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We present a wave function representation for the canonical ensemble thermal density matrix by projecting
the thermofield double state against the desired number of particles. The resulting canonical thermal state
obeys an imaginary-time evolution equation. Starting with the mean-field approximation, where the canonical
thermal state becomes an antisymmetrized geminal power wave function, we explore two different schemes to
add correlation: by number-projecting a correlated grand-canonical thermal state, and by adding correlation
to the number-projected mean-field state. As benchmark examples, we use number-projected configuration
interaction and an AGP-based perturbation theory to study the Hydrogen molecule in a minimal basis and

the six-site Hubbard model.

I. INTRODUCTION

Thermal properties of many-body systems can be com-
puted either in the canonical ensemble or the grand-
canonical ensemble. The choice of ensemble makes no
practical difference in the final result in large systems.
It does so, however, for a finite system. This is because
the relative fluctuation in particle number in the grand-
canonical ensemble scales as the inverse square root of
particle number itself, i.e.

1
<N>QC <N>gc , ( )
and vanishes in the limit (V),. — oo, where (...)4. de-
notes the grand-canonical thermal expectation value.

A wide range of methods are available to study the
thermal properties of quantum systems within the grand-
canonical ensemble, e.g., thermal Hartree-Fock,"? per-
turbation theories,®>® path integral and Green’s func-
tion methods,® finite-temperature Quantum Monte Carlo
(QMCQC)," 16 density matrix renormalization group and
density functional theory based methods,'”2? as well as
the more recently explored thermal equivalents of con-
figuration interaction and coupled cluster,?® 34 and algo-
rithms for quantum computers.3°? =37

In contrast, canonical ensemble techniques are scarce
and even fewer are suitable for efficient application to
correlated electronic systems. One way to enforce a fixed
number of particles is by introducing a second Lagrange
multiplier s for the fluctuation, in much the same spirit
as the chemical potential 11; acts as a Lagrange multiplier
to fix the number of particles. That is, one can either
define a generalization of the density operator as

p=exp =B (H - m(N = No) = u2(N* = N3))|, (2)

where the parameters 1 and po enforce the constraints,

(N)=No, and, (N?)=Ng, 3)
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or introduce corrections to the grand-canonical ensemble
averages by subtracting contributions from wrong num-
ber sectors in the Hilbert space.?® While this provides
the convenience of using several available grand-canonical
methods, such simultaneous optimization problems can
be numerically tedious as the optimized values of uo are
generally very large and ideally infinite, something which
has also been observed in spin-projection.?® On the other
hand, we can evaluate the ensemble averages in the ap-
propriate number sector to begin with, e.g. in the min-
imally entangled typical thermal states algorithm,'?:*°
canonical ensemble perturbation theory,*! and projection
based techniques.*?~45

For a wide variety of problems which involve iso-
lated finite systems with a fixed number of particles, the
canonical ensemble is more appropriate. Examples of
such systems include molecules in a warm gaseous phase
(of interest in geochemistry),*¢ ultra-cold chemical sys-
tems,*”*8 quantum wires with number conserving Majo-
rana modes,*® 5! and superconductivity in small grain
systems.”®> Besides, the canonical ensemble provides a
potential computational advantage over grand canonical
alternatives since it eliminates the need for finding the
appropriate chemical potential. Evidently, a robust and
convenient framework to study canonical-ensemble finite-
temperature properties of finite many-body fermionic
systems is desirable.

In this manuscript, we leverage the thermofield
dynamics®® % to construct a number-projected ther-
mal wave function, called the canonical thermal state,
which provides an exact wave function representation
of the canonical ensemble density matrix. It obeys
an imaginary-time Schrodinger equation which can be
solved at various levels of approximation, and at the level
of mean-field, reduces to a number-projected Bardeen-
Cooper-Schrieffer (BCS) wave function, also known as
the antisymmetrized geminal power (AGP) state.”” A
similar number-projected BCS theory for the canoni-
cal thermal state was also proposed by the authors of
Refs. 42-44. Mean-field description, however, misses out
on a lot of important physics. Here, we provide a recipe
to generalize correlated ground-state theories (e.g., per-
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turbation theory, configuration interaction and coupled
cluster) to finite-temperature. Moreover, the identifica-
tion of the mean-field state as an AGP allows us to ex-
ploit the newly developed tools for efficient evaluation
of the thermal expectation values via AGP density ma-
trices.?® We restrict our discussion to electronic systems,
but generalization to other fermionic and bosonic systems
is straightforward.

II. THERMOFIELD DYNAMICS

Thermofield dynamics is conventionally formulated for
the grand-canonical ensemble, where it constructs a wave
function representation of the thermal density operator
by introducing a conjugate copy of the original system
such that the ensemble thermal averages can be expressed
as an expectation value over the thermal state,

s o) _ (T(B)|O(B))
<O> =Tr (e B(H N)O) = Wv (4)

where the thermal state |¥(5)) is given by
U (B)) = e PH=HNZT), (5a)
W) =) =TT (1+eef)l=-)  (5b)

P

Here 3, u, H and N are the inverse temperature, chemi-
cal potential, the Hamiltonian, and the number operator
respectively. The identity state |I) is the exact infinite-
temperature thermal state and is an extreme BCS state
with Cooper pairs formed by pairing physical particles
with the corresponding conjugate particles. The norm
of the state gives the partition function. The product
in Eq. 5b runs over all spin-orbitals p and |—;—) de-
notes the vacuum state for both the physical and conju-
gate systems. By its definition, the thermal state obeys
imaginary-time evolution equations, one each for 8 and
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where we have assumed that [H,N] = 0, as ab-initio

electronic systems are number-conserving.

Like the ground state, finding |¥(3)) exactly is possi-
ble only for very small systems with a few electrons, and
suitable approximations are generally required. The sim-
plest approximation is the mean-field approach, where H
is replaced with a one-body mean-field Hamiltonian Hy.
In the basis where Ho =} €pChcp, the resulting mean-
field thermal-state is a BCS state of the form

0(8, 1)) = =P Ho—#N)/2|),
=TI (1+e P midat) =), (1)
p

Higher order approximations are generally formulated
with the mean-field state as the reference,

(W (B3)) ~ QB, 1) |03, 1)), (8)

which resembles the interaction picture approach. We
exploited this theory in Refs. 30 and 31 to formulate
finite-temperature versions of configuration interaction
and coupled cluster theory. We recommend these articles
and references therein for further details on thermofield
theory.

Ill. CANONICAL ENSEMBLE THEORY

The canonical ensemble thermal state can be con-
structed by projecting the grand-canonical state against
the desired particle number Ny,

(W (B))e = Pno¥(B))ge; 9)

where Py, projects |¥(/3)) 4. onto the Fock-space with Ny
electrons. The particle-conserving property of H implies
that [H,Pn,] = 0, and the resulting canonical thermal
state obeys an imaginary-time evolution equation analo-
gous to its grand-canonical counterpart,

d
dp
Like the grand-canonical theory, a series of approxima-

tions can be introduced, from a simple mean-field theory
to higher order theories that add correlation effects on it.

() =~ HIW(E)).. (10)

A. Mean-field formalism

The imaginary-time evolution equation can be inte-
grated within the mean-field approximation, H ~ Hj.
As for the grand-canonical theory, using an H that car-
ries no implicit temperature dependence, and working in
a basis where it is diagonal, the mean-field state becomes

[Wo(B))e = Pnol0(B, 1 = 0)), (11a)
=P [T (1€ 2ckel ) 1=-),  (11b)
=P [T (148 )= =), (11c)
= NLO! (F@NO |=;=) = [Pacr(B)), (11d)

where 7, = e #/2 and we have identified PJ = CLE;
as the pair-creation operator. As already noted, the un-
projected product state in Eq. 11b is a BCS state and
its number-projected version is well known as AGP, with
the geminal creation operator FE defined as

rh=> "np}. (12)
P



Identification of the mean-field state as an AGP is inter-
esting and, with recent developments on efficient evalua-
tion of overlaps and expectation values, as well as gemi-
nal based correlated wave function theories,”® %2 provides
a good starting point to include correlation effects. An
improved mean-field description can also be obtained by
optimizing both the energy levels € and the one-electron
basis to find an Hy that minimizes the Helmholtz free en-
ergy, in much the same way as Mermin’s thermal Hartree
Fock theory in Ref. 1, and as discussed in Refs. 42-44.

B. Correlated thermal state

A plethora of approximate wave function methods are
available to study ground-state properties of correlated
electronic systems. As we have shown in Refs. 30 and 31,
the thermofield formalism allows for a direct generaliza-
tion of these methods to finite-temperature. Since phys-
ical electronic systems conserve the number of particles,
ie. [H,Pn,] = 0, we face two options while construct-
ing a correlated approximation to the canonical thermal
state: projection after correlation (PAC), and correla-
tion after projection (CAP). In PAC, we first construct
an approximate grand-canonical thermal state by adding
correlation on a broken-symmetry mean-field reference
(thermal BCS in our case) and then perform the number-
projection,

(W) =~ P, 2(5) [0(5));

The correlation operator € is built out of number non-
conserving BCS quasiparticles,®%* and the un-projected
part of the thermal state, ©(3)|0(5)), looks like a stan-
dard single-reference CI wave function, which simplifies
the process of correlating the reference. In order to carry
out the projection efficiently, we use an integral form for

0(8)) = e~ P02y, (13)

the projection operator,5°-67 i.e.
1 27 .
Py = 5 i dpe'®No=N), (14)

Computing matrix elements and overlaps in the presence
of P involves the use of transition density matrices and
can be complicated (see e.g., Refs. 68-72) For CAP, we
use the thermal AGP state in Eq. 11 as the reference and
add correlation using a number-conserving wave opera-
tor,

W) =~ A(B)|[Wacr(B)) = AMB)Pn,|0(B))- (15)

Contrasting with CAP, the projection problem here is
trivial but adding correlation becomes complicated.
Both of these techniques have been explored exten-
sively for ground-state methods.?¥ 62697175 Here, we
discuss an example for each: a finite-temperature gen-
eralization of the number-projected CI, along the lines
discussed by Tsuchimochi et. al. in Ref. 69, and an
imaginary-time perturbation theory based on the ther-
mal AGP as the reference, as explored in Refs. 59-61

1. Projection after correlation

The number-projected thermal CI state is parameter-
ized as

[T(8))e = Pr,e (1+T)[0(8)), (16)

where |0(3)) is the thermal BCS state at inverse temper-
ature 3, to keeps track of the norm of the state (related
to the grand potential) and T creates quasiparticle exci-
tations on the BCS,

v 1 s
T = Z tpqa;ag + 1 Z tpqrsai,af]aial +.... (17
Pq pars

The CI amplitudes can be determined in two different
ways. One can compute them in the grand-canonical en-
semble, as we have done in Ref. 30, and then perform a
one-shot projection. This approach is generally known
as projection after variation (PAV). Alternatively, the
amplitudes can be computed in the presence of the pro-
jection operator by solving the imaginary-time evolution
equation, referred to as variation after projection (VAP).
VAP allows for more variational freedom and thus, per-
forms better than PAV. Accordingly, we focus our atten-
tion on VAP hereafter.

Substituting this CI ansatz into Eq. 10 and evaluating
overlaps of the resulting equation against the ground and
excited BCS states, we get

2m ) dt dT
ve' (No—N) 0, 20
/O de (0(B)|vei?No—N <(1+T)d6 +d5>0(ﬂ)>

27
= [ ds @), (9
0
where H is the effective Hamiltonian,
_ 1
= —§(H(1+T) . (1+T)HO), (19)

and v takes values from {1, aqa,, GrGsaqap, ...} to con-
struct ground and excited BCS states for the bra. Both
the amplitudes as well as the quasiparticle operators are
functions of temperature, therefore the S-derivative can
be broken down into the derivative of the amplitudes and
that of the operator parts,

AT dampT | dopT

g~ dp ag -
We can rewrite Eq. 18 as a system of first-order ODEs
that govern the evolution of the Cl-amplitudes,

ot,,
Z#:Auu . % = BV7 (21)

(20)

where A is the overlap matrix,

Auu:/ 7Td¢<V(ﬁ)|e_i¢(N_ND)£u|O(ﬁ)>7 (22a)
0

1+7T, p=1

i .. (22b)
7 € {afal, alalalal}

with £, = {
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FIG. 1. Error in the canonical-ensemble internal energy for (left) the Hydrogen molecule in STO-3G basis with a bond length
of 0.74A, and (right) the half-filled six-site Hubbard model at U/t = 2,6, computed using the projected BCS wavefunction
(mean-field), AGP-based perturbation theory, and projected CI truncated at doubles.

The right hand side vector B, is given by

27
B,= [ d¢{w(B)le”?WNIR|0(B)), (23a)
4, T
R=H-— 81,78 : (23b)

Here, we have used v, 4 as a composite notation for the
ground and excited quasiparticle states. Equation 21 can
be integrated starting from g = 0, where T' = 0 is the
exact initial condition.

2. Correlation after projection

For correlation after projection method, a numerical
integration to perform the projection is not required as
it uses a strictly number conserving state, the thermal
AGP, as the reference. As an example for this approach,
we consider the perturbation theory (PT), where we par-
tition the Hamiltonian as H = Hy + AV, where Hj is
the mean-field contribution and V acts as a perturba-
tion. The canonical thermal state can be expanded as a
series in A,

[W(B)) = [Wo) + A|T1) + N*|Wa) + ...,
= e PHo/2 (Igo) + Al1) + X2[d3) +...) -

(24a)
(24b)

Substituting this form for |¥) in Eq. 10 and collecting
terms at various orders in A gives 9|¢g) /01 = 0, or equiv-
alently |¥g) = |Uagp(B)) for terms at O(A\Y), and

0 1
57 10n) = =5 Ve g, )

5 (25)

for O(A™), n > 1. Integrating Eq. 25 yields perturbative
corrections identical to those in a time-dependent inter-
action picture theory. We work in a basis where Hj is

diagonal. This allows us to integrate the equations an-
alytically. Detailed notes on both the projected CI and
the AGP-based perturbation theory are available in the
Supplemental Information.

IV. IMPLEMENTATION DETAILS

We use ground-state Hartree-Fock eigenvalues to build
Hy, which in turn is used to define the mean-field refer-
ence state (thermal BCS for the projected CI, and ther-
mal AGP for the perturbation theory). We have used
PySCF™® to generate the Hartree-Fock eigenvalues and
Hamiltonian matrix elements. One can also choose an
Hj that optimizes the free energy at any given 8. While
this may lead to a better thermal reference state, it makes
the underlying equations very complicated and therefore,
in this work, we use a fixed Hy. This is also analogous
to typical interaction picture theories.

Nevertheless, to gauge the relevance of optimization, in
Fig. 1 of the Supplemental Information, we compare the
performance of thermal AGP with optimized and unopti-
mized n’s for various benchmark systems which we study
below. We notice that for larger systems, the optimiza-
tion of n’s does not introduce any significant improve-
ment, therefore justifying the use of an unoptimized Hy.

Both the projected CI (Eq. 21) and perturbation the-
ory (Eq. 25) equations are integrated starting from 5 = 0,
where mean-field is exact and the correct initial condition
is known. The cost for computing these equations is sim-
ilar to standard projected quasiparticle or AGP-based
CI, i.e. O(N®). While the PT2 corrections can be ob-
tained by a straightforward integration of the underlying
quantities along the imaginary-time axis, the projected
CI amplitudes satisfy a set of linear ordinary differential
equations (ODE). Exact solution of these ODE’s requires
inversion of the overlap matrix A, which is computation-
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FIG. 2. Comparison of total internal energies and specific heats for the half-filled six-site Hubbard model with U/t = 6 as a
function of temperature. The mean-field, CI and exact results highlight the difference between the grand-canonical (blue) and

the canonical (red) ensemble properties.
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FIG. 3. Comparison of total internal energies and specific heats for the six-site Hubbard model with U/t = 2 and four electrons
as a function of temperature. The mean-field, CI and exact results highlight the difference between the grand-canonical (blue)

and the canonical (red) ensemble properties.

ally expensive. Moreover, A may also have zero or near-
zero eigen modes. To avoid these issues, at each [-grid
point, we solve for the derivative vector iteratively us-
ing MinresQLP,”"""® a robust algorithm for singular lin-
ear systems, and then use a fourth order Runge-Kutta
method to perform the integration. This adds an addi-
tional cost to the projected CI theory. In all the data
presented below, we use a step size of AS = 0.005 or
smaller to integrate the ODE in projected CI, which is
sufficiently small to guarantee convergence for the Runge-
Kutta method (see Section V in the Supplemental Infor-
mation).

We also observe that the partial traces of higher rank
terms in the CI operator are proportional to the lower-
rank terms, e.g. CI with single and double excitations
is equivalent to CI with just the double excitations. To
avoid linear dependencies in the overlap matrix, we keep

only the highest rank terms in our truncated CI theory.

The number projection in the projected CI equations
is carried out numerically and converges rapidly as the
number of grid points becomes greater than the number
of spin-orbitals.

V. RESULTS

We apply the projected CI with double excitations
(CID), as well as the second order perturbation theory
(PT2) to small molecular and model systems to high-
light the performance of these finite-temperature canon-
ical ensemble methods against exact benchmark results.
Figure 1 shows error in the canonical-ensemble internal
energy for the Hydrogen molecule in the minimal STO-
3G basis and at a bond length of 0.74A (left) and the



six-site Hubbard model with U/t = 2,6 (right). The
results compare the performance of projected thermal
BCS or AGP (which is indicated in the plot by ‘mean-
field’), PAV and VAP projected thermal CISD and CID
respectively, and AGP-based PT2. We use the ground-
state spin-restricted Fock operator as our unoptimized
Hy for the Hydrogen molecule and the Hubbard model
with U/t = 2, and the spin-unrestricted Fock operator
for U/t = 6. Tt is apparent that the mean-field approach
misses out a lot of correlation, a part of which is re-
covered by CID and PT2. In fact, the VAP CID, like
its ground-state analogue and unlike the grand-canonical
CISD in Ref 30, is exact for a two-electron system like
the Hydrogen molecule, and expectedly outperforms the
PAV approach. The second order perturbation theory,
though not exact for the two-electron case, also improves
upon the mean-field results. All the CI and PT results
approach their appropriate ground-state counterparts in
the zero temperature limit, i.e. the number-projected
CID approaches ground-state CISD, and the AGP-based
perturbation theory approaches ground-state perturba-
tion theory as 8 — oo. In particular, we notice that
the AGP-based PT2 performs better than projected CI
for U/t = 2, but does not introduce any significant im-
provement over the mean-field for U/t = 6. This, in fact,
is analogous to the ground-state performance of these
theories (see Fig. 2 and Table 1 in the Supplemental
Information for the ground-state results).

To highlight the merits of the projected CI theory over
mean-field, as well as the distinction between canonical
and grand-canonical ensemble properties, we plot the to-
tal internal energy (left panel) and the specific heat (right
panel) for the six-site Hubbard model with U/t = 6 at
half-filling in Fig. 2. We compare the mean-field theory,
CISD for grand-canonical, and CID for the VAP pro-
jected CI against exact numerical results. We remind
the reader that the grand-canonical mean-field state is a
thermal BCS which, upon number-projection, gives the
canonical thermal state. We use the spin-unrestricted
Fock operator to construct Hy. We notice a striking dif-
ference in the behavior of the specific heat in the two
ensembles. The two different peaks in the exact specific
heat curves (shown in solid blue and red lines), which cor-
respond to the spin and charge excitation energy scales,
are more pronounced and distinct in the canonical en-
semble. While the mean-field theory completely fails to
account for the spin-excitation peak, the projected CID
performs better both qualitatively and quantitatively.

We repeat this exercise for the hole-doped six-site Hub-
bard model with U/t = 2 and four electrons to further
demonstrate the difference between the two ensembles.
We use the spin-restricted Fock operator to construct
Hy. The results are plotted in Fig. 3. Notice that un-
like the half-filled case, this hole-doped Hubbard model
shows appreciable different results in the canonical and
grand-canonical ensembles. This is because the half-filled
Hubbard model corresponds to the lowest energy state in
Fock space, and excitations to sectors with different par-

ticle number are high in energy and are effectively frozen
out in the low-temperature limit so that the grand canon-
ical ensemble becomes effectively canonical. This is not
the case for the doped Hubbard model.

Finally, we note that the low-temperature specific heat
results in Fig. 3, for both the grand-canonical and the
canonical CI, are noisy. We attribute this noise to two
different sources:

1. The evolution of the CI amplitudes is carried out
with respect to the inverse temperature 3, and we
compute the specific heat as

dE
g’

Any error in the integration due to the finite step
size would be amplified by a factor of 82. This ex-
plains the noise present in both the grand-canonical
and the canonical CI.

CU = _BQ (26)

2. Recall that for the projected CI, we solve a gener-
alized linear equation (see Eq. 21). As we approach
low temperatures (or large ), the number of near-
zero modes in the overlap matrix A becomes large,
which leads to inconsistencies in the solution, fur-
ther adding to the noise.

VI. CONCLUSION

We have presented a theory to generalize correlated
ground-state wave function theories, namely Hartree-
Fock, perturbation theory, and CI, to study canonical
ensemble thermal properties in fermionic many-body sys-
tems. In the low-temperature regime, where the canoni-
cal ensemble is most applicable, these methods perform
as well as their ground-state counterparts for the bench-
mark problems studied. The ability to build both canoni-
cal and grand-canonical methods also signifies the robust-
ness of thermofield theory for finite-temperature wave
function methods. At zero temperature, one is generally
required to go to much higher orders in CI or PT to ob-
tain highly accurate results and better alternatives, such
as the coupled cluster theory and multi-reference meth-
ods, are generally preferred. While a number-projected
formulation of the coupled cluster theory for the ground-
state has been worked out in Ref. 72, the underlying
equations are complicated for a direct generalization to
finite temperatures. Our work is a first step towards
achieving finite-temperature analogues of such sophis-
ticated techniques. It also establishes a firm standing
ground to build number-conserving finite-temperature
Monte Carlo methods, something that has been relatively
less explored in the QMC community. Most of the avail-
able thermal methods use an imaginary-time evolution
starting from 8 = 0 or T' = oo, while one is generally
interested in low and intermediate temperature scales. A
theory that uses ground-state or T = 0 as the starting



point would not only be more practical, but also allow
us to systematically eliminate the inconsistencies in the
projected CI evolution due to the near-zero modes in the
overlap matrix.

SUPPLEMENTAL INFORMATION

Detailed equations for the projected-CID and AGP-
based PT2, along with their derivations, are presented
in the Supplemental Information. We also provide ad-
ditional data comparing the optimized and the unop-
timized thermal mean-field, ground-state limits of the
thermal methods, and convergence of the Runge-Kutta
method with respect to the step-size in the evolution of
the projected-CI equations.
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