

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-806201

The Role of Redox on Bridgmanite Crystal Chemistry and Calcium Speciation in the Lower Mantle

N. Creasy, J. Girard, K. K. M. Lee

March 3, 2020

Journal of Geophysical Research, Solid Earth

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

The Role of Redox on Bridgmanite Crystal Chemistry and Calcium Speciation in the Lower Mantle

3

4 Neala Creasy^{1,2*}, Jennifer Girard¹, James O. Eckert, Jr.,¹ and Kanani K. M. Lee^{1,3}

5 ¹Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA,

⁶²Department of Geophysics, Colorado School of Mines, Golden, CO, USA, ³Lawrence

7 Livermore National Laboratory, Livermore, CA, USA

9

⁹ Corresponding author: Neala Creasy (nmcreasy@mines.edu)

10

11 Key Points:

- Al-rich pyroxenite mineralogy, density, and seismic velocity are tied to ferric iron content at lower mantle conditions
- Ferric iron and aluminum content may affect the formation of calcium-bearing bridgmanite

17 **Abstract: Words – 235, Max is 250.**

18 The amount of ferric iron Fe^{3+} in the lower mantle is largely unknown and may be influenced by
19 the disproportionation reaction of ferrous iron Fe^{2+} into metallic Fe and Fe^{3+} triggered by the
20 formation of bridgmanite. Recent work has shown that Fe^{3+} has a strong effect on the density and
21 seismic wave speeds of bridgmanite and the incorporation of impurities such as aluminum. In order
22 to further investigate the effects of ferric iron on mineral behavior at lower mantle conditions, we
23 conducted laser-heated diamond-anvil cell (LHDAC) experiments on two sets of samples nearly
24 identical in composition (an aluminum-rich pyroxenite glass) except for the Fe^{3+} content; with one
25 sample with more Fe^{3+} (“oxidized”: $\text{Fe}^{3+}/\Sigma\text{Fe} \sim 55\%$) and the other with less Fe^{3+} (“reduced”:
26 $\text{Fe}^{3+}/\Sigma\text{Fe} \sim 11\%$). We heated the samples to lower mantle conditions, and the resulting assemblages
27 were drastically different between the two sets of samples. For the reduced composition, we
28 observed a multiphase assemblage dominated by bridgmanite and calcium perovskite. In contrast,
29 the oxidized material yielded a single phase of Ca-bearing bridgmanite. These Al-rich pyroxenite
30 samples show a difference in density and seismic velocities for these two redox states, where the
31 reduced assemblage is denser than the oxidized assemblage by $\sim 1.5\%$ at the bottom of the lower
32 mantle and slower (bulk sound speed) by $\sim 2\%$. Thus, heterogeneities of Fe^{3+} content may lead to
33 density and seismic wave speed heterogeneities in the Earth’s lower mantle.

34

35 **Plain Language Summary: Words – 197, Max is 200**

36 Iron primarily exists in three oxidation states within the mantle: metallic iron (Fe^0), ferrous iron
37 Fe^{2+} (more reduced form) and ferric iron Fe^{3+} (more oxidized form), however, the amount of Fe^{3+}
38 in the lower mantle is largely unknown. Recent work has shown that Fe^{3+} has a strong effect on
39 rock density and speed at which seismic waves travel through lower mantle minerals. In order to
40 further investigate these effects, we conducted experiments on samples nearly identical in
41 composition except for the Fe^{3+} content. We compressed the samples between two diamonds and
42 heated the sample to the conditions of Earth's lower mantle. For the reduced sample (low Fe^{3+}
43 content), we observed a complex assemblage of minerals, primarily composed of bridgmanite (the
44 most abundant mineral in the Earth) and calcium silicate perovskite (a common secondary phase
45 in the lower mantle). In contrast, the oxidized sample (high Fe^{3+} content) yielded a single phase of
46 these two minerals combined together as one mineral – a Ca-bearing bridgmanite. The resulting
47 oxidized sample is lighter and seismic waves travel faster through it than the reduced sample. Thus,
48 changes in Fe^{3+} content may lead to density and seismic wave speed variations in Earth's lower
49 mantle.

50 **1 Introduction**

51 In all compositional models of the lower mantle, the most abundant mineral is expected to
52 be a magnesium-rich silicate perovskite (nominally, $(\text{Mg},\text{Fe})\text{SiO}_3$) known as bridgmanite
53 (Tschauner et al., 2014). As such, the crystal chemistry of bridgmanite largely determines the
54 physical properties of the lower mantle such as density, seismic velocities, and rheology. Recently,
55 the ferric iron Fe^{3+} content in bridgmanite has been found to affect bridgmanite and secondary
56 minerals (Gu et al., 2016; Shim et al., 2017; Kurnosov et al., 2017). However, the relative amount
57 of ferric iron Fe^{3+} (i.e., a measure of oxidation state) present in the lower mantle is unknown, with
58 estimates that vary between 13 and 60% (Kurnosov et al., 2017; Frost and McCammon, 2008).
59 Diamond inclusions suggest that the oxygen fugacity may vary by up to ten log units in the lower
60 mantle (Kaminsky et al., 2015). It is well known that Fe^{3+} , in addition to aluminum Al^{3+} , is soluble
61 in bridgmanite; thus, Fe^{3+} must play a role in the chemistry and dynamics of the lower mantle (e.g.,
62 Andrault et al., 2018). While there is abundant information on bridgmanite and the incorporation
63 of Fe^{3+} into its structure (e.g., McCammon, 1997; Catalli et al., 2011; Frost and McCammon,
64 2008), there is relatively little understanding on the effects of Fe^{3+} on the overall mineralogy and
65 properties of the resulting assemblage (Gu et al., 2016).

66 While the mantle is heterogeneous (e.g., van Keken et al., 2002), it is often assumed to be
67 pyrolytic in composition (Irifune & Tsuchiya, 2015). The lower mantle, if pyrolite-like in
68 composition, would result in bridgmanite $(\text{Mg},\text{Fe})\text{SiO}_3$ (~76 mol%), ferropericlase $(\text{Mg},\text{Fe})\text{O}$
69 (~17%), and calcium perovskite CaSiO_3 (~7%) phases (e.g., Lee et al., 2004). Multiple studies on
70 the bridgmanite structure have shown a high solubility of Fe^{3+} , much more than bridgmanite's low-
71 pressure predecessors: olivine, wadsleyite, and ringwoodite (as summarized in Frost and
72 McCammon, 2008). However, there are few constraints on actual Fe^{3+} content in the Earth's lower

73 mantle (Frost and McCammon, 2008; Shim et al., 2017). Therefore, regions with varying Fe^{3+}
74 content may show other characteristics that could be imaged seismically, such as a difference in
75 density and seismic velocities (Gu et al., 2016).

76 Recent work by Kurnosov et al., (2017) shows that a decrease of Fe^{3+} content (66% to
77 33%) in the bridgmanite structure in a pyrolite model agrees with the Preliminary Reference Earth
78 Model (PREM) (Dziewonski & Anderson, 1981) from a depth of 800 to 1,200 km, whereas a
79 pyrolite model with only Fe^{2+} does not agree as well with PREM. In addition, we expect a
80 mineralogical effect to be observed with changing Fe^{3+} based on recent results (Gu et al., 2016).

81 In that study, under conditions with low Fe^{3+} abundance ($\text{Fe}^{3+}/\Sigma\text{Fe} \sim 30\%$), Al_2O_3 exsolved as a
82 separate phase, whereas with greater amounts of Fe^{3+} ($\text{Fe}^{3+}/\Sigma\text{Fe} \sim 35\%$), all of the alumina was
83 incorporated into the bridgmanite phase (Gu et al., 2016). Due to the coupled substitution of Fe^{3+}
84 and Al^{3+} into the bridgmanite structure, more Fe^{3+} in the material leads to an increase in Al^{3+}
85 solubility by bridgmanite (Frost et al., 2004). However, it is unknown how Fe^{3+} content affects
86 other mantle assemblages, such as basalt, peridotite, pyroxenite, and pyrolite (Ko et al., 2017),
87 when many of the resulting lower mantle assemblages assume iron exists only in the Fe^{2+} state.

88 Ferric iron may have other impacts as well on bridgmanite crystal chemistry. The large
89 miscibility gap between MgSiO_3 -bridgmanite and CaSiO_3 -perovskite has been well documented
90 through experiments (Armstrong et al., 2012; Irfune et al., 1989; Tamai and Yagi, 1989) and *ab*
91 *initio* computations (Jung and Schmidt, 2011), yielding at most ~ 1 mol% Ca incorporation into
92 MgSiO_3 . However, the combined effect of Al and Fe^{3+} effects on the solubility of bridgmanite and
93 calcium perovskite were beyond the scope of those studies. While many studies have used samples
94 that included Al and Fe^{3+} to investigate lower mantle mineralogy for MORB and pyrolite (e.g.,
95 Dorfman et al., 2013; Gu et al., 2016; Lee et al., 2004; Nishiyama and Yagi, 2003; Ono et al.,

96 2001; Ricolleau et al., 2010), nearly every study that has included calcium
97 perovskite to form as an independent phase or if calcium is present in small amounts can take up
98 ~1 mol% within the bridgmanite unit cell and ~3 mol% of Mg into the calcium perovskite unit
99 cell. One exception is recent work by Ko et al. (2017), where they attempt to constrain pyrolite
100 mineralogy under different redox conditions and is strongly dependent on Fe and Al content of
101 bridgmanite. Miyajima et al. (1999) placed natural garnets into a multi-anvil press and found one
102 garnet series produced a Mg-perovskite with 6-7 mol% Ca with a calculated $\text{Fe}^{3+}/\Sigma\text{Fe}$ greater than
103 80%. Fujino et al. (2004) observed a calcium perovskite with 9 Mg and 8 mol% Fe when
104 compressing a diopside to mid-mantle pressures (i.e., 78 GPa). Therefore, there appears to be an
105 unknown relationship between the combined effects of Al, Fe^{2+} , Fe^{3+} , Ca, and the miscibility gap
106 between bridgmanite and calcium perovskite when Fe^{3+} is abundant, where under rare
107 circumstances Mg- and Ca-perovskites appear to be soluble.

108 In this study, we investigated the effect of Fe^{3+} on the density and mineralogy of a plausible
109 mantle rock composition, an Al-rich pyroxenite. Pyroxenites encompass a wide class of rocks that
110 consists of pyroxenes and garnets that are possible parent bodies that melt at shallow depths to
111 form ocean island basalts (e.g., MIX1G: Hirschmann et al., 2003; Kogiso & Hirschmann, 2006)
112 (see Table 1, Figure S3). Additionally, there is evidence that hot spots (e.g., Hawaii) have their
113 origins at much greater depths (e.g., Jackson et al., 2018). Pyroxenites are typically higher in Al
114 and Ca and lower in Mg content compared to pyrolite but vary widely in composition and
115 ferric iron content (Hirschmann et al., 2003). Incidentally, pyrolite falls within the high end of
116 MgO content pyroxenites (Figure S3). Therefore, pyroxenite is a plausible lower mantle
117 assemblage that is present within the mantle, at least at some concentration (Mallik et al., 2020).
118 It is important to test a range of plausible chemistries in the mantle since the mantle is not

119 homogenous as is evident in seismic tomography studies (e.g., Deschamps et al., 2015 & Kaminski
120 and Javoy, 2015). The mantle is chemically heterogeneous and an average pyrolytic model does
121 not convey its complexity. Additionally, oxidation state appears to play a large role in mineralogy
122 and the crystal structure of bridgemanite (e.g., Gu et al., 2016 Catalli et al., 2010; Kurnosov et al.,
123 2017). As the disproportionation of iron in the lower mantle may occur during the transition of
124 olivine into bridgemanite and ferropericlase (Frost et al., 2004), the ferric iron content within
125 bridgemanite appears to change with depth (Shim et al., 2017). Additionally, subduction processes
126 may also affect the local oxidation state of the mantle. This study attempts to explore mantle
127 complexity by investigating how ferric iron affects mineralogy beyond the canonical pyrolytic
128 mantle composition.

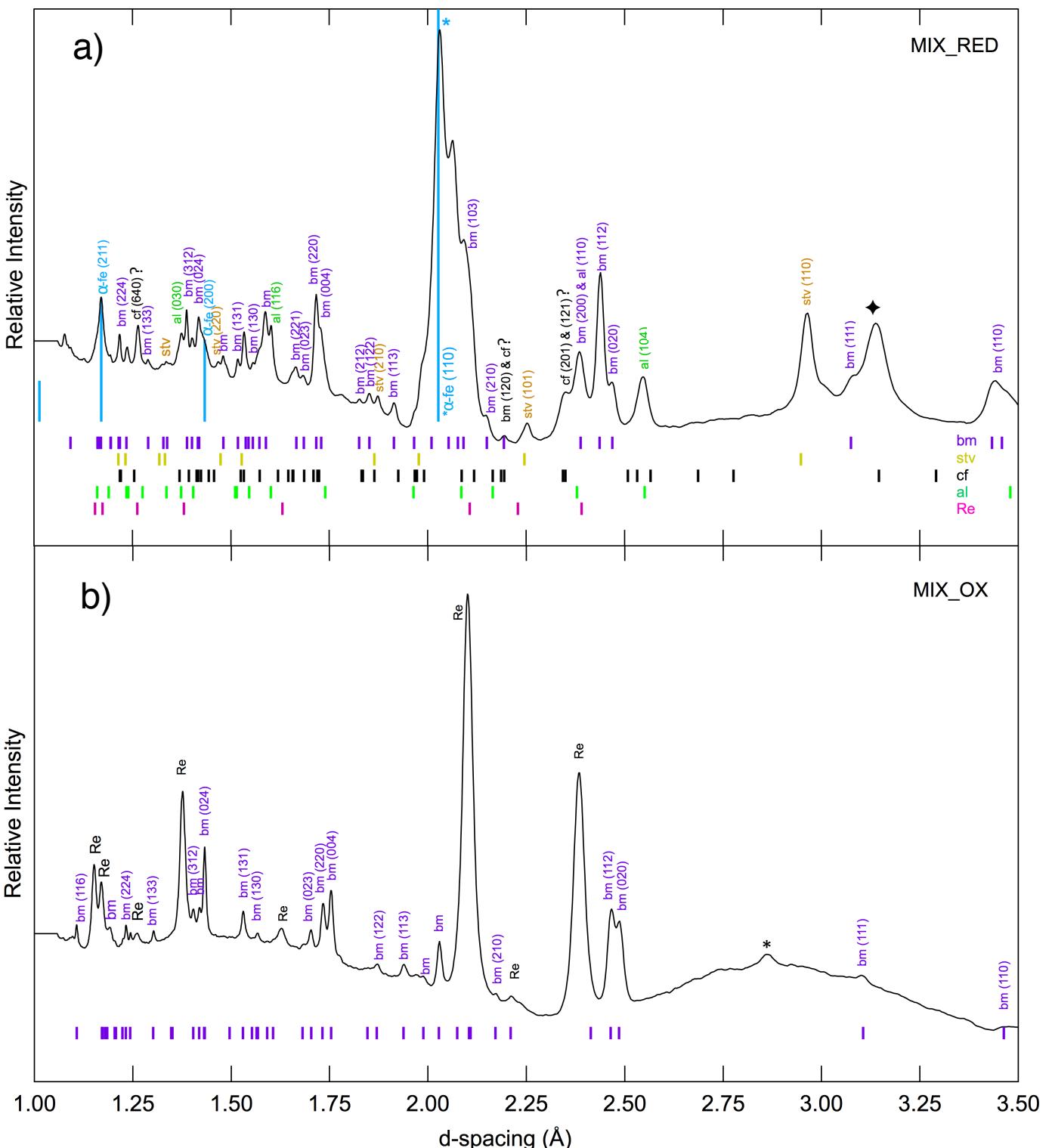
129 Following Gu et al. (2016), we considered a material that has a larger contrast in Fe^{3+}
130 content ($\text{Fe}^{3+}/\Sigma\text{Fe} \sim 55\%$ vs. $\sim 11\%$) and with more Al^{3+} and Fe in order to amplify any potential
131 differences in density and mineralogy observed previously (Gu et al., 2016) (Table 1). While the
132 compositions we study are not likely to comprise the majority of the mantle (i.e., quite different
133 from the canonical pyrolite model), pyroxenites may yield ocean island basalts when partially
134 melted (Hirschmann et al., 2003) which are expected to come from deep within the mantle. Based
135 on our measurements and Monte Carlo modeling , we used Burnman (Cottaar et al., 2014), a
136 Python toolkit, to calculate the density and bulk sound speed profiles of the resulting mineral
137 assemblages.

138

139 **2 Materials and Methods**

140 We use the LHDAC to simulate the high pressures and temperatures of the lower mantle.
141 We conducted multiple experiments on two separate sets of glass samples which differed in Fe^{3+}

142 content with one reducing (MIX_RED, $Fe^{+3}/\sum Fe \sim 11\%$) and one more oxidizing (MIX_OX,
143 $Fe^{+3}/\sum Fe \sim 55\%$) (Table 1) as determined by Mössbauer spectroscopy (Figure S1, Supporting
144 Information: Section I). Both glass samples (see Figure S2) were synthesized by laser levitation
145 while in a controlled gas environment to vary oxygen fugacity and thus ferric iron content (Gu et
146 al., 2016). As there was some volatile loss during the laser levitation process, the samples are not
147 identical to MIX1G reported in Hirschmann et al. (2003); however, the samples' bulk
148 compositions are within the class of natural pyroxenites (Table 1 and Figure S3). As a result of
149 volatile loss, our samples are relatively enriched in Al_2O_3 , compared to other pyroxenites, thus we
150 refer to our samples as Al-rich pyroxenites.


151 Each glass bead sample was cut in half, polished, and the composition was determined by
152 electron probe microanalysis (EPMA) (Tables 1, S1, S2, see Supporting Information: Section II)
153 prior to being powdered and sample prepared with stepped anvils (Du et al., 2015). The stepped
154 samples are then transferred to a diamond-anvil cell equipped with opposing flat culet anvils,
155 which is then loaded with neon to provide thermal insulation and *in situ* pressure calibration
156 (Zhuravlev et al., 2013). Stepped anvil cells allow for simple loading of gases with even thermal
157 insulation layers and give the ability to recover the sample more easily for EPMA analyses as the
158 samples are pressed into the gasket. Prior to the initial laser heating of the glass samples for
159 assemblage synthesis, the presence of Ne in each sample is confirmed by XRD. In the collected
160 high-pressure XRD patterns after laser heating (Figures 1, S5-S6), neon is not always easy to
161 identify due to overlap with other synthesized phases present; therefore, we also use Raman
162 spectroscopy of the diamond anvils to determine pressure before and after heating (Akahama &
163 Kawamura, 2006). We report both measurements of pressures but use the pressures determined by
164 diamond Raman with uncertainties defined by the difference between the pressures determined by

165 each method (Tables S6 and S7). At the highest pressures reached in our study, the pressures differ
166 by up to 6 GPa, with pressures determined by Raman greater than those determined by neon.

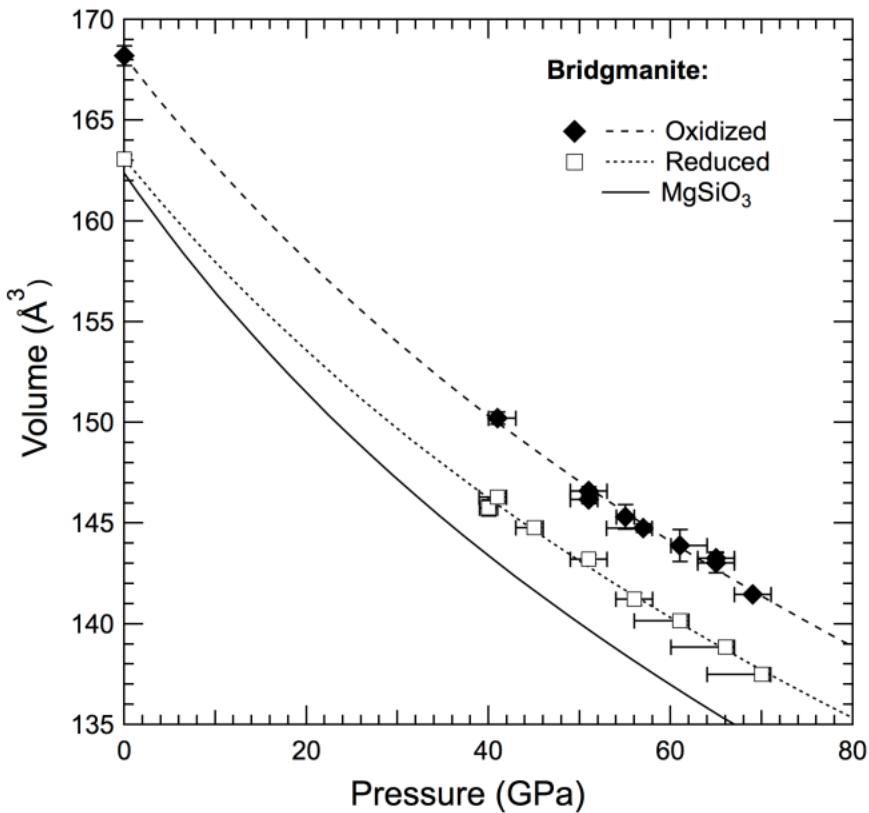
167 We collected *in situ* x-ray diffraction (XRD) (Figure 1) to reveal the mineralogy and
168 compressibility of the samples at the HPCAT-IDB beamline ($\lambda=0.406626$ Å) at the Advanced
169 Photon Source (APS) at Argonne National Laboratory (Meng et al., 2015) (Supporting
170 Information, Section VII). Two samples each of the MIX_RED and MIX_OX compositions were
171 synthesized between 35-40 GPa with a double-sided LHDAC by rastering for ~20 minutes at a
172 temperature between 2,000-2,300 K to minimize Soret diffusion to attain, at least, local
173 equilibrium. The heating was steady throughout, both spatially and temporally, as is possible when
174 using even thermal insulation layers (Du et al., 2015) and the use of homogeneous glass starting
175 samples (i.e., no hot spots or flashing). The spot size of the laser (~30 μm) was smaller than the
176 sample (~100 μm); therefore, we rastered the laser across the sample in order to convert the sample
177 and to reduce horizontal temperature gradients. To maintain gasket stability, we avoided laser
178 heating the edge of the gasket hole. The incident x-ray beam, ~5 x 7 μm in size, was centered on
179 the converted samples. At each increase in pressure, up to 70-75 GPa, we additionally heated the
180 sample for approximately 5 minutes to anneal the sample prior to room-temperature XRD.
181 Additionally, we collected XRD upon samples quenched from both high pressures and high
182 temperatures (Figure 2). Quenched samples were hand polished and compositions investigated in
183 cross section by electron probe microanalysis (EPMA, Tables S3-S4). Compared with starting
184 compositions (Tables S1, S2), the resulting compositions were found to agree (Table S5), in part
185 due to the small grain sizes of the phases synthesized as compared to the electron beam size, thus
186 averaging over phase(s) present (see Supporting Information: Section II).

Figure 1. Selected quench XRD patterns with pressures given in GPa from the (a) reduced MIX_RED samples and (b) oxidized MIX_OX samples with present phases labeled as bridgmanite (bm), calcium perovskite (capv), stishovite (stv), calcium-ferrite structured phase (cf), alumina (al), neon (ne), and iron (ϵ -Fe). The peaks are labeled corresponding to the phase and hkl indices. See Figures S6 and S7 for representative Rietveld refined XRD patterns.

Figure 2. Room pressure and temperature XRD pattern for (a) MIX_RED and (b) MIX_OX with present phases labeled as bridgmanite (bm), stishovite (stv), calcium-ferrite structured phase (cf), alumina (al), rhenium (Re), and bcc iron ($\alpha\text{-Fe}$). The peaks are labeled corresponding to the phase and hkl indices. ♦ This sample, a quenched sample held in its gasket and removed from the LHDAC, experienced blockage from the lead holder and this feature is due to the 100% line of lead which is offset from its usual d-spacing because of its different distance to the detector as compared to the sample-to-detector distance. *An anomalous peak that could not be assigned to the bridgmanite Pnma structure. The broad hump between $\sim 2.5 - 3.5 \text{ \AA}$ and Re diffraction suggests that this pattern was collected near the edge of the gasket where the initially glass sample was unheated thus yielding an amorphous-like character.

187 Additionally, we used Monte Carlo modeling in order to fully explore the uncertainties
188 from our measurements and deduce mineralogy and phase compositions of the assemblages
189 synthesized under lower mantle conditions (Supporting Information: Section VI).

190


191 **3 Results**

192 **3.1 X-ray Diffraction**

193 **3.1.1 MIX_RED Assemblage**

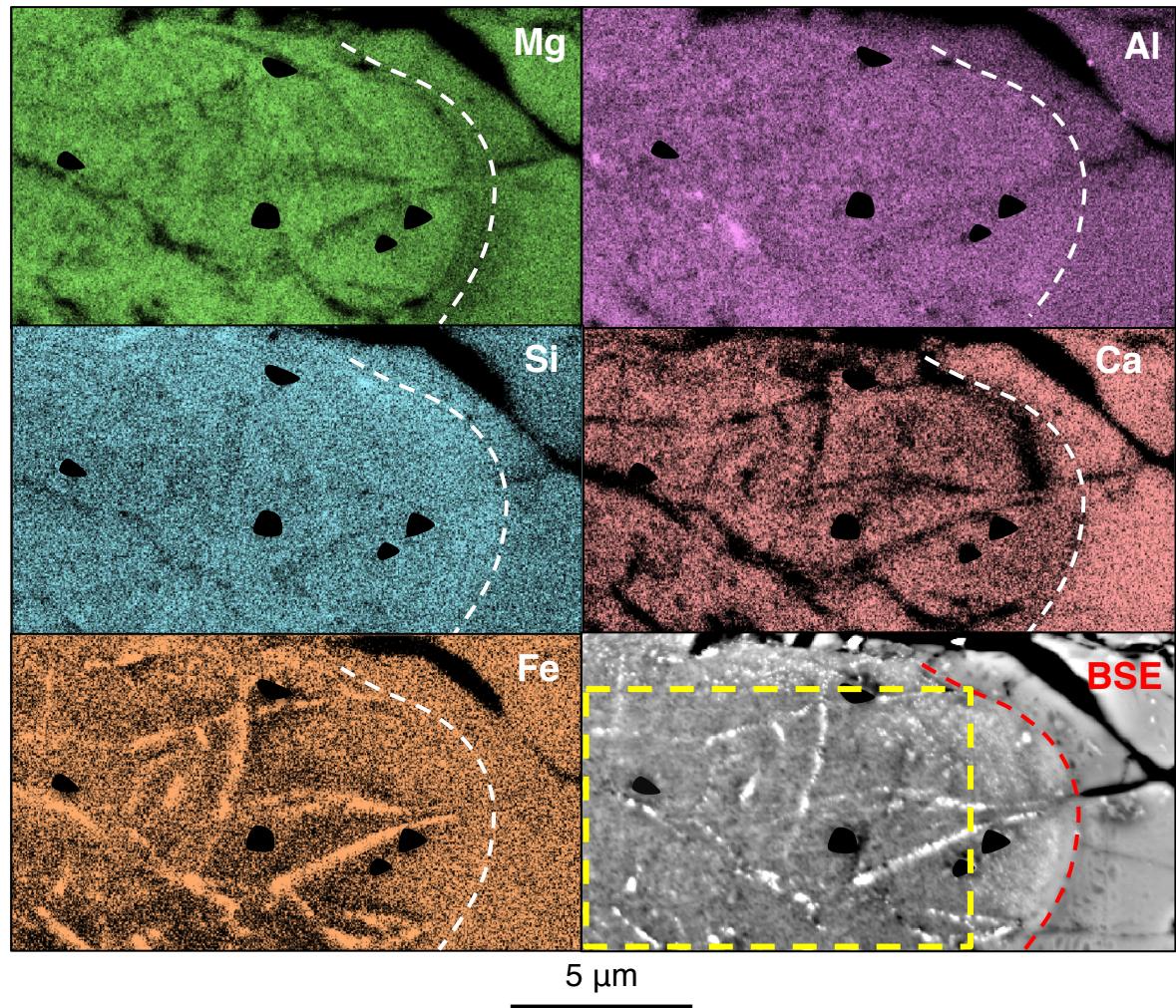
194 X-ray diffraction of the more reduced composition MIX_RED shows a consistent
195 mineralogy over every pressure step (Figure 1a). At lower mantle pressures, we observe
196 bridgmanite (bm: $(\text{Mg}, \text{Fe}, \text{Al}, \text{Si})\text{O}_3$), calcium silicate perovskite (capv: CaSiO_3), silica as
197 stishovite (stv: SiO_2) or in the CaCl_2 structure, a calcium ferrite structured phase (cf: 20:80 solid
198 solution between MgAl_2O_4 and FeAl_2O_4 calculated from Stixrude and Lithgow-Bertollini (2011)),
199 possibly alumina (al: Al_2O_3), and possibly metallic iron (Fe). The first three phases: bridgmanite,
200 calcium silicate perovskite, and silica have clear, distinct XRD peaks at all pressures, as marked
201 in Figure 1a, whereas the remaining three phases are harder to identify by only XRD (see below).
202 Common mantle phase ferropericlase $(\text{Mg}, \text{Fe})\text{O}$ was not observed in our experiments because the
203 starting material has a molar $(\text{Mg} + \text{Fe})/\text{Si} < 1$ (Table 1).

204 Bridgmanite, as expected, shows the most dominant XRD peaks (Figure 1a). The bm
205 volumes are expanded from the Mg-endmember MgSiO_3 , consistent with the expected inclusion
206 of Fe and Al into the crystal structure (Andrault et al., 2001) (Figure 3). Al^{3+} and Fe^{3+} can be
207 present on the A or B site of MgSiO_3 , but Al^{3+} prefers the B site (Brodholt, 2000; Vanpeteghem et
208 al., 2006). Therefore, when more Fe^{3+} is present, more Al^{3+} can be absorbed into bm. Since Al^{3+}
209 and Fe^{3+} are present together in this sample, both expand the unit-cell volume, along with Fe^{2+}

Figure 3. Pressure versus volume of bridgmanite at room temperature, with corresponding Birch–Murnaghan equation of state curves. MIX_RED (open squares, dotted curve) and MIX_OX (filled diamonds, dashed curve) samples are shown with pressures and their uncertainties are given by error bars (see Tables S6, S7). A solid curve is shown for pure endmember MgSiO₃ bm (Ballaran et al., 2012).

210 (Frost et al., 2004; Walter et al., 2006; Lundin et al., 2008; Hummer and Fei, 2012) (Figure S12).

211 At room temperature, calcium silicate perovskite shows the predicted tetragonal structure
212 beginning at 50 GPa and above (Shim et al., 2000), shown as the capv peak splitting around the d-
213 spacing for the (200) plane in Figure 1a. At high temperatures, we observe the capv structure
214 reduces to the typical cubic structure and the peak splitting disappears. The volume of cubic capv
215 follows closely to that measured previously, suggesting the composition is at or near the
216 composition of pure CaSiO_3 (Mao et al., 1989) (Figure S4a). Calcium silicate perovskite becomes
217 amorphous once quenched to room pressures and temperatures (Figure 2a) consistent with
218 previous measurements (e.g., Mao et al., 1989; Tamai and Yagi, 1989; Shim et al., 2000;
219 Ringwood and Major, 1971).


220 Because of the relatively high abundance of silicon in the starting composition (Table 1),
221 silica is expected to be present, at least at a few percent, in the synthesized sample. Indeed,
222 stishovite XRD peaks are readily visible due to the high symmetry of the phase and several of the
223 peak positions situated away from the more dominant bridgmanite XRD peaks. The onset of the
224 phase transition of stishovite (stv) to the CaCl_2 structure in silica (Dubrovinsky et al., 1997)
225 appears to be present at pressures greater than 65 GPa, as we observe a slight volume contraction
226 (Figure S4b).

227 The remaining phases (calcium ferrite, alumina, metallic iron) are much harder to identify
228 at high pressures through XRD due to the combined effects of low abundance, symmetry, and
229 overlap with the dominant bridgmanite and the higher symmetry phases (calcium perovskite and
230 stishovite). The calcium-ferrite structured phase overlaps significantly with other phases at high
231 pressures, but the (201) and (121) peaks are distinct from the other phases (Figure 1a), thus it is
232 possible to determine volumes with a few more peaks (Figure S4c, Table S11). In addition, we

233 find that cf is required in the MIX_RED assemblage for charge balance of all elements. In the
234 EPMA maps, we also find regions that are enriched with Fe and Al – indicative of Fe-rich cf phase
235 (see Figure S8b in Supporting Information).

236 Similarly, alumina is not obviously apparent in the XRD patterns at high pressures due to
237 the significant overlap with bridgmanite. However, the bridgmanite (200) peak appears to broaden
238 at 60 GPa becoming two distinct peaks at 65 and 70 GPa, which we identify as the (110) peak of
239 alumina, thus we are able to determine alumina volumes at the highest pressures conducted in this
240 study (Figure S4d). In addition, alumina is possibly visible upon quenching to room conditions
241 in XRD (Figure 2a) and EPMA (Figure 4, S11). However, we could not measure a reliable equation
242 of state for alumina although the volumes measured are consistent with Jephcoat et al. (1988). We
243 also consider the effect of no alumina forming in our Monte Carlo models (see section 3.3)
244 and find that the formation of alumina is not completely necessary for charge balance to be
245 maintained. Therefore, we model two variations on our possible assemblage: one model with the
246 assumption of the formation of alumina (*Model A* in Supporting Information: Section VI) and the
247 other without (*Model B* in Supporting Information: Section VI).

248 For metallic iron, the (100) plane of the hexagonal-close packed ε -Fe (Jephcoat et al., 1986)
249 possibly shows itself in the XRD patterns at high pressure; however, its proximity to the strongest
250 neon peak makes its presence ambiguous. However, upon quench to room conditions where Ne is
251 no longer present due to evaporation, the low-pressure α -Fe phase shows strong diffraction
252 intensity (Figure 2a). The volume of iron could only be reliably measured at room pressure: V_0
253 ($23.64 \pm 0.06 \text{ \AA}^3$), which is within literature uncertainties ($23.54 \pm 0.05 \text{ \AA}^3$ [Wilburn and Bassett,
254 1978]). Therefore, we also explore the formation of metallic iron in the Monte Carlo modeling as
255 iron disproportionation, which occurs when Fe^{2+} self reduces to Fe^{3+} and metallic iron.

Figure 4. Backscattered secondary electron (BSE) image and elemental WDS mapping of Mg, Si, Fe, Al, and Ca of the quenched MIX_RED assemblage, hand-polished in cross-section. The reduced assemblage is quenched from 40 GPa and 2000 K. Note that the map has several areas showing elevated Fe and Al consistent with grains of metallic iron and alumina. The blacked-out regions denote dust on the surface of the sample and are removed from composition analyses. The dashed curve denotes the edge of the converted region within the sample. Everything to the right of the dashed curve is unconverted starting material (glass powder) that is adjacent to the edge of the gasket and unheated, while to the left of the dashed curve is the heated and converted sample. The yellow dotted box represents chemical analysis conducted in Supporting Information (Figure S8, S9, and S11).

256 To confirm our analysis of the phases present in the MIX_RED sample, we conducted a
257 Rietveld refinement with GSAS-II (Toby & Dreele, 2013) on an XRD pattern shown in Figure 1a
258 at 60 GPa (Supporting Information: Figure S6). The resulting refined volumes are nearly identical
259 to values picked by hand, giving additional confidence to our determined phases and volumes
260 (Figure 3; see Supporting Information: Tables S6, S8-S12, Figure S4).

261

262 **3.1.2 MIX_OX Assemblage**

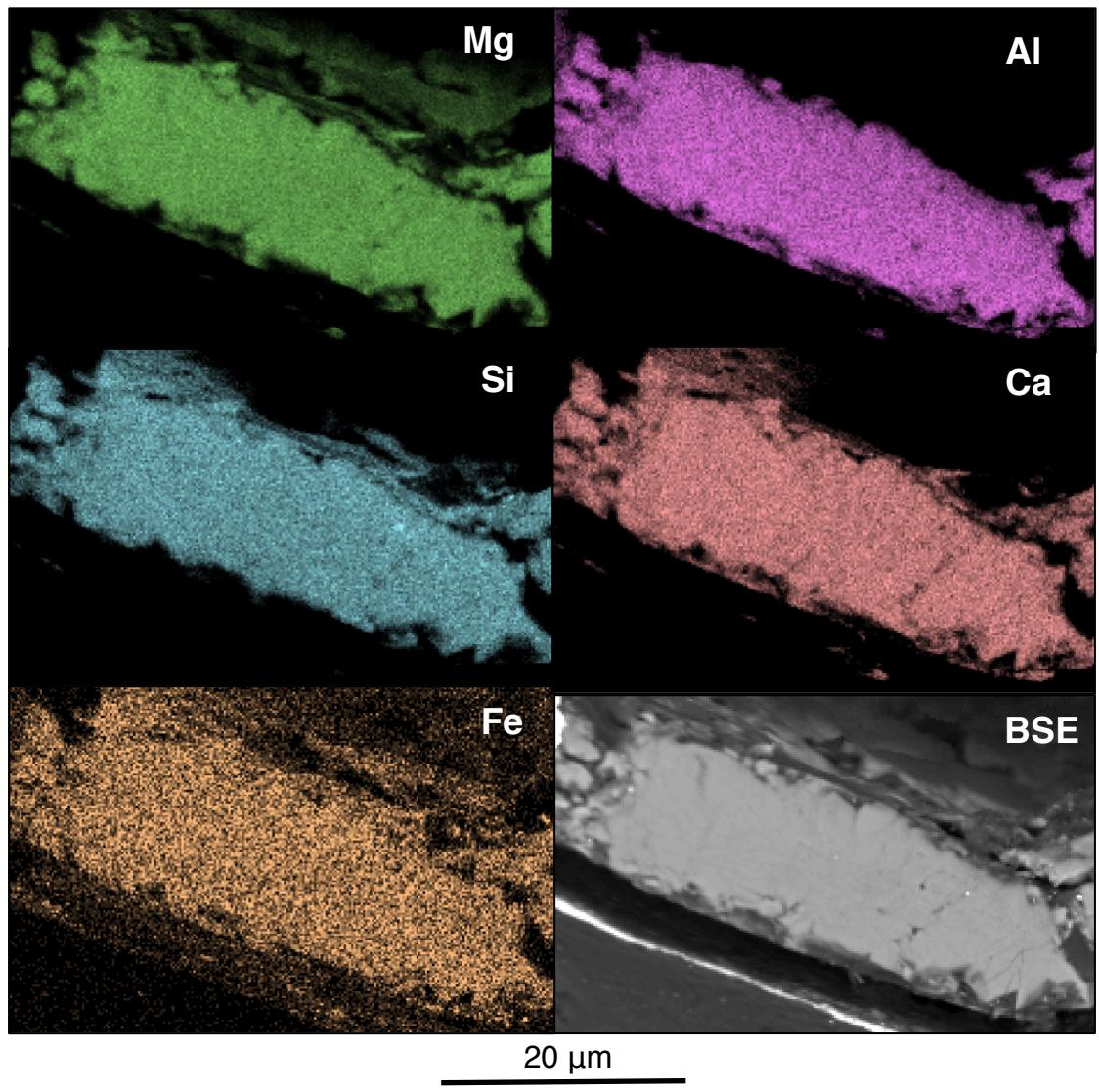
263 In the oxidized sample, we observe only bridgmanite. No other phases were detected using
264 XRD. Notably, the MIX_OX bridgmanite XRD peaks yield significantly expanded volumes from
265 the Mg-endmember as well as the MIX_RED bm (Figures 3, S12), suggesting significant
266 enrichment in cations other than Mg and Si (e.g., Catalli et al., 2011; Andrault, 2003). The
267 quenched XRD pattern shows rhenium diffraction from the gasket and bridgmanite (Figure 2b).
268 Bridgmanite appears to fit the traditional Pnma structure as reported in Tschauner et al. (2014).

269 To confirm our analysis of the phases present in the MIX_OX sample, we conducted a
270 Rietveld refinement with GSAS-II (Toby & Dreele, 2013) on an XRD pattern shown in Figure 1b
271 at 52 GPa (Supporting Information: Figure S7). The results of the refinement are nearly identical
272 to our values picked by hand (Figure 3; see Supporting Information: Tables S7, S13).

273

274 **3.1.3 Equations of State**

275 We calculate the Birch-Murghangan 2nd-order equation of state (Birch, 1952) for
276 bridgmanite for both sets of samples (Figure 3, Table 2), as well as compare unit-cell volumes of
277 calcium perovskite, stishovite, calcium-ferrite structure, and alumina from the MIX_RED samples
278 to equations of state from the literature (Figure S4). The MIX_OX bridgmanite volume is ~3%


279 larger than the MIX_RED bridgmanite. Since no capv is present, the expanded unit cell is likely
280 to be due to the incorporation of Ca into the MIX_OX bridgmanite structure (Figure S12) (see
281 natural bridgmanites in Tschauner et al., 2014). Additionally, the bulk moduli of the two
282 bridgmanites are nearly identical, where both are ~12% stiffer than a pure MgSiO₃ bridgmanite
283 (Table 2). All unit-cell parameters and volumes determined for Figures 3, 6 and S4 are listed in
284 the Supporting Information (MIX_RED: Tables S8 – S12; MIX_OX: Table S13).

285

286 3.2. Electron Probe Microanalyses

287 Recovered samples were also examined by EPMA (see Supporting Information: Section
288 II). The MIX_RED assemblage (Figure 4) generally agrees with the XRD results, showing areas
289 possibly enriched in iron and aluminum, consistent with metallic iron and alumina XRD
290 observations. Stishovite and calcium perovskite do not appear to show obvious regions enriched
291 in silicon or calcium in the EPMA maps, which may be due to the relatively low abundance of
292 stishovite and calcium perovskite becoming amorphous when quenched to room pressure and
293 temperature.

294 The EPMA results of the oxidized recovered samples (Figure 5) reveal a nearly
295 homogenous material with little variation in the distribution of elements. This is consistent with
296 the XRD which suggests an assemblage that is dominated by a single phase, bridgmanite. There
297 appears to be no variation in grain size or heterogeneity in the distribution of iron, indicating that
298 the sample was well insulated from the anvils (Du et al., 2015; Simmyo & Hirose, 2010). All EPMA
299 results are listed in Tables S1-S5 in the Supporting Information. The maps in Figures 4 and 5
300 reflect WDS (wavelength-dispersive spectroscopy) measurements, while the raw data in Tables

Figure 5. Backscattered electron SEM image and elemental WDS mapping of Mg, Si, Fe, Al, and Ca of the quenched MIX_OX assemblage, hand-polished in cross-section. The oxidized assemblage is quenched from 65 GPa and 2000 K. Note that the map is very homogenous across all elements.

301 S1-S5 are also WDS measurements. All data presented in Tables 1 and 3 are based on the WDS
302 measurements.

303

304 **3.3 Determining phase abundance in assemblage**

305 **3.3.1 MIX_RED Assemblage**

306 The mineralogy of the two samples and composition of bridgmanite (Table 3) were
307 determined by XRD (Figures 1, S6) and analysis of EPMA point measurements and element maps
308 via Monte Carlo modeling and mass/charge balance. We use Monte Carlo modeling since XRD
309 intensities are an imperfect tool to constrain composition robustly as texture and backgrounds in
310 LHDAC experiments can be significant, thus, making it difficult to pull out phase abundance from
311 XRD intensities alone (e.g., measurement techniques and preferred orientation: McCusker et al.,
312 1999). In order to determine the molar abundance of each phase, additional information and
313 assumptions are necessary beyond mass balance. In the MIX_RED samples, we observe
314 bridgmanite, calcium perovskite, stishovite, and potentially a calcium ferrite structured phase,
315 alumina, and metallic iron (these are free parameters in the modeling); however, we could not
316 uniquely identify the exact percentages of each mineral since the solutions are non-unique. Using
317 image-processing on the MIX_RED sample composition maps (Figure 4 and Figure S9), we infer
318 the bright spots on the backscattered electron image are possibly metallic iron. Additionally,
319 metallic iron formation cannot exceed 0.7 mol% (corresponding to ~0.18 vol%) because of
320 limitations on how much ferric iron can form within this sample based on Monte Carlo modeling
321 (Figure S13). Therefore, this sample may consist of six independent phases and is derived from
322 six starting oxides: FeO, Fe₂O₃, MgO, SiO₂, CaO, and Al₂O₃, hence our synthesized samples do
323 not violate the thermodynamics phase rule.

324 To estimate the approximate amounts of each material, we conducted Monte Carlo
325 modeling (see Supporting Information: Section VI), where we sampled each unknown variable
326 as a uniform distribution. Our unknown variables are the following: the distribution of aluminum
327 between alumina and bridgmanite, the distribution of silicon between stishovite and bridgmanite,
328 the distribution of magnesium between calcium ferrite and bridgmanite, the distribution of Fe^{2+}
329 between calcium ferrite and bridgmanite, and how much iron disproportionated. We performed
330 the search with the following assumptions that performed as cutoffs for acceptable chemical
331 compositions for the first model where we assume all of the minerals we have discussed are present
332 (*Model A*): (1) each mineral is charge balanced; (2) self-reduction of iron may have occurred (the
333 Fe^{3+} content changed during the experiment from the initial starting value following the reaction:
334 $3xFe^{2+} \rightarrow 2xFe^{3+} + xFe^0$ where $0 < x \leq 1$) for the MIX_RED samples since metallic Fe may
335 be present at low levels in XRD (Figure 2) and EPMA measurements (Figure 4); (3) the
336 calcium perovskite phase is the only calcium-bearing phase for the MIX_RED samples; (4) the
337 calcium-ferrite structured phase is a solid solution between $MgAl_2O_4$ and $FeAl_2O_4$; (5) use the
338 measured bridgmanite V_0 and existing literature to estimate volume expansion due to cation
339 incorporation (see Supporting Information: Section VI); and (6) assume all Fe^{3+} is incorporated
340 into the bridgmanite structure. We also conduct a second Monte Carlo model (*Model B*), which
341 is similar to *Model A* with two important exceptions: we exclude the disproportionation of iron
342 and exclude alumina formation. With these constraints, we modeled several possible mineral
343 assemblages and their uncertainties (Table 3).

344 The Monte Carlo results indicate that there are many tradeoffs between the different
345 unknown variables. The following discusses the results of *Model A*, which assumes all minerals
346 present. For example, how Fe and Mg partitions between cf and bm is unknown; therefore, the cf

347 content in the MIX_RED assemblage can vary from 10 to 20 mol% (Table 3). With our
348 assumptions and wide constraints, we can robustly constrain the bm content to be between 42 and
349 53 mol%. Approximately 5 mol% of the bm structure contains other cations not present in the pure
350 MgSiO_3 unit cell; such as Al, Fe^{2+} , and Fe^{3+} , with their relative abundance primarily constrained
351 from the unit-cell volume at room conditions V_0 (Figure S12). Based on 6,000 successful runs out
352 of 500 million Monte Carlo runs using assumptions 1-7 of *Model A*, the mean values of the
353 phases present in the assemblage are as follows in mol%: bm (50%), capv (18%), cf (12%), al
354 (9%), stv (9%), and metallic Fe (0.2%). Averaging over all runs, the cf phase likely consists of
355 a 20:80 mixture of MgAl_2O_4 and FeAl_2O_4 but can vary from 7:93 to 50:50 (see Figure S4c). In
356 addition, metallic iron does not necessarily need to form to fit all of our data constraints. While
357 metallic iron could exist up to 0.7 mol%, the maximum probability is between 0 and 0.2 mol%.

358 For *Model B* (no alumina or metallic iron formation), we calculate mineralogical
359 assemblages that are more tightly constrained. The mean values of each phase present are as
360 follows in mol%: bm (40.5%), capv (18.4%), cf (22.7%), and stv (18.4%). Averaging over all run
361 s, the cf phase likely consists of a 50:50 mixture of MgAl_2O_4 and FeAl_2O_4 . Full details on the
362 Monte Carlo modeling can be found in the Supporting Information: Section VI. Model B is
363 consistent with a previous study, that performed thermodynamic calculations on a pyroxenite
364 composition, which yielded a mineral assemblage of bridgmanite, calcium perovskite, calcium
365 ferrite, and stishovite phases (Adam et al., 2017).

366

367

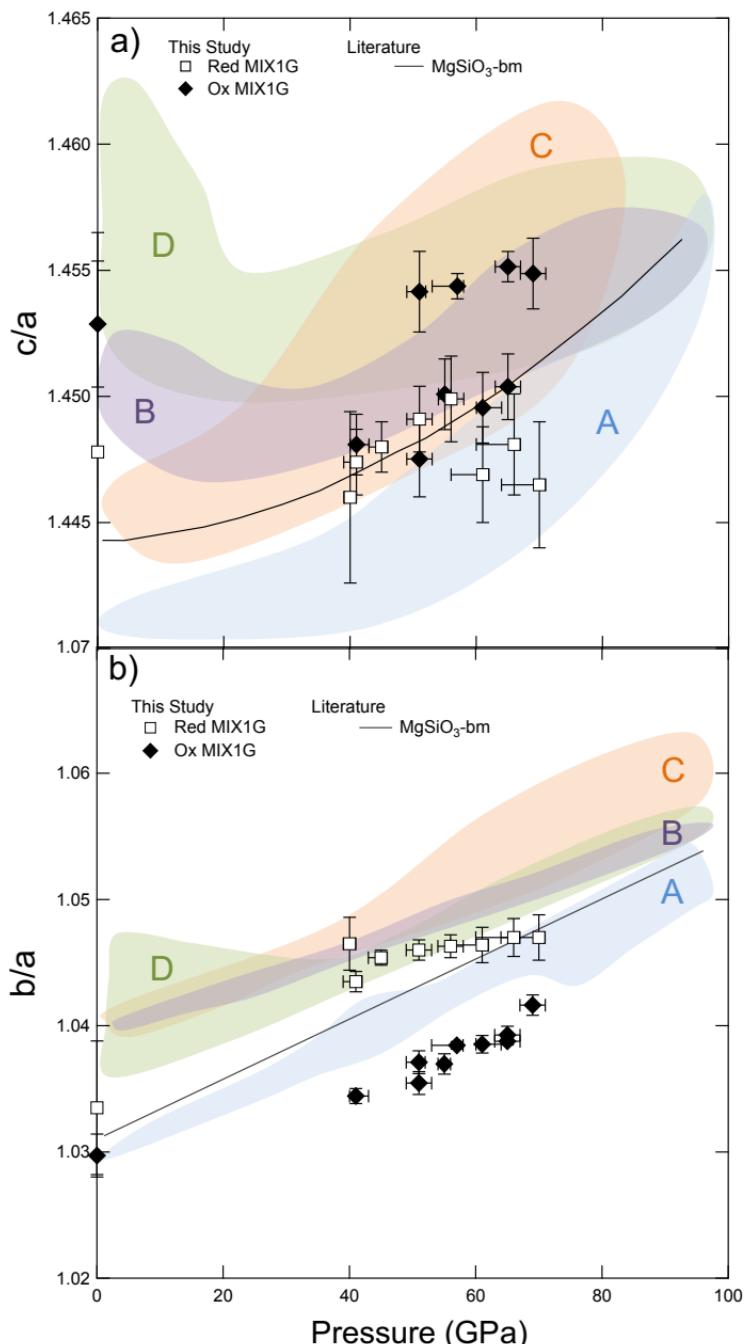
368 **3.3.2 MIX_OX Assemblage**

369 For the MIX_OX samples, we only identified bridgmanite by XRD (Figures 1-2, S7). We
370 do not observe the decomposition of bridgmanite in the oxidized sample at quench. It remains as
371 a single bm phase throughout compression and decompression.

372 To determine the composition of bridgmanite, we used the EPMA results (Table 1) and
373 conducted a mass balance calculation with the following assumptions: (1) no change in the Fe^{3+}
374 content from the initial starting material as we do not observe any metallic iron in the synthesized
375 assemblage (however, it may be possible that Fe^{3+} content may have changed due to other causes
376 that we do not consider [Lauterbach et al., 2000]); (2) use the measured V_0 and existing literature
377 to estimate volume expansion due to cation incorporation (see Supporting Information: Section
378 VI, Figure S12); and (3) calcium is allowed to exist in solid solution with bm since capv is not
379 observed in XRD. The resulting bridgmanite composition is given in Table 3. Because of the large
380 V_0 measured for MIX_OX bridgmanite, Ca was allowed to enter the bridgmanite structure since
381 the iron and aluminum present in the starting material is not enough to increase V_0 to the observed
382 V_0 (Figure S12). As such, we used a linear interpolation with the volume of capv as four times its
383 normal cubic volume (i.e., 181.48 \AA^3) to account for the difference in the number of atoms between
384 capv (5 atoms) and bm (20 atoms) (Andrault, 2003). This bridgmanite composition contains a large
385 fraction of cations (~38%) other than Mg and Si. This is in contrast to the bm in the MIX_RED
386 samples where the cation concentration that is not Mg or Si is only ~5%. We posit that Ca^{2+}
387 replaces Mg^{2+} , similar to the way Fe^{2+} replaces Mg^{2+} on the A-site (Tschauner et al., 2014). More
388 research is required to investigate which site calcium prefers.

389 We also considered other possible calcium-bearing minerals that could explain the lack of
390 CaSiO_3 calcium perovskite. If calcium perovskite is present in this sample, it would be in much
391 smaller quantities (< 5%) compared to the MIX_RED samples, such that it would be difficult to

392 observe in the x-ray diffraction. In addition, if there is an unknown phase hosting calcium (e.g.,
393 calcium oxide [CaO], calcium aluminate [CaAl₂O₄]) it would have to also be in low abundance or
394 low symmetry compared to bridgmanite such that it is not observed with XRD or EPMA.
395 Therefore, while we lack the precision to confirm a Ca-bearing bridgmanite, the volumes measured
396 are consistent with such a phase and with the lack of any other kind of Ca-bearing phases in
397 this sample, despite the high abundance of Ca in the starting material (Table 1). Future work will
398 require more detailed analyses of this sample to confirm Ca-bearing bridgmanite, such as single-
399 crystal x-ray diffraction or transmission electron microscopy.


400

401 **4 Discussion**

402 The difference in mineralogy between the two samples can be explained by the large
403 contrast in Fe³⁺ content. We infer that the higher amount of Fe³⁺ in the oxidized sample encourages
404 the incorporation of more Al³⁺ cations into the bridgmanite structure by charge-coupled
405 substitution (Navrotsky et al., 2003), which leads to a more expanded bridgmanite volume.
406 However, the expanded unit-cell volume for bridgmanite in the oxidized sample is larger than
407 expected if only iron and Al³⁺ are incorporated (O'Neill and Jeanloz, 1994; Walter et al., 2006)
408 (Figure S12). Therefore, since there is no XRD observation of calcium perovskite, we infer that
409 calcium has also been incorporated into the bridgmanite structure, a likelihood made possible by
410 an already expanded unit cell provided by the large amounts of iron and Al³⁺ (Jung & Schmidt,
411 2011). We expect Ca would be present on the Mg site, due to the charge of calcium, Ca²⁺. The
412 addition of Ca into the bridgmanite structure further increases the unit-cell volume, consistent with
413 the larger volume measured for the MIX_OX samples (Figure 3). While many studies have
414 reported a large miscibility gap between MgSiO₃ bridgmanite and CaSiO₃ perovskite (e.g.,

415 Armstrong et al., 2012; Irifune et al., 1989; Jung and Schmidt, 2011; Tamai and Yagi, 1989), the
416 combined effect of Al and Fe³⁺ on the solubility of bridgmanite and calcium perovskite were
417 beyond the scope of those studies. We posit that the inclusion of high amounts of Al and Fe³⁺
418 enhances the solubility of Ca into bridgmanite, decreasing the miscibility gap. This result is
419 consistent with a previous study which produced a bridgmanite with comparable amounts of
420 calcium although a V₀ was not reported (Miyajima et al., 1999). The bridgmanite formed in
421 Miyajima et al. (1999) also contained large amounts of Al³⁺ (19%, compared to our 23%) and
422 estimated the Fe³⁺ content to be approximately ~83% Fe³⁺/ΣFe (based on charge balance of
423 bridgmanite), thus consistent with our high ferric iron content. It is likely that there is a threshold
424 of Al, Fe²⁺, and Fe³⁺ content that must be met before Ca is soluble in bridgmanite in appreciable
425 amounts, warranting further study. As most studies do not list their ferric iron content, it is difficult
426 to constrain the necessary amounts of Al and Fe³⁺ required for the closing of the miscibility
427 gap. Given our sample compositions, we can only constrain the threshold to between 11% and
428 55% Fe³⁺/ΣFe with an assemblage with 8% FeO and 13% Al₂O₃. More work is needed to fully
429 understand where the miscibility gap closes for bridgmanite and calcium perovskite given the
430 combined effects of Al, Fe²⁺ and Fe³⁺ (e.g., Jung and Schmidt, 2011).

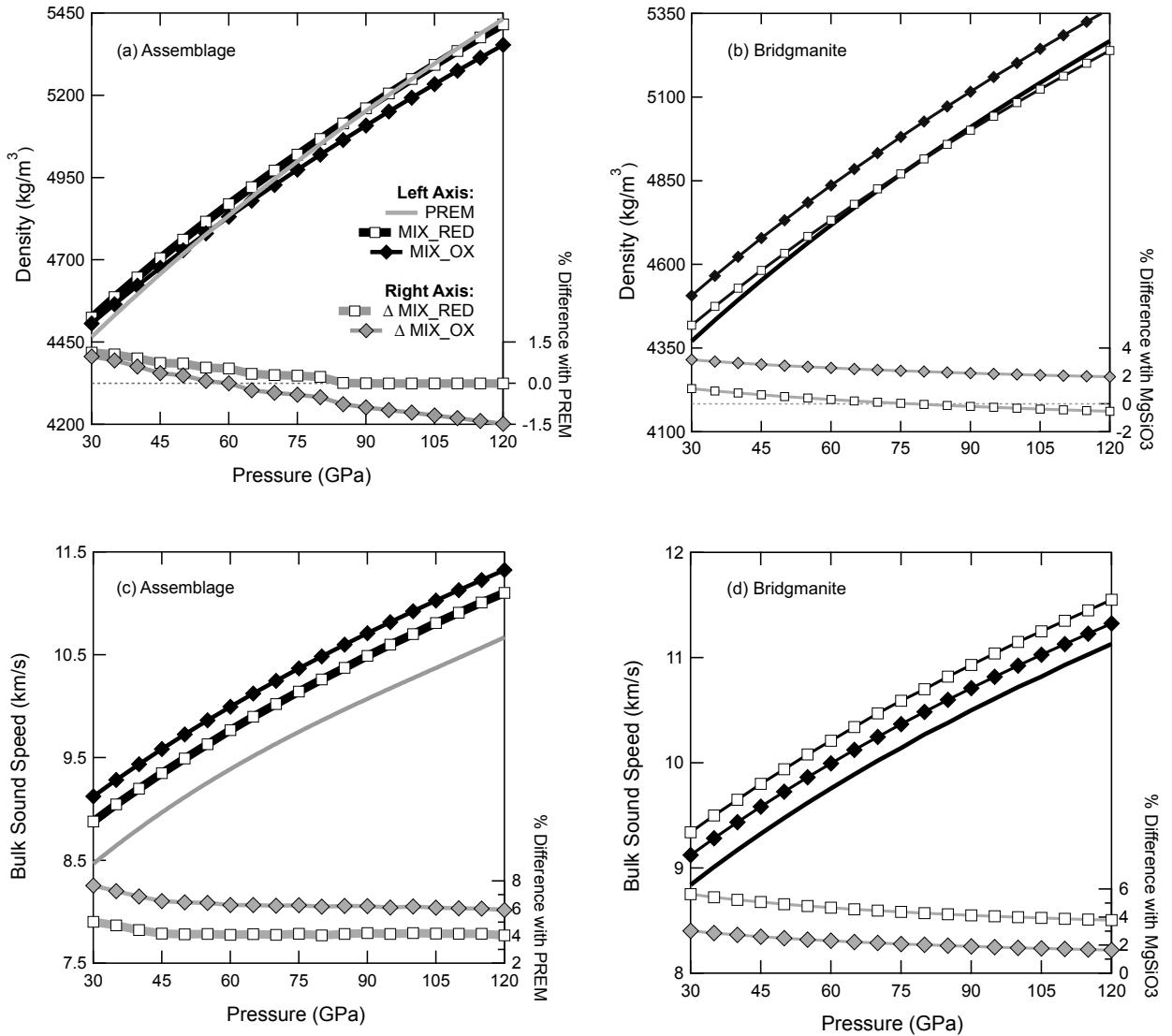
431 A typical Mg-silicate bridgmanite crystallizes in the distorted orthorhombic Pnma structure
432 with unit-cell axial ratios of a:b:c ~ 1:1: $\sqrt{2}$ (Catalli et al., 2011). As such, we can track the axial
433 ratios, b/a (~1) and c/a (~ $\sqrt{2}$), versus pressure to observe how the distortion changes (Figure 6).
434 As pressure increases, the b/a axial ratios increase linearly for both MIX_OX and MIX_RED
435 samples, albeit at different rates. However, the c/a ratios behave in a more unusual way: the
436 MIX_RED ratios increase linearly with pressure, while the MIX_OX ratios are more quadratic in
437 shape, similar to what has been reported previously (as summarized by Catalli et al., 2011). Since

Figure 6. Axial ratios of bridgmanite, (a) b/a and (b) c/a , with different compositions. Squares: MIX_RED bridgmanite (this work), diamonds: MIX_OX bridgmanite (this work), solid line: bridgmanite (Ballaran et al., 2012). Shaded regions denote compositions listed in Table 2: blue (A): Fe^{2+} -bearing bridgmanite; purple (B): Fe^{3+} -Al-bearing bridgmanite; orange (C): Fe^{3+} -bearing bridgmanite; and green (D): Al-bearing bridgmanite.

438 the MIX_RED bridgmanite has a mixture of Fe^{3+} , Fe^{2+} , and Al^{3+} , the axial distortions fall between
439 the expected distortions of various other bridgmanites with different compositions. The axial ratios
440 of the MIX_OX bridgmanite shows the b and a axes are distorted much more than other
441 compositions of bridgmanite, likely due to the incorporation of Ca^{2+} in the Mg-site.

442

443 **4.1 Implications for Lower Mantle**


444 To understand the effects on the bulk sound velocity and density of each mineral
445 assemblage, we calculated these values with the Burnman toolkit (Cottaar et al., 2014) using our
446 experimentally determined values of the equations of state of the respective bridgmanites (Table
447 2), a mantle geotherm (Brown & Shankland, 1981), our computed phase abundance and
448 composition (Table 3), and existing literature values for the other phases based on Stixrude and
449 Lithgow-Bertelloni (2011) (Figures S4). We considered other geotherms as well, but there is no
450 effect on the relative difference between the reduced and oxidized samples' density and seismic
451 velocities, just an effect on their absolute magnitude which is important when comparing to
452 seismological models. We also do not consider the spin transition of iron, which is beyond the
453 scope of this study. In order to properly treat the cf composition, we explored the entire range of
454 possible compositions of cf assuming a solid solution between MgAl_2O_4 and FeAl_2O_4 for
455 MIX_RED (as discussed in Supporting Information: Section III). Therefore, we applied solid
456 solution mixing using Stixrude and Lithgow-Bertelloni (2011). For capv, there is some
457 disagreement between equations of state, where our measured volumes differ from the capv
458 equation of state of Stixrude and Lithgow-Bertelloni (2011). As such, we fit a 2nd-order Birch-
459 Murnaghan equation of state to our measured capv volumes holding V_0 fixed (45.58 Å³; Shim et
460 al., 2000) yielding a room-pressure, room-temperature bulk modulus K_0 of 260 (±10) GPa. Figure

461 S5 illustrates the small effect the chosen capv equation of state has on density (< 0.3%) and the
462 bulk sound speed (< 0.9%) of the MIX_RED assemblage.

463 The resulting assemblages of the two samples yield the MIX_RED assemblage to be
464 slightly denser than PREM by ~1% at the top of the lower mantle even when considering multiple
465 temperature profiles of the mantle (Anderson, 1981; Brown & Shankland, 1981; Ono, 2008; Stacey
466 & Davis, 2008) (Figure 7). At the bottom of the mantle, the MIX_RED assemblage density is
467 similar to that of PREM. The thickness of each line in Figure 7 encompasses the entire set (both
468 *Models A* and *B*) of possible densities and bulk sound speeds with 95% confidence for MIX_RED.
469 MIX_OX assemblage leads to larger seismic velocities than the reduced MIX_RED assemblage
470 and PREM mainly due to the large differences in bulk moduli of the secondary phases in
471 MIX_RED. Based on these results, Fe^{3+} has a strong effect on the whole rock mineralogy and
472 resulting density and seismic properties of the assemblage.

473 In addition, if pyroxenite (in a reduced or oxidized state) exists within the lower mantle,
474 then pyroxenites would be viewed as positive seismic anomalies (bulk sound speed) on the order
475 of 4-7% as compared to PREM. However, pyroxenites encompass a wide class of compositions
476 (Figure S3); therefore, these seismic speed differences may differ between pyroxenite
477 assemblages. More work is required on the various pyroxenite assemblages and how redox impacts
478 mineralogy to fully understand potential sources of seismic anomalies. Since our samples are
479 aluminum rich, a more aluminum-poor pyroxenite would result in less cf and alumina and increase
480 the bridgmanite content. We predict that seismic wave speeds of Al-poor pyroxenites would be
481 faster since the bridgmanite content would increase.

482 When considering bridgmanite alone, MIX_RED bm does not differ significantly from
483 MgSiO_3 when considering density ($\pm 1\%$ difference); however, since the bulk modulus increases

Figure 7. Computed assemblage density as computed by BurnMan (Cottaar et al., 2014) using the assemblages tabulated in Table 3 and using four different temperature profiles. **(a)** Density of 95% confidence of all possible MIX_RED assemblages (white squares) based on Monte Carlo results of *Models A* and *B* and MIX_OX assemblage (black diamonds) are plotted with PREM (thick gray curve) as reference. All possible densities are within the thickness of each corresponding line and consider four different temperature profiles: Stacy and Davis 2008; Ono 2008; Anderson et al., 1982; Brown and Shankland 1981. The right axis illustrates the percent difference of each sample with PREM (gray). **(b)** Computed assemblage bulk sound speed as computed by BurnMan with the same constraints as **(a)**. **(c)** Density of 95% confidence interval for each synthesized bridgmanite from MIX_RED (white squares) and MIX_OX (black diamonds) as compared to pure bridgmanite, MgSiO_3 (black solid line). All labels are consistent with **(a)**, but Brown and Shankland (1981) is applied here. Percent difference illustrates the difference between the bridgmanites synthesized in this study with pure bridgmanite (gray). **(d)** Computed bulk sound speed of bridgmanites from this study and pure bridgmanite. Constraints are the same as **(c)**.

484 when bm includes impurities, the bulk sound speed of bm is greater than MgSiO_3 by ~1.7-3%
485 (Figure 7). MIX_OX bm is denser than the MIX_RED bridgmanite and MgSiO_3 despite the large
486 increase in unit-cell volume. The addition of impurities, such as Ca, dramatically increases the
487 density by ~2-3% as compared to MgSiO_3 . MIX_OX bm also results in faster bulk sound speeds
488 (2-3%) as compared with MgSiO_3 .

489 Previous work on the enstatite chondrite lower mantle composition (Javoy, 1995) shows
490 that increased ferric iron content decreases the density of the entire assemblage (Gu et al., 2016).
491 Our study is consistent with those findings with the reduced assemblage denser than the oxidized
492 assemblage, especially when considering the MIX_OX starting composition molar mass is greater
493 than MIX_RED by ~1.8% (Table 1). While the samples tested here do not reflect the bulk of the
494 lower mantle, these samples do show that when two compositions have different ferric iron
495 concentrations in the lower mantle, the resulting mineralogy (and density) can be quite different.
496 Other candidate lower mantle assemblages may also be affected by ferric iron content, where a
497 change in ferric iron content (not necessarily a change in bulk composition) can lead to changes in
498 mineralogy, thus, influencing assemblage seismic velocities and density, but other assemblages
499 require further study under more oxidizing conditions. Therefore, Fe^{3+} could induce mineralogical,
500 density, and/or velocity changes depending on the composition of the rock assemblage on the order
501 of a percent, creating lateral heterogeneity as viewed in seismic tomography without changing bulk
502 composition (French & Romanowicz, 2015), but more work is required to see the full effects of
503 Fe^{3+} on other compositions and for other Fe^{3+} contents. Of course, lateral heterogeneity apparent
504 in seismic tomography studies may also be evidence of a change in bulk composition, the presence
505 of volatiles and/or presence of melt as has been previously reported (e.g., Ohtani & Maeda, 2001;
506 Ono et al., 2001).

507 Another potential implication of this work is the apparent solid solution of bridgmanite
508 with calcium perovskite. If calcium perovskite and bridgmanite is miscible in some cases (i.e.,
509 high Fe^{3+} and Al content), then a Ca-rich bridgmanite would be negatively buoyant compared to
510 MgSiO_3 and other Fe, Al-rich bridgmanites (see Figure 7c). The effects on seismic speeds is more
511 complicated since recent work has shown that Fe^{3+} can affect the shear modulus of bridgmanite
512 (Kurnosov et al., 2017). Based on our work, bulk sound speed would be faster for a Ca-bearing
513 bridgmanite compared to MgSiO_3 , but not necessarily for Fe, Al-rich bridgmanites. Fe and Al
514 stiffen bridgmanite, increasing the bulk modulus. However, since Ca also has an effect on bulk
515 modulus, the increased density lowers the bulk sound velocity difference (see Figure 7d). In order
516 to understand the full impacts on Ca-bearing bridgmanite seismic speeds, measurements of the
517 shear modulus and/or seismic wave speeds are required. Because we do not have measurements
518 of the shear modulus for our samples nor are they well constrained for the compositions of our
519 samples, we do not present assemblage or bridgmanite compressional or shear velocities, v_p or v_s ,
520 respectively. However, given what we know about the shear modulus of endmembers MgSiO_3 ,
521 CaSiO_3 and the other phases, we find that v_p and v_s for MIX_RED assemblage are also slower than
522 MIX_OX.

523 While a Ca-rich bridgmanite may be rare in the mantle, if it exists, it may be able to
524 incorporate other large-ion lithophile elements (LILE) such as uranium, thorium and potassium,
525 important heat-producing elements in the deep mantle (Corgne & Wood, 2002). While Ca is rarely
526 ever expected to form a solid solution with pure endmember MgSiO_3 due to Ca's large ionic radius,
527 Fe^{3+} and Al^{3+} may be able to allow Ca into the bridgmanite structure. Other LILE have similar
528 radii to Ca and may just as easily fit into the bridgmanite structure (Kesson et al., 1995).

529

530 **5 Conclusion**

531 We find that the crystal chemical behavior of iron in bridgmanite varies under different
532 redox conditions thereby influencing mineralogy, density, and seismic velocities for this given
533 pyroxenite composition. The samples presented here suggest that redox conditions may affect
534 mantle mineralogy in the lower mantle; therefore, lateral variations in Fe^{3+} in the lower mantle
535 could cause variations in seismic velocities and density given otherwise similar Al-rich pyroxenite
536 compositions. Our experiments illustrate that Fe^{3+} and possibly Al content can have a profound
537 effect on the formation of Ca-bearing bridgmanite, secondary mineral formation, density, and
538 changes in seismic speeds. These results along with previous work on enstatite chondrites (Gu et
539 al., 2016) show that Fe^{3+} may have a similar impact on other compositions at lower mantle
540 conditions. In general, a more oxidized Al-rich pyroxenite sample (high $\text{Fe}^{3+}/\Sigma\text{Fe}$), yields a
541 simpler assemblage of bridgmanite and faster seismic bulk sound speeds (6 to 7%) and a similar
542 density (1 to -1.5%) to PREM. In contrast, the reduced Al-rich pyroxenite sample yields a complex
543 assemblage that is denser and slower than its oxidized counterpart. Additionally, we find that high
544 Fe^{3+} content in our Al-rich pyroxenite samples stunts the formation of calcium perovskite and
545 other oxides because a change in oxidation state of iron dramatically affects how cations are
546 incorporated into the bridgmanite structure. Under oxidizing conditions, the miscibility gap
547 between calcium perovskite and bridgmanite appears to disappear, at least for high Fe^{3+} and Al
548 content, allowing for a sample consisting of Ca-bearing bridgmanite.

549 We predict that Ca-rich bridgmanite may form in regions of the mantle that are highly
550 oxidizing and rich with Al, perhaps within subducted slabs. The implications of varying amounts
551 of ferric iron could be far reaching, although other potential mantle lithologies should be further
552 studied under varying redox conditions under lower mantle conditions to determine if this

553 phenomenon is universal. While pyroxenite may only exist in the lower mantle in low
554 concentrations, this study highlights the importance of investigating ferric iron effects on a variety
555 of mantle compositions, since ferric iron has been shown to have immediate implications on two
556 compositions under lower mantle conditions: an Al-rich pyroxenite (this study) and enstatite
557 chondrite lower mantle composition model (Gu et al., 2016). While there are several possible
558 compositional models of the lower mantle, bridgmanite is considered to be the dominant phase;
559 consequently, its crystal chemical behavior has a leading role in shaping the mantle's
560 thermochemical evolution.

561 **Acknowledgments, Samples, and Data**

562 We thank R. Weber and S. Tumber for glass synthesis; E. E. Alp and W. Bi for Mossbauer
563 measurements; S. Karato for discussions; Z. Jiang and J. Deng for technical support. We
564 thank the staff and beamline scientists at HPCAT in particular, Yue Meng and S. Tkachev for Ne
565 gas loading. This work was funded by an NSF CAREER grant to K.K.M.L. (EAR-0955824). N.C.
566 is supported by an NSF Graduate Research Fellowship DGE-1122492. EPMA was funded by the
567 NSF (EAR-0744154) and Yale University. Portions of this work were performed at GSECARS
568 (NSF EAR-1128799, DOE DE-FG02-94ER14466, and NSF EAR 11-57758 for the
569 GSECARS/COMPRES gas loading system), and HPCAT (DE-NA0001974, DE-FG02-
570 99ER45775, with partial instrumentation funding by NSF). This research used resources of the
571 Advanced Photon Source; a US DOE Office of Science User Facility operated for the DOE Office
572 of Science by ANL under Contract No. DE-AC02-06CH11357. K.K.M.L.'s effort partially
573 supported under the auspices of the U.S. Department of Energy by Lawrence Livermore National
574 Laboratory under Contract DE-AC52-07NA27344. All data included in the Supporting
575 Information, x-ray diffraction, and EPMA data analysis are included in the Mendeley data
576 repository (DOI: 10.17632/hj3wg6s7yd.2). We also thank the contributions and feedback from
577 two anonymous reviewers.

578

579 **References**

580 Adam, C., Caddick, M. J., & King, S. D. (2017). Pyroxenite causes fat plumes and stagnant
581 slabs. *Geophysical Research Letters*, 2017GL072943.
582 <https://doi.org/10.1002/2017GL072943>

583 Akahama, Y., & Kawamura, H. (2006). Pressure calibration of diamond anvil Raman gauge to
584 310GPa. *Journal of Applied Physics*, 100(4), 043516. <https://doi.org/10.1063/1.2335683>

585 Anderson, O. L. (1981). Temperature Profiles in the Earth. In *Evolution of the Earth* (pp. 19–27).
586 American Geophysical Union (AGU). <https://doi.org/10.1029/GD005p0019>

587 Andrault, D., Muñoz, M., Pesce, G., Cerantola, V., Chumakov, A., Kantor, I., Pascarelli, S.,
588 Rüffer, R., & Hennet, L. (2018). Large oxygen excess in the primitive mantle could be
589 the source of the Great Oxygenation Event. *Geochemical Perspectives Letters*, 5–10.
590 <https://doi.org/10.7185/geochemlet.1801>

591 Andrault, D. (2003). Cationic substitution in MgSiO₃ perovskite. *Physics of the Earth and*
592 *Planetary Interiors*, 136(1), 67–78. [https://doi.org/10.1016/S0031-9201\(03\)00023-2](https://doi.org/10.1016/S0031-9201(03)00023-2)

593 Andrault, D., Bolfan-Casanova, N., & Guignot, N. (2001). Equation of state of lower mantle
594 (Al,Fe)-MgSiO₃ perovskite. *Earth and Planetary Science Letters*, 193(3), 501–508.
595 [https://doi.org/10.1016/S0012-821X\(01\)00506-4](https://doi.org/10.1016/S0012-821X(01)00506-4)

596 Armstrong, L. S., Walter, M. J., Tuff, J. R., Lord, O. T., Lennie, A. R., Kleppe, A. K., & Clark,
597 S. M. (2012). Perovskite Phase Relations in the System CaO–MgO–TiO₂–SiO₂ and
598 Implications for Deep Mantle Lithologies. *Journal of Petrology*, 53(3), 611–635.
599 <https://doi.org/10.1093/petrology/egr073>

600 Ballaran, T. B., Kurnosov, A., Glazyrin, K., Frost, D. J., Merlini, M., Hanfland, M., & Caracas,
601 R. (2012). Effect of chemistry on the compressibility of silicate perovskite in the lower

602 mantle. *Earth and Planetary Science Letters*, 333, 181–190.

603 <https://doi.org/10.1016/j.epsl.2012.03.029>

604 Birch, F. (1952). Elasticity and constitution of the Earth's interior. *Journal of Geophysical*
605 *Research*, 57(2), 227–286. <https://doi.org/10.1029/JZ057i002p00227>

606 Brodholt, J. P. (2000). Pressure-induced changes in the compression mechanism of aluminous
607 perovskite in the Earth's mantle. *Nature*, 407(6804), 620–622.

608 Brown, J. M., & Shankland, T. J. (1981). Thermodynamic parameters in the Earth as determined
609 from seismic profiles. *Geophysical Journal International*, 66(3), 579–596.
610 <https://doi.org/10.1111/j.1365-246X.1981.tb04891.x>

611 Catalli, K., Shim, S.-H., Prakapenka, V. B., Zhao, J., & Sturhahn, W. (2010). X-ray diffraction
612 and Mössbauer spectroscopy of Fe³⁺-bearing Mg-silicate post-perovskite at 128–138
613 GPa. *American Mineralogist*, 95(2–3), 418–421. <https://doi.org/10.2138/am.2010.3352>

614 Catalli, Krystle, Shim, S.-H., Dera, P., Prakapenka, V. B., Zhao, J., Sturhahn, W., Chow, P.,
615 Xiao, Y., Cynn, H., & Evans, W. J. (2011). Effects of the Fe³ + spin transition on the
616 properties of aluminous perovskite—New insights for lower-mantle seismic
617 heterogeneities. *Earth and Planetary Science Letters*, 310(3–4), 293–302.
618 <https://doi.org/10.1016/j.epsl.2011.08.018>

619 Corgne, A., & Wood, B. J. (2002). CaSiO₃ and CaTiO₃ perovskite-melt partitioning of trace
620 elements: Implications for gross mantle differentiation. *Geophysical Research Letters*,
621 29(19), 1933. <https://doi.org/10.1029/2001GL014398>

622 Cottaar, S., Heister, T., Rose, I., & Unterborn, C. (2014). BurnMan: A lower mantle mineral
623 physics toolkit. *Geochemistry, Geophysics, Geosystems*, 15(4), 1164–1179.
624 <https://doi.org/10.1002/2013GC005122>

625 Dorfman, S. M., Meng, Y., Prakapenka, V. B., & Duffy, T. S. (2013). Effects of Fe-enrichment
626 on the equation of state and stability of (Mg,Fe)SiO₃ perovskite. *Earth and Planetary
627 Science Letters*, 361, 249–257. <https://doi.org/10.1016/j.epsl.2012.10.033>

628 Du, Z., Gu, T., Dobrosavljevic, V., Weir, S. T., Falabella, S., & Lee, K. K. M. (2015). Using
629 stepped anvils to make even insulation layers in laser-heated diamond-anvil cell samples.
630 *Review of Scientific Instruments*, 86(9), 095103. <https://doi.org/10.1063/1.4929667>

631 Dubrovinsky, L. S., Saxena, S. K., Lazor, P., Ahuja, R., & al, et. (1997). Experimental and
632 theoretical identification of a new high-pressure phase of silica. *Nature; London*,
633 388(6640), 362–365. <http://dx.doi.org/10.1038/41066>

634 Dziewonski, A. M., & Anderson, D. L. (1981). Preliminary reference Earth model. *Physics of the
635 Earth and Planetary Interiors*, 25(4), 297–356. [https://doi.org/10.1016/0031-9201\(81\)90046-7](https://doi.org/10.1016/0031-9201(81)90046-7)

637 French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth's mantle
638 beneath major hotspots. *Nature*, 525(7567), 95–99. <https://doi.org/10.1038/nature14876>

639 Frost, D. J., Liebske, C., Langenhorst, F., McCammon, C. A., & al, et. (2004). Experimental
640 evidence for the existence of iron-rich metal in the Earth's lower mantle. *Nature; London*,
641 428(6981), 409–412.

642 Frost, D. J., & McCammon, C. A. (2008). The Redox State of Earth's Mantle. *Annual Review of
643 Earth and Planetary Sciences*, 36(1), 389–420.
644 <https://doi.org/10.1146/annurev.earth.36.031207.124322>

645 Fujino, K., Sasaki, Y., Komori, T., Ogawa, H., Miyajima, N., Sata, N., & Yagi, T. (2004).
646 Approach to the mineralogy of the lower mantle by a combined method of a laser-heated

647 diamond anvil cell experiment and analytical electron microscopy. *Physics of the Earth*
648 and *Planetary Interiors*, 143–144, 215–221. <https://doi.org/10.1016/j.pepi.2003.11.013>

649 Fukao, Y., Obayashi, M., & Nakakuki, T. and. (2009). Stagnant Slab: A Review. *Annual Review*
650 of *Earth and Planetary Sciences*, 37(1), 19–46.
651 <https://doi.org/10.1146/annurev.earth.36.031207.124224>

652 Gu, T., Li, M., McCammon, C., & Lee, K. K. M. (2016). Redox-induced lower mantle density
653 contrast and effect on mantle structure and primitive oxygen. *Nature Geoscience*, 9(9),
654 723–727. <https://doi.org/10.1038/ngeo2772>

655 Hirose, K., Fei, Y., Ma, Y., & Mao, H. K. (1999). The fate of subducted basaltic crust in the
656 Earth's lower mantle. *Nature*, 397(6714), 53–56.

657 Hirose, K., Shimizu, N., Van Westrenen, W., & Fei, Y. (2004). Trace element partitioning in
658 Earth's lower mantle and implications for geochemical consequences of partial melting at
659 the core–mantle boundary. *Physics of the Earth and Planetary Interiors*, 146(1–2), 249–
660 260.

661 Hirschmann, M. M., Kogiso, T., Baker, M. B., & Stolper, E. M. (2003). Alkalic magmas
662 generated by partial melting of garnet pyroxenite. *Geology*, 31(6), 481–484.
663 [https://doi.org/10.1130/0091-7613\(2003\)031<0481:AMGBPM>2.0.CO;2](https://doi.org/10.1130/0091-7613(2003)031<0481:AMGBPM>2.0.CO;2)

664 Hummer, D. R., & Fei, Y. (2012). Synthesis and crystal chemistry of Fe³⁺-bearing
665 (Mg,Fe³⁺)(Si,Fe³⁺)O₃ perovskite. *American Mineralogist*, 97(11–12), 1915–1921.
666 <https://doi.org/10.2138/am.2012.4144>

667 Irifune, T., & Tsuchiya, T. (2015). 2.03—Phase Transitions and Mineralogy of the Lower
668 Mantle. In G. Schubert (Ed.), *Treatise on Geophysics (Second Edition)* (pp. 33–60).
669 Elsevier. <https://doi.org/10.1016/B978-0-444-53802-4.00030-0>

670 Irifune, Tetsuo, Susaki, J., Yagi, T., & Sawamoto, H. (1989). Phase transformations in diopside
671 CaMgSi₂O₆ at pressures Up to 25 GPa. *Geophysical Research Letters*, 16(2), 187–190.
672 <https://doi.org/10.1029/GL016i002p00187>

673 Jackson, M. G., Becker, T. W., & Konter, J. G. (2018). Evidence for a deep mantle source for
674 EM and HIMU domains from integrated geochemical and geophysical constraints. *Earth
675 and Planetary Science Letters*, 484, 154-167.

676 Javoy, M. (1995). The integral enstatite chondrite model of the Earth. *Geophysical Research
677 Letters*, 22(16), 2219–2222. <https://doi.org/10.1029/95GL02015>

678 Jephcoat, A. P., Hemley, R. J., & Mao, H. K. (1988). X-ray diffraction of ruby (Al₂O₃:Cr³⁺) to
679 175 GPa. *Physica B+C*, 150(1), 115–121. [https://doi.org/10.1016/0378-4363\(88\)90112-X](https://doi.org/10.1016/0378-4363(88)90112-X)

680 Jephcoat, Andrew P., Mao, H. K., & Bell, P. M. (1986). Static compression of iron to 78 GPa
681 with rare gas solids as pressure-transmitting media. *Journal of Geophysical Research:
682 Solid Earth*, 91(B5), 4677–4684. <https://doi.org/10.1029/JB091iB05p04677>

683 Jung, D. Y., & Schmidt, M. W. (2011). Solid solution behaviour of CaSiO₃ and MgSiO₃
684 perovskites. *Physics and Chemistry of Minerals*, 38(4), 311–319.
685 <https://doi.org/10.1007/s00269-010-0405-0>

686 Kaminski, E., & Javoy, M. (2015). The composition of the deep Earth. In *The Earth's
687 Heterogeneous Mantle* (pp. 303-328). Springer, Cham.

688 Kaminsky, F. V., Ryabchikov, I. D., McCammon, C. A., Longo, M., Abakumov, A. M., Turner,
689 S., & Heidari, H. (2015). Oxidation potential in the Earth's lower mantle as recorded by
690 ferropericlase inclusions in diamond. *Earth and Planetary Science Letters*,
691 417(Supplement C), 49–56. <https://doi.org/10.1016/j.epsl.2015.02.029>

693 Kesson, S. E., Fitz Gerald, J. D., Shelley, J. M. G., & Withers, R. L. (1995). Phase relations,
694 structure and crystal chemistry of some aluminous silicate perovskites. *Earth and*
695 *Planetary Science Letters*, 134(1), 187–201. [https://doi.org/10.1016/0012-821X\(95\)00112-P](https://doi.org/10.1016/0012-821X(95)00112-P)

696

697 Kogiso, T., & Hirschmann, M. M. (2006). Partial melting experiments of bimimetic eclogite
698 and the role of recycled mafic oceanic crust in the genesis of ocean island basalts. *Earth*
699 *and Planetary Science Letters*, 249(3), 188–199.

700 <https://doi.org/10.1016/j.epsl.2006.07.016>

701 Kurnosov, A., Marquardt, H., Frost, D. J., Ballaran, T. B., & Ziberna, L. (2017). Evidence for a
702 Fe³⁺-rich pyrolytic lower mantle from (Al,Fe)-bearing bridgemanite elasticity data.

703 *Nature*, 543(7646), 543–546. <https://doi.org/10.1038/nature21390>

704 Lauterbach, S., McCammon, C. A., Aken, P. van, Langenhorst, F., & Seifert, F. (2000).

705 Mössbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O₃ perovskite: A highly oxidised
706 component of the lower mantle. *Contributions to Mineralogy and Petrology*, 138(1), 17–
707 26. <https://doi.org/10.1007/PL00007658>

708 Lee, K. K. M., O'Neill, B., Panero, W. R., Shim, S.-H., Benedetti, L. R., & Jeanloz, R. (2004).

709 Equations of state of the high-pressure phases of a natural peridotite and implications for
710 the Earth's lower mantle. *Earth and Planetary Science Letters*, 223(3), 381–393.

711 <https://doi.org/10.1016/j.epsl.2004.04.033>

712 Lundin, S., Catalli, K., Santillán, J., Shim, S.-H., Prakapenka, V. B., Kunz, M., & Meng, Y.
713 (2008). Effect of Fe on the equation of state of mantle silicate perovskite over 1Mbar.

714 *Physics of the Earth and Planetary Interiors*, 168(1), 97–102.

715 <https://doi.org/10.1016/j.pepi.2008.05.002>

716 Mallik, A., Lambart, S., & Chin, E. J. (2020). Tracking the evolution of magmas from
717 heterogeneous mantle sources to eruption. *arXiv preprint arXiv:2001.00928*.

718 Mao, H. K., Chen, L. C., Hemley, R. J., Jephcoat, A. P., Wu, Y., & Bassett, W. A. (1989).
719 Stability and equation of state of CaSiO₃-Perovskite to 134 GPa. *Journal of Geophysical*
720 *Research: Solid Earth*, 94(B12), 17889–17894.
721 <https://doi.org/10.1029/JB094iB12p17889>

722 McCammon, C. (1997). Perovskite as a possible sink for ferric iron in the lower mantle. *Nature; London*, 387(6634), 694–696. <http://dx.doi.org/10.1038/42685>

724 McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D., & Scardi, P. (1999). Rietveld
725 refinement guidelines. *Journal of Applied Crystallography*, 32(1), 36–50.
726 <https://doi.org/10.1107/S0021889898009856>

727 Meng, Y., Hrubiak, R., Rod, E., Boehler, R., & Shen, G. (2015). New developments in laser-
728 heated diamond anvil cell with in situ synchrotron x-ray diffraction at High Pressure
729 Collaborative Access Team. *Review of Scientific Instruments*, 86(7), 072201.
730 <https://doi.org/10.1063/1.4926895>

731 Miyajima, N., Fujino, K., Funamori, N., Kondo, T., & Yagi, T. (1999). Garnet-perovskite
732 transformation under conditions of the Earth's lower mantle: An analytical transmission
733 electron microscopy study. *Physics of the Earth and Planetary Interiors*, 116(1), 117–
734 131. [https://doi.org/10.1016/S0031-9201\(99\)00127-2](https://doi.org/10.1016/S0031-9201(99)00127-2)

735 Navrotsky, A., Schoenitz, M., Kojitani, H., Xu, H., Zhang, J., Weidner, D. J., & Jeanloz, R.
736 (2003). Aluminum in magnesium silicate perovskite: Formation, structure, and energetics
737 of magnesium-rich defect solid solutions. *Journal of Geophysical Research: Solid Earth*,
738 108(B7), 2330. <https://doi.org/10.1029/2002JB002055>

739 Nishiyama, N., & Yagi, T. (2003). Phase relation and mineral chemistry in pyrolite to 2200°C
740 under the lower mantle pressures and implications for dynamics of mantle plumes:
741 PHASE RELATION AND CHEMISTRY IN PYROLITE. *Journal of Geophysical*
742 *Research: Solid Earth*, 108(B5). <https://doi.org/10.1029/2002JB002216>

743 Ohtani, E., & Maeda, M. (2001). Density of basaltic melt at high pressure and stability of the
744 melt at the base of the lower mantle. *Earth and Planetary Science Letters*, 193(1), 69–75.
745 [https://doi.org/10.1016/S0012-821X\(01\)00505-2](https://doi.org/10.1016/S0012-821X(01)00505-2)

746 Ono, S. (2008). Experimental constraints on the temperature profile in the lower mantle. *Physics*
747 *of the Earth and Planetary Interiors*, 170(3), 267–273.
748 <https://doi.org/10.1016/j.pepi.2008.06.033>

749 Ono, S., Ito, E., & Katsura, T. (2001). Mineralogy of subducted basaltic crust (MORB) from 25
750 to 37 GPa, and chemical heterogeneity of the lower mantle. *Earth and Planetary Science*
751 *Letters*, 190(1), 57–63. [https://doi.org/10.1016/S0012-821X\(01\)00375-2](https://doi.org/10.1016/S0012-821X(01)00375-2)

752 Ricolleau, A., Perrillat, J.-P., Fiquet, G., Daniel, I., Matas, J., Addad, A., Menguy, N., Cardon,
753 H., Mezouar, M., & Guignot, N. (2010). Phase relations and equation of state of a natural
754 MORB: Implications for the density profile of subducted oceanic crust in the Earth's
755 lower mantle. *Journal of Geophysical Research*, 115(B8).
756 <https://doi.org/10.1029/2009JB006709>

757 Ringwood, A. E., & Major, A. (1971). Synthesis of majorite and other high pressure garnets and
758 perovskites. *Earth and Planetary Science Letters*, 12(4), 411–418.
759 [https://doi.org/10.1016/0012-821X\(71\)90026-4](https://doi.org/10.1016/0012-821X(71)90026-4)

760 Shim, S.-H., Duffy, T. S., & Shen, G. (2000). The equation of state of CaSiO₃ perovskite to 108
761 GPa at 300 K. *Physics of the Earth and Planetary Interiors*, 120(4), 327–338.
762 [https://doi.org/10.1016/S0031-9201\(00\)00154-0](https://doi.org/10.1016/S0031-9201(00)00154-0)

763 Shim, S.-H., Grocholski, B., Ye, Y., Alp, E. E., Xu, S., Morgan, D., Meng, Y., & Prakapenka, V.
764 B. (2017). Stability of ferrous-iron-rich bridgmanite under reducing midmantle
765 conditions. *Proceedings of the National Academy of Sciences*, 114(25), 6468–6473.
766 <https://doi.org/10.1073/pnas.1614036114>

767 Sinmyo, R., & Hirose, K. (2010). The Soret diffusion in laser-heated diamond-anvil cell. *Physics
768 of the Earth and Planetary Interiors*, 180(3), 172–178.
769 <https://doi.org/10.1016/j.pepi.2009.10.011>

770 Stacey, F. D., & Davis, P. M. (2008). *Physics of the Earth*. Cambridge University Press.

771 Stixrude, L., Cohen, R., Yu, R., & Krakauer, H. (1996). Prediction of phase transition in CaSiO₃
772 perovskite and implications for lower mantle structure. *American Mineralogist*, 81(9–10).
773 <https://www.degruyter.com/view/j/ammin.1996.81.issue-9-10/am-1996-9-1030/am-1996-9-1030.xml>

775 Stixrude, L., & Lithgow-Bertelloni, C. (2011). Thermodynamics of mantle minerals—II. Phase
776 equilibria. *Geophysical Journal International*, 184(3), 1180–1213.
777 <https://doi.org/10.1111/j.1365-246X.2010.04890.x>

778 Tamai, H., & Yagi, T. (1989). High-pressure and high-temperature phase relations in CaSiO₃
779 and CaMgSi₂O₆ and elasticity of perovskite-type CaSiO₃. *Physics of the Earth and
780 Planetary Interiors*, 54(3), 370–377. [https://doi.org/10.1016/0031-9201\(89\)90254-9](https://doi.org/10.1016/0031-9201(89)90254-9)

781 Toby, B. H., & Dreele, R. B. V. (2013). GSAS-II: The genesis of a modern open-source all
782 purpose crystallography software package. *Journal of Applied Crystallography*, 46(2),
783 544–549. <https://doi.org/10.1107/S0021889813003531>

784 Tschauner, O., Ma, C., Beckett, J. R., Prescher, C., Prakapenka, V. B., & Rossman, G. R. (2014).
785 Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite.
786 *Science*, 346(6213), 1100–1102. <https://doi.org/10.1126/science.1259369>

787 van Keken, P. E., Hauri, E. H., & Ballentine, C. J. (2002). Mantle Mixing: The Generation,
788 Preservation, and Destruction of Chemical Heterogeneity. *Annual Review of Earth and
789 Planetary Sciences*, 30(1), 493–525.
790 <https://doi.org/10.1146/annurev.earth.30.091201.141236>

791 Vanpeteghem, C. B., Angel, R. J., Ross, N. L., Jacobsen, S. D., Dobson, D. P., Litasov, K. D., &
792 Ohtani, E. (2006). Al, Fe substitution in the MgSiO₃ perovskite structure: A single-
793 crystal X-ray diffraction study. *Physics of the Earth and Planetary Interiors*, 155(1-2),
794 96–103.

795 Walter, M. J., Trønnes, R. G., Armstrong, L. S., Lord, O. T., Caldwell, W. A., & Clark, S. M.
796 (2006). Subsolidus phase relations and perovskite compressibility in the system MgO–
797 Al₂O₃–SiO₂ with implications for Earth’s lower mantle. *Earth and Planetary Science
798 Letters*, 248(1), 77–89. <https://doi.org/10.1016/j.epsl.2006.05.017>

799 Weis, D., Garcia, M. O., Rhodes, J. M., Jellinek, M., & Scoates, J. S. (2011). Role of the deep
800 mantle in generating the compositional asymmetry of the Hawaiian mantle plume. *Nature
801 Geoscience*, 4(12), 831–838. <https://doi.org/10.1038/ngeo1328>

802 Wilburn, D. R., & Bassett, W. A. (1978). Hydrostatic compression of iron and related
803 compounds; an overview. *American Mineralogist*, 63(5-6), 591–596.

804 Zhuravlev, K. K., Goncharov, A. F., Tkachev, S. N., Dera, P., & Prakapenka, V. B. (2013).

805 Vibrational, elastic, and structural properties of cubic silicon carbide under pressure up to

806 75 GPa: Implication for a primary pressure scale. *Journal of Applied Physics*, 113(11),

807 113503. <https://doi.org/10.1063/1.4795348>

808 **Figures.**

809 **Figure 1.** Selected quench XRD patterns with pressures given in GPa from the **(a)** reduced
810 MIX_RED samples and **(b)** oxidized MIX_OX samples with present phases labeled as
811 bridgmanite (bm), calcium perovskite (capv), stishovite (stv), calcium-ferrite structured phase (cf),
812 alumina (al), neon (ne), and iron (ϵ -Fe). The peaks are labeled corresponding to the phase and hkl
813 indices. See Figures S6 and S7 for representative Rietveld refined XRD patterns.

814

815 **Figure 2.** Room pressure and temperature XRD pattern for **(a)** MIX_RED and **(b)** MIX_OX with
816 present phases labeled as bridgmanite (bm), stishovite (stv), calcium-ferrite structured phase (cf),
817 alumina (al), rhenium (Re), and bcc iron (α -Fe). The peaks are labeled corresponding to the phase
818 and hkl indices. ♦ This sample, a quenched sample held in its gasket and removed from the
819 LHDAC, experienced blockage from the lead holder and this feature is due to the 100% line of
820 lead which is offset from its usual d-spacing because of its different distance to the detector as
821 compared to the sample-to-detector distance. *An anomalous peak that could not be assigned to
822 the bridgmanite Pnma structure. The broad hump between $\sim 2.5 - 3.5$ Å and Re diffraction suggests
823 that this pattern was collected near the edge of the gasket where the initially glass sample was
824 unheated thus yielding an amorphous-like character.

825

826 **Figure 3.** Pressure versus volume of bridgmanite at room temperature, with corresponding Birch–
827 Murnaghan equation of state curves. MIX_RED (open squares, dotted curve) and MIX_OX (filled
828 diamonds, dashed curve) samples are shown with pressures and their uncertainties are given by
829 error bars (see Tables S6, S7). A solid curve is shown for pure endmember MgSiO_3 bm (Ballaran
830 et al., 2012).

831

832 **Figure 4.** Backscattered secondary electron (BSE) image and elemental WDS mapping of Mg, Si,
833 Fe, Al, and Ca of the quenched MIX_RED assemblage, hand-polished in cross-section. The
834 reduced assemblage is quenched from 40 GPa and 2000 K. Note that the map has several areas
835 showing elevated Fe and Al consistent with grains of metallic iron and alumina. The blacked-out
836 regions denote dust on the surface of the sample and are removed from composition analyses. The
837 dashed curve denotes the edge of the converted region within the sample. Everything to the right
838 of the dashed curve is unconverted starting material (glass powder) that is adjacent to the edge of
839 the gasket and unheated, while to the left of the dashed curve is the heated and converted sample.
840 The yellow dotted box represents chemical analysis conducted in Supporting Information (Figure
841 S8, S9, and S11).

842

843 **Figure 5.** Backscattered electron SEM image and elemental WDS mapping of Mg, Si, Fe, Al, and
844 Ca of the quenched MIX_OX assemblage, hand-polished in cross-section. The oxidized
845 assemblage is quenched from 65 GPa and 2000 K. Note that the map is very homogenous across
846 all elements.

847

848 **Figure 6.** Axial ratios of bridgmanite, **(a)** b/a and **(b)** c/a, with different compositions. Squares:
849 MIX_RED bridgmanite (this work), diamonds: MIX_OX bridgmanite (this work), solid line:
850 bridgmanite (Ballaran et al., 2012). Shaded regions denote compositions listed in Table 2: blue
851 (A): Fe²⁺-bearing bridgmanite; purple (B): Fe³⁺Al-bearing bridgmanite; orange (C): Fe³⁺-bearing
852 bridgmanite; and green (D): Al-bearing bridgmanite.

853

854 **Figure 7.** Computed assemblage density as computed by BurnMan (Cottaar et al., 2014) using the
855 assemblages tabulated in Table 3 and using four different temperature profiles. **(a)** Density of 95%
856 confidence of all possible MIX_RED assemblages (white squares) based on Monte Carlo results
857 of *Models A* and *B* and MIX_OX assemblage (black diamonds) are plotted with PREM (thick gray
858 curve) as reference. All possible densities are within the thickness of each corresponding line and
859 consider four different temperature profiles: Stacy and Davis 2008; Ono 2008; Anderson et al.,
860 1982; Brown and Shankland 1981. The right axis illustrates the percent difference of each sample
861 with PREM (gray). **(b)** Computed assemblage bulk sound speed as computed by BurnMan with
862 the same constraints as **(a)**. **(c)** Density of 95% confidence interval for each synthesized
863 bridgmanite from MIX_RED (white squares) and MIX_OX (black diamonds) as compared to pure
864 bridgmanite, MgSiO_3 (black solid line). All labels are consistent with **(a)**, but Brown and
865 Shankland (1981) is applied here. Percent difference illustrates the difference between the
866 bridgmanites synthesized in this study with pure bridgmanite (gray). **(d)** Computed bulk sound
867 speed of bridgmanites from this study and pure bridgmanite. Constraints are the same as **(c)**.
868
869

870 **Tables**

871 **Table 1.** Normalized chemical compositions in mol% of each oxide in the canonical pyrolite model
 872 (McDonough and Sun, 1995); pyroxenite mixture MIX1G model by Hirschmann et al., 2003; other
 873 pyroxenite assemblages P1 and P2 (Kogiso & Hirschmann, 2006); and our reduced (MIX_RED)
 874 and oxidized (MIX_OX) Al-rich pyroxenite samples based on the MIX1G pyroxenite model. To
 875 compare, see Figure S3 for a suite of natural pyroxenite compositions compared to the
 876 assemblages illustrated here. Fe³⁺ content is based on Mossbauer results (Figure S1). Note the
 877 mean molar mass of MIX_OX is ~1.8% greater than MIX_RED, due to the excess oxygens
 878 available with additional Fe³⁺ in the MIX_OX glass. Refer to Supporting Information for more
 879 information on how this data was collected and see Tables S1 and S2 for the raw data. Error bars
 880 denote two standard deviations.

881 * Calculated values based on Mossbauer results (Fe³⁺/Total Fe) (Figure S1), where total FeO was
 882 measured from EPMA (Table S1 and S2).

883

	Pyrolite	MIX1G Pyroxenite	P1	P2	MIX_RED	MIX_OX
MgO	49.21	25.30	23.20	11.81	27.3(0.3)	29.2(0.4)
SiO ₂	39.30	46.42	42.54	53.44	41.8(0.8)	41.1(1.0)
Al ₂ O ₃	2.29	9.12	16.71	17.54	13.1(0.4)	13.2(0.6)
CaO	3.32	12.52	11.48	10.19	10.3(0.2)	10.7(0.2)
FeO*	5.89	6.64	6.06	7.01	7.12(0.55)	3.63(0.64)
Fe ₂ O ₃ *	-	-	-	-	0.44(0.27)	2.22(0.32)
Fe ³⁺ /Total Fe	-	-	-	-	0.11(0.06)	0.55(0.08)
(Mg+Fe)/Si	1.40	0.69	0.69	0.35	0.84(0.20)	0.90(0.22)
Mean Molar Mass (g/mol)	51.87	59.18	62.74	65.51	61.1(1.10)	62.2(1.40)

884

885

886

887 **Table 2.** Birch-Murnaghan equations of state for bridgmanite showing errors up to 2 standard deviations
 888 from this study (MIX_RED and MIX_OX); bridgmanite (MgSiO_3 , Ballaran et al. [2012]); (A) iron-
 889 bearing bridgmanite ($0.85\text{MgSiO}_3 * 0.15\text{FeSiO}_3$) (Lundin et al., 2008); (B) Fe^{3+} , Al^{3+} -bearing bridgmanite
 890 ($0.90\text{MgSiO}_3 * 0.10\text{FeAlO}_3$) (Catalli et al. 2011); (C) Fe^{3+} -bearing bridgmanite ($0.915\text{MgSiO}_3 * 0.085\text{Fe}_2\text{O}_3$) (Catalli et al., 2010); and (D) Al^{3+} -bearing bridgmanite ($0.90\text{MgSiO}_3 * 0.10\text{Al}_2\text{O}_3$) (Catalli et al., 2011). $*K_0'$ is fixed to a value of 4, unless otherwise noted.

893

bm composition	V_0 (\AA^3)	K_0 (GPa)	K_0'	Reference
MIX_RED	163.1(0.5)	281(8)	4*	This study
MIX_OX	168.2(0.5)	284(2)	4*	This study
MgSiO_3	162.36(0.04)	251(2)	4*	Ballaran et al. 2012
A	163.30(0.07)	260(1)	4*	Lundin et al., 2008
B	164.81(0.04)	262(8)	3(0.3)	Catalli et al., 2011
C	165.78(0.03)	237(3)	4*	Catalli et al., 2010
D	163.83(0.05)	244(3)	4*	Catalli et al., 2011

894

895

896

897 **Table 3. (top)** Normalized bridgmanite compositions and bridgmanite room-pressure and -
898 temperature density from each reduced (*Models A* and *B* based on the Monte Carlo results as shown
899 in the Supporting Information: VI) and oxidized pyroxenite assemblage quenched to room
900 conditions. The results are presented in both bridgmanite cation stoichiometry and oxide mol%
901 (see Tables S3, S4 for raw data). MIX_RED errors are based on the Monte Carlo results; and,
902 MIX_OX errors are based on the measurement error from the EPMA results. **(bottom)** Normalized
903 assemblage composition for bridgmanite (bm), calcium perovskite (capv), stishovite (stv),
904 calcium-ferrite structured phase (cf), alumina (al), iron (Fe), and total ferric iron for the entire
905 assemblage from the quenched samples from each reduced and oxidized pyroxenite assemblage
906 quenched to room conditions based on the Monte Carlo results as shown in the Supporting
907 Information. Uncertainties listed represent 95% confidence intervals. *Composition of cf based on
908 Monte Carlo modeling can be found in the Supporting Information (Figure S4c).

909

910

911

912

913

914

915

916

917

918

919

920

	MIX_RED, Model A	MIX_RED, Model B	MIX_OX
<i>bm, Cations</i>			
Mg	$0.93^{+0.03}_{-0.02}$	$0.94^{+0.03}_{-0.03}$	$0.51^{+0.02}_{-0.02}$
Si	$0.96^{+0.01}_{-0.04}$	$0.96^{+0.03}_{-0.03}$	$0.72^{+0.02}_{-0.02}$
Fe ²⁺	$0.03^{+0.05}_{-0.01}$	$0.01^{+0.02}_{-0.01}$	$0.06^{+0.02}_{-0.02}$
Fe ³⁺	$0.04^{+0.01}_{-0.01}$	$0.04^{+0.01}_{-0.01}$	$0.07^{+0.02}_{-0.02}$
Al	$0.04^{+0.08}_{-0.02}$	$0.05^{+0.08}_{-0.04}$	$0.46^{+0.02}_{-0.02}$
Ca	0	0	$0.18^{+0.02}_{-0.02}$
Sum	2.00	2.00	2.00
<i>bm, Oxide mol %</i>			
MgO	$47.5^{+0.5}_{-0.5}$	$48.0^{+0.5}_{-0.5}$	$29.6^{+1.0}_{-1.0}$
SiO ₂	$49.0^{+0.5}_{-0.5}$	$49.0^{+0.5}_{-0.5}$	$41.3^{+1.2}_{-1.2}$
Al ₂ O ₃	$1.0^{+0.3}_{-0.3}$	$1.3^{+0.5}_{-0.5}$	$13.2^{+0.4}_{-0.4}$
CaO	-	-	$10.7^{+0.4}_{-0.4}$
FeO	$1.5^{+0.5}_{-1.0}$	$0.5^{+0.5}_{-0.5}$	$3.3^{+0.2}_{-0.2}$
Fe ₂ O ₃	$1.0^{+0.3}_{-0.0}$	$1.0^{+0.5}_{-0.5}$	$2.0^{+0.2}_{-0.2}$
Sum	100	100	100
bm ρ_0 (g/cm³)	$4.18^{+0.02}_{-0.02}$	$4.17^{+0.01}_{-0.01}$	$4.26^{+0.01}_{-0.01}$
Phase Abundance (mol%)			
bm	50.1^{+3}_{-8}	$40.5^{+2.0}_{-2.0}$	100
capv, CaSiO ₃	18.2^{+1}_{-1}	$18.4^{+1.0}_{-1.0}$	0
cf*, (Mg,Fe)Al ₂ O ₄	12.1^{+8}_{-2}	$22.7^{+1.4}_{-1.4}$	0
al, Al ₂ O ₃	10.4^{+4}_{-6}	0	0
stv, SiO ₂	9.0^{+7}_{-2}	$18.4^{+1.5}_{-1.5}$	0
Fe	$0.17^{+0.2}_{-0.2}$	0	0
Total	100	100	100
Fe ³⁺ /ΣFe	$14^{+4\%}_{-3\%}$	$11^{+3\%}_{-3\%}$	$55^{+4\%}_{-4\%}$

921

922