
GPU-Accelerated Drug Discovery with Docking on the Summit
Supercomputer: Porting, Optimization, and Application to

COVID-19 Research
Scott LeGrand

NVIDIA Corporation
Santa Clara, California

Aaron Scheinberg
Jubilee Development

Cambridge, Massachusetts

Andreas F. Tillack
Scripps Research
La Jolla, California

Mathialakan Thavappiragasam
Oak Ridge National Laboratory

Oak Ridge, Tennessee

Josh V. Vermaas
Oak Ridge National Laboratory

Oak Ridge, Tennessee

Rupesh Agarwal
University of Tennessee, Knoxville

Knoxville, Tennessee

Jeff Larkin
NVIDIA Corporation
Santa Clara, California

Duncan Poole
NVIDIA Corporation
Santa Clara, California

Diogo Santos-Martins
Scripps Research
La Jolla, California

Leonardo Solis-Vasquez
TU Darmstadt

Darmstadt, Germany

Andreas Koch
TU Darmstadt

Darmstadt, Germany

Stefano Forli
Scripps Research
La Jolla, California

Oscar Hernandez
Oak Ridge National Laboratory

Oak Ridge, Tennessee

Jeremy C. Smith
UT/ORNL

Oak Ridge, Tennessee
University of Tennessee
Knoxville, Tennessee

Ada Sedova
Oak Ridge National Laboratory

Oak Ridge, Tennessee
sedovaaa@ornl.gov

ABSTRACT
Protein-ligand docking is an in silico tool used to screen potential
drug compounds for their ability to bind to a given protein receptor
within a drug-discovery campaign. Experimental drug screening
is expensive and time consuming, and it is desirable to carry out
large scale docking calculations in a high-throughput manner to
narrow the experimental search space. Few of the existing com-
putational docking tools were designed with high performance
computing in mind. Therefore, optimizations to maximize use of
high-performance computational resources available at leadership-
class computing facilities enables these facilities to be leveraged
for drug discovery. Here we present the porting, optimization, and
validation of the AutoDock-GPU program for the Summit super-
computer, and its application to initial compound screening efforts
to target proteins of the SARS-CoV-2 virus responsible for the cur-
rent COVID-19 pandemic.1

1This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
00OR22725 with the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACM-BCB 2020, August 30–September 2, Virtual
© 2020 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Applied computing→ Computational biology.

KEYWORDS
Drug discovery, high-performance computing, GPU acceleration,
protein-ligand docking

ACM Reference Format:
Scott LeGrand, Aaron Scheinberg, Andreas F. Tillack, Mathialakan Thavap-
piragasam, Josh V. Vermaas, Rupesh Agarwal, Jeff Larkin, Duncan Poole,
Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas Koch, Stefano Forli,
Oscar Hernandez, Jeremy C. Smith, and Ada Sedova. 2020. GPU-Accelerated
Drug Discovery with Docking on the Summit Supercomputer: Porting, Op-
timization, and Application to COVID-19 Research. In Proceedings of 11th
ACM Conference on Bioinformatics, Computational Biology, and Health Infor-
matics (ACM BCB) (ACM-BCB 2020). ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The binding of a drug to a protein target in vivo can elicit a molecu-
lar response, such as the inhibition of a cellular function, and forms
the basis of targeted drug discovery. Computational protein-ligand
docking can be utilized for the rapid structure-based screening of
small molecule drug candidates for target binding [5, 21]. Three

United States Government retains a non-exclusive, paid- up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to
do so, for United States Government purposes. The Department of Energy will provide
public access to these results of federally sponsored research in accordance with the
DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
http://energy.gov/ downloads/doe-public-access-plan

ACM-BCB 2020, August 30–September 2, Virtual LeGrand et al.

dimensional structural models of both a protein receptor and a set
of small molecule compounds, or ligands, are employed to com-
putationally predict the ability of a ligand to bind to the receptor,
using an optimization algorithm within some function, which can
be either a physics-based empirical energy potential or statistical.
[10, 16, 31]. Advances in high-throughput experimental screening,
both cell-based [18, 26] or molecular [7, 12], have allowed tens
of thousands of chemical compounds to be tested simultaneously.
However, these assays are expensive, and the ability to computa-
tionally filter chemical compounds for their propensity to bind to a
target protein can significantly reduce the overall cost and time to
solution. The data to be evaluated are plentiful as the relevant chem-
ical search space consists of billions of compounds. For instance,
the Enamine REAL database (https://enamine.net) contains over
a billion small molecules, and the ZINC 15 database contains 230
million ready-to-dock compounds, [29]. Thus the number of com-
pounds that can potentially be screened with in silico docking to
complement experimental efforts is now on the order of billions. In-
creases in processor speeds and the number of cores on large nodes
of computing clusters and cloud resources have made meeting this
docking challenge theoretically attainable. Unfortunately, many
docking programs are not inherently designed with massive high-
throughput screens in mind. Most open source docking programs
commonly applied in academic research are CPU-based, single-
node, and utilize file-based input and output [16, 31]. Such codes
are often designed to perform a single ligand-docking calculation
per run instance of the executable.

A variety of programs exist for ligand docking, with some us-
ing empirical but physics-based potential energy descriptions and
others using fully empirical statistical potentials trained on a set of
experimental structures of ligands bound to proteins [16, 17, 31].
The widely employed AutoDock program saw its inception in 1990
[8] and has undergone several major changes, with the latest ver-
sion being AutoDock4. This program incorporates a physics-based
energy function that includes entropic and solvation terms, in ad-
dition to van der Waals terms, hydrogen bond, and electrostatic
interactions [15, 16]. The energy minimization procedure consists
of a Lamarckian genetic algorithm (LGA), whereby a local search
accompanies the standard genetic optimization, and the improved
ligand pose that is obtained from this local optimization is the input
for the crossover portion of the algorithm. The original local search
method is based on the Solis-Wets random optimization algorithm
[27].

1.1 AutoDock-GPU with OpenCL
General purpose graphics processing units (GPUs) are used to ac-
celerate dense numerical calculations in a variety of settings, from
high-performance computing (HPC) facilities to data centers and
cloud resources. There are several commonly used application pro-
gramming interfaces (APIs) that are used to program NVIDIA GPUs
including CUDA, and OpenCL. A few docking programs have in the
past five years made use of GPUs for accelerating their calculations
[4, 14, 28]. Recently Scripps Research, in collaboration with TU
Darmstadt, developed an accelerated version of their AutoDock4
program using OpenCL, which provided up to 50× speedup over
the single-threaded CPU version [24, 25, 28]. OpenCL was chosen

as the programming model for using the accelerator as it provides
code portability to various types of architectures, for instance GPUs,
CPUs, and FPGAs, from multiple vendors. This program has been
named AutoDock-GPU and while it uses the same physics-based
empirical potential energy function, it includes new algorithmic
additions and changes that can improve both performance and the
quality of the results [24, 25, 28]. In particular, within the AutoDock-
GPU program, there are now two possible algorithms for the local
search that can be employed, (1) the Solis-Wets (SW) method of ran-
dom optimization, and (2) the ADADELTA gradient-based method
[33]. The ADADELTA method was added to improve the local re-
finement of results, especially for ligands with larger numbers of
torsions. AutoDock-GPU uses similar run parameters as AutoDock4,
with some minor changes, including a renaming for some parame-
ters, changes in some defaults, and some different hyperparameters.
The run parameters important to the current study include the nrun
parameter, which designates the number of different independent
complete LGA calculations that are performed in one instance of the
executable. Each nrun results in a separate final pose, and is output
in the output files. A drug screen would take the best scoring pose
from these independent outputs. In addition, a recently developed
feature is the ability to set the autostop parameter, which allows
the local search algorithm to finish prematurely (with respect to
the value set in the nev parameter that sets the number of total
iterations of the LGA algorithm per run), if the energy value has not
changed a sufficient amount, measured by the standard deviation
over the past 10 iterations.

1.2 The Summit supercomputer
The Oak Ridge Leadership Facility (OLCF) at the Oak Ridge Na-
tional Laboratory (ORNL) is an open science computing facility
that supports HPC research. The OLCF houses the Summit super-
computer, an IBM AC922 system consisting of 4608 large nodes
each with six NVIDIA Volta V100 GPUs and two POWER9 CPU
sockets providing 42 usable cores per node. Currently there is no
NVIDIA driver support for OpenCL on POWER9 architectures
for GPU. Summit is harnessed by hundreds of research groups
as part of its multiple open science allocation grants, including
the INCITE, ALCC, and Director’s Discretion awards and most
recently, as part of the COVID-19 Consortium created for support-
ing computational research aimed at combating the COVID-19
pandemic (https://www.xsede.org/covid19-hpc-consortium). The
ability to leverage the Summit supercomputer’s GPUs to perform
massive high-throughput docking screens for antivirals against the
SARS-CoV-2 virus was recognized by our groups as an important
resource that was not accessible for AutoDock-GPU due to this
lack of OpenCL support. We therefore have worked to create a new
version of this program using the CUDA API, and in addition, to
design programmatic changes that facilitated optimized docking
screens using large ligand datasets. Here we describe these ports,
optimizations including latency hiding facilitated by overlapping
set-up and calculation, and inclusion of a convenient input option
for processing hundreds to thousands of files more efficiently.

1.3 Related Work
Several previous efforts have enabled the deployment of docking
codes such as AutoDock4 and AutoDock Vina on large compute

https://enamine.net
https://www.xsede.org/covid19-hpc-consortium

GPU Docking on OLCF Summit ACM-BCB 2020, August 30–September 2, Virtual

resources, from clusters to supercomputers. Vina MPI used an MPI
wrapper to enable the simultaneous launching of thousands of par-
allel AutoDock Vina executables and was run on the OLCF Jaguar
and Titan supercomputers [3]. A similar effort at the Lawrence Liv-
ermore National Laboratory resulted in a program called VinaLC
[34]. Recently a GNU-Bash based pipeline was created for docking
millions of ligands on clusters [9]. GPU acceleration has also been
included in docking programs. GeauxDock created a novel energy
function consisting of physics-based and statistical terms that ran
on GPUs [4], but has seen limited application or updates. To our
knowledge, the version of AutoDock-GPU described in this paper
is the only docking program using the AutoDock4 potential that is
optimized for the most recent GPUs and also adds the capability to
optimally process thousands of ligand input files sequentially with
a single executable.

1.4 COVID-19 and drug discovery for
SARS-CoV-2 antivirals

The ability to rapidly dock millions to billions of ligands to pro-
tein receptors to help find inhibitors for viral proteins could be
invaluable to experimental drug discovery efforts. Correspondingly,
harnessing leadership computing resources for drug discovery ef-
forts against the SARS-COV-2 virus could provide an invaluable
resource with which to battle the current COVID-19 pandemic [22].
Applying this approach is part of the collaborative international
research effort recently formed around discovering therapeutics to
mitigate morbidity and mortality caused by the disease. The work
presented here takes the first step in facilitating the deployment
of a GPU-enabled, open source docking program on the Summit
supercomputer, and optimization for high-throughput docking of
large numbers of ligands in a single instance. With this capability in
place, future work involving the deployment of efficient platforms
to enable running the AutoDock-GPU program at scale on all of
Summit’s 27,648 GPUs can be pursued.

2 METHODS
A number of additions and changes were made to the AutoDock-
GPU program to create a version that made effective use of the
nodes on Summit and supported massive, high-throughput dock-
ing screens. In particular we focused on the case where a very
large number of ligands (millions to billions) would be docked to a
single receptor. Fig. 1 illustrates the design of this version of the
program, showing the addition of OpenMP threading for creating
a pipeline that hides latency from file I/O by staging ligand files
while the GPU is busy docking. In addition, the receptor data is now
explicitly reused, further reducing I/O when docking thousands of
compounds to the same protein target. These changes are detailed
in the following subsections.

2.1 Conversion of OpenCL version to CUDA
and optimizations

The original AutoDock-GPU program developed by Scripps and TU
Darmstadt was written in OpenCL to improve portability across
GPU vendors, and enabled threaded execution on CPUs. However,
OpenCL is not supported on all platforms, including the combi-
nation of NVIDIA GPUs and POWER9 CPUs present on Summit.

Figure 1: Schematic of new HPC-friendly AutoDock-GPU
program, showing the OpenMP threading-based pipeline
for hiding ligand input and staging, and the receptor-reuse
functionality for docking many ligands to a single receptor.
Noted are locations (CPU, GPU) where steps are executed.
Black arrows indicate operations performed once, and blue
arrow are those performed multiple times.

Therefore it was necessary to port AutoDock-GPU to CUDA to
leverage the V100 GPUs on Summit to run AutoDock-GPU at scale.
This provides not only large speedups over CPU-based code but
also a reduction in power consumption for the same compute task
on Summit [6]. This porting is not effortless, due to philosophical
and design differences between OpenCL and CUDA. OpenCL was
created in 2009 as an open and portable alternative to CUDA [30],
and has maintained the commitment to remain free of hardware-
specific programming elements. While the OpenCL API resembles
CUDA’s API in many ways, it is a vendor-neutral solution with
a focus on portability across CPUs, GPUs, FPGAs, and embedded
devices, and thus cannot expose architecture-specific hardware fea-
tures. CUDA, on the other hand, has been developed in tandemwith
NVIDIA GPUs hardware and exposes new architectural features
with each release. While OpenCL has the advantage of running on
any device that supports it, porting OpenCL code to CUDA also
provides significant opportunities to exploit those vendor-specific
hardware advances, which would otherwise squander the transis-
tors on NVIDIA GPUs that enable them.

In order to create an initial port that could reproduce the OpenCL
results, we transcribed the AutoDock OpenCL version (forked April
3rd from the “develop" branch) by hand to CUDA. This created an
initial executable which performed at roughly half the speed of the
OpenCL version. Next, we applied basic optimization techniques to
the code like replacing calls to pow with intrinsics, and dynamically

ACM-BCB 2020, August 30–September 2, Virtual LeGrand et al.

allocating shared memory to allow more threads per processor.
These first optimizations enabled the CUDA version to run 2.8×
faster than the OpenCL version on an NVIDIA RTX2080TI GPU for
the ADADELTA algorithm. Back-porting these optimizations to the
OpenCL code showed little to no benefit there, for the following
reasons: OpenCL already has intrinsics for pow(float, int), and
the shared memory amount is known to OpenCL at compile time.

2.2 Optimizing for thousands of consecutive
docking calculations

Although the OpenCL and CUDA implementations of AutoDock-
GPU were able to accelerate docking calculations significantly,
AutoDock-GPU was designed to take a single receptor and a single
ligand as command-line inputs. If one wished to dock multiple
ligands with a single receptor (or vice versa), one would have to
run the executable separately for each “job.” For a large ligand set,
this is both tedious for the user and inefficient in terms of resources.
Here we describe several steps taken to maximize performance in
the context of massive docking calculations.

2.2.1 A multiple-files option and file reuse. To improve the code
for this use case, we enabled the user to provide a list of protein and
ligand files, accessible through a -filelist flag. The program then
loops over the provided list and performs the docking calculations
for each. To further optimize the performance of GPU-based high-
throughput docking of thousands of ligands to a single receptor,
we enabled the program to reuse the 16 receptor maps of up to
hundreds of megabytes containing the interaction grid information
for atoms in ligands rather than re-read the map files for every new
ligand.

2.2.2 OpenMP threading for overlapping set-up. After enabling
multiple jobs to run consecutively in the same executable, we could
begin performance optimization of this new pipeline. Depending
on the parameters specified, a significant portion of the run time
is spent in the setup and post-processing phases. These phases are
performed on the host and include I/O, allocations, and some initial
and final calculations less suitable for GPU. If jobs are executed
serially, the GPU is idle during these phases and thus underuti-
lized. To reduce this latency, we introduced OpenMP directives so
that CPU-based threads could work in parallel to load ligand input
files, transfer them onto the GPU, launch the GPU-based dock-
ing kernels, and process and write the output of the calculation.
This is illustrated in Fig. 1. To ensure that jobs do not conflict, all
CPU-GPU communication (besides the initial receptor map setup
described above) and the docking algorithm itself (consisting of
multiple CUDA kernels) are placed in a function called from an
omp critical section. As a result, the OpenMP threads perform
the setup and post-processing phases of each job in parallel, while
queuing up to use the GPU one by one for the docking simulation
itself. Combined with the reduction in setup time from the opti-
mizations detailed below, this threading approach is sufficient to
hide almost all setup and post-processing time and ensure the GPU
is rarely idle.

2.2.3 Reuse of GPU context and of receptor grids on GPU. We also
improved handling of GPU memory and host-device communica-
tion. Instead of creating and destroying the CUDA context anew

for each ligand input, the context is now created once and GPU
memory is preallocated and reused for each ligand. Similarly, rather
than transfer the receptor grid maps onto the GPU for every ligand,
all of the receptor’s grids are sent once during initialization and
left on device. Because each ligand requires a different subset of
these grids, a mapping was required to point to the grids neces-
sary for a specific ligand docking. Historically, creation of CUDA
contexts in memory, GPU memory allocation, and transfer of data
to GPU have been bottlenecks in GPU programming. On Summit,
with the improved NVLINK2 interconnect, data transfer onto the
GPU is less expensive, but still considerable. The V100 GPUs on
Summit contain 16 GB of global memory, which is enough to store
all possible receptor interaction grids for supported atom types.

2.3 Performance and validation testing on
OLCF resources: Summit and DGX-2

We tested the performance of the new CUDA version of AutoDock-
GPU with and without the OpenMP-based pipeline and compared
to performance of the OpenCL version using a NVIDIA DGX-2
appliance hosted at ORNL. The DGX-2 contains 16 NVIDIA V100
GPUs and dual Intel Xeon Platinum 8168 CPUs containing 24 cores.
The x86 architecture for the DGX-2 platform permits us to make
direct comparison between the original OpenCL AutoDock-GPU
implementation and the CUDA port. Both executables were built
within an Ubuntu 18.04 Singularity container with CUDA 10.1 and
version 7.5.0 of the GNU compiler collection, which implement
OpenCL 1.2. These tests were performed on a set of 42 experimen-
tal crystallographic structures of ligands bound to enzyme active
sites, obtained from the Research Collaboratory for Structural Bioin-
formatics (RCSB) Protein Data Bank (PDB) [1], and converted to
input files for AutoDock-GPU using OpenBabel program [20]. The
set of inputs and the PDB IDs for these structures can be found
at https://github.com/diogomart/AD-GPU_set_of_42. This set is
hereafter referred to as S42. The S42 dataset contains a variety of
different ligand sizes and numbers of torsions, or rotatable bonds,
and a range of different sized search boxes defined by the input
grid coordinates.

We then tested the performance of the CUDA/pipeline version
of AutoDock-GPU on a large benchmark set of ligands on Summit.
For Summit tests we used GNU compiler collection version 6.4 and
CUDA version 10.1.243. Summit currently runs the Red Hat Enter-
prise Linux Server version 7.6 (Maipo). The ligand dataset consisted
of 9,000 ligands taken from the full SWEETLEAD database [19]
(as acquired in March of 2020), but with ligands containing atom
types unsupported by the AutoDock Utilities tools [16, 28] removed,
and supplemented with ligands from the NCI. This data set will be
referred to as SN9000. Performance was measured using both local
search algorithms (Solis-Wets and ADADELTA), and compared to
the performance of both AutoDock4 and AutoDock Vina on Sum-
mit. The SARS-CoV-2 endoribonuclease protein (NendoU) crystal
structure recently deposited on the RCSB PDB, PDB-ID 6VWW
[13], was the target receptor.

Finally, we explored in detail the different optimizations which
were added, namely, the application of the OpenMP pipeline, the
addition of context reuse, and the reuse of the receptor grids by stor-
ing all of them on the GPU’s global memory. We performed these

https://github.com/diogomart/AD-GPU_set_of_42

GPU Docking on OLCF Summit ACM-BCB 2020, August 30–September 2, Virtual

tests on Summit using a single resource set on a single compute
node which consists of a GPU, 1 (for non-pipelined version) and
7 (for pipelined version) physical CPU cores with one thread per
core with the pipeline using 1 and 7 OpenMP threads. For this test
we picked a random subset of about 400 ligands from the SN9000
ligand set, and also docked to the NendoU receptor with a search
box of size 22.5 Å per side using both local search methods (Solis-
Wets and ADADELTA). We chose ligands with small numbers of
torsions (≤ 10) to test the performance of the Solis-Wets method,
and ligands with more than 10 torsions for ADADELTA. We per-
formed the test using the number of runs (nrun) parameter set to 10
and 100 for both cases, and with the newly implemented autostop
functionality both on and off. For all receptors, any bound small
molecule ligand, ions, and water molecules were removed from the
structures using MOE [32]. Hydrogen atoms were then added, and
each structure was saved in its apo form. The AutoDockTools script
(prepare_receptor4.py) was then applied to convert the PDB
files to PDBQT format, and AutoGrid4 was employed to generate
the atom-specific affinities, electrostatic potential, and desolvation
potential maps for each receptor. Details of experiments on viral
Mpro (section 4) are given in that section. Molecular images were
made with VMD [11] and UCSF Chimera [23].

3 RESULTS: VALIDATION AND
PERFORMANCE EVALUATION

Here we describe the results of performance testing and validation
of the CUDA/pipeline version of AutoDock-GPU on several poten-
tial use-cases for high-throughput docking. The parameters that are
varied in these different situations include the number of ligands
docked against a receptor, the size of the allowed search box, the
number of torsions in the ligands, the local search algorithm used,
and the number of replicas of the calculation that are performed
for each docking (the nrun parameter). We break down the perfor-
mance gains imparted by the different improvements detailed in
the Methods section. We also confirmed that the results obtained
with the new version are consistent with those obtained using the
original OpenCL version.

3.1 Comparison of OpenCL and CUDA version
and effect of pipeline

Results for running the S42 benchmark on the DGX-2 are shown in
Fig. 2. Each of the 42 receptor-ligand pairs was tested with three
random starting conformations of the corresponding ligand. The
tests were performed using nrun set to 10 and using the ADADELTA
local search method, with all other parameters set as default. The
CUDA version here shows a 1.8× mean speedup over the OpenCL
version with this dataset, and the pipeline provides an additional
2.4× speedup over the un-pipelined CUDA version, resulting in an
overall 4.4× mean speedup over the original OpenCL version, for
this particular set of receptors, ligands, and box sizes, and these run
parameters.

3.1.1 Re-docking validation results. Another metric over which to
compare docking algorithms are the generated poses themselves.
Leveraging the experimentally determined positions for ligands, we
can check how well the predicted bound poses match experiment.

844.8s 386.9s 221.1s

100

101

Li
ga

nd
D

oc
ki

ng
Ti

m
e

(s
)

4.4

1.0

39.5

2.4

1.1

15.4

1.0

0.3

13.4

OpenCL
CUDA
CUDA+pipeline

Aggregate:

Figure 2: AutoDock-GPU performance, using the
ADADELTA algorithm, on a DGX-2 on a set of 42 re-
ceptors with 3 ligands each with nrun=10, permitting the
OpenCL, CUDA, and pipelining features to be compared
directly.

This is known as re-docking. Because the S42 dataset consists of
experimental structures of ligands bound to receptors, it can be
harnessed to not only validate the ability of the AutoDock-GPU
program to reproduce experimental ligand poses, but to also vali-
date the consistency of outputs after major changes to the program.
Here we show the cumulative root mean squared (Euclidean) dis-
tance (RMSD) distribution between the final best pose from docking
and the crystallographic pose from the S42 set (Fig. 3). The RMSD
is a standard measure of the three-dimensional similarity between
conformations of a molecule. Note that some ligands within this
test set are intentionally difficult, with a large number of torsions
and a commensurately large search space, and so not all poses
found are near the experimental position. Despite these challenges,
the median RMSD over the full 42 ligand set ranges from 1.28 to
1.85 Å for the CUDA implementation of AutoDock-GPU, depending
on the local search algorithm. This indicates useful agreement with
the experimental poses. As expected, the docking quality improves
with increased computational effort, although the improvement
is not linear, and usable results can be obtained with a compar-
atively small number of runs, particularly with the ADADELTA
local search algorithm. The small differences in the results between
OpenCL and CUDA implementations within Fig. 3 are not indica-
tive of qualitatively different results, are instead consistent with
the stochasticity inherent in docking algorithms.

3.2 Influence of size of search space
For these tests we used the SARS-CoV-2 endoribonuclease protein
(NendoU) crystal structure recently deposited on the RCSB PDB,
PDB-ID 6VWW [13]. In addition, we tested both the Solis-Wets
local search method, and the ADADELTA method introduced with
AutoDock-GPU. We created two test cases for evaluating two ex-
tremes of search-space size. The first is an exhaustive search over
the protein, known as “blind” docking, together with a complete
set of ligand torsional degrees of freedom. The second uses a fo-
cused, small search box, limited to the active site region that must
be pre-determined together with a subset of the ligand dataset that

ACM-BCB 2020, August 30–September 2, Virtual LeGrand et al.

0 2 4 6 8
RMSDc (Å)

0.0

0.2

0.4

0.6

0.8

1.0
C

um
ul

at
iv

e
P

ro
ba

bi
lit

y

OpenCLADA(nrun=10)

OpenCLSW (nrun=100)

OpenCLSW (nrun=10)

CUDAADA(nrun=10)

CUDASW (nrun=100)

CUDASW (nrun=10)

Figure 3: Cumulative distribution for RMSD for the re-
docked S42 set against the initial crystal structure, noted
here as RMSDc . The cumulative distributions were calcu-
lated for bothOpenCL (solid) andCUDA (dashed) implemen-
tations and both ADADELTA or Solis-Wets local searches.

Figure 4: Blind docking (large box, light grey) and focused
docking (small box, red) regions around the SARS-CoV-2
(green cartoon) endoribonuclease protein active site (PDB-
ID 6VWW). Blind docking uses a larger search space (gray),
and the small box (red) focuses on a small region directly
around the active site.

contained only those ligands with ≤ 10 torsions. Fig. 4 shows the
different search spaces on the receptor.

3.2.1 Blind docking with many degrees of freedom. In the large
search space test the ligands were allowed to bind anywhere in a
large search volume (gray region, Fig. 4) which was a box 40 Å per
side centered on the active site. In addition, we used the full set
of ligands which included those with ≥ 10 torsional degrees of
freedom, or rotatable bonds. We set (nrun=100) in order to explore
this larger search space sufficiently. The dockings were performed
with both the SW and the ADA-DELTA methods.

3.2.2 Small Search Box with Fewer Degrees of Freedom. For the
small search space test, we docked to the known binding site. In
this case, only a small region (22.5 Å per side) of the protein was
explored for ligand binding (red box, Fig. 4), selected based on the
final binding location for themajority of ligands in the blind docking
trials, and only those ligands with ≤ 10 torsions. The smaller search
box coupled to selecting for simpler ligands in this test means that

101

102

103

B
lin

d
D

oc
ki

ng
Ti

m
e

(s
)

326.6

19.8

5059.2

21.0

8.4

50.3

22.3

9.8

106.4

AutoDock4
AutoDock Vina
ADGPU-CUDA-SW
ADGPU-CUDA-ADA

100

101

102

103

Ta
rg

et
ed

D
oc

ki
ng

Ti
m

e
(s

)

300.9
201.0

1640.6

31.9

2.8

780.2

1.1

0.5

3.1

1.0

0.5

8.9

0 25 50 75 100
Ligand Atom Count

Figure 5: Runtime distribution for docking calculations un-
der varying conditions with alternative docking programs.
Left: violin plots of runtime distributions with maximum,
median, and minimum runtimes for ligands indicated ad-
jacent to their position within the distribution. Right: run-
time distributions illustrating growth in runtime as ligands
increase in size.

fewer runs were needed to saturate the space and we therefore set
(nrun=10).

3.2.3 Search Space Tests and Comparison to Other Docking Pro-
grams. The two previous test cases were also used to compare the
performance of AutoDock-GPU to equivalent calculations using the
CPU-only AutoDock4 [16] or AutoDock Vina [31] programs when
performed on Summit. For the large search space test, we compared
time to solution using AutoDock Vina against the time to solution
for AutoDock-GPU on Summit. AutoDock4 was excluded from this
analysis, as the high number of runs required to sample the space
(nrun=100) would routinely exceed the allowed walltime on Sum-
mit. For the small search space test, a lower nrun setting permitted
AutoDock4 to be added to the comparison set. The results of these
runtime tests under these two conditions are summarized in Fig. 5.
For the large space test, AutoDock Vina runtimes are observed to
grow rapidly as a function of ligand complexity. As a consequence,
while the median docking times are only a factor of 16 slower in
the large space case, the aggregate run times for all AutoDock Vina
calculations are a factor of 25 slower due to particularly poor perfor-
mance for the largest ligands. By contrast, AutoDock-GPU tackles
even these challenging ligands in under two minutes (Fig. 5). The
general runtime distribution for AutoDock4 and AutoDock-GPU on
Summit is similar, with additional ligand complexity only modestly
increasing the runtime for an individual ligand (Fig. 5). However,
whereas AutoDock4 has significantly longer runtimes even for the
simple ligand set selected, AutoDock-GPU leverages the parallelism
inherent to the GPUs to bring the runtimes down significantly. The
large reduction in runtimes and narrower time distribution may
permit large ligand sets to be screened on Summit on a routine
basis.

GPU Docking on OLCF Summit ACM-BCB 2020, August 30–September 2, Virtual

Table 1: Performance Improvements from Sequential Opti-
mizations: Solis-Wets. Shown is mean time in seconds over
ligands run sequentially on oneGPUusing the pipelinewith
with either 1 or 7 threads. Ligands in this set contained 10 or
fewer torsions. CR: context reuse; F/RR: receptor file and re-
ceptor grid reuse on GPU. Each optimization is added on top
of the previous ones going from left to right.

nrun 1 thread 7 threads CR F/RR

10 4.7 1.4 1.4 0.5
100 8.8 4.6 2.1 2.1

3.3 Performance improvement from individual
components of new high-throughput
design on Summit

We also performed a systematic test of the incremental contribu-
tions of each of the optimizations to the overall speedup of the new
HPC-centric version of AutoDock-GPU. 412 randomly selected lig-
ands from the SN9000 dataset were picked for this analysis. We
computed the average time in seconds per ligand for values of the
nrun parameter set to 10 and 100, for the program with and without
threading (by setting the OMP_NUM_THREADS environment variable
to 1 and 7 respectively), and tested different stages of optimization
the program, added incrementally: with addition of CUDA context
reuse, and with the reuse of the receptor input files and of this data
by making employing of GPU global memory to store all required
grids for all ligands in a batch. Tables 1 and 2 show these effects
for the SW and ADADELTA algorithms, respectively. Each new
optimization is added on top of the previous one in these tables.

Table 2: Performance Improvements from Sequential Opti-
mizations: ADADELTA. Mean run time (in seconds) calcu-
lated as in Table 1. CR: context reuse; F/RR: receptor file and
receptor grid reuse on GPU. Each optimization is added on
top of the previous ones going from left to right.

torsions nrun 1 thread 7 threads CR F/RR

≤ 10 10 4.8 1.4 1.4 0.7
≤ 10 100 9.7 5.5 4.3 4.4
> 10 10 7.5 3.5 3.3 3.4
> 10 100 25.8 23.9 20.4 20.5

For simple ligands under 10 torsions, both for SWandADADELTA,
the use of 7 threads with the OpenMP pipeline provided about 3 to
3.4× speedup for nrun = 10, but slightly less than a 2× speedup for
nrun = 100. With nrun = 10, for both low torsion sets, the file and
receptor reuse optimization provided a significant further speedup
of about 2 to 2.8×, while CUDA context reuse did not provide any
additional speedup, while context reuse provided 2.2× speedup for
SW with nrun = 100, and file and receptor reuse did not add perfor-
mance. Fig. 6 summarizes the total speedup, with all optimizations,
for all 6 cases.

Figure 6: Total speedup over all optimizations for variations
of local search algorithm, torsion number and nrun parame-
ter (10 or 100) indicated by the numbers under the bars.

Table 3: Contribution of autostop feature to time to solu-
tion. Right two columns show mean run time per ligand in
seconds. AS: autostop; alg, algorithm; SW, Solis-Wets; AD,
ADADELTA. Threads used:1.

alg torsions nrun AS off AS on

SW ≤ 10 10 4.7 4.5
SW ≤ 10 100 8.8 6.4
AD ≤ 10 10 4.8 4.7
AD ≤ 10 100 9.7 8.8
AD > 10 10 7.5 7.4
AD > 10 100 25.8 25.6

The autostop parameter was added recently to the development
version of AutoDock-GPU (OpenCL) and ported to the CUDA ver-
sion. It allows the program to stop the local search if no progress is
beingmade. Table 3 shows the speedup provided by using autostop,
shown without the pipeline (threads set to 1). This feature helps
most for larger nrun values combined with smaller molecules.

4 RESULTS: EXPERIMENTS ON SARS-COV-2
MAIN PROTEASE (MPRO)

Many groups from around the world have been studying differ-
ent SARS-CoV-2 proteins and solving their structure. The main
protease (Mpro) in particular has attracted much attention as a po-
tential drug target, and as such over 90 crystallographic structures
containing a bound ligand have been released on the RCSB PDB,
with many bound to the protease’s active site region, and others
bound elsewhere on the protein. We therefore performed some
preliminary docking calculations on ligands taken from this set.
These calculations allow us to examine calculated binding energies
and docking poses. Fig. 7 shows an overlay of some of these ligands
bound to Mpro.

From this set, 68 ligands are observed to interact with the enzyme
active site, of which 22 are non-covalent ligands that have been
crystallized. The remaining 46 ligands bound to the active site are
covalently bound to the receptor, and this interaction cannot be
represented in AutoDock Vina or AutoDock-GPU. Fig. 7 indicates
that 25 crystallographically determined ligands bind non-covalently
to Mpro, well outside of the active site region. All of these putative

ACM-BCB 2020, August 30–September 2, Virtual LeGrand et al.

Figure 7: Ligand binding locations (multicolored sticks) ob-
served in crystal structures of the SARS-CoV-2 main pro-
tease (white cartoon).

Figure 8: Dendrogram of hierarchical clustering using MDL
keysets. The small molecules were divided into 24 clusters
(clades) based on structural similarity. Active-site binders
are highlighted in green.

ligands are fragments, and therefore are relatively small, with no
more than 4 torsions.

A hierarchical chemical clustering over all non-covalent binders
to the protease was performed in chemical fingerprint space using
MDL keysets [2], the Tanimoto similarity coefficient between com-
pounds, and the Ward clustering linkage method with a clustering
threshold of 0.8. The small molecules were divided into 24 clusters
(clades) based on structural similarity (Fig. 8). All molecules in this
set, both bound to the active site and outside of it, were found in
similar clusters. Furthermore, many of the external binders were in
the same clades as active site binders. It is possible, considering their
closeness in chemical fingerprint space as shown by the clustering
analysis, that the external binders also occupied the Mpro active
site for some time before being displaced during crystallization.

We docked both the 22 active-site binders and the 25 external
binders to the Mpro receptor. For these tests all docking calculations
were performed with SW with nruns = 100. Interestingly, scores
for both sets (active site and external binders) had a mean between
-6.4 and -7.4 kcal/mol for all of the Mpro crystal structures tested,
with best scores over each ligand set extending below -8.5 kcal/mol.
Docking of the 22 non-covalent ligands to Mpro with AutoDock

Vina was also performed (Fig. 9). Vina scores are shifted to higher
values and have a more one-sided and less disperse distribution
than AutoDock-GPU scores. These differences reflect the different
potentials and algorithms used in the two programs, and can be
useful information when choosing a cut-off for score-based virtual
screening.

Figure 9: Histogramof the best binding free energies (scores)
of ligands which were experimentally found to be bound
non-covalently toMpro active site, docked toMpro structure
PDB ID 5RE9 using AutoDock-GPU and AutoDock Vina.

4.0.1 Effect of box size and active site structure. We docked the 22
active-site binders to several available Mpro crystal structures, PDB
IDs: 5R7Y, 5R80, 5R81, 5R84, 5RE9, 5RF3, 5RGI, 6WQF, 6Y2E. Using
a box that was fit very tightly about the active site, of dimensions
18.75×24.75× 22.5 Å, scores obtained were high– not lower than
-6.5 kcal/mol and with a mean of around -5. Using a box of size
26.25 Å per side (with center as Pro 39 C-alpha atom) improved
scores by approximately 2 kcal/mol, bringing scores down below
-8 in several cases. We also noted that, using the same search box,
the resulting scores were somewhat sensitive to small changes in
the protein active site. These may include the position of several
coils or small helix regions at the opening of the active site and
flanking side chains. Fig. 10 illustrates this difference, showing
scores for docking the 22 active site binder ligands to two different
Mpro structures, PDB IDs 6Y2E and 6WQF, which were crystallized
without bound ligands, and 5R7Y, crystallized with a bound ligand.

Figure 10: Scores obtained by binding the 22 crystallized
non-covalent active-site bound ligands, using three differ-
ent crystal structures for Mpro, each with a slightly differ-
ent active site. Residue names given on x-axis and corre-
sponding PDB IDs on left. All docking calculations were per-
formed with SW using nruns = 100.

GPU Docking on OLCF Summit ACM-BCB 2020, August 30–September 2, Virtual

Figure 11: Overlay of the five experimental crystal struc-
tures of Mpro which are bound to non-covalent ligands
showing the most variation in active site region conforma-
tion. Left and right panels show views rotated 180 degrees.

6Y2E and 6WQF differ by a large change in position of a side
chain of the GLN 189 residue, seen upon close inspection of the
6WQF active site. This conformation, in addition to small changes
in the positions of surrounding loops, gives the active site a reduced
volume, thus limiting the search space for docking and potentially
contributing to the slightly higher energy values obtained from
docking to this structure. Fig. 11 shows an overlay of five of the
22 structures crystallized with ligand bound, that were found to
be most different from the others (PDB IDs 5RGK, 5R84, 5R80,
5R81, 5RE9), and also from the unbound Mpro structures. Notable
is the difference in the small helix that becomes a coil in several
structures, and adopts a wide range of positions, changing the active
site volume.

4.1 Re-docking results: poses
Re-docking refers to the docking of a ligand, crystallized in complex
with a receptor, to the same receptor. We performed re-docking
experiments on four of the 22 non-covalent binders, ligands from
PDB IDs 5R7Y, 5R84, 5RF3, and 5RGI. After docking, the top-ranked
(lowest score) docked pose of the ligand was superimposed on
the crystal structure ligand pose to compare them. 5RF3 (ligand
residue name T5V) is a very small fragment and can dock in many
locations in the large active site of Mpro, this is shown in Fig. 12; it
also receives a high value for the binding free energy, -4.75 kcal/mol.
For two of the four ligands tested, PDB IDs 5R84 (ligand residue
name GWS) and 5RGI (ligand residue name U0P), re-docking results
were remarkably good, as illustrated in 13. 5R7Y was docked in a
less accurate position than these two.

Fig. 13 also shows a comparison to the same re-dockings with
Vina, showing that AutoDock-GPU can calculate redocked poses
of comparable closeness to the crystallized position as Vina. Using
a smaller search box could help to better locate very small ligands
such as T5V, however, the smaller search box described above pre-
vented the GWS ligand from being docked correctly, as shown in
Fig. 14. This demonstrates some of the difficulties encountered in
high-throughput docking, as it is difficult to find a search box that
can ensure the best docking result for all ligand sizes, even with a
very reduced subset containing only 4 torsions or fewer.

Figure 12: PDB 5RF3 shown in orange cartoon with crystal-
lized T5V ligand, shown in cyan (CPK), along with three key
residues (HIS 41, CYS 145, HIS 163) found in the active site
shown in orange with atoms visible (CPK). Docked position
shown in magenta in CPK representation.

Figure 13: Two re-docking results comparing AutoDock-
GPU and AutoDock Vina using PDB IDs 5rgi (top panel) and
5r84 (bottom panel). Vina: green; AutoDock-GPU: red; crys-
tal structure: blue.

Figure 14: Two re-docking results (orange CPK) for the GWS
ligand with Mpro stucture 5R84 (cyan ribbons), using a
search box with volume 26.25 Å per side (left panel), and
18.75×24.75× 22.5 Å per side (right panel). Crystallographic
ligand position also shown in magenta in left panel. Three
key residues (HIS 41, CYS 145, HIS 163) found in the active
site shown in cyan with atoms visible (CPK) in both panels.

5 CONCLUSIONS AND FUTUREWORK
We have presented a new version of AutoDock-GPU that has been
ported to CUDA and containing a number of optimizations to enable

ACM-BCB 2020, August 30–September 2, Virtual LeGrand et al.

more efficient processing of thousands of ligands per receptor to
facilitate high-throughput structure-based in silico drug discovery.
This version has enabled AutoDock-GPU to be deployed on the
Summit supercomputer, which opens up this resource for massive
computational efforts for therapeutics, especially for combating the
current COVID-19 pandemic. The total speedup for flexible docking
of small compounds with a moderate number of search iterations,
using the new pipeline is close to 10× relative to the previous single
receptor/ligand workflow. This pipeline will be back-ported to the
OpenCL version in future work, allowing this method to also be
employed on non-NVIDIA systems. For deployment on Summit,
next steps will involve integrating this program into workflow
management systems to efficiently manage large scale docking
campaigns.

ACKNOWLEDGMENTS
This research was sponsored by the Laboratory Directed Research
andDevelopment Program at Oak RidgeNational Laboratory (ORNL),
which is managed by UT-Battelle, LLC, for the U.S. Department of
Energy (DOE) under Contract No. DE-AC05-00OR22725, and used
resources of the Oak Ridge Leadership Computing Facility, which
is a DOE Office of Science User Facility supported under Contract
DE-AC05-00OR22725. The development of the AutoDock-GPU was
supported by the National Institutes of Health (GM069832). The
authors thank Jonathan Lefman and Geetika Gupta (NVIDIA) for
essential coordination and communication support and collection
of important feedback.

REFERENCES
[1] Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N

Bhat, Helge Weissig, Ilya N Shindyalov, and Philip E Bourne. 2000. The Protein
Data Bank. Nucleic Acids Research 28, 1 (2000), 235–242.

[2] Joseph L Durant, Burton A Leland, Douglas R Henry, and James G Nourse. 2002.
Reoptimization of MDL keys for use in drug discovery. Journal of chemical
information and computer sciences 42, 6 (2002), 1273–1280.

[3] Sally R. Ellingson, Jeremy C. Smith, and Jerome Baudry. 2013. VinaMPI: Facili-
tating multiple receptor high-throughput virtual docking on high-performance
computers. J. Comput. Chem. 34, 25 (Sep 2013), 2212–2221. https://doi.org/10.
1002/jcc.23367

[4] Ye Fang, Yun Ding, Wei P. Feinstein, David M. Koppelman, Juana Moreno, Mark
Jarrell, J. Ramanujam, and Michal Brylinski. 2016. GeauxDock: Accelerating
Structure-Based Virtual Screening with Heterogeneous Computing. PLoS One
11, 7 (Jul 2016), e0158898. https://doi.org/10.1371/journal.pone.0158898

[5] Stefano Forli, Ruth Huey, Michael E Pique, Michel F Sanner, David S Goodsell,
and Arthur J Olson. 2016. Computational proteinâĂŞligand docking and virtual
drug screening with the AutoDock suite. Nat. Protoc. 11, 5 (May 2016), 905–919.
https://doi.org/10.1038/nprot.2016.051

[6] Abdullah Gharaibeh, Elizeu Santos-Neto, Lauro Beltrão Costa, and Matei Ripeanu.
2013. The energy case for graph processing on hybrid CPU and GPU systems.
In Proceedings of the 3rd Workshop on Irregular Applications: Architectures and
Algorithms. 1–8.

[7] J Goddard and J Reymond. 2004. Enzyme assays for high-throughput screening.
Curr. Opin. Biotechnol. 15, 4 (Aug 2004), 314–322. https://doi.org/10.1016/j.copbio.
2004.06.008

[8] David S Goodsell and Arthur J Olson. 1990. Automated docking of substrates to
proteins by simulated annealing. Proteins: Structure, Function, and Bioinformatics
8, 3 (1990), 195–202.

[9] Christoph Gorgulla, Andras Boeszoermenyi, Zi-Fu Wang, Patrick D Fischer,
PaulW Coote, Krishna M Padmanabha Das, Yehor S Malets, Dmytro S Radchenko,
Yurii S Moroz, David A Scott, et al. 2020. An open-source drug discovery platform
enables ultra-large virtual screens. Nature 580, 7805 (2020), 663–668.

[10] Isabella A. Guedes, Felipe S. S. Pereira, and Laurent E. Dardenne. 2018. Empirical
Scoring Functions for Structure-Based Virtual Screening: Applications, Critical
Aspects, and Challenges. Front. Pharmacol. 9 (Sep 2018). https://doi.org/10.3389/
fphar.2018.01089

[11] William Humphrey, Andrew Dalke, and Klaus Schulten. 1996. VMD – Visual
Molecular Dynamics. J. Mol. Graphics 14 (1996), 33–38.

[12] Zhenming Jin, Xiaoyu Du, Yechun Xu, Yongqiang Deng, Meiqin Liu, Yao Zhao,
Bing Zhang, Xiaofeng Li, Leike Zhang, Chao Peng, et al. 2020. Structure of Mpro
from SARS-CoV-2 and discovery of its inhibitors. Nature (2020), 1–5.

[13] Youngchang Kim, Robert Jedrzejczak, Natalia I. Maltseva, Mateusz Wilamowski,
Michael Endres, Adam Godzik, Karolina Michalska, and Andrzej Joachimiak.
2020. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2.
Protein Sci. (May 2020), pro.3873. https://doi.org/10.1002/pro.3873

[14] Simon McIntosh-Smith, James Price, Richard B Sessions, and Amaurys A Ibarra.
2015. High performance in silico virtual drug screening on many-core processors.
Int. J. High Perform. Comput. Appl. 29, 2 (May 2015), 119–134. https://doi.org/10.
1177/1094342014528252

[15] Garrett M. Morris, David S. Goodsell, Robert S. Halliday, Ruth Huey, William E.
Hart, Richard K. Belew, and Arthur J. Olson. 1998. Automated docking using a
Lamarckian genetic algorithm and an empirical binding free energy function. J.
Comput. Chem. 19, 14 (Nov 1998), 1639–1662. https://doi.org/10.1002/(SICI)1096-
987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B

[16] Garrett M. Morris, Ruth Huey, William Lindstrom, Michel F. Sanner, Richard K.
Belew, David S. Goodsell, and Arthur J. Olson. 2009. AutoDock4 and AutoDock-
Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem.
30, 16 (Dec 2009), 2785–2791. https://doi.org/10.1002/jcc.21256

[17] Joseph A. Morrone, Jeffrey K. Weber, Tien Huynh, Heng Luo, and Wendy D.
Cornell. 2020. Combining Docking Pose Rank and Structure with Deep Learning
Improves ProteinâĂŞLigand Binding Mode Prediction over a Baseline Docking
Approach. J. Chem. Inf. Model. (Mar 2020), acs.jcim.9b00927. https://doi.org/10.
1021/acs.jcim.9b00927

[18] Gregory Nierode, Paul S. Kwon, Jonathan S. Dordick, and Seok-Joon Kwon. 2016.
Cell-Based Assay Design for High-Content Screening of Drug Candidates. J.
Microbiol. Biotechnol. 26, 2 (Feb 2016), 213–225. https://doi.org/10.4014/jmb.1508.
08007

[19] Paul A. Novick, Oscar F. Ortiz, Jared Poelman, Amir Y. Abdulhay, and Vijay S.
Pande. 2013. SWEETLEAD: an In Silico Database of Approved Drugs, Regulated
Chemicals, and Herbal Isolates for Computer-Aided Drug Discovery. PLoS One 8,
11 (Nov 2013), e79568. https://doi.org/10.1371/journal.pone.0079568

[20] Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeer-
sch, and Geoffrey R Hutchison. 2011. Open Babel: An open chemical toolbox. J.
Cheminform. 3, 1 (Dec 2011), 33. https://doi.org/10.1186/1758-2946-3-33

[21] Nataraj S. Pagadala, Khajamohiddin Syed, and Jack Tuszynski. 2017. Software
for molecular docking: a review. Biophys. Rev. 9, 2 (Apr 2017), 91–102. https:
//doi.org/10.1007/s12551-016-0247-1

[22] Jerry M. Parks and Jeremy C. Smith. 2020. How to Discover Antiviral Drugs
Quickly. N. Engl. J. Med. 382, 23 (Jun 2020), 2261–2264. https://doi.org/10.1056/
NEJMcibr2007042

[23] Eric F Pettersen, Thomas D Goddard, Conrad C Huang, Gregory S Couch,
Daniel M Greenblatt, Elaine C Meng, and Thomas E Ferrin. 2004. UCSF
ChimeraâĂŤa visualization system for exploratory research and analysis. Journal
of computational chemistry 25, 13 (2004), 1605–1612.

[24] Diogo Santos-Martins, Jerome Eberhardt, Giulia Bianco, Leonardo Solis-Vasquez,
Francesca Alessandra Ambrosio, Andreas Koch, and Stefano Forli. 2019. D3R
Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-
GPU. J. Comput. Aided. Mol. Des. 33, 12 (Dec 2019), 1071–1081. https://doi.org/
10.1007/s10822-019-00241-9

[25] Diogo Santos-Martins, Leonardo Solis-Vasquez, Andreas Koch, and Stefano Forli.
2019. Accelerating AUTODOCK4 with GPUs and Gradient-Based Local Search.
(2019).

[26] Liang Shen, Junwei Niu, Chunhua Wang, Baoying Huang, Wenling Wang, Na
Zhu, Yao Deng, Huijuan Wang, Fei Ye, Shan Cen, et al. 2019. High-throughput
screening and identification of potent broad-spectrum inhibitors of coronaviruses.
Journal of Virology 93, 12 (2019), e00023–19.

[27] Francisco J. Solis and Roger J.-B. Wets. 1981. Minimization by Random Search
Techniques. Math. Oper. Res. 6, 1 (Feb 1981), 19–30. https://doi.org/10.1287/moor.
6.1.19

[28] Leonardo Solis-Vasquez and Andreas Koch. 2017. A Performance and Energy
Evaluation of OpenCL-accelerated Molecular Docking. In Proc. 5th Int. Work.
OpenCL - IWOCL 2017. ACM Press, New York, New York, USA, 1–11. https:
//doi.org/10.1145/3078155.3078167

[29] Teague Sterling and John J. Irwin. 2015. ZINC 15 – Ligand Discovery for Everyone.
J. Chem. Inf. Model. 55, 11 (Nov 2015), 2324–2337. https://doi.org/10.1021/acs.
jcim.5b00559

[30] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel Pro-
gramming Standard for Heterogeneous Computing Systems. Comput. Sci. Eng.
12, 3 (May 2010), 66–73. https://doi.org/10.1109/MCSE.2010.69

[31] Oleg Trott and Arthur J. Olson. 2010. AutoDock Vina: Improving the speed and
accuracy of docking with a new scoring function, efficient optimization, and
multithreading. J. Comput. Chem. 31, 2 (2010), 455–461. https://doi.org/10.1002/
jcc.21334

[32] Santiago Vilar, Giorgio Cozza, and Stefano Moro. 2008. Medicinal Chemistry
and the Molecular Operating Environment (MOE): Application of QSAR and

https://doi.org/10.1002/jcc.23367
https://doi.org/10.1002/jcc.23367
https://doi.org/10.1371/journal.pone.0158898
https://doi.org/10.1038/nprot.2016.051
https://doi.org/10.1016/j.copbio.2004.06.008
https://doi.org/10.1016/j.copbio.2004.06.008
https://doi.org/10.3389/fphar.2018.01089
https://doi.org/10.3389/fphar.2018.01089
https://doi.org/10.1002/pro.3873
https://doi.org/10.1177/1094342014528252
https://doi.org/10.1177/1094342014528252
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
https://doi.org/10.1002/jcc.21256
https://doi.org/10.1021/acs.jcim.9b00927
https://doi.org/10.1021/acs.jcim.9b00927
https://doi.org/10.4014/jmb.1508.08007
https://doi.org/10.4014/jmb.1508.08007
https://doi.org/10.1371/journal.pone.0079568
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1007/s12551-016-0247-1
https://doi.org/10.1007/s12551-016-0247-1
https://doi.org/10.1056/NEJMcibr2007042
https://doi.org/10.1056/NEJMcibr2007042
https://doi.org/10.1007/s10822-019-00241-9
https://doi.org/10.1007/s10822-019-00241-9
https://doi.org/10.1287/moor.6.1.19
https://doi.org/10.1287/moor.6.1.19
https://doi.org/10.1145/3078155.3078167
https://doi.org/10.1145/3078155.3078167
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1021/acs.jcim.5b00559
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334

GPU Docking on OLCF Summit ACM-BCB 2020, August 30–September 2, Virtual

Molecular Docking to Drug Discovery. Curr. Top. Med. Chem. 8, 18 (Dec 2008),
1555–1572. https://doi.org/10.2174/156802608786786624

[33] Matthew D Zeiler. 2012. ADADELTA: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701 (2012).

[34] Xiaohua Zhang, Sergio E. Wong, and Felice C. Lightstone. 2013. Message passing
interface and multithreading hybrid for parallel molecular docking of large
databases on petascale high performance computing machines. J. Comput. Chem.
34, 11 (Apr 2013), 915–927. https://doi.org/10.1002/jcc.23214

https://doi.org/10.2174/156802608786786624
https://doi.org/10.1002/jcc.23214

	Abstract
	1 Introduction
	1.1 AutoDock-GPU with OpenCL
	1.2 The Summit supercomputer
	1.3 Related Work
	1.4 COVID-19 and drug discovery for SARS-CoV-2 antivirals

	2 Methods
	2.1 Conversion of OpenCL version to CUDA and optimizations
	2.2 Optimizing for thousands of consecutive docking calculations
	2.3 Performance and validation testing on OLCF resources: Summit and DGX-2

	3 Results: validation and performance evaluation
	3.1 Comparison of OpenCL and CUDA version and effect of pipeline
	3.2 Influence of size of search space
	3.3 Performance improvement from individual components of new high-throughput design on Summit

	4 Results: Experiments on SARS-CoV-2 main protease (Mpro)
	4.1 Re-docking results: poses

	5 Conclusions and Future Work
	Acknowledgments
	References

