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I. INTRODUCTION

We consider a scenario involving a network of agents,
where each agent receives a stream of private signals sequen-
tially over time. The observations of every agent are gener-
ated by a common underlying distribution, parameterized by
an unknown static quantity which we call the true state of the
world. The task of the agents is to collectively identify this
unknown quantity from a finite family of hypotheses, while
relying solely on local interactions. The problem described
above arises in a variety of contexts ranging from detection
and object recognition using autonomous robots, to statistical
inference and learning over multiple processors, to sequential
decision-making in social networks. As such, the distributed
inference/hypothesis testing problem enjoys a rich history
[1]-[7], where a variety of techniques have been proposed
primarily with the aim of improving the convergence rate.
These include data-aggregation using consensus-based linear
[1], [2] and log-linear rules [3]-[5], and the more recent
min-protocol [6], [7] - the latter leading to the best known
learning rate for this problem. Much less explored, however,
is the aspect of communication-efficiency - a theme which
is becoming increasingly important as we deal with low-
power sensor devices and limited-bandwidth communication
channels. Motivated by this gap in the literature, we seek
to answer the following questions in this paper. (i) When
should an agent exchange information with a neighbor? (ii)
What piece of information should the agent exchange?

To address the questions posed above, we will draw
on ideas from the theory of event-triggered control. The
initial results [8], [9] on this topic centred around stabilizing
dynamical systems by injecting control inputs only when
needed, as opposed to the traditional approach of periodic
control inputs. Since then, the ideas emanating from this
line of work have found there way into the design of event-
driven control and communication techniques for multi-
agent systems; the recent survey [10] provides an excellent
overview of such techniques. Notably, the applications of
event-triggered ideas to multi-agent settings have primarily
focused on either consensus or distributed optimization. To
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the best of our knowledge, this is the first work which
explores event-triggered communication in the context of
distributed inference. We summarize our contributions below.

Contributions: The primary contribution of this paper is
the development of a novel event-triggered distributed learn-
ing rule along with a detailed theoretical characterization of
its performance. Our approach to learning is based on the
principle of diffusing low beliefs on each false hypothesis
across the network. Building on this principle, we design a
trigger condition that carefully takes into account the specific
structure of the problem, and enables an agent to decide,
using purely local information, whether or not to broadcast
its belief on a given hypothesis to a specific neighbor.
Specifically, based on our event-triggered strategy, an agent
broadcasts only those components of its belief vector that
have adequate “innovation”, to only those neighbors that
are in need of the corresponding pieces of information. In
this way, our approach not only reduces the number of
communication rounds, but also the amount of information
transmitted in each round.

We establish that our proposed event-triggered learning
rule enables each agent to learn the true state exponentially
fast under standard assumptions on the observation model
and the network structure. We characterize the learning rate
of our algorithm and identify conditions under which one can
achieve the best known learning rate in [7], even when the
inter-communication intervals between the agents grow po-
tentially unbounded. In other words, we identify sparse com-
munication regimes where communication-efficiency comes
essentially for “free”. We further demonstrate, both in theory
and in simulations, that our event-triggered scheme has the
potential of reducing information flow from uninformative
agents to informative agents. Finally, we argue that if asymp-
totic learning of the true state is the only consideration, then
one can allow for arbitrarily sparse communication schemes.

II. MODEL AND PROBLEM FORMULATION

Network Model: We consider a group of agents V =
{1,...,n}, and model interactions among them via an
undirected graph G = (V,£).! An edge (i,j) € & indicates
that agent ¢ can directly transmit information to agent j, and
vice versa. The set of all neighbors of agent ¢ is defined as
N;={jeV:(j,i) €} Wesay that G is rooted at C C V,
if for each agent ¢ € V\C, there exists a path to it from some
agent j € C. For a connected graph G, we will use d(i, j) to
denote the length of the shortest path between ¢ and j.

I'The results in this paper can be easily extended to directed graphs.



Observation Model: Let © = {6, 0,,...,0,,} denote m
possible states of the world, with each state representing a
hypothesis. A specific state 0* € O, referred to as the true
state of the world, gets realized. Conditional on its realiza-
tion, at each time-step ¢ € N, every agent ¢ € V privately
observes a signal s; ; € S;, where S; denotes the signal space
of agent i.> The joint observation profile so generated across
the network is denoted s, = (s14,52,4,---,5n,¢), Where
st € S,and § = &1 X S X ... S,. Specifically, the signal
s¢ is generated based on a conditional likelihood function
1(-|6%), the i-th marginal of which is denoted [;(-|6*), and is
available to agent 7. The signal structure of each agent i € V
is thus characterized by a family of parameterized marginals
li = {li(w;]0) : 6 € O, w; € S;}. We make certain standard
assumptions [1]-[5]: (i) The signal space of each agent i,
namely §;, is finite. (ii) Each agent ¢ has knowledge of
its local likelihood functions {/;(:|6),)},%+, and it holds that
li(w;]0) > 0,Vw; € S;, and VO € ©. (iii) The observation se-
quence of each agent is described by an i.i.d. random process
over time; however, at any given time-step, the observations
of different agents may potentially be correlated. (iv) There
exists a fixed true state of the world * € © (unknown to
the agents) that generates the observations of all the agents.
The probability space for our model is denoted (£, F, ]PO*),
where Q £ {w:w = (s1,82,...),Vs; € S,Vt € N}, Fis
the o-algebra generated by the observation profiles, and P?"
is the probability measure induced by sample paths in €.

Specifically, P?" = [ I(:|6*). We will use the abbreviation
=1

a.s. to indicate almost sure occurrence of an event w.r.t. P

The goal of each agent in the network is to eventually learn
the true state 6*. However, the key challenge in achieving
this objective arises from an identifiability problem that each
agent might potentially face. To make this precise, define
@?* = {9 €06: ll(wl|9) = lz(w1|0*),sz S Sl} In words,
@f* represents the set of hypotheses that are observationally
equivalent to 6* from the perspective of agent i. Thus, if
|©%"| > 1, it will be impossible for agent i to uniquely learn
the true state 0* without interacting with its neighbors.

In the next section, we will develop a distributed learning
algorithm that not only resolves the identifiability problem
described above, but does so in a communication-efficient
manner. Before describing this algorithm, we first recall
the following definition from [6] that will show up in our
subsequent developments.

Definition 1. (Source agents) An agent i is said to be a
source agent for a pair of distinct hypotheses 0,,,0, € © if it
can distinguish between them, i.e., if D(1;(:|0,)||l:(-|64)) >
0, where D(1;(-|0,)||l:(-|84)) represents the KL-divergence
[11] between the distributions 1;(-|0,) and 1;(-|0,). The set
of source agents for pair (0, 04) is denoted S(6,,0,). [

Throughout the rest of the paper, we will use K;(6,,0,)
as a shorthand for D(1;(-|0,)|]1;(:164))-

2We use N and N to represent the set of non-negative integers and
positive integers, respectively.

III. AN EVENT-TRIGGERED DISTRIBUTED LEARNING
RULE

o Belief-Update Strategy: In this section, we develop
an event-triggered distributed learning rule that enables each
agent to eventually learn the truth, despite infrequent infor-
mation exchanges with its neighbors. Our approach requires
each agent ¢ to maintain a local belief vector m;;, and
an actual belief vector p, ,, each of which are probability
distributions over the hypothesis set ©. While agent ¢ updates
;¢ in a Bayesian manner using only its private signals
(see eq. (2)), to formally describe how it updates p,; ,,
we need to first introduce some notation. Accordingly, let
1;;:(8) € {0,1} be an indicator variable which takes on a
value of 1 if and only if agent j broadcasts 1, +(6) to agent ¢
at time t. Next, we define V; ((0) = {j € N;|1;;+(0) = 1}
as the subset of agent ¢’s neighbors who broadcast their belief
on f to i at time t. As part of our learning algorithm, each
agent ¢ keeps track of the lowest belief on each hypothesis
0 € O that it has heard up to any given instant ¢, denoted by
fi;.+(0). More precisely, fi;0(0) = pio(6), and VE+1 € N,

fit+1(0) = min{fi; ¢(0), {5,641(0) }jeiyuni a0y - (1)

We are now in position to describe the belief-update rule
at each agent: m;; and p,, are initialized with 7;(0) >
0, pio(0) > 0,¥0 € ©,Vi € V (but otherwise arbitrarily),
and subsequently updated as follows Vi + 1 € N,.
Tie+1(0) = mll<8l’t+1|9)m’t(9) : @
21 Li(si,04110p) 7,4 (6p)
p=

min{fi; ¢(0), mi+1(0)} _
2::1 min{fi;,¢(0p), mi,e+1(0p) }

pit+1(0) = )

e Communication Strategy: We now focus on specifying
when an agent broadcasts its belief on a given hypothesis
to a neighbor. To this end, we first define a sequence I =
{tr} of event-monitoring time-steps, where t; = 1, and
tk+1 — L = g(k)ﬁ’k = N+. Here, g : R+ — R+ is a
continuous, non-decreasing function that takes on integer
values at integers. We will henceforth refer to g(k) as
the event-interval function. At any given time ¢t € N,
let fi;;.(6) represent agent i’s belief on # the last time
(excluding time ¢) it transmitted its belief on 6 to agent j. Our
communication strategy can now be described as follows. At
t1, each agent ¢ € V broadcasts its entire belief vector p, , to
every neighbor. Subsequently, at each t5, k > 2, ¢ transmits
Wi, (0) to j € N; if and only if the following event occurs:

pity, (0) < y(tx) min{ e, (0), fijie, (0)}, 4)

where v : N — (0, 1] is a non-increasing function, which we
will henceforth call the threshold function. If ¢ ¢ I, then an
agent ¢ does not communicate with its neighbors at time ¢,
i.e., all inter-agent interactions are restricted to time-steps in
I, subject to the trigger-condition given by (4). Notice that
we have not yet specified the functional forms of g(-) and
~(+); we will comment on this topic later in Section IV.



OO ),

Fig. 1. The figure shows a network where only agent 1 is informative. In
Section III, we design an event-triggered algorithm under which all upstream
broadcasts along the path 3 — 2 — 1 stop eventually almost surely. At the
same time, all agents learn the true state. We demonstrate these facts both
in theory (see Section IV), and in simulations (see Section VI).

e Summary: At each time-step ¢ + 1 € N, and for each
hypothesis 6 € O, the sequence of operations executed by
an agent ¢ is summarized as follows. (i) Agent 7 updates its
local and actual beliefs on 6 via (2) and (3), respectively.
(ii) For each neighbor j € A, it decides whether or not to
transmit f1; ¢ 41(6) to j, and collects {11 141(0)}jen; oiv(0)-
(iii) It updates fi; +41(6) via (1) using the (potentially) new
information it acquires from its neighbors at time ¢ + 1.

e Intuition: The premise of our belief-update strategy is
based on diffusing low beliefs on each false hypothesis. For
a given false hypothesis 6, the local Bayesian update (2) will
generate a decaying sequence m; +(0) for each i € S(6*,0).
Update rules (1) and (3) then help propagate agent ¢’s low
belief on 6 to the rest of the network.

To build intuition regarding our communication strat-
egy, let us consider the network in Fig 1. Suppose © =
{01,02},6* = 61, and S(61,02) = 1, i.e., agent 1 is the
only informative agent. Since our principle of learning is
based on eliminating each false hypothesis, it makes sense
to broadcast beliefs only if they are low enough. Based
on this observation, one naive approach to enforce sparse
communication could be to set a fixed low threshold, say /3,
and wait till beliefs fall below such a threshold to broadcast.
While this might lead to sparse communication initially, there
will come a time beyond which the beliefs of all agents on
the false hypothesis A will always stay below 3, leading to
dense communication eventually. The obvious fix is to intro-
duce an event-condition that is state-dependent. Consider the
following candidate strategy: an agent broadcasts its belief on
a state 6 only if it is sufficiently lower than what it was when
it last broadcasted about . While an improvement over the
“fixed-threshold” strategy, this new scheme has the following
demerit: broadcasts are not agent-specific. In other words,
going back to our example, agent 2 (resp., agent 3) might
transmit unsolicited information to agent 1 (resp., agent 2) -
information, that agent 1 (resp., agent 2) can do without. To
remedy this, one can consider a request/poll based scheme,
where an agent receives information from a neighbor only
by polling that neighbor. However, now each time agent 2
needs information from agent 1, it needs to place a request,
the request itself incurring extra communication.

Given the above issues, we ask: Is it possible to devise
an event-triggered scheme that eventually stops unnecessary
broadcasts from agents 3 to 2, and 2 to 1, while preserving
essential information flow from agents 1 to 2, and 2 to 3?
This leads us to the event condition in Eq. 4. For each § € ©,
an agent ¢ broadcasts p;.(6) to a neighbor j € N; only

3If t + 1 ¢ I, this step gets bypassed, and N; ;+1(0) = 0,V0 € ©.

if p;4(0) has adequate “innovation” w.r.t. 7’s last broadcast
about 6 to j, and j’s last broadcast about 6 to 7. A decreasing
threshold function ~(t) makes it progressively harder to sat-
isfy the event condition in Eq. 4, leading to fewer broadcasts
as time progresses.* The rationale behind checking the event
condition only at time-steps in I is twofold. First, it saves
computations since the event condition need not be checked
all the time. Second, and more importantly, it provides an
additional instrument to control communication-sparsity on
top of event-triggering.

We close this section by highlighting that our event
condition (i) is #-specific since an agent may not be equally
informative about all states; (ii) is agent-specific and incor-
porates feedback from neighbors; (iii) can be checked using
local information only; and (iv) leverages the structure of the
specific problem under consideration.

IV. MAIN RESULTS

In this section, we state the main results of this paper, and
discuss their implications. Proofs of all results are deferred to
Section V. To state the first result concerning the convergence
of our learning rule, let G(-) be used to denote the integral
of g(-), and G~1(-) represent the inverse of G(-). Since g(-)
is strictly positive by definition, G(-) is strictly increasing,
and hence, G~1(-) is well-defined.

Theorem 1. Suppose the functions g(-) and ~(-) satisfy:

I lim log(1/~())

lim w:ae((),l;

t—00 t

=0.

(%)
Furthermore, suppose the following conditions hold. (i) For
every pair of hypotheses 0,0, € ©, the source set S(6,,,0,)
is non-empty. (ii) The communication graph G is connected.

Then, the event-triggered distributed learning rule governed
by (1), 2), (3), and (4) guarantees the following.

o (Consistency): For each agent i € V, u; +(6*) — 1 a.s.

o (Exponentially Fast Rejection of False Hypotheses):
For each agent i € V), and for each false hypothesis
0 € ©\ {0*}, the following holds:

t—o0

M > max OCd(U7i)Kv(9*7 9) a.s.

~ veS(0%,0)
(6)

0

At this point, it is natural to ask: For what classes of

functions g(-) does the result of Theorem 1 hold? The
following result provides an answer.

liminf —
t—o00 i

Corollary 1. Suppose the conditions in Theorem 1 hold.

(i) Additionally, suppose g(x) = xP Vx € R, where p is
any positive integer. Then, for each 0 # 0*, and i € V:

lim inf —
t—o0

log 11;.+(0
MZ max K,(0%,0) a.s. (7)
t veS(6+,6)

4We will see later on (Prop. 2) that for the network in Fig. 1, this scheme
provably stops communications from agents 3 to 2, and 2 to 1, eventually.



(il) Additionally, suppose g(x) = p*,Va € R, where p is
any positive integer. Then, for each 0 # 0*, and i € V:
log pui,¢(6) Ky (6%,6)

im inf - ———~~ > —— q.s.
Iminf =2 2 Bax  —adea 5 @

O

Proof. The proof follows by directly computing the limit in
Eq. (5). For case (i), a = 1, and for case (i), « = 1/p?. O

Clearly, the communication pattern between the agents is
at least as sparse as the sequence I. The event-triggering
strategy that we employ introduces further sparsity, as we
formally establish in the next result.

Proposition 1. Suppose the conditions in Theorem I are met.
Then, there exists 0 € Q such that P (Q) =1, and for each
w € Q, 3T (w), Ta(w) < oo such that the following hold.
(i) At each ty, € I such that t,, > Th(w), 154, (0%) #
1,Vi eV and Vj € N;.
(i) Consider any 6 # 0%, and i ¢ S(0*,0). Then, at each
ty > To(w), 3j € N; such that 1,5, (0) # 1.°
O
The following result is an immediate application of the
above proposition.

Proposition 2. Suppose the conditions in Theorem 1 are
met. Additionally, suppose G is a tree graph, and for each
pair 0,,0, € ©, |S(0,,0,)| = 1. Consider any 6§ # 6%
and let S(0*,0) = vy. Then, each agent i € V \ {vg} stops
broadcasting its belief on 0 to its parent in the tree rooted
at vg eventually almost surely. O

Before we proceed to prove the results stated in this
section, a few comments are in order.

e On the nature of g(-) and ~(:): Intuitively, if the
event-interval function g(-) does not grow too fast, and the
threshold function ~v(-) does not decay too fast, one should
expect things to fall in place. Theorem | makes this intuition
precise by identifying conditions on g(-) and «(-) that lead
to exponentially fast learning of the truth. In particular, our
framework allows for a considerable degree of freedom in the
choice of v(-) and g(-). Indeed, from (5), we note that any
~(+) that decays sub-exponentially works for our purpose.
Moreover, Corollary 1 reveals that up to integer constraints,
g(-) can be any polynomial or exponential function.

e Design trade-offs: What is the price paid for sparse
communication? To answer the above question, we set as
benchmark the scenario studied in our previous work [7],
where we did not account for communication efficiency.
There, we showed that each false hypothesis 6 gets rejected
exponentially fast by every agent at the network-independent
rate: max,cy K, (6%, 0) - the best known rate in the existing
literature on this problem. We note from (6) that it is only
the event-interval function g(-) that potentially impacts the
learning rate, since < 1. However, from claim (i) in
Corollary 1, we glean that, polynomially growing inter-
communication intervals between the agents, coupled with

SIn this claim, j might depend on ;.

our proposed event-triggering strategy, lead to no loss in
the long-term learning rate relative to the benchmark case
in [7], i.e., communication-efficiency comes essentially for
“free” under this regime. Under exponentially growing event-
interval functions, one still achieves exponentially fast learn-
ing, albeit at a reduced learning rate that is network-structure
dependent (see Eq. 8). The above discussion highlights the
practical utility of our results in understanding the trade-offs
between sparse communication and the rate of learning.

e Sparse communication introduced by event-
triggering: Observe that being able to eliminate each false
hypothesis is enough for learning the true state. In other
words, agents need not exchange their beliefs on the true
state (of course, no agent knows apriori what the true state
is). Our event-triggering scheme precisely achieves this, as
evidenced by claim (i) of Proposition 1: every agent stops
broadcasting its belief on §* eventually almost surely. In ad-
dition, an important property of our event-triggering strategy
is that it reduces information flow from uninformative agents
to informative agents. To see this, consider any false hypoth-
esis 0 # 0*, and an agent ¢ ¢ S(0*,6). Since i ¢ S(6*,6),
agent i’s local belief m; +(#) will stop decaying eventually,
making it impossible for agent i to lower its actual belief
;i (0) without the influence of its neighbors. Consequently,
when left alone between consecutive event-monitoring time-
steps, ¢ will not be able to leverage its own private signals to
generate enough “innovation” in p; +(0) to broadcast to the
neighbor who most recently contributed to lowering 1; +(6).
The intuition here is simple: an uninformative agent cannot
outdo the source of its information. This idea is made precise
in claim (ii) of Proposition 1. To further demonstrate this
facet of our rule, Proposition 2 stipulates that when the
baseline graph is a tree, then all upstream broadcasts to
informative agents stop after a finite period of time.

A. Asymptotic Learning of the Truth

If asymptotic learning of the true state is all one cares
about, i.e., if exponential convergence is no longer a consid-
eration, then one can allow for arbitrarily sparse communi-
cation patterns, as we shall now demonstrate. Accordingly,
we first allow the baseline graph G(t) = (V,£(t)) to now
change over time. To allow for this generality, we set I = N,
i.e., the event condition (4) is now monitored at each time-
step. Furthermore, we set v(¢t) = v € (0,1],¥t € N. At
each time-step ¢t € N,, and for each § € O, an agent
i € V decides whether or not to broadcast p;(f) to an
instantaneous neighbor j € N;(t) by checking the event
condition (4). While checking this condition, if agent ¢ has
not yet transmitted to (resp., heard from) agent j about 6
prior to time ¢, then it sets fi;;.(0) (resp., fi;;.(6)) to 1.
Update rules (1), (2), (3) remain the same, with AV; () now
interpreted as N; ;(0) = {j € Ni(t)|1;;.(0) = 1}. Finally,
by an union graph over an interval [¢y, ¢5], we will imply the
graph with vertex set 1, and edge set U!2, £(7). With these
modifications in place, we have the following result.

Theorem 2. Suppose for every pair of hypotheses 0,0, €
O, S(6,,04) is non-empty. Furthermore, suppose for each



t € N, the union graph over [t,00) is rooted at S(0,,0y).
Then, the event-triggered distributed learning rule described
above guarantees p; +(0*) — 1 a.s. Vi € V. O

V. PROOFS

In this section, we provide proofs of all our technical
results. We begin by compiling various useful properties of
our update rule which will come handy later on.

Lemma 1. Suppose the conditions in Theorem 1 hold. Then,
there exists a set Q0 C ) with the following properties. (i)

PP (Q) = 1. (ii) For each w € Q, there exist constants
n(w) € (0,1) and t'(w) € (0,00) such that

mit(0%) > n(w), [t (0°) > n(w), vt > t'(w),Vi € V. (9)
(iii) Consider a false hypothesis 0 # 0%, and an agent
i € §(6*,0). Then on the sample path w, we have:

lim inf — > K;(6%,0) .

log 11i,4(6) (10)
t—00 t

O

Although we consider a modified update rule as compared
to that in [7], the proofs of claims (ii) and (iii) in the above
Lemma essentially follow the same arguments as that of [7,
Lemma 2] and [7, Lemma 3], respectively; we thus omit
them here. The following result will be the key ingredient in

proving Theorem 1.

Lemma 2. Consider a false hypothesis 0 € ©\ {0*} and an
agent v € §(0*,0). Suppose the conditions stated in Theorem
1 hold. Then, the following is true for each agent i € V:

(11)

lim inf —
t—o00

logpiel®) 5 pawi g, (6%,6) a.s
t B S

O

Proof. Let Q C Q be the set of sample paths for which
assertions (i)-(iii) of Lemma 1 hold. Fix a sample path w €
€, an agent v € S(6*,6), and an agent i € V. When i = v,
the assertion of Eq. (11) follows directly from Eq. (10) in
Lemma 1. In particular, this implies that for a fixed € > 0,
3ty (w, 6, €), such that:

fhy,1(0) < e~ E =t 'yt > ¢ (w,0,¢).  (12)
Moreover, since w € Q, Lemma 1 guarantees the existence
of a time-step ¢'(w) < oo, and a constant n(w) > 0, such that
on w, m;+(0%) > n(w), G +(0*) > n(w), vt > t'(w),vi € V.
Let ¢, (w, 0, €) = max{t'(w), t,(w,0,€)}. Let t, > t, be the
first even-monitoring time-step in I to the right of #,.® Now
consider any t; € I such that k& > ¢. In what follows, we
will analyze the implications of agent v deciding whether or
not to broadcast its belief on 6 to a one-hop neighbor j € N,
at tg. To this end, we consider the following two cases.

6We will henceforth suppress the dependence of various quantities on
w, 0, and € for brevity.

Case 1: 1., () =1, i.e., v broadcasts 1,4, () to j at
ty. Thus, since v € Nj 4, (0), we have [ij4,(0) < iy, (6)
from (1). Let us now observe that V¢ > t; + 1:

(a) 0
T ———.
2 min{7i;e—1(6p), m;0(0p)}
=

® o, (6) (©) e~ K009t

> min{fi;—1(0p), 75,6 (0p)} K

p=1

(13)
In the above inequalities, (a) follows directly from (3),
(b) follows by noting that the sequence {fi;+(#)} is non-
increasing based on (1), and (c) follows from (12) and the
fact that all beliefs on 6* are bounded below by 7 for ¢ > £,,.
Case 2: 1.+, (0) # 1, i.e., v does not broadcast i, ¢, (0)
to j at t;. From the event condition in (4), it must then
be that at least one of the following is true: (a) jy ¢, (6) >
(tk ozt (9, and (6) fut, () > A(t)itju, (6). Suppose
Pty (0) > Y(t)fovj e, (0). From (12), we then have:

/’l”U t (9) e_(Kv(a*»e)_E)tk
Uk <
v(tx) v(tk)

In words, the above inequality places an upper bound on
the belief of agent v on € when it last transmitted its belief
on 0 to agent j, prior to time-step tx; at least one such
transmission is guaranteed to take place since all agents
broadcast their entire belief vectors to their neighbors at ¢;.
Noting that i, +(0) < fiyj, (), ¥t > tg, using (3), (14), and
arguments similar to those for arriving at (13), we obtain:

fiwj,t (0) < (14)

—(Ku(0".0)—)te o= (Ko (07,0)—€)tn

e

7vt 2 tk: + 17
15)
where the last inequality follows from the fact that v(-) is

a non-increasing function of its argument. Now consider
the case when fi, 4, (6) > (tk)ftjv,i, (). Following the

i (0) <

ny(tr) n(t)

same reasoning as before, we can arrive at an identical
upper-bound on i, ¢, (f) as in (14). Using the definition
of fijv4,(0), and the fact that agent j incorporates its own
belief on 6 in the update rule (1), we have that fi;(0) <
fijvt, (0),¥t > ti. Using similar arguments as before,
observe that the bound in (15) holds for this case too.
Combining the analyses of cases 1 and 2, referring to (13)
and (15), and noting that y(t) € (0, 1], V¢ € N, we conclude
that the bound in (15) holds for each t;, € I such that t;, > £,,.
Now since tj1 — tx = g(k), for any 7 € N} we have:

gt+7—1
torr =tg+ D g(2). (16)
z=q
Next, noting that g(-) is non-decreasing, observe that:
q+T q+7
tq + / g(z — 1)dz < tgpr <ty + / g(z)dz. (A7)
q q

The above yields: I(q,7) = t
tgrr <tq+G(g+7)—G(q)

Q

+Gg+7-1)-G(g—1) <
u(q, 7). Fix any time-step ¢ >

12



u(q, 1), let 7(t) be the largest index such that u(q, 7(t)) < ¢,
and 7(t) be the largest index such that ¢, 7« < t. Observe:

iy <ty < tyrd & lgrely) = tgprin <5 (18)

Using the above inequality, the fact that I(q, 7(2)) < tg4r(s)s
and referring to (15), we obtain:
K0 D)=t giry o= (Ku(8*.0)=Ol(a7 (1))
my(t) m(t)

(19)
From the definition of 7(¢), we have ¢ + 7(¢t) =
[G71(t —ty + G(q))] — 1. This yields:
g, (1) =t + G(IGTH(t —tg + G(9)] —2) = G(g — 1)

>ty + GGt —t, +G(q)) —2) — G(g—1).
(20)
From (19) and (20), we obtain the following Vt > u(q,1):

i (0) <

_logual®) | GO g e gy logC _log(1/2(1)

t t t t 21
where G(t) = G(G~'(t — t, + G(q)) — 2), and ¢ =
e~ (Ko (07.0)=6)(ta—G(a=1)) /j Now taking the limit inferior
on both sides of (21) and using (5) yields:

lim inf —w > (K, (0%,0) —¢).  (22)

t—o0

Finally, since the above inequality holds for any sample path
w € Q, and an arbitrarily small ¢, it follows that the assertion
in (11) is true for every one-hop neighbor j of agent v.

Now consider any agent i such that d(v,i) = 2. Clearly,
there must exist some j € N, such that i € N;. Following
an identical line of reasoning as before, it is easy to see that
with P?" -measure 1, i +(0) decays exponentially at a rate
that is at least o times the rate at which p;(0) decays to
zero. From (22), the latter rate is at least oK, (0*,6), and
hence, the former is at least a? K, (0*,6). This establishes
the claim of the lemma for all agents that are two-hops away
from agent v. Since G is connected, given any i € V, there
exists a path P(v,4) in G from v to i. One can keep repeating
the above argument along the path P(v,¢) and proceed via
induction to complete the proof. O

We are now in position to prove Theorem 1.

Proof. (Theorem 1) Fix a 6 € ©\ {#*}. Based on condition
(i) of the Theorem, S(6*, 0) is non-empty, and based on con-
dition (ii), there exists a path from each agent v € S(0*, ) to
every agent i € V\ {v}; Eq. (6) then follows from Lemma 2.
By definition of a source set, K, (6*,0) > 0,Vv € §(0*,0);
Eq. (6) then implies lim;_, o p;+(0) = 0 as., Vi € V. O

Proof. (Proposition 1) Let the set ) have the same meaning
as in Lemma 2. Fix any w € Q, and note that since the
conditions of Theorem 1 are met, p; +(0*) — 1 on w, Vi € V.
We prove the first claim of the proposition via contradiction.
Accordingly, suppose the claim does not hold. Since there are
only finitely many agents, this implies the existence of some
i € V and some j € NV;, such that i broadcasts its belief on
6* to j infinitely often, i.e., there exists a sub-sequence {t,, }

of {t;} at which the event-condition (4) gets satisfied for 6*.
From (4), i, (0%) < Ve i g, (0%),Vk € Ny, where v £
v(tp,)- This implies limy_, Histy, (6*) = 0, contradicting
the fact that on w, limy;_o 1 +(0*) = 1.

For establishing the second claim, fix w € Q, 0 #* 0%,
and i ¢ S(0*,0). Since i ¢ S(0*,0), there exists f; < 0o
and 77 > 0, such that m;,(0) > 7,Vt > t;. This follows
from the fact that since € is observationally equivalent to 6*
for agent ¢, the claim regarding ; +(6*) in Eq. (9) applies
identically to m; +(f). Note also that since the conditions
of Theorem 1 are met, w;¢(#) — 0 on w. From (1),
fi1(0) — 0 as well. Thus, there must exist some ty < 00
such that min{ﬂi,t(ﬂ),ﬁi7t+1(9)} = ,ELLt(Q),Vt > fg. Let
t = max{t,f,}. Consider any t, € I,t, > . We claim:

(23)
(24)

it (0) > fisg,, (0),Vt € [ti + 1,t,41], and
Rit(0) > fiig, (0),Vt € [tr, tryr).

To see why the above inequalities hold, consider the up-
date of p; 4, +1(0) based on (3). Since t;, > f, we have
min{f; ¢, (0), mit,+1(0)} = fii,(0). Noting that the de-
nominator of the fraction on the R.H.S. of (3) is at most 1, we
obtain: f1; 4, +1(0) > [is1, (0). If tx+1 = ty41, then the claim
follows. Else, if t;, +1 < tx11, then since no communication
occurs at t; + 1, we have from (1) that fi; ., 4+1(0) =
min{f; ¢, (0), i t,+1(0)} > i ¢, (0). We can keep repeating
the above argument for each ¢ € [t;+1,%x41] to establish the
claim. In words, inequalities (23) and (24) reveal that agent
1 cannot lower its belief on the false hypothesis 6 between
two consecutive event-monitoring time-steps when it does
not hear from any neighbor. We will make use of this fact
repeatedly during the remainder of the proof. Let ¢, > t be
the first time-step in I to the right of £. Now consider the
following sequence, where k € N:

tpk+1 = 1nf{t el:t> tpk,ﬂi,t(e) < ﬂi,t,l(e)}.

The above sequence represents those event-monitoring time-
steps at which fi; .(6) decreases. We first argue that {t,, }
is well-defined, i.e., each term in the sequence is finite.
If not, then based on (24), this would mean that f, ((6)
remains bounded away from 0, contradicting the fact that
f;+(8) — 0 on w. Next, for each £k € Ny, let j, €
argminje/\/i.t% (©)u{i} Hity, (0). We claim that ¢ # jp,. To
see why this 1s true, suppose, if possible, i = j,,. Then,
based on the definition of ¢,,, we would have ity 9) =
Hit, (0) < iz, —1(0). However, as t,, > ts, we have
from (3) that p1; ¢, 0) > ﬂi,t,,k—1(9), leading to the desired
contradiction. In the final step of the proof, we claim that ¢
does not broadcast its belief on 0 to j,, over [t,, +1,1p,, ]

To establish this claim, we start by noting that based
on the definitions of j,, and tp,, i, (0) = wj,, +,, (0).
Let us first consider the case when there are no inter-
mediate event-monitoring time-steps in (t,,,p,.,), i.e.,
tp, and ., are consecutive terms in I. Then, at ¢, _,,
Py istog (0) = wj,, t,, (0), since no communication oc-
curs over (tp,,t,, ). Moreover, using (23), Mty 6) >
Hity, (0) = pj,, t,, (0). Thus, the event condition (4) gets

(25)



violated at 7, ,, and ¢ does not broadcast its belief on 0
to jp,. Next, consider the scenario when there is exactly
one event-monitoring time-step - say ¢ € I - in the interval
(tpystp.s)- Since tp,, and ¢ are now consecutive terms in I,
the fact that 1;;, (6) # 1 follows from exactly the same
reasoning as earlier. We argue that 1; i #(0) # 1 as well.
To see this, suppose that j,, does in fact broadcast Iy, #(0)
to 7 at £. For this to happen, the event condition (4) entails:
Mt #(6) <~ E)M,jpk-, top, 0) = v, iy, { (0) < it (0).
Since fi;7-1(0) = [ig,, (0) from (24), 1; ;7(6) = 1
would then imply that fi, 7(6) < fi; ;- 1(9), v101at1ng the
fact that ¢ < ¢ The above reasoning suggests that

Pk+1-
fjy it (0) = g, 1, (6),VE € ( pk’tpk+1]' Moreover, since
fii,t(8) does not decrease at t (as ¢ < t,, ), we have

from (23) that p;.(6) > Fit, @) = Bip o (0),vt €
(tpi»tpysy)- It follows from the preceding discussion that
(4) gets violated at tp, ,,, and hence 1;;, tonin () # 1. The
above arguments readily carry over to the case when there
are an arbitrary number of event-monitoring time-steps in the
interval (t,, ,tp,.,). Thus, we omit such details.

We conclude that over each interval of the form
(tpystprii)s B € N, there exists a neighbor j, € Nj to
which agent 7 does not broadcast its belief on #. We can
obtain one such ¢, for each ¢ ¢ S(0*,0), and take the
maximum of such time-steps to obtain 75(w). O

Proof. (Proposition 2) Let us fix § # 0*, and partition the
set of agents V \ {vg} based on their distances from vy.
Accordingly, we use L£,(6) to represent level-¢ agents that
are at distance ¢ from vy, where ¢ € N_. Let the agent(s)
that are farthest from vy be at level g. Now consider any
agent ¢ € L;(6). Based on the conditions of the proposition,
note that i ¢ S(6*,60), and the only neighbor of i is its
parent in the tree rooted at vy, denoted by p;(6). Thus,
claim (ii) of Proposition 1 applies to agent 7, implying that
agent i stops broadcasting its belief on 6 to p;(6) eventually
almost surely. Next, consider an agent j € Lz 1(0). We
have already argued that after a finite number of time-steps,
7 will stop hearing broadcasts about 6 from its children in
level g. Thus, for large enough k, N 4, (f) can only comprise
of p;(6), namely the parent of agent j in level § — 2. In
particular, given that j ¢ S(0*,0), the decrease in fi;.(6)
at time-steps defined by (25) can only be caused by p;(6).
It then readily follows from the proof of Proposition 1 that
j will stop broadcasting s;.(6) to p;(6) eventually almost
surely. To complete the proof, we can keep repeating the
above argument till we reach level 1. U

Proof. (Theorem 2) The proof of this result is similar in
spirit to that of Theorem 1. Hence, we only sketch the
essential details. We begin by noting that the claims in
Lemma 1 hold under the conditions of the theorem - this
can be easily verified. Let {2 have the same meaning as in
Lemma 2. Fix w €  and an arbitrarily small ¢ > 0. Since
PP (Q) = 1, to prove the result, it suffices to argue that
for each false hypothesis 6 # 6*, 3T(w, 0, €) such that on
w, pi+(0) < e,Vt > T(w,0,¢),Vi € V. Recall that based on
Lemma 1, there exists a time-step t'(w) < oo, and a constant
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Fig. 2. Plots demonstrating the belief-evolutions and communication
patterns for the network in Fig. 1.

n(w) > 0, such that on w, m;(6%) > n(w), ;. (6%) >
n(w),vt > t'(w),Vi € V. Set &w) = min{e,yn(w)}.
Also, from Lemma 1, we know that there exists ¢ such that
pit(0) < @vlvt >t Vi e S(0*,0). Let ty = max{t',t}.
Since the union graph over [ty,o0) is rooted at S(6*,6),
there exists a set F1(0) € V \ S(6*,0) of agents such that
each agent in F7(6) has at least one neighbor in S(6*,0) in
the union graph. Accordingly, consider any j € F1(6), and
suppose j € N;(7), for some i € S(0*,0), and some T > .
The cases 1,;,(6) = 1 and 1;;,(f) # 1 can be analyzed
exactly as in the proof of Lemma 2 to yield:

i
pi(0) < £ <evi- )Vt > T,
my

(26)
where the last inequality follows by noting that € < 7. Let
t; > to be the first time-step by which every agent in F;(6)
has had at least one neighbor in S(6*, 8). Then, based on the
above reasoning, ;+(0) < V=V vt > V5 € Fi(6).
If V\ {S(6*,0) U F(6)} = 0, then we are done. Else,
given the fact that the union graph over [f;, 00) is rooted at
S§(6*,0), there must exist a non-empty set F»(#) such that
each agent in F2(6) has at least one neighbor from the set
S(6*,6) U F1(0) in the union graph. Reasoning as before,
one can conclude that there exists a time-step o > 1 such
that p;:(0) < eIVI=2) ¥t > 1,V € Fp(6). To complete
the proof, we can keep repeating the above construction till
we exhaust the entire vertex set V. O

VI. SIMULATIONS

In this section, we validate our theoretical findings via
a simple simulation example. To do so, we consider the
network in Fig. 1. We observe from Fig. 2 that (i) all agent
learn the true state; (ii) all agents stop broadcasting about the
true state 6, after the first time-step; and (iii) all broadcasts
along the path 3 — 2 — 1 stop after the first time-step.

7 As before, we have suppressed dependence of various quantities on w, 6,
and e, since they can be inferred from context.



VII. CONCLUSION

We introduced a new event-triggered distributed learn-

ing

rule and identified conditions under which it leads to

exponentially fast learning of the true state. In particular,
we identified sparse communication regimes where one can
recover the best known learning rate in the existing literature.

We

then demonstrated, both in theory and in simulations,

that our event-triggered scheme has the ability to reduce
information flow from uninformative agents to informative
agents in the network.
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