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ABSTRACT 

 

The ferrimagnetic insulator yttrium iron garnet (YIG) is one of the most important materials in the 

active fields of insulator-based spintronics and spin caloritronics. Despite this, and the fact that this 

material has been studied for over six decades, the thermal properties of magnons in YIG have not 

been sufficiently characterized, mainly because at not very low temperatures, they are overwhelmed 

by the contribution of phonons. Here, we report measurements of the thermal conductivity in YIG  

under magnetic fields up to 31.4 T to increase the magnon energy gap, to suppress the magnon 

contribution and isolate that of the phonons relative to their behavior at zero-field. We observe that at 

a temperature of 20 K, even with a field as large as 31.4 T, the magnon contribution is not completely 

suppressed. The magnon thermal conductivity, measured by subtracting the value of the total thermal 

conductivity at 31.4 T from the value at zero field, has a peak at 16 K, with an amplitude that is over 

five times larger than the one obtained by measuring under a field of only 7 T, as previously reported.  
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The ferrimagnetic insulator yttrium iron garnet (Y3Fe5O12 or YIG) has been called the miracle 
material of microwave magnetics [1]. Since its discovery by Bertaut and Forrat in 1956 [2], more 
than any other material it has contributed to the understanding of spin waves and magnon dynamics 
due to its exceptionally low elastic and magnetic dampings [1,3-5]. The magnons are the quanta of 
magnetic oscillations in systems having a periodic array of ordered magnetic moments. More 
recently, yttrium iron garnet has become a key material for the understanding of phenomena 
associated to the emerging fields of insulator-based spintronics and spin caloritronics, such as the 
spin pumping [6-8] and the spin-Seebeck effects [8-17]. The recent upsurge in the interest on YIG 
has produced an intensification in the study of its basic properties leading, for example, to the 
determination of its full magnon spectrum throughout the Brillouin zone via time-of-flight inelastic 
neutron scattering measurements [18]. One of the current challenges is to quantify the contribution of 
magnons to the thermal properties of YIG over a wide range of temperatures. This knowledge about 
their dynamics can be used to derive strict limitations on device performance and to determine the 
optimum operating conditions for magnonic nanostructures being proposed for data processing as the 
magnon transistor [19]. 

One aspect of the measurements of the thermal properties of YIG is that at temperatures above 
5 K they are dominated by the behavior of the phonons, so that the contributions from magnons 
become difficult to determine. Early experimental attempts to characterize the magnon specific heat 
and thermal conductivity in YIG at temperatures (T) below 5 K employed the application of 
magnetic fields up to 4 T to open a gap in the magnon dispersion to freeze the magnon contributions 
and isolate those of the phonons relative to their behavior at zero field [20, 21]. But even at low T’s it 
was early recognized that the theory and the experimental data for the magnon thermal conductivity 
were discrepant [21]. Recently, Boona and Heremans [22] used a larger magnetic field (7 T) with the 
goal of freezing the magnon contributions claiming to have measured the absolute values of the 
magnon specific heat and thermal conductivity in YIG at temperatures up to 10 K. The experimental 
data of Ref. [22] was later contested by calculations that showed that they represented not absolute 
values, but only relative changes in the magnon contributions due to the application of the field [23]. 

In this paper we report an investigation of the thermal conductivity of single-crystal yttrium 
iron garnet at low temperatures and very high magnetic fields. The main objective here is to 
determine the temperature and field dependencies of the magnon thermal conductivity. At a 
temperature T = 10 K the measurements confirm the theoretical prediction [23] that a field of at least 
30 T is necessary to decrease the magnon contribution to less than 10% of its zero-field value. At T > 
20 K even a field as high as 31.4 T is not enough to completely suppress the magnon contribution. 
The magnon thermal conductivity, measured by subtracting the value of the total thermal 
conductivity measured at the highest fields available from its values at zero field, has a peak at T = 
16 K, with an amplitude that is over five times larger than the one obtained by measuring under a 
field of only 7 T [22].  

The measurements were performed in one sample of single-crystal [110] YIG with dimensions 
3.0 x 0.85 x 0.48 mm3, obtained commercially from Airtron-Litton Ind. The thermal conductivity of 
the sample was measured using the same sample holder in two distinct experimental set-ups: (a) In a 
Quantum Design Physical Property Measurement System (PPMS), with magnetic fields up to 9 T; 
(b) In a Bitter resistive magnet providing fields up to 31.4 T at the National High Magnetic Field 
Laboratory in Tallahassee-FL. Figure 1(a) shows a schematic illustration of the 3He insert in a Janis 
cryostat used for the measurements in the resistive magnet, as well as of the sample holder. The 
thermal conductivity was measured by injecting a heat power (P) in the hot end of the sample by 
means of a heater and measuring the corresponding temperature difference TΔ  across the sample, 
using ( / ) /th l tw P Tκ = Δ , where l, t, and w are, respectively, the length, thickness, and width of the 
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sample. The contact of the heater to the sample was actually made with a silver wire attached to the 
sample with a high conductive silver Epoxy (Epotek H20E), while the temperatures at the ends were 
measured using two Cernox thermometers, model CX-BC 1030, also in contact with the sample 
through silver wires. The magnetoresistances of the Cernox and of the heater were properly taken 
into consideration. All measurements reported here were performed under high vacum in the sample 
space, because it was noticed that the exchange gas in the sample space drastically reduces the 
thermal gradient. 

 
Figure 1: (a) Schematic illustration of the apparatus and sample holder used for measuring the thermal 
conductivity thκ  of YIG at high magnetic fields, showing: (I) Sorb used both for injecting the exchange-gas 
and for producing high vacuum in the sample space; (II) 1K pot used to condense 3He inside the cold finger; 
(III) Sample space; (IV) Cold finger; and (V) Center of the magnet with the sample holder. The zoom in  
shows the sample holder with the YIG sample, the silver wires attached to the heater, and the Cernox 
thermometers, identified by the letters: T - thermometers, L - thermal link, H – heater, and S - sample. (b) 
Temperature (T) dependence of κth measured in the PPMS under zero field (blue pentagons) and under a 
magnetic field of 9 T (red circles). The corresponding reduction in κth with the field is represented by the 
green triangles. 
 

Figure 1(b) shows the temperature dependence of the thermal conductivity κth of the YIG 
sample in the range 2.4-300 K, measured in the PPMS, both in zero field and under a magnetic field 
μ0H = 9 T. The measured conductivity is the sum of the contributions from phonons, κph, and 
magnons, κm. The reduction in κth with the application of the field results from the decrease in κm 
due to the increase in the magnon energy and the consequent decrease in the magnon thermal 
population. The temperature dependence of κth in zero field and in an applied fields shown Fig. 1(b) 
is qualitatively similar to the one reported in Ref. [22], but with a smaller magnitude. We attribute 
the smaller value of κth measured here to the fact that our experiments were done under high vaccum, 
while in Ref. [22] an exchange gas was used. Under exchange gas, we observe small differences 
between our data and those displayed in Ref. [22] which we attribute to variations in sample quality.  

Figure 2 shows the field dependence of κth at a constant temperature measured in the PPMS 
and in the resistive magnet. The measurements were performed under steady-state conditions at each 
temperature, by sweeping the field from -9 T to +9 T in the PPMS, and from zero to 31.4 T in the 
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resistive magnet. Clearly, the both data sets obtained in each set-up agree quite well within the 
common field range used for the measurements. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: (Color online) Thermal conductivity κth of YIG as a function of the magnetic field measured at 
several temperatures both in a PPMS and in a resistive magnet. 

 

The above measurements of the thermal conductivity in YIG can be understood in terms of the 
statistical theory for a noninteracting magnon gas [8,24]. First, we note that the thermal properties of 
magnons depend crucially on the wave-vector-dependent magnon frequency, velocity and lifetime. 
The first two are given directly by the magnon dispersion relations, which have been recently 
recalculated for YIG and measured with modern inelastic neutron scattering techiques [18,25]. The 
data, which are in good agreement with the calculations, show an acoustic branch whose frequency 
increases from nearly zero (at zero field) at the Brillouin zone center, to a value at the zone boundary 
(ZB) that varies from 6 THz to 9.5 THz depending on the wave vector direction. These values 
correspond to energies of approximately 287 K and 454 K, respectively. Since the lowest optical 
branch lies above the zone-boundary value, the calculation of the thermal properties in the presence 
of an applied field μ0H at temperatures up to 100 K can be safely done considering only the acoustic 
branch [25, 26]. Also, at low wave numbers the magnon dispersion relation can be approximated by 
the quadratic form [18] 

    
2

0k H D kω γ μ γ= + ,      (1) 

where k is the wave number, D is the exchange parameter, γ = gμB/ħ is the gyromagnetic ratio, g is 
the spectroscopic splitting factor, μB the Bohr magneton, and ħ the reduced Plank constant. Clearly, 
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the application of a magnetic field creates in the magnon dispersion a frequency gap at k = 0 of 
0Hγ μ , where γ =28 GHz/T for YIG, corresponding to an energy of 1.34 K/T. The increased 

frequency reduces the number of thermal magnons at a temperature T, given by the Bose-Einstein 
distribution, ]1)//[exp(1 −= Tkn Bqq ωh . Thus, by applying a sufficiently large field at some T, the 
magnon contribution to the thermal properties can be largely reduced so that they become 
determined by phonons only. In this way, the changes in the thermal properties relative to the zero-
field values would represent the magnetic contribution. While this is true, the values of the 
quenching fields used in Refs. [22,23] are underestimated. As shown in Ref. [24], with a field of 7 T 
the reduction in the magnon specific heat and thermal conductivity is less than 40 % relative to the 
values at zero field.   

For the calculation of the magnon thermal conductivity one considers that the flow of magnons 
due to a temperature gradient T∇  carries a heat-current density kk kkQ vnVJ r

h
r

∑−= ωδ1 , where 

kkk nnn −=δ  is the magnon number in excess  of equilibrium, and kvr  is the k-magnon group 
velocity. Using the Boltzmann approach one can write a first order expression for the excess magnon 
number in the steady state and in the relaxation approximation, kkkk nvn ∇⋅−= rτδ , where kτ  is the k-
magnon relaxation time. Assuming spherical magnon energy surfaces and considering for low T the 
quadratic dispersion in Eq. (1), one obtains a heat-current density in the form Q mJ Tκ= − ∇

r
, where 

mκ  is the magnon thermal conductivity given by [8, 27] 
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where 1/k kη τ=  is the magnon relaxation rate and /k Bx k Tω= h  is a dimensionless magnon energy. 
If one considers that the relaxation rate kη  is independent of the wave number and temperature, at 
zero-field the lower limit of the integral is 0 0x = , and at low temperatures the upper limit can be set 
to ∞→mx . In this case the integral in Eq. (2) can be solved analytically to give (7 / 2) (5 / 2)ςΓ , 
where the factors are, in order, the gamma and Riemann zeta functions. Thus the temperature 
dependence of the magnon thermal conductivity is 5/2

m Tκ ∝ , first predicted by Yellon and Berger 
[28]. For non-zero field, the 2/5T  dependence still holds, but the amplitude decreases with field since 

Hx ∝0  and x  increases with field.  

Actually, at temperatures T > 5 K, the magnons with larger wave numbers become important 
for the thermal conductivity so that the dependencies of the magnon relaxation rate on k, T , and H 
must be considered in the calculation [26]. A difficulty here is that the spin wave damping has been 
measured experimentally only for very small wave numbers using microwave techniques [8], while 
the magnons that contribute most to the thermal conductivity are in the middle of the Brillouin zone. 
Thus, one has to resort to calculated relaxation rates, which are at best good estimates in the absence 
of data, and also adjust some parameters to the data. We have calculated the integral in Eq. (2) using 
the following expression for the magnon relaxation rate [26] 
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TqqcTqc HHk −×+×+= ηη ,  (3) 

where 0η  is the relaxation rate at k = 0 and T = 0 due to impurities and other imperfections, while the 
second and third terms arise, respectively, from 3- and 4-magnon scattering processes. Equation (3) 
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with cH3 = cH4 = 1.0 is the relaxation rate of Ref. [25] for μ0H = 0. These factors were introduced here 
to account for the reduction of the damping with the application of a field. We have used  

0 00.3 0.01
4 0.2 0.38 0.41H H

Hc e eμ μ− −= + + (μ0H in T), which was obtained by fitting two exponential 
functions to the 4-magnon relaxation rate calculated numerically for the range of wave numbers 
0.2 / 0.4ZBk k< < , and for 10 < T < 20 K. Figure 3 shows the calculated field dependence of the 
magnon thermal conductivity for the same temperature values as in Fig. 2, using this expression for 

4Hc , 3 0.5Hc = , D = 5.4 x 10-17 T m2, and γ = 28 GHz/T. The value of the magnon relaxation rate at k 
= 0 used in the calculation, η0 = 1.4 x 108 s-1, was adjusted so as to obtain good agreement with the 
experimental data.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (Color online) Thermal conductivity in YIG as a function of the magnetic field at several 
temperatures and as calculated from Eqs. (1)-(3). 
 

One can see from Fig. 3 that, at T = 2.4 K and 8 K, the calculated magnon thermal conductivity 
decays exponentially with increasing field, in quite good quantitative agreement with the variation of 
κth with H as shown Fig. 2 . At these low temperatures the variation of the relaxation rate is small, so 
that the behavior of the conductivity is dominated by the decrease of the magnon thermal population 
with increasing field. Thus, for T<10 K the magnon conductivity is suppressed by a field up to 35 T, 
so that its value in zero field can be reliably measured by subtracting the values of the total thermal 
conductivity at zero field and at μ0H = 35 T. However, at larger temperatures the magnon 
contribution to the thermal conductivity is not completely suppressed even under fields up to 35 T, as 
shown by the calculated behavior in Figs. 3(c) and 3(d), as well as by the data in Figs. 2(c) and 2(d). 
The main reason for this is that, at higher temperatures the magnon conductivity is larger due to the 
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2/5T  factor, but the magnon relaxation decreases exponentially with increasing field, so that the 
overall behavior exhibits a peak before decreasing at higher fields. 

The field dependence of the thermal conductivity measured at various temperatures, as seen in 
Fig. 2, was used to plot the variation with temperature of the difference between the conductivities at 
zero field and at selected field values. The results, shown in Fig. 4(a), reveal that only at T<3 K the 
magnon contribution to the thermal conductivity is completely suppressed with a field of 7 T. For 
T=8 K complete suppression requires a field of at least 30 T, while for T>20 K even this field value 
is not sufficient to achieve complete suppression. Notice also in Fig. 4(a) that the peak amplitude 
measured with a field of 30 T is over five times larger than the one measured with 7 T, indicating that 
the magnon thermal conductivity reported in Ref. [22] is underestimated, as pointed out in Ref. [23].      
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: (Color online) (a) Difference between the thermal conductivities measured at zero field and under 
selected field values as a function of the temperature. (b) Temperature dependence of the calculated magnon 
thermal conductivity in YIG as function of the temperature and for several field values. 
 

The inverted U-shaped behavior of the thermal conductivity difference in Fig. 4(a) is explained 
by the variation with temperature of the magnon contribution. At low T’s the conductivity increases 
with 2/5T  due to the increase in the magnon thermal population. At higher T’s the magnon 
relaxation increases so that the conductivity decreases. This behavior is reproduced qualitatively by 
the temperature dependence of the magnon thermal conductivity calculated through Eqs. (1)-(3)  
under zero-field and for several field values, as shown in Fig. 4(b).   

In summary, we have measured the thermal conductivity in single-crystalline yttrium iron 
garnet in the temperature range from 2.4 to 45 K under magnetic fields up to 31 T. Application of the 
field increases the magnon energies and reduce their contribution to the thermal properties. Our data 
show that at a temperature of 10 K, a field of at least 30 T is necessary to decrease the magnon 
contribution to less than 10% of its zero-field value. At T > 20 K even a field as high as 31 T is not 
enough to completely suppress the magnon contribution. The experimental data are quite well 
explained by a statistical theory for thermal transport in a noninteracting magnon gas. The magnon 
thermal conductivity, measured by subtracting the value of the total conductivity at the highest field 
available from the value at zero field, has a peak at T = 16 K, with an amplitude over five times 
larger than the one obtained by measuring with a field of only 7 T as previously reported. Besides, 
the direct correlation of κth with phenomena induced by thermal currents make the overall 
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experimental results reported in the current work of great importance for researchers working with 
magnonics and in spintronics.  
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Field Laboratory, which is supported by National Science Foundation Cooperative Agreement No. 
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SC0002613. The work at UFPE was supported by Conselho Nacional de Desenvolvimento Científico 
e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / 
PDSE / processo no 88881.189299/2018-01 , Financiadora de Estudos e Projetos (FINEP), and 
Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco (FACEPE). 
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