, since R2> 0.9999 for current neural net, but
GPs provide uncertainty bounds

» Additional approaches to physical constraints (e.g. ‘soft’ via loss function penalty, or
‘hard’ via changes to network architecture)

« Expand space of training data and dimensionality of model:
* More porosities, loading states
« Other microstructural variations besides porosity, e.g. anisotropy
« Variations in solid polymer parameters (e.g. lock-up)



23 I Nonlinear multiscale homogenization

e Multiscale analysis guaISI-statlc
H 0.0002 IS aceme nt
* Plane strain problem P

0.0001

= 0.0000

MAIN IDEA' ~0.0002 FE Of the

Solve a quasi-static multi- , a IMacro-5ca e

scale problem using:

* High-fidelity result (from a
concurrent multiscale
model)

Microestructure

Elasto-plastic

1 GOAL Elastic

Find an efficient method to
reduce computation time in J
real life applications < &

Every integration
point




24 I Nonlinear multiscale homogenization

e Multiscale analysis guafl-statlc
. 0.0002 I m n
* Plane strain problem SplaEemens

0.0001

= 0.0000

—0.0001

FE of the
MAIN IDEA: —0.0002
» . . 0.0003 macro_scale
Solve a quasi-static multi-
scale problem using:

loading steps

Neural Network

e Data-Driven result (from a
Smart Constitutive Law

(Sct) 1 GOAL

Find an efficient method to
reduce computation time in
real life applications

Every integration
point
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26 | Introduction

Presentation Outline
o Sandia National Laboratories Overview
> Briet Examples of ML in Mechanics of Materials at Sandia
> Deep Dive Example of ML for Polymer Foam Mechanics

o Discussion Points on Use of ML for Mechanics of Materials

What is Machine Learning?
”A computer program is said to learn from experience I with respect to some class of tasks T
and performance measure I if its performance at tasks 1, as measured by I improves with

experience E.”
- Tom Mitchell, Machine Learning, 1997




27 I How Does Machine Learning Work!?

f(x) =01xq +02x5 + -+

£=~Tog(f(x) — 1))

Other Potential Features:
« Uncertainty Quantification
« Domain Knowledge
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Sandia Has Five Major

Program Portfolios

Advanced
Science &
Technology

S

AN
4\

sv

Homeland
Security

National
Security
Programs

Nuclear
Deterrence

Defense Nuclear
Nonproliferation




Sandia’s Mission Needs

* High-consequence decisions
o Typically designing to very high reliability requirements
> Need to assure trust in our solutions
> Need to characterize & communicate uncertainty of decisions
> Algorithms need to be interpretable and explainable

¢ Challenges:
> Often have limited, unknown, or no ground truth (no labeling and little to no
positives)
> High dimensionality can lead to extremely sparse datasets

> National security missions can require decisions to be made in a very short time
frame (milliseconds to minutes)

> Many applications require methods to adhere to or account for first principle
physics

> Need to account for potential adversarial issues

Dimensionality of Data

'Y N\
Typical Machine
Typical Sandia Learning
Mission Space (e.g. image

classification)

Clasm.cal Traditional
Analytical .
Phusics Statistical
y Methods

Regime

Sample Number




30 I Connecting Mechanics of Materials and Machine Learning

Mechanics of Materials Today

> Complex relationships and multi-scale mechanics

° Potential for spatially and/or temporally dense data
> New and advanced materials

> High cost of experiments — low sample numbers
> Sometimes high-consequence applications

° Traditional human-in-the-loop methods lacking the
ability to cope with “big’” and “sparse” data

How Machine Learning May Help

Dimensionality reduction of data

Connections between disparate data types
Model improvement with more data

Efficiency of trained model

Physical intuition present in the model somzetimes

Opportunities of uncertainty quantification — relative
confidence in decisions based on ML models

Machine Learning Challenges Upfront
* ML model may not provide new physical intuition
* Extrapolation beyond training space is tenuous
* Sometimes laborious model training process

ML can be a disruptive capability in mechanics if used with care.




31 I Examples of Machine Learning for Mechanics of Materials




32 I Machine learning for 3D tomography to computational meshes

PI: Scott Roberts . |
Incrementally trained Deep-Learning (DL)

_ model segments to high accuracy, higher than
Uncertainty map

human labels in some cases

Goal: Credible Automated Meshing of micro-CT Images
Scan

CT slice ML segmentation

o T, N
> B SG PRy >
'\\l;q_,‘:o iy
ot B e .
3%, 1

DL inferences Sh_ce from
takes minutes CT image of
on GPU vs graphite

) electrode
hours to days
manually!

Human label
(orange)
overlaid on CT
scan of battery

CNNs for image segmentation and uncertainty quantification for very
large 3D materials datasets from XCT, FIB/SEM, etc.

Automated meshing techniques
from ML output of a Bayesian
CNN, propagating UQ through to
physics predictions.

Deep learning
label (orange)
overlaid on CT

Exemplars: Battery materials, scan of battery

woven composites, laser welds.

This work proves DL models are capable of flexible and accurate image segmentation

with rigorous per-voxel UQ estimates (but still requires labor-intensive training data).



33 I Mechanical Properties Mapping to AM Build Plate Location
PI: Laura Swiler I
Goal: Correlating many material properties ° High-throughput testing for many replicates of tensile tests, here for
; ; ; additively manufactured stainless steel.
together with AM build plate location

> Use of k-means clustering to identify sets of feature values correlated
to location on the build plate

J ‘ ""”"Wﬂlti” " onto two of the material properties showing a delineation of the
Il "ul | clusters. The four clusters were mapped onto the build plate, showing

' some correlation of clustering with respect to build location.
Salzbrenner BC, et al (2017) High-throughput stochastic

o Laas ° The four clusters 1dentified over 15 material properties are projected |

. e . 1100 [ B [ [ E E
tensile performance of additively manufactured stainless T 3 3 3 S 3
steel. J Mater Process Technol 241:1-12 1000 | 2] 3 3 3 3 3 2
—_ EE 3 3 3 3 3
E | , 2% a3 3 3 3 3 3
= WIS X1 5 3 3 3 3 3 3
~  am| . CEE 3 a 3 3 3
e 5 IE 3 3 3 3 1
o ™| Rl < 8 3 3 3 3 3 1
c o N gl 3 1 1 1 4 3
O e . . Four D E 1 4 3 % 1
b Fe v, ] 3 1 1 1 1 3
D clusters of I o o
v m| 1 . W 1 3 ) F] ) 3
g ‘ specimens M -
e . 1 B 1 4 2 1
L EE 1 2 4 1
N e W W W W e w3 s [ a |1 [ 3
w1 4 1 ] 1

Initial Modulus (MPa) Cluster Number Mapping to Build Plate

ML methods can correlate many specimens across several mechanical properties.




Neural network models of plasticity for metals with microstructure ,, I

PI: Reese Jones : R : : .
J ﬁ;j:‘aslor:e'iij;k . This research involved design of novel neural networks to I
Goal: Utilize crystal ol pap— model plastic flow of metals with microstructure
. 1 : » .
microstructure to . Emploi;mg traditional representation theory allows the
predict deformation networks to preserve symmetries and thsmal constraint
exactly instead of learning them imperfectly [1].

features in the initial microstructure are needed to predic

Synthetic data based on crystal the mechanical

plasticity simulations from 4

grain structures (grouped by

color in stress-train plot) with
varied grain orientations

sanE TEeess  DUEes field predictions of a novel convolutional neural network

HEE‘J“«’“ =W =
ﬂ L *r w‘ ’ : b
- - %‘ 3 \‘ ATy A
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¢ Convolutional layers allow the models to discover what {

[1] Jones, RE et al. "Machine learning models of plastic flow based on representation theory.”, Comp.Mod,Eng.Sci., 2019
[2] Frankel, A et al. "Predicting the mechanical response of oligocrystals with deep learning," Comp.Mat.Sci., 2019
3] Frankel, A et al. "Prediction of the evolution of the stress field of elastic-plastic deformation with a hybrid neural network model." 27Xz, 2019

Two different ML methods were developed/applied to model homogenized and local stress

polycrystals undergoing,

responses based on synthetic crystal plasticity data.



35 I Machine Learning for Polymer Foam Mechanics




36 | Extreme Deformation of Foams

Inspiration: Crash Scenario at 65 mph

True Volume Strain
-1.4 -1 -0.5 -0.056

_— bl

Eqv. Plastic Strain
0 -0.1
-

Time: 0.0e+00 s
0.3 0.36

-0.2
' i

Metal Pieces Foam Ring

Typical o-¢ profile for PU foam

Densification
(Lockup)\«
2
o
n
Plateau
Linear \
elastic 9

Strain

Modeling Approaches:

> Phenomenological empirical fits generally, with a few
micromechanics-based models for low-density foams

° Lacking microstructural understanding generally

o Lacking solid polymer physics understanding

Foam Research Areas:

> Fundamental understanding of role of microstructure in|
large deformation mechanics for all densities

o Utilization of full-field experimental data to inform
development of new models and calibration of them

There is little literature on large deformation of polymer foams, particularly of moderate density.

Current models are cumbersome and require calibration for every density.



37 I Technical Approach

Project Objective: Discover how the large deformation behavior in polymer foams is governed by the

interplay of foam microstructure and solid polymer behavior

/ Experiments \

Solid

Polymer )

RVE Simulations

(|

ﬁV\icrostructural Analysisﬂ
Unsupervised Machine
Learning

/ Machine-Learned Model\

INPUTS ~— OUTPUTS

@, Eaiiy Cyy; €22 Oxzs Oyys Ozz

4 N

Constitutive Model

foam
quoam — \ijoam |:E7 @7 qjsolid; pﬁv 517 527 .. :|

solid

. /
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Machine Learning Tools for Foam Mechanics

Goals: (1) Discover the important microstructural metrics and their evolution with deformation

(2) Develop a constitutive model given a set of microstructural descriptors

. Spatial
. Statistics, '

\PCA, etc.

INPUTS

Microstructure,
strain state, history

?, €z, €yys €22

Body-Centered Cubic 2x2x2
Periodic Structure
0.25, 0.45, and 0.65 Initial
Porosity
Gent Matrix (Sylgard 184)
with a fixed shear mod and
lockup

OUTPUTS

Stress state

OzzyOyy, Ozz




39 I Microstructural Analysis: Spatial Autocorrelation and Anisotropy

Stfengd’{ of *  Moment of inertia (MOI) Level Set of ACF
bcorrelauon tensor of level set of ACF Undeformed ~28% strain
etween two ! o
points separated * Anisotropy = 1- O\min/ xﬁl.a">’
where A_. A ___are the min
by vector r min> max
and max eigenvalues of the
MOI tensor
¢ 'This method is not sensitive

to level set choice and does
not require image
segmentation

15 pef PU, rise direction
Compression is along vertical direction

Anisotropy Ratio Angle From Load Axis
0.40 4 = Rise by ] ==
g 0354 — Transverse 7 W . . ﬁ-

@
o

0.30 o

1-Amin/Am,
o
S

0.25

0.20 o

Angle from load axis (deg.)

X y % g 015 4 e *
é 0.10 ‘; 4 20 - z
. 0.05 —— Rise
MlCtOStfucture and ACF fOf 15-pCf PU G0+ o L —— Transverse
Foam in Three Orthogonal Orientations - -

The ACF and MOI analyses allow for physical insight regarding evolution of anisotropy with

deformation and for dimensionality reduction.



40 I Segmentation

Original grayscale data: does
not directly distinguish
pore/solid phases

Binarized data: separate pore/solid
(thresholded data / semantic
segmentation)

Labeled data: separate
individual pores
(instance segmentation)

ACF
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02
0.0

Two-Point Correlation (S,)

Sa(r)
Probability
two points
are in the
pore phase

Eccentricity vs. Ave. Pore Size Frequency of Eccentricity

1.0 4

Statistics of
individual pore

0.8 ¢ v
size, shape, etc. §
with deformation: «:{ §§

0.4

T T T
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Average Pore Size (mm?)

Distance transform at medial axis
of solid phase: connect to evolution
of distance between pores

Pore phase

10t
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o
o
&
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10-5 4

Distribution of solid -
phase ‘thickness’ s 1 2 &

Measures of topology/connectivity,
e.g. probability of percolation as a

tunction of subvolume length scale:

Solid phase, z Pore phase, z
0.8 ~\‘
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L
b

o ~
© o
4
4
Prob. of percolation
P
o
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Segmentation is standard in quantitative image processing, but can also be thought of as

‘data preparation/pre-processing’. It enables more physically intuitive metrics.




Automated Feature Extraction with Principal Components Analysis |
s I (PCA)

?c, 0.8
Challenge 5 ‘—:; 0.6
. . . . % o
Systematically discern/describe differences between multiple structures due to: 5y 04
. . > . 5 —
1. high dimensionality of metrics “ 8 0.2
©
2. potentially subtle differences between metrics across structures “oole
0 2 4 6 8 1012 14 16 18
# components retained
Principal components analysis (PCA) of ACF*: 20+ components required to explain variance
_ (better than 500"3)
Polyurethane compression scans
Compression
step
— Rise
- 20
>0 —— Transverse
25{ oo 15
8 [ ]
T 0.01° aer Ty o 10
& a.
—2.51 ¢ 5 )
(] [ ]
—5.0- T.‘ - : 0
-5 0 5

_ PC1
Cotrelation of first two components are

*Method from Kalidindi et al, JOM 63.4 (2011), Choudhury et al, Acta Mat 110 (2016)

different for rise and transverse orientation of
foams relative to compression

PCA can help order the relative magnitude of effect of principal components on mechanical

response, but connecting the principal components to microstructural feature is nontrivial.



# 1| Future Work and Challenges for Unsupervised Learning on Foam

|
> Future Work: Example of DVC Data From in situ XCT Scans
> Comparison of X-ray CT scans/DVC with RVE 0 15 3 45 6 75 9 105 12
simulations £, (%) T B
° Deep learning/CNN model to predict local strains given (Compression positive}
undeformed scan ]

Step 2, Eng. Strain = 3.8% Step 4, Eng. Strain = 10.6%
° Variational auto-encoder (VAE) for dimensionality
reduction/feature extraction of CT scans

> Challenges:
> ACF/S,/PCA — lots of “needles in the haystack” that
may not link to physical quantities

> Little/no physical intuition from reduced
dimensionality features at face value

o

> Need for a copious amount of data for different
boundary value problems, requiring reliance on
simulations that are difficult at large deformations

Stress (MPa)
N
\ /
S
4
St (psi)

> Unknowns of how key microstructural descriptors
evolve with generalized motion, not just the boundary
value problems tested

0.02

o S
=3
&

B -

e N A @

Unsupervised learning techniques support dimensionality reduction, but interpretation of the results

are nontrivial and difficult to connect to physical quantities to build new insights.
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Mechanics Modeling Approaches

Physics-Based Constitutive Modeling
Typically relatively few parameters, in principle measurable
from very few simple experiments
Extrapolates beyond calibration data (but can fail if
assumptions of physics-based model are broken)
Accuracy tied to quality of physical model as well as
calibration data
UQ more challenging due to model form error

Phenomenological Modeling
Utilizes experimental data to drive the form of the model,
requiring extensive data for a comprehensive model
Requires mechanics constraints be met (usually)
Extrapolation beyond the calibration data is tenuous
Assumptions (like isotropy, etc.) can lead to poor fitting of
the data
UQ challenging due to model form error

w 60

=
0]

100 A

80 1

Data-Driven Machine Learned Modeling

* Potentially very large numbers of parameters, require large

100 =
0st?®
80 - 'Y ot

,’/
60 | 14

5o

Stress

] e
- - datasets :: o #*y=mx+b
] S
N * Extrapolates poorly beyond measured data o °
o , : °1é .
000 0% o5z 003 ob4 o * Accuracy relies solely on measured data, thus bias and 000 001 002 003 004 005

measurement errors can lead to errors in the model
* UQ potentially more tractable

Strain

Modeling Moving Forward: Each regime can be improved by the other —

more physics in data-driven methods and more data in traditional methods.




44 | Proof of Concept: RVE Simulations and Use of Physical Insight

RVE Simulations (Microstructure + Polymer Physics) Preliminary Results
Seeding Machine-Learned Modeling

* Tried simple, fully connected neural networks with 1-3
hidden layers
* Data with excessively large stresses are excluded
* 80% of data used for training, 20% held out for testing
* Loss function modified in all cases to minimize total
relative error: N

—

o 8 E ' (;'F’prmmrm - ?ucmaijh
5
.:—0249+ﬂé

=1 Yactual

* Results for all pairings of porosity, stress =2 strain
$, 6@@7 ﬁyy’ ezz . » Train, R2=0.991 | .

0@;@;, 0yy, Gzz 0.5 Test, R2=0.987

J

A

Exploit Material Symmetry: Work In Principal Space

NN prediction (MPa)
NN prediction (MPa)
NN prediction (MPa)

T T T T T T
-1 0 i -1 0 1 -1 0 1
FEA result (MPa) FEA result (MPa) FEA result (MPa)

* NN fits to data are encouraging, but even simple
loadings (BVPs) give unphysical results

The first attempt at ML modeling here demonstrates that simple ML modeling provides results with

relatively low errors, but sometimes unphysical stresses, requiring improvements in our approaches.



45 | Future Work for Modeling on Foam

Input: :
_ put . — TN ——  Output
Microstructure, 3D strain 3D stress state

(later add history, strain rate...)

.

* Expand space of microstructure beyond porosity (e.g. anisotropy, correlation length scale, material thickness)

*  See about Gaussian process models to provide uncertainty of prediction
* Incorporate history via e.g. recurrent neural networks
*  More realistic microstructures for training data

* Augment training data with experimental data, investigate different weightings to reflect different relevance of ]
experimental and simulation data

* Incorporate insights from ML modeling into a traditional physics-based constitutive model and compare performance

Machine learning for foams in an age of high-dimensional data is natural, but modeling of the

deformation behavior requires physical insight and mechanics constraints.



4 | Summary and Discussion Points
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Summary: Examples of ML and Mechanics at Sandia =

ML Related to Images

Automated
Mesh
Generation

from CT-Scans

Microstructural
Analysis of
Polymer Foams

ML Supporting Connections Between Data Types

, Evolution of Principal
K-means Clustering of

) ) Components with Compression
AM Material Properties

Relative of Material Orientation
Compression

" step
© - —— Rise
o = .01 20
2 W 0 . Bd —— Transverse
% : .'.::f:. et s 2.51 .. ® 15
T w = 0.0 10
B - e »°
% - L —2.51 '. .‘ 5

e o
S M e W e = = = -5.01°2 ; ; 0
g =5 0 5
Initial Modulus (MPa) PC1

ML for Material Modeling

Use of Microstructure to
Predict Plastic Behavior

MICROSTRUCTURE TRUE STRESS

STRESS-STRAIN  PREDICTED STRESS

Microstructure and Solid
Polymer Affecting Foam
Deformation Modeling

Oxx
1.0

Train, R2 =0.991
0.5 1 Test, R2=0.987

NN prediction (MPa)

-1 0 il
FEA result (MPa)




48 I Opportunities and Challenges for ML in Mechanics of Materials

Opportunities Challenges

> Dimensionality reduction of data > Need for discovery of new physical intuition that can be difficult
to find with many ML methods

> Connections between disparate data types
° Credibility of ML for decision making for high-consequence

> New paradigm of constitutive modeling that can incorporate apphcat1ons particularly based on spatse training data
physical constraints, data of disparate types, and data of o . .
varying size/ den51ty (spatse, high-dimensionality, and/or > Use of ML to speed-up decision making that is defendable

vast quantities : ; ;
9 ) > Need for physics-constrained models that adhere to mechanics

> Model improvement with more data principles

> Efficiency of trained model ° Extrapolation beyond training space is tenuous

° Physical intuition present in the model sometimes Sometimes laborious model training process

> Opportunities of uncertainty quantification — relative > Generalizability of ML models (do new interactions dominate in
X . - eneralized motion not explicitly tested in training space
confidence in decisions based on MI. models & P Y g space) )

: : : : ° Int tability of UQ — what does it for decisi ki
° Potential for greatly reducing human-in-the-loop at certain aterpretability of UQ = what does it mean for decision making

stages of engineering analysis (not upfront) > Education of mechanics community on appropriate use of ML
methods

ML can be a disruptive capability in mechanics if used with care.




49 I Summary

B={By,B;}

> Sandia Mission Space:

> High-consequence decisions

° High-dimensional data and low number of samples
> Examples of ML at Sandia

o ldentification of phases from micro-CT scans for
automated finite element meshes

o Clustering of mechanical behavior characteristics and & &)
AM buﬂd platC Merge: M= > B

> Neural network models from plasticity

> Large deformation polymer foam mechanics
> Unsupervised learning for microstructural analysis

o First attempts of regression ML for constitutive
modeling
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Modeling material variability with ML
Computational Mechanics and Physics of Solids Seminar Series,
University of Colorado, 6 March 2019, Boulder, CO USA

Image based neural networks for physical modeling

Reese E. Jones, A. Frankel
Sandia National Laboratories, Livermore, CA 94551, USA

T U5, DEPARTMENT OF

' ENERGY

() sonc ol bortres rjones@sandia.gov

MICROSTRUCTURE TRUE STRESS

. ‘ E

STRESS-STRAIN PREDICTED STRESS

TIME

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly ownéd subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA-0003525.




51 | Image based neural networks for physical modeling

Reese Jones, Ari Frankel
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Introduction

Motivation

Challenges
Variability models
Machine learning models
Conclusion

Current work

Sandia
National
Laboratories
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Objectivity and representation theory

We want to embed fundamental symmetries in the NN structure
— so that they are exact and not learned.

Material frame indifference for constitutive function M(A)
GM(A)G' =M(GAG') ,

for every member G of the orthogonal group.
Based on the spectral A = Z?:l Aia; ® a; , and Cayley-Hamilton
theorems ]

A3 — tr(A)A% + 5 (tr* A — tr A*) A + det(A)I = 0

one can obtain a compact general representation:

M(A) = o(Z)I + a(2)A + (D)A* =) c(T)A’

1

In form of unknown coefficient functions of invariants and a
known tensor basis. Inputs: scalar invariants 7 & tensor basis B.
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If we observe initial microstructures and mechanical tests:

1600

Build 6 Build 4 Build 8
1400 | R

- =
(= ¥
o o
o o
.“‘,.”.

”T

Jiy

00
3

Engineering Stress (MPa)
[+
3

8

200

0 2 4 6 8 10 12
Engineering Strain (%)

can we predict particular stress-strain averages or full field
evolution of a polycrystalline material or a material with
microstructure in general?

14

16




To predict the evolution of the average stress we augment the !

CNN with a channel that incorporates and processes the loading

microstructures strain history

The RNN is a layer that uses
a causal time filter to process
history information. We use a
particular kind called a Long
Short Term Memory (LSTM)
unit which has better perfor-
mance than a standard RNN.

stress history
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Even with high-throughput tests we cannot current generate more
that a 107 tests, we need about 10* tests.

500 | | | ‘ I //7
450 |
400 |
. 350 )
300 | [/ =
Ug) 250 A -
@ o
% ol @ 380 |
0 E 360 |
ol w340 f
50 ‘ -
0, ' 300 ! | |
0 0.01 0.02 0.03 0.04 0.05 0.06

We generated realizations of oligocrystals with dilerent textures
(crystal orientations) and run crystal plasticity simulations with a
variety of loadings.



57 I Predicting the particular response to microstructure

Using data from the ensemble of polycrystals, we can make
predictions of the crystal plastic mechanical response that are
significantly better than traditional homogenization theory.
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Reuss predictions), NN on

par with Hill average.
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Trajectories of discrepancy from
mean: solid lines data, dashed:

NN prediction.

Plastic response is better than Sachs or Taylor estimates.



s8 I Machine learning for failure predictions

Kyle Johnson, John Emery, Demitri Maestas
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Failure

I think we can define failure like this:

1. peak load (geometric instability) before y displacement

2. failure to carry x load

3. Failure to stay below z overall_max(EQPS) value through y displacement

4. Failure to stay below z overall_max(EQPS) value through z load

I think x load, y displacement and z overall_max(EQPS) are somewhat arbitrary
for our purposes, but it seems we'd like to define them so that failure is

moderately unlikely. (Demitri's preference for training is 50/50.



61

500 samples “failure” {F_. ., D(F,.,), maxEQPS(F._.)}
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62 I Project Overview

Objective: Quickly and accurately predict
failure initiation in component designs using
deep learning (DL) pattern recognition. For
our initial study we are using Max EQPS as
failure indicator.
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Sample Meshes Based on Porosity Distributions from Jay Carroll’s LDRD
63 I CT data
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Sample Tensile Results
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65 I Approximately 900 Training Tension Simulations Have Been Run
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66 | Equivalent Plastic Strain (EQPS) Shows Large Variability
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Update from Deep Learning Group

Progress has been made on three thrusts:

* Synthetic data generator
Provides capability to mimic the
converted mesh with specific properties
to check performance as we add model
and task complexity

* Deep learning model implementation
Implementation of a 3D CNN for binary
failure classification

e Conversion tool from exodus mesh to
NumPy arrays



Synthetic Data Generator

Makes 723 I-Beams mimicking mesh
converter output

* Allows larger kernel sizes to fit in

memory

Flaws (empty spaces) are generated in the
central column of the beam to denote a
failing instance
Data generator is modular, allowing custom
flaw configurations to be generated with
specific distributions
Next steps: Designing more configurations to
mimic real data distribution

An |-Beam generated by the data generator
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Trained model to run inference on real data. Below are confusion matrices for the training (99% accuracy) and held back test-set (73.8%
accuracy).

Training Confusion Matrix Testing Confusion Matrix

80

16
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Success Success
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Success: the part was not labelled as a failure
Failure: the part was labelled as a failure




