

1 Running title: Long-term data from Walker Branch Watershed

2

3 **Long-term hydrological, biogeochemical, and climatological data from Walker Branch**

4 **Watershed, east Tennessee, USA**

5

6 Natalie A. Griffiths^{1*} and Patrick J. Mulholland^{1#}

7

8 ¹Climate Change Science Institute and Environmental Sciences Division, Oak Ridge National
9 Laboratory, Oak Ridge, TN, USA 37831

10

11 *Corresponding author:

12 Natalie A. Griffiths

13 E-mail: griffithsna@ornl.gov

14 Phone: (865) 576-3457

15

16 [#]Deceased. PJM was instrumental in sustaining the collection of these datasets for nearly 3
17 decades. In addition to leading data collection efforts, Pat archived the data annually and wrote
18 the original meta-data files; these files formed the basis of this Data Note.

19

20 Note: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-
21 00OR22725 with the U.S. Department of Energy. The United States Government retains and the
22 publisher, by accepting the article for publication, acknowledges that the United States
23 Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or

24 reproduce the published form of this manuscript, or allow others to do so, for United States
25 Government purposes. The Department of Energy will provide public access to these results of
26 federally sponsored research in accordance with the DOE Public Access Plan
27 (<http://energy.gov/downloads/doe-public-access-plan>).

28

29 **Abstract**

30 In 1967, the original Walker Branch Watershed (WBW) project was established to study
31 elemental cycling and mass balances in a relatively unimpacted watershed. Over the next 50+
32 years, findings from additional experimental studies and long-term observations on WBW
33 advanced understanding of catchment hydrology, biogeochemistry, and ecology and established
34 WBW as a seminal site for catchment science. The 97.5-ha WBW is located in east Tennessee,
35 USA, on the U.S. Department of Energy's Oak Ridge Reservation. Vegetation on the watershed
36 is characteristic of an eastern deciduous, second-growth forest. The watershed is divided into two
37 subcatchments: the West Fork (38.4 ha) and the East Fork (59.1 ha). Headwater streams draining
38 these subcatchments are fed by multiple springs, and thus flow is perennial. Stream water is high
39 in base cations due to weathering of dolomite bedrock and nutrient concentrations are low. Long-
40 term observations of climate, hydrology, and biogeochemistry include daily (1969-2014) and 15-
41 min (1994-2014) stream discharge and annual runoff (1969-2014); hourly, daily, and annual
42 rainfall (1969-2012); daily climate and soil temperature (1993-2010); and weekly stream water
43 chemistry (1989-2013). These long-term datasets are publicly available on the WBW website
44 (<https://walkerbranch.ornl.gov/long-term-data/>). While collection of these data has ceased,
45 related long-term measurements continue through the National Ecological Observatory Network
46 (NEON), where WBW is the core terrestrial and aquatic site in the Appalachian and Cumberland

47 Plateau region (NEON's Domain 7) of the United States. These long-term datasets have been
48 and will continue to be important in evaluating the influence of climatic and environmental
49 drivers on catchment processes.

50

51 **Key Words:** long-term data; stream discharge; rainfall; water chemistry; research catchment;
52 southeastern US.

53 **Introduction**

54 For over a century, observational and experimental studies at dedicated research
55 catchments have played an important role in advancing the fields of watershed hydrology and
56 biogeochemistry (McGuire & Likens, 2011). The first research catchments established in the
57 United States investigated the effects of forestry and agriculture on water budgets. Subsequently,
58 there was an interest in understanding catchment-scale elemental dynamics (with a specific focus
59 on water quality and pollution), and this line of inquiry led to the development of the Walker
60 Branch Watershed (WBW) project in 1967 (Curlin & Nelson, 1968). The WBW project initially
61 focused on applying a watershed-scale budget approach to studying water quality in a relatively
62 unimpacted, forested catchment in east Tennessee, USA (Curlin & Nelson, 1968). Over the next
63 50+ years, the many foundational studies on catchment hydrology, biogeochemistry, and ecology
64 at WBW solidified this watershed as a seminal research catchment. Some of these notable
65 studies included a synthesis of land-use history (Dale, Mann, Olson, Johnson, & Dearstone,
66 1990), an extensive characterization of atmospheric deposition (Lindberg, Lovett, Richter, &
67 Johnson, 1986; Lindberg, Turner, Meyers, Taylor, & Schroeder, 1991), assessments of forest
68 biogeochemical cycling (Garten, 1993; Johnson & Todd, 1990; Trettin, Johnson, & Todd, 1999;
69 Van Hook, Harris, & Henderson, 1977), the first *in situ* measurements of the nutrient spiraling
70 technique in streams (Mulholland, Elwood, Newbold, Ferren, & Webster, 1985; Newbold,
71 Elwood, O'Neill, & Shelton, 1983; Newbold, Elwood, O'Neill, & Van Winkle, 1981; Newbold,
72 O'Neill, Elwood, & Van Winkle, 1982), analyses that identified the importance of in-stream
73 processes in regulating stream water nutrient concentrations (Lutz, Mulholland, & Bernhardt,
74 2012; Mulholland, 1992; Mulholland, 2004), application of whole-stream nitrogen (N) stable
75 isotope releases to investigate ecosystem N cycling (Mulholland et al., 2000a; Mulholland et al.,

76 2000b), investigations of hillslope hydrogeochemistry (Jardine, Wilson, Luxmoore, & McCarthy,
77 1989; Jardine, Wilson, McCarthy, Luxmoore, & Taylor, 1990; Mulholland, Wilson, & Jardine,
78 1990; Wilson, Jardine, Luxmoore, & Jones, 1990), landscape-scale assessments of CO₂ and
79 water vapor exchange (Baldocchi, 1997; Greco & Baldocchi, 1996; Wilson & Baldocchi, 2000;
80 Wilson, Hanson, & Baldocchi, 2000; Wilson, Hanson, Mulholland, Baldocchi, & Wullschleger,
81 2001), examination of long-term terrestrial vegetation dynamics (Kardol, Todd, Hanson, &
82 Mulholland, 2010), utilization of a large-scale experiment to examine responses of varying
83 precipitation on terrestrial vegetation (Hanson, Todd, & Amthor, 2001; Hanson, Todd, &
84 Huston, 2003; Wullschleger & Hanson, 2006), and examination of watershed-scale carbon
85 cycling using a ¹⁴C tracer (Cisneros-Dozal, Trumbore, & Hanson, 2006; Fröberg et al., 2007;
86 Joslin, Gaudinski, Torn, Riley, & Hanson, 2006). Throughout this rich 50+ year history of
87 research in WBW, long-term climatic, hydrological, and biogeochemical datasets were collected
88 to investigate temporal patterns and to support focused research projects. In this Data Note, we
89 describe four core datasets that were collected in WBW and its two subcatchments (West and
90 East Forks): climate and soil temperature data (1993-2010), rainfall (1969-2012), stream
91 discharge (1969-2012 for the East Fork, 1969-2014 for the West Fork), and stream water
92 chemistry (1995-2013 for the East Fork, 1989-2013 for the West Fork).

93

94 **Watershed Description**

95 Walker Branch Watershed is a 97.5 ha research catchment in east Tennessee, USA
96 (35°57'31"N, 84°16'46"W), on the U.S. Department of Energy's Oak Ridge Reservation, and
97 within the Ridge and Valley Physiographic Province (Figure 1). Walker Branch Watershed is
98 part of the larger Clinch River Watershed which ultimately drains into the Mississippi River.

99 Vegetation on the watershed is characteristic of an eastern deciduous secondary forest (primarily
100 hickory, chestnut oak, white oak, red maple, sourwood, blackgum, yellow poplar, shortleaf pine,
101 and Virginia pine) (Dale et al., 1990; Grigal & Goldstein, 1971; Kardol et al., 2010). The
102 watershed is underlain by bedrock (Knox Dolomite) with soils (primarily Ultisols) that are deep
103 (>2 m), highly weathered, acidic, and cherty (cryptocrystalline sedimentary rock) (Johnson,
104 1989). The climate is typical of the humid southern Appalachian region, with a mean annual
105 temperature of 14.5 °C and mean annual rainfall of 135 cm (Curlin & Nelson, 1968). However,
106 temperature and rainfall patterns have changed over time; over a 20-year period (1989-2008),
107 mean annual air temperature increased by ~1.0 °C and rainfall decreased by 20% (Lutz et al.,
108 2012). The majority of precipitation in the region falls as rain (Curlin & Nelson, 1968). Elevation
109 ranges from 351 m asl on the watershed ridges to 265 m asl in the valley.

110 There are two subcatchments of WBW: the West Fork (38.4 ha) and the East Fork (59.1
111 ha). The perennially flowing streams draining the East and West Fork subcatchments are fed by
112 multiple springs (Johnson, 1989). The 97.5-ha watershed is delineated at the confluence of these
113 two headwater streams (Figure 1). It has been estimated that approximately 30% of baseflow in
114 the East Fork is exported to the West Fork via the interbasin transfer of groundwater (Luxmoore
115 & Huff, 1989). Approximately half of the ~760-m long East Fork stream is subterranean
116 (Sheppard, Henderson, Grizzard, & Heath, 1973). The streams are characterized by pool-riffle
117 sequences with some small cascades. Areas of exposed siliceous dolomite are present in the
118 streams (Johnson, 1989). Otherwise, the benthos is comprised of sediments that are primarily
119 residual chert and organic matter that accumulates in pools and behind debris dams (Johnson,
120 1989). Stream water is high in base cations due to weathering of the dolomite bedrock
121 (Mulholland, 1992; Mulholland, 2004). Dissolved organic carbon and nutrient (nitrate,

122 ammonium, soluble reactive phosphorus) concentrations are low (Lutz et al., 2012; Mulholland,
123 1992; Mulholland, 2004).

124

125 **Methods**

126 *Climate and Soil Temperature*

127 Climate data were collected hourly from an instrumented meteorological tower (Figure 1)
128 and soil temperature was measured hourly at multiple locations surrounding the tower from 1993
129 through 2010 (Mulholland & Griffiths, 2016a). These data were initially collected as part of the
130 Throughfall Displacement Experiment from the ambient plot (Hanson, Todd, Riggs, Wolfe, &
131 O'Neill, 2001). The following parameters were measured above the canopy: irradiance
132 (pyranometer sensor, LiCor LI-200SA), photosynthetic photon flux density (quantum sensor,
133 LiCor LI-191SA), relative humidity (hygrometer, Model MP-100, Rotronics Instrument
134 Corporation), rainfall (tipping bucket rain gauge), and wind speed (anemometer). These
135 parameters were measured in a nearby clearing from 1993-1997 and then these instruments were
136 added to the meteorological tower in 1998. Sub-canopy air temperature was measured ~1 m
137 above the soil in a location shielded from direct solar radiation, and soil temperature (15 cm
138 depth) was measured at 4 locations near the tower; both air and soil temperature were measured
139 with thermistors (LiCor).

140

141 *Rainfall*

142 Rainfall was measured from 1969 through 2012 (Mulholland & Griffiths, 2016b). The
143 methodology changed slightly over the 44-year record. From 1969-1979, rainfall was measured
144 at five rain gauges that were distributed along the edge of the watershed, with one of these rain

145 gauges at the ridge separating the East and West Fork subcatchments (Figure 1). Rainfall was
146 measured at 5-minute intervals with a sensitivity of ± 2.5 mm (Fisher and Porter model 1548
147 punched-tape weighing recorder). From 1980 through 1982, data from WBW were not available,
148 so rainfall data from the National Oceanic and Atmospheric Administration Atmospheric
149 Turbulence and Diffusion Division laboratory in the nearby city of Oak Ridge were used. After
150 1983, rainfall was measured at 2 of the 5 WBW rain gauges, although data from additional rain
151 gauges across the Oak Ridge Reservation were used when there were gaps in the WBW rainfall
152 data record. Rainfall data were recorded hourly with a sensitivity of ± 0.25 mm from 1983
153 through 1998 (8-day weighing bucket strip chart recorder) and ± 0.1 mm from 1998 through
154 2012 (Telog electronic tipping bucket recorder).

155

156 *Stream Discharge*

157 Stream discharge was measured in the East Fork from 1969 through 2012 and in the West
158 Fork from 1969 through 2014 (Mulholland & Griffiths, 2016c). A 120° V-notch weir was
159 constructed at each subcatchment outlet in 1967 (Curlin & Nelson, 1968) (Figure 1). Starting in
160 1969, water level was measured in a stilling well with a punched-tape water-level recorder
161 (Fisher and Porter model 1542) every 5 (until 1989) or 15 minutes (until 1999) at a ± 0.3 mm
162 resolution. Beginning in 1999, water level was measured electronically at 15-min intervals
163 (Stevens Type A/F encoder [1999-2010]; Campbell Compact Bubble Water Level Sensor model
164 CS471 [2011-2014], accuracy ± 0.01 ft). Recorded data were verified at least monthly with a
165 manual hook gauge measurement. Discharge was calculated from water level using the following
166 equation: Discharge (L/s) = $125.37 \times (\text{water level in feet})^{2.449}$. Uncertainty in the discharge
167 estimate was $\pm 5\%$ at flows <4 L/s and $\pm 0.5\%$ at flows >125 L/s. Discharge was estimated up to

168 1,180 L/s using the V-notch weir equation, and a sharp-crested rectangular cross-section above
169 the V-notch allowed for discharge to be estimated up to 1,860 L/s.

170 During logger malfunctions in one stream, discharge was sometimes calculated from a
171 regression between the East and West Fork water levels. Other gap-filling methods were
172 occasionally employed over the discharge record (Mulholland & Griffiths, 2016c). Annual
173 runoff was calculated for each subcatchment using mean annual discharge and subcatchment
174 area. Annual runoff was estimated for the entire watershed by summing annual runoff from both
175 subcatchments.

176

177 *Stream Water Chemistry*

178 Water samples were collected weekly for chemistry analyses from the West Fork (1989
179 through 2013) and the East Fork (1995 through 2013) (Mulholland & Griffiths, 2016d). The
180 following parameters were included in the stream water chemistry datasets: water level in the
181 stilling well and stream discharge, water temperature, specific conductivity, pH, alkalinity, and
182 dissolved organic carbon (DOC), soluble reactive phosphorus (SRP), total dissolved phosphorus
183 (TDP), ammonium-N, nitrate+nitrite-N, total dissolved nitrogen (TDN), anion (chloride and
184 sulfate), and cation and trace metal (calcium, magnesium, sodium, potassium, iron, manganese,
185 silicon, aluminum, barium, cadmium, nickel, lead, strontium, zinc, copper, molybdenum)
186 concentrations.

187 Weekly water samples were collected between 9:00 and 12:00 EST, usually on Tuesdays.
188 The West Fork water samples were collected ~60 m upstream of the weir and the East Fork
189 samples were collected ~20 m downstream of the weir. Water temperature and specific
190 conductivity were measured in the field using a hand-held probe (ORION Model 122 probe until

191 July 2007, YSI Model 30 probe after July 2007) and water level in the stilling well was recorded
192 at the time of sampling. Within an hour of collection, water samples were analyzed or processed
193 (filtered) and preserved. pH was measured immediately on unfiltered samples using a benchtop
194 pH meter. Unfiltered alkalinity samples were refrigerated and analyzed within 3 months of
195 collection via titration (0.01 N HCl to a pH of 4.5). Water for solute analyses was filtered (0.45-
196 μm pore size, Nuclepore polycarbonate filters) prior to preservation. After filtration, samples for
197 nutrients (N and P) were frozen, samples for DOC were acidified (2 drops of 6 N HCl) and
198 refrigerated, samples for anions were refrigerated, and samples for cations and trace metals were
199 acidified (0.2% HNO_3) and stored at room temperature until analysis. Spectrophotometry was
200 used for analysis of ammonium-N (phenate colorimetry), nitrate+nitrite-N (Cu-Cd reduction
201 followed by azo dye colorimetry), TDN (alkaline persulfate digestion [to May 1996] or UV
202 oxidation [to April 2000] followed by azo dye colorimetry), SRP (ascorbic acid colorimetry),
203 and TDP (persulfate oxidation followed by ascorbic acid colorimetry). DOC was analyzed via
204 high-temperature combustion (TOC-TN analyzer) as was TDN (after April 2000). Anions were
205 analyzed via ion chromatography (at Oak Ridge National Laboratory's [ORNL] Analytical
206 Chemistry Division prior to January 1999 and at ORNL's Environmental Sciences Division after
207 January 1999) and cations and trace metals were analyzed via inductively coupled plasma
208 emission spectroscopy (at the University of Georgia prior to 1996 and at ORNL/Y-12 National
209 Security Complex after 1996). While the analytical methods were consistent over time (except
210 for TDN), instrumentation changed as laboratory equipment was upgraded. Therefore, detection
211 limits also changed over time; these detection limits (when known) are reported in the metadata
212 file (Mulholland & Griffiths, 2016d). There are some gaps in the dataset for certain analytes.
213 DOC samples were not collected from 1997 through 2002, trace metal concentration data are

214 generally absent from 1989 through 1991 and again from 1998 through 2002, and anion and
215 cation concentration data are absent for most of 1990.

216

217 *Complimentary Datasets*

218 There are several publicly available hydrological, biogeochemical, and ecological
219 datasets that are not part of the four core WBW datasets described here, but together they can
220 complement and enhance understanding of catchment processes in WBW. From 1980-2011,
221 WBW participated in the National Atmospheric Deposition Program (NADP;
222 <http://nadp.slh.wisc.edu/data/>) National Trends Network (site ID: TN00), with weekly samples
223 collected for wet precipitation chemistry. Precipitation chemistry samples were also collected on
224 an event basis through NADP's Atmospheric Integrated Research Monitoring Network from
225 1992-2019.

226 Vegetation inventories on 306 permanent plots established on WBW were conducted 9
227 times over a span of 40 years (1967, 1970, 1973, 1979, 1983, 1987, 1991, 1997, 2006) (Grigal &
228 Goldstein, 1971; Huston, Johnson, Todd, Curlin, & Harris, 2013). The permanent plots were
229 located in one of four vegetation types (chestnut oak, oak-hickory, pine, and yellow poplar).
230 Trees within the plots were tagged and diameter at breast height was recorded on each date.
231 These data are archived online (<https://doi.org/10.3334/ORNLDAAAC/819>) and are summarized
232 in Kardol et al., (2010). Micrometeorological measurements of CO₂ fluxes were measured from
233 1995-1999 and are part of the AmeriFlux Network (<https://doi.org/10.17190/AMF/1246109>).
234 Benthic samples for stream macroinvertebrate community characterization were collected ~30 m
235 downstream of the East and West Fork confluence each spring (April) beginning in 2000
236 (Matson et al., in review). There are many other datasets from experimental and observational

237 studies on WBW that are primarily reported in publications (i.e., in figures and tables), but some
238 datasets are archived (e.g., Griffiths & Johnson, 2018; Griffiths & Tiegs, 2016).

239 Due in part to the rich ecological knowledge and wealth of data collected in WBW, the
240 watershed was selected as one of the core terrestrial and aquatic sites in the National Ecological
241 Observatory Network (NEON). Physical, chemical, and biological data collection in WBW and
242 the surrounding Oak Ridge Reservation began in 2015-2017 and these measurements are
243 expected to continue for 30 years (Keller, Schimel, Hargrove, & Hoffman, 2008). These data are
244 available on the NEON data portal (<https://data.neonscience.org/home>).

245

246 **Data**

247 *Data Description*

248 The four long-term datasets described here are publicly available via the WBW website
249 (<https://walkerbranch.ornl.gov/long-term-data/>) at <https://doi.org/10.3334/CDIAC/ornlsfa.006>;
250 <https://doi.org/10.3334/CDIAC/ornlsfa.007>; <https://doi.org/10.3334/CDIAC/ornlsfa.008>;
251 <https://doi.org/10.3334/CDIAC/ornlsfa.009>. All datasets are accompanied by associated
252 metadata files which describe the datasets, as well as the study site and methodology. Climate
253 and soil temperature data from 1993-2010 are provided in one dataset (Mulholland & Griffiths,
254 2016a). Most parameters are reported as daily means; however, the minimum and maximum soil
255 and air temperatures and relative humidity (based on hourly data) are also reported, as are the
256 integrated daily irradiance, integrated daily photosynthetic photon flux density, and total daily
257 rainfall. The rainfall data are described in three separate datasets that report rainfall in total
258 hourly, total daily, and total annual amounts from 1969-2012 (Mulholland & Griffiths, 2016b).
259 Similarly, the discharge data include three separate datasets. Mean daily discharge and annual

260 runoff are reported from 1969 through 2012 (East Fork) and 1969 through 2014 (West Fork),
261 while 15-minute discharge data are reported beginning in 1994 (Mulholland & Griffiths, 2016c).
262 Weekly stream water chemistry data are reported in two datasets: one for the West Fork (1989-
263 2013) and one for the East Fork (1995-2013) (Mulholland & Griffiths, 2016d). Temporal
264 patterns in total daily rainfall, mean daily discharge, mean daily air temperature, and weekly
265 stream water nitrate concentrations are shown in Figure 2 to provide an example of measured
266 parameters from each of the four datasets described in this Data Note.

267

268 *Data Contributors*

269 A major challenge of curating and archiving datasets that span multiple decades (and
270 scientific careers) is the loss of institutional knowledge, including names of all scientific and
271 technical staff that contributed to the collection of these data. Those who contributed to the four
272 datasets described here are listed based on personal knowledge, discussions with staff members,
273 and from publications and reports. However, it is likely that some individuals are not listed
274 below and we regret these unintended omissions.

275 The climate and soil temperature dataset was initiated by the Throughfall Displacement
276 Experiment research team (P.J. Hanson, J.S. Riggs, and D.E. Todd) and collection and archiving
277 of this dataset was led by P.J. Hanson, P.J. Mulholland, J.S. Riggs, and D.E. Todd. Collection of
278 rainfall and stream discharge data was led and executed by multiple scientists including J.W.
279 Curlin, T. Grizzard, G.S. Henderson, D.D. Huff, P.J. Mulholland, and D.J. Nelson, and many
280 technical staff including D.J. Brice and D.E. Todd. Collection of stream water chemistry data
281 was initiated by P.J. Mulholland with technical assistance from D.J. Brice, B.K. Konetsky, B.
282 Lu, M.K. McCracken, J.R. Phillips, and R.V. Wilkerson along with many students and

283 postdoctoral research associates. Collection of all four datasets was continued by N.A. Griffiths
284 beginning in autumn 2010 until the end date of each dataset. N.A. Griffiths also curated the final
285 datasets and compiled the metadata files (Mulholland & Griffiths, 2016abcd) with assistance
286 from L.A. Hook. Funding that supported the long-term studies in WBW was primarily from the
287 U.S. Department of Energy, Office of Science, Biological and Environmental Research program
288 (and predecessor programs), and from the National Science Foundation (including the U.S.
289 International Biological Program, Eastern Deciduous Forest Biome).

290

291 **Long-term Data to Advance Understanding of Catchment Hydrological and**
292 **Biogeochemical Dynamics**

293 Research in WBW has made significant contributions to the understanding of catchment
294 hydrology, biogeochemistry, and ecology, and the datasets described here have been critical to
295 many of these scientific advancements. For instance, analysis of these datasets revealed changes
296 in solute concentrations and fluxes over a 20-year period due to a decrease in catchment runoff
297 and a shifting importance of hydrologic pathways that contribute to streamflow (Lutz et al.,
298 2012). These datasets were also important in understanding stream ecosystem responses to a
299 disturbance event, specifically, a spring freeze that damaged newly developed leaves and
300 prolonged the period of an open canopy/increased light availability to the stream (Mulholland,
301 Roberts, Hill, & Smith, 2009). Many other studies in WBW, both observational and
302 experimental, have utilized parts of these datasets in their analyses, including studies examining
303 the controls on stream metabolism (Roberts, Mulholland, & Hill, 2007), nutrient uptake rates
304 (Roberts & Mulholland, 2007), and solute concentrations (Mulholland, 2004; Mulholland & Hill,
305 1997).

306 While the datasets described here have primarily been used to understand patterns and
307 drivers of hydrological, biogeochemical, and ecological processes within WBW, these
308 parameters (i.e., climate, rainfall, discharge, stream water chemistry) are often measured in other
309 research catchments and thus these data lend themselves to multi-watershed analyses. For
310 example, WBW was included in a synthesis that investigated the controls on N inputs and losses
311 across 15 catchments (Kane et al., 2008). It is anticipated these long-term datasets from WBW,
312 especially in combination NEON data, will be used in future cross-watershed studies to examine
313 the influence of climatic and environmental drivers on catchment processes at regional,
314 continental, and global scales.

315

316 **Acknowledgements**

317 This research was part of the long-term Walker Branch Watershed project and supported
318 by the U.S. Department of Energy's Office of Science, Biological and Environmental Research
319 program. Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S.
320 Department of Energy under contract DE-AC05-00OR22725. We thank the many research and
321 technical staff who contributed to the collection, analysis, and archiving of these data over 50+
322 years. We thank P.J. Hanson and two anonymous reviewers who provided helpful and insightful
323 comments on this manuscript and C.R. DeRolph for providing the topographic map of Walker
324 Branch Watershed.

325

326 **References**

327 Baldocchi, D. D. (1997). Measuring and modeling carbon dioxide and water vapor exchange
328 over a temperate broad-leaved forest during the 1995 summer drought. *Plant, Cell and*
329 *Environment*, 20(9), 1108-1122. <https://doi.org/10.1046/j.1365-3040.1997.d01-147.x>

330 Cisneros-Dozal, L. M., Trumbore, S., & Hanson, P. J. (2006). Partitioning sources of soil-
331 respired CO₂ and their seasonal variation using a unique radiocarbon tracer. *Global*
332 *Change Biology*, 12(2), 194-204. <https://doi.org/10.1111/j.1365-2486.2005.001061.x>

333 Curlin, J. W., & Nelson, D. J. (1968). *Walker Branch Watershed project: Objectives, facilities,*
334 *and ecological characteristics*. ORNL/TM-2271. Oak Ridge National Laboratory, Oak
335 Ridge, TN.

336 Dale, V. H., Mann, L. K., Olson, R. J., Johnson, D. W., & Dearstone, K. C. (1990). The long-
337 term influence of past land use on the Walker Branch forest. *Landscape Ecology*, 4, 211-
338 224. <https://doi.org/10.1007/BF00129829>

339 Fröberg, M., Jardine, P. M., Hanson, P. J., Swanston, C. W., Todd, D. E., Tarver, J. R., &
340 Garten, C. T. (2007). Low dissolved organic carbon input from fresh litter to deep
341 mineral soils. *Soil Biology & Biochemistry*, 71(2), 347-354.
342 <https://doi.org/10.2136/sssaj2006.0188>

343 Garten, C. T. (1993). Variation in foliar ¹⁵N-abundance and the availability of soil nitrogen on
344 Walker Branch Watershed. *Ecology*, 74(7), 2098-2113. <https://doi.org/10.2307/1940855>

345 Greco, S., & Baldocchi, D. D. (1996). Seasonal variations of CO₂ and water vapour exchange
346 rates over a temperate deciduous forest. *Global Change Biology*, 2(3), 183-197.
347 <https://doi.org/10.1111/j.1365-2486.1996.tb00071.x>

348 Griffiths, N. A., & Johnson, L. T. (2018). *Walker Branch Watershed: Effect of dual nitrogen and*
349 *phosphorus additions on nutrient uptake and saturation kinetics, 2011-2012*. Oak Ridge

350 National Laboratory, TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee,
351 U.S.A. <https://doi.org/10.25581/ornlsfa.015/1484490>

352 Griffiths, N. A., & Tiegs, S. D. (2016). *Walker Branch Watershed: Temperature response of*
353 *organic-matter decomposition in a headwater stream*. Oak Ridge National Laboratory,
354 TES SFA, U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.
355 <https://doi.org/10.3334/CDIAC/ornlsfa.003>

356 Grigal, D. F., & Goldstein, R. A. (1971). An integrated ordination-classification analysis of an
357 intensively sampled oak-hickory forest. *Journal of Ecology*, 59(2), 481-492.
358 <https://doi.org/10.2307/2258326>

359 Hanson, P. J., Todd, D. E., & Amthor, J. S. (2001). A six year study of sapling and large-tree
360 growth and mortality responses to natural and induced variability in precipitation and
361 throughfall. *Tree Physiology*, 21(6), 345-358. <https://doi.org/10.1093/treephys/21.6.345>

362 Hanson, P. J., Todd, D. E., & Huston, M. A. (2003). Walker Branch Throughfall Displacement
363 Experiment (TDE). In P. J. Hanson & S. D. Wullschleger (Eds.). *North American*
364 *temperate deciduous forest responses to changing precipitation regimes* (pp. 8-31). New
365 York: Springer.

366 Hanson, P. J., Todd, D. E., Riggs, J. S., Wolfe, M. E., & O'Neill, E. G. (2001). *Walker Branch*
367 *Throughfall Displacement Experiment data report: Site characterization, system*
368 *performance, weather, species composition, and growth*. ORNL/CDIAC-134, NDP-
369 078A. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory,
370 U.S. Department of Energy, Oak Ridge, Tennessee, U.S.A.

371 Huston, M. A., Johnson, D. W., Todd, D. E., Curlin, J. W., & Harris, F. W. (2013). *Walker*
372 *Branch Watershed vegetation inventory, 1967-2006, R1*. Distributed Active Archive

373 Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge,
374 Tennessee, U.S.A. <https://doi.org/10.3334/ORNLDAAAC/819>

375 Jardine, P. M., Wilson, G. V., Luxmoore, R. J., & McCarthy, J. F. (1989). Transport of inorganic
376 and natural organic tracers through an isolated pedon in a forest watershed. *Soil Science
377 Society of America Journal*, 53(2), 317-323.

378 <https://doi.org/10.2136/sssaj1989.03615995005300020001x>

379 Jardine, P. M., Wilson, G. V., McCarthy, J. F., Luxmoore, R. J., & Taylor D. L. (1990).
380 Hydrogeochemical processes controlling the transport of dissolved organic carbon
381 through a forested hillslope. *Journal of Contaminant Hydrology*, 6(1), 3-19.
382 [https://doi.org/10.1016/0169-7722\(90\)90008-5](https://doi.org/10.1016/0169-7722(90)90008-5)

383 Johnson, D. W. (1989). Site description. In D. W. Johnson & R. I. Van Hook (Eds.). *Analysis of
384 biogeochemical cycling processes in Walker Branch Watershed* (pp. 6-20). New York:
385 Springer-Verlag.

386 Johnson, D. W., & Todd, D. E. (1990). Nutrient cycling in forests of Walker Branch Watershed,
387 Tennessee: Roles of uptake and leaching in causing soil changes. *Journal of
388 Environmental Quality*, 19(1), 97-104.
389 <https://doi.org/10.2134/jeq1990.00472425001900010013x>

390 Joslin, J. D., Gaudinski, J. B., Torn, M. S., Riley, W. J., & Hanson, P. J. (2006). Fine-root
391 turnover patterns and their relationship to root diameter and soil depth in a ¹⁴C-labeled
392 hardwood forest. *New Phytologist*, 172(3), 523-535. [https://doi.org/10.1111/j.1469-8137.2006.01847.x](https://doi.org/10.1111/j.1469-
393 8137.2006.01847.x)

394 Kane, E. S., Betts, E. F., Burgin, A. J., Clilverd, H. M., Crenshaw, C. L., Fellman, J. B., ...
395 Jones, J. B. (2008). Precipitation control over inorganic nitrogen import-export budgets

396 across watersheds: A synthesis of long-term ecological research. *Ecohydrology*, 1(2),
397 105-117. <https://doi.org/10.1002/eco.10>

398 Kardol, P., Todd, D. E., Hanson, P. J., & Mulholland, P. J. (2010). Long-term successional forest
399 dynamics: Species and community responses to climatic variability. *Journal of*
400 *Vegetation Science*, 21(4), 627-642. <https://doi.org/10.1111/j.1654-1103.2010.01171.x>

401 Keller, M., Schimel, D. S., Hargrove, W. W., & Hoffman, F. M. (2008). A continental strategy
402 for the National Ecological Observatory Network. *Frontiers in Ecology and the*
403 *Environment*, 6(5), 282-284. [https://doi.org/10.1890/1540-9295\(2008\)6\[282:ACSFTN\]2.0.CO;2](https://doi.org/10.1890/1540-9295(2008)6[282:ACSFTN]2.0.CO;2)

405 Lindberg, S. E., Lovett, G. M., Richter, D. D., & Johnson, D. W. (1986). Atmospheric deposition
406 and canopy interactions of major ions in a forest. *Science*, 231(4734), 141-145.
407 <https://doi.org/10.1126/science.231.4734.141>

408 Lindberg, S. E., Turner, R. R., Meyers, T. P., Taylor, G. E., & Schroeder, W. H.
409 (1991). Atmospheric concentrations and deposition of Hg to a deciduous forest at Walker
410 Branch Watershed, Tennessee, USA. *Water Air & Soil Pollution*, 56, 577-594.
411 <https://doi.org/10.1007/BF00342301>

412 Lutz, B. D., Mulholland, P. J., & Bernhardt, E. S. (2012). Long-term data reveal patterns and
413 controls on stream water chemistry in a forested stream: Walker Branch, Tennessee.
414 *Ecological Monographs*, 82(3), 367-387. <https://doi.org/10.1890/11-1129.1>

415 Luxmoore, R. J., & Huff, D. D. (1989). Water. In D. W. Johnson & R. I. Van Hook (Eds.).
416 *Analysis of biogeochemical cycling processes in Walker Branch Watershed* (pp. 161-
417 196). New York: Springer-Verlag.

418 Matson, P. G., Stevenson, L. M., Griffiths, N. A., DeRolph, C. R., Jett, R. T., Fortner, A. M.,
419 Jones, M. W., Jones, N. J., & Mathews, T. J. (In Review). Multidecadal Biological
420 Monitoring and Abatement Program assessing human impacts on in-stream aquatic
421 ecosystems within the Oak Ridge Reservation in eastern Tennessee, USA. *Hydrological
422 Processes*.

423 McGuire, K. J., & Likens, G. E. (2011). Historical roots of forest hydrology and
424 biogeochemistry. In D. F. Levia, D. Carlyle-Moses, & T. Tanaka (Eds.). *Forest
425 hydrology and biogeochemistry: Synthesis of past research and future directions* (pp. 3-
426 26). Netherlands: Springer.

427 Mulholland, P. J. (1992). Regulation of nutrient concentrations in a temperate forest stream:
428 Roles of upland, riparian, and instream processes. *Limnology and Oceanography*, 37(7),
429 1512-1526. <https://doi.org/10.4319/lo.1992.37.7.1512>

430 Mulholland, P. J. (2004). The importance of in-stream uptake for regulating stream
431 concentrations and outputs of N and P from a forested watershed: Evidence from long-
432 term chemistry records for Walker Branch Watershed. *Biogeochemistry*, 70, 403-426.
433 <https://doi.org/10.1007/s10533-004-0364-y>

434 Mulholland, P. J., Elwood, J. W., Newbold, J. D., Ferren, L. A., & Webster, J. R.
435 (1985). Phosphorus spiralling in a woodland stream: Seasonal variations. *Ecology*, 66(3),
436 1012-1023. <https://doi.org/10.2307/1940562>

437 Mulholland, P. J., & Griffiths, N. A. (2016a). *Walker Branch Watershed: Daily climate and soil
438 temperature data*. Oak Ridge National Laboratory, TES SFA, U.S. Department of
439 Energy, Oak Ridge, Tennessee, U.S.A. <https://doi.org/10.3334/CDIAC/ornlsfa.008>

440 Mulholland, P. J., & Griffiths, N. A. (2016b). *Walker Branch Watershed: Hourly, daily, and*
441 *annual precipitation*. Oak Ridge National Laboratory, TES SFA, U.S. Department of
442 Energy, Oak Ridge, Tennessee, U.S.A. <https://doi.org/10.3334/CDIAC/ornlsfa.006>

443 Mulholland, P. J., & Griffiths, N. A. (2016c). *Walker Branch Watershed: 15-minute and daily*
444 *stream discharge and annual runoff*. Oak Ridge National Laboratory, TES SFA, U.S.
445 Department of Energy, Oak Ridge, Tennessee, U.S.A.
446 <https://doi.org/10.3334/CDIAC/ornlsfa.007>

447 Mulholland, P. J., & Griffiths, N. A. (2016d). *Walker Branch Watershed: Weekly stream water*
448 *chemistry*. Oak Ridge National Laboratory, TES SFA, U.S. Department of Energy, Oak
449 Ridge, Tennessee, U.S.A. <https://doi.org/10.3334/CDIAC/ornlsfa.009>

450 Mulholland, P. J., & Hill, W. R. (1997). Seasonal patterns in streamwater nutrient and dissolved
451 organic carbon concentrations: Separating catchment flow path and in-stream
452 effects. *Water Resources Research*, 33(6), 1297-1306.
453 <https://doi.org/10.1029/97WR00490>

454 Mulholland, P. J., Roberts, B. J., Hill, W. R., & Smith, J. G. (2009). Stream ecosystem responses
455 to the 2007 spring freeze in the southeastern United States: Unexpected effects of climate
456 change. *Global Change Biology*, 15(7), 1767-1776. <https://doi.org/10.1111/j.1365-2486.2009.01864.x>

458 Mulholland, P. J., Tank, J. L., Sanzone, D. M., Wollheim, W. M., Peterson, B. J., Webster, J. R.,
459 & Meyer, J. L. (2000a). Food resources of stream macroinvertebrates determined by
460 natural-abundance stable C and N isotopes and a ^{15}N tracer addition. *Journal of the North*
461 *American Benthological Society*, 19(1), 145-157. <https://doi.org/10.2307/1468287>

462 Mulholland, P. J., Tank, J. L., Sanzone, D. M., Wollheim, W. M., Peterson, B. J., Webster, J. R.,
463 & Meyer, J. L. (2000b). Nitrogen cycling in a forest stream determined by a ^{15}N tracer
464 addition. *Ecological Monographs*, 70(3), 471-493. [https://doi.org/10.1890/0012-9615\(2000\)070\[0471:NCIAFS\]2.0.CO;2](https://doi.org/10.1890/0012-9615(2000)070[0471:NCIAFS]2.0.CO;2)

465

466 Mulholland, P. J., Wilson, G. V., & Jardine, P. M. (1990). Hydrogeochemical response of a
467 forested watershed to storms: Effects of preferential flow along shallow and deep
468 pathways. *Water Resources Research*, 26(12), 3021-3036.
469 <https://doi.org/10.1029/WR026i012p03021>

470 Newbold, J. D., Elwood, J. W., O'Neill, R. V., & Shelton, A. L. (1983). Phosphorus dynamics in
471 a woodland stream ecosystem: A study of nutrient spiralling. *Ecology*, 64(5), 1249-1265.
472 <https://doi.org/10.2307/1937833>

473 Newbold, J. D., Elwood, J. W., O'Neill, R. V., & Van Winkle, W. (1981). Measuring nutrient
474 spiralling in streams. *Canadian Journal of Fisheries and Aquatic Sciences*, 38(7), 860-
475 863. <https://doi.org/10.1139/f81-114>

476 Newbold, J. D., O'Neill, R. V., Elwood, J. W., & Van Winkle, W. 1982. Nutrient spiralling in
477 streams: Implications for nutrient limitation and invertebrate activity. *American
478 Naturalist*, 120(5), 628-652. <https://doi.org/10.1086/284017>

479 Roberts, B. J., & Mulholland, P. J. (2007). In-stream biotic control on nutrient biogeochemistry
480 in a forested stream, West Fork of Walker Branch. *Journal of Geophysical Research: Biogeosciences*, 112, G04002. <https://doi.org/10.1029/2007JG000422>

481

482 Roberts, B. J., Mulholland, P. J., & Hill, W. R. (2007). Multiple scales of temporal variability in
483 ecosystem metabolism rates: Results from 2 years of continuous monitoring in a forested
484 headwater stream. *Ecosystems*, 10, 588-606. <https://doi.org/10.1007/s10021-007-9059-2>

485 Sheppard, J. D., Henderson, G. S., Grizzard, T., & Heath, M. T. (1973). *Hydrology of a forested*
486 *catchment: 1 – Water balance from 1969 to 1972 on Walker Branch Watershed*. U.S.
487 International Biological Program Eastern Deciduous Forest Biome Memo Report 7#3-55.
488 Oak Ridge National Laboratory, Oak Ridge, TN.

489 Trettin, C. C., Johnson, D. W., & Todd, D. E. (1999). Forest nutrient and carbon pools at Walker
490 Branch Watershed: Changes during a 21-year period. *Soil Science Society of America*
491 *Journal*, 63(5), 1436-1448. <https://doi.org/10.2136/sssaj1999.6351436x>

492 Van Hook, R. I., Harris, W.F., & Henderson, G. S. (1977). Cadmium, lead, and zinc distributions
493 and cycling in a mixed deciduous forest. *Ambio*, 6(5), 281-286.

494 Wilson, G. V., Jardine, P. M., Luxmoore, R. J., & Jones, J. R. (1990). Hydrology of a forested
495 hillslope during storm events. *Geoderma*, 46(1-3), 119-138. [https://doi.org/10.1016/0016-7061\(90\)90011-W](https://doi.org/10.1016/0016-7061(90)90011-W)

497 Wilson, K. B., & Baldocchi, D. D. (2000). Seasonal and interannual variability of energy fluxes
498 over a broadleaved temperate deciduous forest in North America. *Agricultural and Forest*
499 *Meteorology*, 100(1), 1-18. [https://doi.org/10.1016/S0168-1923\(99\)00088-X](https://doi.org/10.1016/S0168-1923(99)00088-X)

500 Wilson, K. B., Hanson, P. J., & Baldocchi, D. D. (2000). Factors controlling evaporation and
501 energy partitioning beneath a deciduous forest over an annual cycle. *Agriculture and*
502 *Forest Meteorology*, 102(2-3), 83-103. [https://doi.org/10.1016/S0168-1923\(00\)00124-6](https://doi.org/10.1016/S0168-1923(00)00124-6)

503 Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D., & Wullschleger, S. D. (2001).
504 A comparison of methods for determining forest evapotranspiration and its components
505 across scales: Sap-flow, soil water budget, eddy covariance, and catchment water
506 balance. *Agriculture and Forest Meteorology*, 106(2), 153-168.
507 [https://doi.org/10.1016/S0168-1923\(00\)00199-4](https://doi.org/10.1016/S0168-1923(00)00199-4)

508 Wullschleger, S. D., & Hanson, P. J. (2006). Sensitivity of canopy transpiration to altered
509 precipitation in an upland oak forest: Evidence from a long-term field manipulation.
510 *Global Change Biology*, 12(1), 97-109. [https://doi.org/10.1111/j.1365-
511 2486.2005.001082.x](https://doi.org/10.1111/j.1365-2486.2005.001082.x)

512 **Figure Legend**

513 Figure 1 – Map of the 97.5-ha Walker Branch Watershed (with West Fork and East Fork
514 subcatchments also delineated) and photos (from June 2008) of hydrologic infrastructure and a
515 stream water chemistry sampling site. The datasets described in this paper were collected at the
516 meteorological tower, rain gauges, stream weirs, and stream water chemistry sampling sites
517 shown on the topographic map of Walker Branch Watershed (left image). The location of
518 Walker Branch Watershed within the southeastern United States is also shown (left image inset).
519 Photos show the West Fork weir and weir hut (top right image) and the stream chemistry
520 sampling site (bottom right image). Photo credit: Jason Richards/Oak Ridge National
521 Laboratory, U.S. Department of Energy.

522

523 Figure 2 – Temporal patterns in total daily rainfall (mm), mean daily discharge (L/s), mean daily
524 air temperature (°C), and weekly stream water nitrate concentration (µg N/L) in Walker Branch
525 Watershed. Discharge and stream water nitrate concentration data are from the West Fork of
526 Walker Branch. Nitrate concentrations were below 120 µg N/L except for one date (12/8/1998)
527 when nitrate was 297 µg N/L (datapoint not shown on figure).