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2 | lron is an important material for planetary sciences and many
other high energy density applications

Lithesphere

Mantle .

Important Current Research:

*  Measuring the P-p equation of state (EOS) of liquid Commction
iron at previously unexplored off-Hugoniot isentropes currents

*  Isentropic compression is an extremely useful way to
study planetary equations of state
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The conductivity of iron is important for understanding the evolution of
planetary cores
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Unresolved Question: Mantle

Current estimates of the conductivity of the
Earth’s core could produce an inner core
ranging from 4 billion to 1 billion years old

Important Current Research:

Measuring conductivity of liquid iron at
planetary core conditions




4 | We designed an experimental path close to the conditions of

the Earth’s core
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s | The strip-line target configuration is a common method of
driving planar samples to high pressure and density states on Z

l.oad hardware details Current Flow

° Top Sample Pair Shown

o Parallel counter-propagating current drives the panels apart symmetrically

o Flight gap leads to initial shock
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Conductivity Measurements
with Ellipsometry




; | Ellipsometry uses a polarized laser to probe material dielectric
properties at the laser wavelength
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s I Along with the standard VISAR diagnostics, we have been
fielding ellipsometry on one to two samples

Current Flow

Implementation of New
Diagnostic
o Hardware/Procedural Changes Ellipsometry

VISAR
(on both sides)

®

> No negative impact on other
diagnostics or experiment

Iron Sample,
. LiF Window ®
Advantages of this
EXperlment LiF Window ——»‘
° Overdriving detrimental window ®
effects

° Minimal tilt compared to gas guns

> AC conductivity closely matches DC Aluminum
conductivity at these wavelengths Flight Gap Panels




The Z hardware engineers made the fielding of this diagnostic possible
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10 Obtaining specular reflections on dynamic experiments is difficult

Surface roughness and impactor tilt can severely hinder such
measurements

o Surface roughness can be propagated through the shock wave

Ellipsometry depends on AOI Specular Reflection

° cannot simply increase the collection

Ensure all surfaces are as smooth as possible
> Diamond turned metals (maybe lapping too)
> 10-30 nm Ra
> Polished single crystal LiFF
> 20/10 scratch/dig

Scattered Reflection

Tilted Reflection



11

Using a polished LiF ‘sample’ we obtained our best collection yet

Smoothed and Normalized Raw Data
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12 I With increased focused on polishing, we were also able to see

significant improvement on with an iron sample, though not as :
much as for the LiF sample arrangement
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13 I Ve can also use this diagnostic to study the shock-induced
birefringence in window anvils

Ellipsometry Data and Model
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14 | This can also be used to observe more complex wave
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Equation of State




16 | Ve use measurements of the particle velocity at all of the sample-
window interfaces, provided by VISAR

Particle Velocity (m/s)
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17 I An iterative backward-integration forward Lagrangian analysis
is used to build the equation of state

Backward Integration

: : : S|P )
* The Lagrangian hydrodynamic equations along [ 520 )N _ —Po 5—1:
with a guess of the equation of state are backward s[L
: : : 1 6u p
integrated to obtain the drive profile at the sample- —=—
Po 0X

impactor interface:

Davis, J.-P. "Experimental measurement of the principal isentrope for

aluminum 6061-T6 to 240 GPa." Journal of applied physics 99.10 (2006): 103512.

Seagle, C. T., and A. ]. Porwitzky. "Shock-ramp compression of tin near the
melt line." AIP Conference Proceedings. Vol. 1979. No. 1. AIP Publishing, 2018.



18 | The drive conditions for the two samples should be equal until
the release wave from the thin sample reaches this interface

Particle Velocity (m/s)
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19 I An iterative backward-integration forward Lagrangian analysis
is used to build the equation of state

Backward Integration

. The Lagrangian hydrodynamic equations along with a guess of the equation S[P(p)] Su
of state are backward integrated to obtain the drive profile at the sample- = —pPo—=—
impactor interface: 0x 1 ot

" 16u 0 [,E

Forward Propagation 0o 0x Ot

* The drive state can then be propagated forward to
the sample-window interface to obtain the zn-situ
particle velocity (the particle velocity that would
have been present at that location had there not
been a release interface)



20 I The drive condition is propagated forward to the sample-

window interface location
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21 | An iterative backward-integration forward Lagrangian analysis

is used to build the equation of state

Backward Integration

. The Lagrangian hydrodynamic equations along with a guess of the equation
of state are backward integrated to obtain the drive profile at the sample-
impactor interface:

Forward Propagation

» The drive state can then be propagated forward to the sample-window
interface to obtain the zz-situ particle velocity (the particle velocity that would
have been present at that location had there not been a release interface)

Lagrangian Sound Speed and EOS

* A sound speed can then be directly calculated from
Ax /At measurements

* A P-p EOS is formed from the sound speed:
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22

Lagrangian sound speed is determined, and used to

the equation of state

Sound Speed

calculate
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is used to build the equation of state

Backward Integration

. The Lagrangian hydrodynamic equations along with a guess of the equation
of state are backward integrated to obtain the drive profile at the sample-
impactor interface:

Forward Propagation

. The drive state can then be propagated forward to the sample-window
interface to obtain the zz-situ particle velocity (the particle velocity that would
have been present at that location had there not been a release interface)

Lagrangian Sound Speed and EOS
. A sound speed can then be directly calculated from Ax/At measurements
. A P-p EOS is formed from the sound speed:

Iterate

* The process is then repeated with this new EOS

* This iterative process continues until the new EOS
matches the solution from the previous iteration

23 | An iterative backward-integration forward Lagrangian analysis
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An iterative backward-integration forward Lagrangian analysis is used to
24 § build the equation of state

Interface Velocity (Measured)
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25 | Results from our previous experiment agree well with current EOS tables

Pressure (GPa)
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26 I This framework typically assumes a steady shock front before

the ramp
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27 I This framework typically assumes a steady shock front before

the ramp

*Our most recent experiment experienced noticeable decay on the initial shock state
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28 I The experiment is no longer constrained along a single

Isentrope

*Instead, a range of isentropes are covered based on the Lagrangian position of the sample
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29 I With modifications to the standard analysis, we analyzed the
data from the three sample pairs in Z3339

Modifications primarily include:

*The shock-front, and associated boundary condition, varies as a function of
Lagrangian position, based on the observed shock states at impact and the two
sample-window interfaces.

*Instead of inputting a single 1sentrope EOS as the ‘guess’ into the iterative process,
a range of isentropes covering the conditions defined by the variable shock state
must be provided or generated by the user.



0 I With modifications to the standard analysis, we analyzed the
data from the three sample pairs in Z3339
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31 | However, the latter half of these data sets are not adequately
converging
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2 | We combine the relevant data from all three sample pairs
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13 1 Our two data sets both agree well with the iron 92141 sesame
EOS table

Pressure (GPa)
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34 | Equation of state information is often incorporated into
research via parameters to analytic models

OVarIOuS analytlc models ?_o. ........ T rerrerTe T
. . L Radius ]
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Mie-Gruneisen, etc. O === -~ prew
8 >
(@)}
. - i 1.29 Mearn 400
*Planetary modeling codes 2 1o 5
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*Fit parameters for the existing : !

liquid data: our results and 00 02 04 06 08 10
Radius (Earth Radii)

pr eV1ouS ShOCk data Figure 2. Density and pressure profiles for a two-layer (pure liquid Fe core and

MgSiOs5-bridgmanite mantle) one Rz planet as a function of planetary radius
for a variable core radius. PREM is shown in the black-dashed line for
comparison. Average planet densities for each model are shown as arrows of
same color scheme as density /pressure profiles. Figures 2-5 are all plotted on
the same scale for comparison.

Unterborn, C. T., Dismukes, E. E., & Panero,
W. R. (2016). Scaling the Earth: a sensitivity
analysis of terrestrial exoplanetary interior
models. The Astrophysical Journal, 819(1), 32.
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We create a parameterized EOS model using the Ichikawa
model to constrain some of the parameters

* Model:

P(p,T) = Piso(p) + Pep(p, T)
Piso (P)
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Parameter Ichikawa Values Fit Values
K, (GPa) 24.6 + 0.6 29.4 + 3.7
Ko’ 6.65 + 0.04 6.21 + 0.26
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a 1
b 0.35
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36 I Can we use this to help infer the structure of newly
discovered planets?

* The Kepler satellite detected over 2500 exoplanets

* The TESS satellite is currently discovering near-Earth-size planets

‘l
s

L 98-59b L 98-59c L 98-59d

NASA's Goddard Space Flight Center
https://svs.gsfc.nasa.gov/13223



7 I VWe model the radial structure of planets using the SESAME
92141 EOS for the core

1.2 Earth Mass Planet

* Model equations: 8x 10
=
dm 5 5 = 6x10%*
— = 4nrep v £
dr § 2 4x10
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dP p Gm(r) = 2 10%
= = 2 B
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p(?") — peos (P (7"), T) Radius (km) Radius (km)
Gm(r)
dT a(T(‘r)) 72 T(r) o 8000
dr Cp 1 & 7000}
g < 6000}
S—— 10' ‘5
* Core EOS: Sesame 92141 Z § 5000}
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o
* Mantle EOS: Katsura, 2010 6 & 3000}
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3 | The mass-radius curves from the model informs planetary

composition, and the models also reveal core structure :
* M-R curves inform us about the composition
of planets 1.4}
* Our results are in close agreement with existing 1.3} — This Work
models = — Seager
5 12}
* Structural insight: 4
* Liquid outer core only exists for planets up to 3.1 -::‘E 1.1
Earth masses =
» 1.0p
=
3
@ 0.9}
0.8}

0.5 1.0 1.5 2.0 2.5 3.0 |
Mass (Earth Masses) |



39 | Conclusions and Future Work

Conclusion:

> We have performed shock-ramp experiments on Sandia National Laboratories’ Z Machine to
evaluate the equation of state of liquid iron along an elevated isentrope near Earth core pressure
and temperature conditions.

° The results agree well with the SESAME 92141 table, validating its accuracy in this parameter
region.
> We provide fit parameters for a new analytic EOS for liquid iron.

> We create radial models of planets and analyze their internal structure in the context of
potentially life-supporting planets

> We have made significant advances towards a new specular reflection diagnostic on the Z machine
for the study of electrical conductivities.

Future Plans:
° To improve modeling accuracy, we are performing similar experiments on iron alloys
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s I Our fit matches most of the existing experimental data to
within 2 GPa

Pressure Difference, GPa
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2 I Thus we obtain an EOS surface for liquid iron

. Parameter Value
Temperature

5000 By 0.15 + .1
k 0+0.8
K, 5.1+ 0.1
40’y 1.03 + 0.71
q 0.91 + 0.43
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43 | Thus we obtain an EOS surface for liquid iron

10000

Temperature

In comparison to a similar
- curve generated for solid
iron by Fei et al., our
surface is ~10 GPa (~3%)
lower at the conditions of

the Earth’s core.
41011

2x1011

o Pressure

10000

conn Density Fei, Y., Murphy, C., Shibazaki, Y., Shahar, A., & Huang, H. (2016).
Thermal equation of state of hcp-iron: Constraint on the density deficit of
Earth's solid inner core. Geophysical Research Letters, 43(13), 6837-6843.



