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Abstract

Experimental data, simulations and theory are presented of a JET tokamak thermal

quench. The emphasis is on the timescale of the bulk plasma thermal energy loss. The

simulations suggest that the thermal energy loss is caused by a resistive wall tearing

mode, and experimental data is consistent with this conclusion. The time scale of the

thermal quench is the inverse of the mode growth rate.

1 Introduction

The thermal quench (TQ) phase of disruptions is not definitively understood. The

TQ timescale is important because it determines the thermal load resulting from a

disruption.

Experimental data, simulations and theory are presented of a JET tokamak locked

mode thermal quench. The emphasis of this paper is on the timescale in which the

bulk plasma thermal energy is lost. It has been widely accepted that a TQ is caused

by growth of tearing [1] or neoclassical [2] tearing modes causing overlapping magnetic

islands [3], producing stochastic magnetic field lines and rapid thermal transport [4].

It has also been suggested that a TQ is caused by a large amplitude magnetic island

[5]. For these to be the main cause of energy loss, the wall must be highly conduc-

tive. Otherwise the plasma energy loss can be caused by a resistive wall tearing mode

(RWTM) [6, 7, 8], a resistive plasma version of a resistive wall mode (RWM) [9, 10, 11].

The simulations indicate that the RWTM gives the best agreement with experimen-

tal data. The RWTM and RWM connect to tearing or kink modes respectively, which

are marginally stable when the wall is perfectly conducting. The RWTM is more likely

in this case than the RWM, since the plasma does not seem to be near ideal marginal

stability.

Simulations were performed using the M3D [12] 3D resistive MHD code. The

simulation model [13, 14] consists of resistive MHD with a resistive wall, including

parallel and perpendicular thermal conduction. Radiation resulting from impurities

will not be considered here. The mitigating effects of radiation have been investigated
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in other simulations [15, 16, 17]. The simulations reported here are intended to identify

the mode which causes the TQ.

Section 2 presents thermal quench data from JET pulse 81540. The TQ is correlated

with the growth of locked mode magnetic field perturbations, on the resistive wall

penetration timescale τwall. The growth time of the locked mode and the TQ time

agree. Data from other disruption shots is consistent with these timescales. Section 3

describes nonlinear 3D MHD simulations. The disruption is initiated with fast MHD

activity, with a timescale that is independent of the resistive wall time. This is followed

by a quench of the total thermal energy. It is also shown that the fast initial stage of

the disruption is not required for a RWTM to cause a TQ. Section 4 presents linear

simulations which verify the RWTM dispersion relation. Also given is a derivation of

the RWTM dispersion relation. An expression for the growth rate is found, which has

not been given previously. In Section 5 a simple theory of the thermal quench is

derived which is consistent with the simulations of Section 3. Section 6 compares the

theory to JET data. The amplitude of the magnetic perturbations at the resistive wall

agrees with the simulations and theory. Conclusions are presented in Section 7.

2 JET Experimental Data

About 16% of JET pulses with ITER like wall (ILW) had disruptions [19].

Fig.1 shows data from JET shot 81540. Shown is a fast ECE measurement [20] of

Te at r ≈ 0.2a, 0.45a, 0.6a where a is the minor radius. The ECE measurement has

reasonably good time resolution, while the diamagnetic total energy measurement res-

olution is too slow to resolve the TQ. There is a faster time resolution signal, available

for some shots. Also shown is the locked mode magnetic amplitude BML measured at

saddle loops outside the vacuum vessel [20, 21, 22]. Fig.1(a) shows the ECE, plasma

current Ip(MA), and BML(mT ) signals from t = 64.2s to t = 64.35s, surrounding the

time of the thermal quench at about t = tdis = 64.297s. There are fluctuations of the

Te signals, as well as in BML. The current spike is clearly seen.

Fig.1(b) shows some of the same data, expanded in time around t = 64.2835s, with

time in units of the resistive wall penetration time τwall = 0.005s[23, 24]. Also shown

are fits to the data. Fit 1 is an exponential fit to the magnetic signal with constant

growth rate∝ exp(γt). From the fit it can be inferred that γ ≈ 2.73τ−1

wall ≈ 475s−1. Fit 2

is to Te(0.2a) of the form Te(KeV ) ∝ 0.5σ(t)+.2, where σ(t) = {1+exp[(t−t0)/δt)]}−1,

with δt = 0.15τwall and t0 = 2.59τwall. This implies a TQ time of about τTQ ≈ 0.3τwall.

The results of the two fits imply that

τTQ ∼ γ−1. (1)

2



This will be confirmed in the following. Fit 3 replaces the constant growth rate γ in fit

1 with a temperature dependent RWTM growth rate of the form (T/T0)
−1/2γ, using

fit 2 for the temperature. This gives a better fit at the beginning of the mode growth.

The peak growth rate is about the same as for fit 1. If the mode is a RWTM, its growth

rate scales as

γτA ∝ S−1/3S
−4/9
wall (2)

otherwise it is a RWM mode with growth rate

γτA ∝ S−1

wall. (3)

where S = τR/τA is the Lundquist number, τR is the resistive diffusion time, Swall =

τwall/τA = 7×103, τwall is the resistive wall magnetic penetration time, and τA = R/vA

is the Alfvén time, with major radius R and Alfvén speed vA.

The locked mode signal is shifted by a time of order the skin time with respect to

signals measured on the plasma side of the resistive wall. This is short compared to

the mode growth time and will be neglected.

It is worthwhile to know if shot 81540 is representative. It is not feasible to fit all

the data, so it must be analyzed numerically. The TQ time can be calculated from

the disruption time t = tdis, shown in Fig.1(b), which is included in the data. The

time derivative of temperature is Ṫ . The time at which the Ṫ reaches half its minimum

value is ṫ1/2. The TQ time is taken to be (3/4)(tdis− ṫ1/2), which approximately agrees

with the fit above to shot 81540. To find the mode growth rate, the maximum value

of BML is found at time t = tB. The maximum time derivative ḂML is at time t = ṫB.

The growth rate is taken as γ = 2/(tB − ṫB), in approximate agreement with the fit

to shot 81540. This analysis is applied to the JET ILW disruption 2011-2016 database

[19].

Shots are chosen that are labelled as unintentional disruptions. Not included are

asymmetric vertical displacement events (AVDEs) and thermal quenches enhanced with

massive gas injection (MGI) or pellet injection. Also excluded are shots in which the

Te data was not verified to be correct. The temperature is measured in several channels

with a fast ECE signal. The data labelled 01, 20, 40, 50, 60, 70, 80, and 90 was averaged

together. The channels correspond to data from different minor radius, which can vary

from shot to shot. The averaging lets the signal be dominated by emission from smaller

major radius which has less fluctuation than the temperature near the edge. Fig.2

gives the number of shots with values of τTQ and γ−1 in bins of width 0.1τwall. Typical

values are about τTQ ≈ γ−1 ≈ 0.25τwall. This indicates that shot 81540 is reasonably

representative of the database. The quantity δtTQ−1/γ = (τTQ − 1/γ)/τwall is the

difference between the TQ time and the mode growth time for individual shots, which

is small.
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Figure 1: JET shot 81540, showing time histories of (a) plasma current Ip(MA), BML(mT ),

fast ECE measurement of Te(KeV ) at r = 0.2a, 0.45a, 0.6a, with time in sec. (b) BML

and ECE measurements as in Fig.1 (a), with time in units of τwall = 0.005s, centered at

t = 64.2835s. The vertical line is the disruption time tdis.
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Figure 2: (a) The distribution of τTQ and γ−1 as a function of t/τwall. The values of shot

81540 are typical values in the database. Only shots in which the Te data was verified are

included. The quantity δtTQ−1/γ = (τTQ − 1/γ)/τwall is the difference between the TQ time

and the mode growth time for individual shots, and is relatively small.
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The magnetic data will be analyzed further in Section 6.

3 JET Thermal Quench Simulations

Simulations with M3D [12] were performed in order to find the dependence of γ and

τTQ on τwall, which can distinguish RWTMs from RWMs. Tearing and neoclassical

tearing modes do not depend on τwall. The simulations have initial Lundquist number

S = 106 on axis, and resistive wall Lundquist number in a range of values around

Swall = 7 × 103, the JET experimental value. The parallel thermal conductivity is

χ‖ = 10R2/τA, and the perpendicular thermal conductivity is χ⊥ = 10−4a2/τA. with

a being the minor radius in the major radius direction. These choices will be justified

below. The choice of χ⊥ is unrealistically large, but it is constrained by the need to

maintain numerical stability. It is overwhelmed by parallel thermal conduction. The

choice of χ‖ corresponds to an electron temperature Te of about 100eV in the outer

part of the JET plasma. When Te is less than these temperatures, the edge thermal

transport is dominated by resistive wall tearing modes (RWTMs).

It is noteworthy that edge cooling has been shown to destabilize tearing modes that

cause mode locking in the termination phase of JET disruptions [25]. The edge cooling

might serve as a precursor to the RWTMs described here.

The dependence on Swall of the TQ is evidently caused by an increase of the normal

magnetic field bn at the wall. Here bn is defined as the surface average along the wall

of the root mean square value of the normal component of the perturbed, asymmetric

magnetic field δB divided by the total field B, bn = (2πL)−1/2[
∮

dφ
∮

dl(δBn/B)2]1/2

where L =
∮

dl.

In the simulations, the first wall boundary is treated as the resistive wall. The

vacuum vessel is not taken into account. Theoretical analysis in Section 4 indicates

(14),(15) that including the vacuum vessel might affect the growth rate, but would not

fundamentally change the results. More realistic simulations are planned in which the

vacuum vessel resistivity is taken into account.

Nonlinear simulations were initialized with an equilibrium reconstruction of JET

shot 81540, at time 64.2s. A different equilibrium reconstruction of the same shot is

compared below and in Section 4.

The time evolution in the simulations involves two MHD events. In the equilibrium

reconstruction, q ≈ 0.8 initially. This causes a large (1, 1) mode, which causes a

pressure pulse to spread to larger radii. This is a relatively fast process, independent

of τwall. The associated magnetic perturbations cause a relatively slow loss of the total

magnetic pressure. This is followed by the growth of a resistive wall tearing mode,
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which is the main cause of the TQ. Without the RWTM, the TQ would be much slower.

Fig.3(a) shows time history of the volume integral of pressure P =
∫

pRdRdZdφ in

arbitrary units, and the normalized value of the root mean squared magnetic field at

the wall bn, for three cases with the same S and different Swall. The case labelled P3, b3

has Swall = 103, and similarly subscripts 4, 5 correspond to Swall = 104, 105. It can be

seen that P3 decays much more quickly than P4, and P4 decays much more quickly

than P5. Similarly, b3 grows much more quickly than b4, which in turn grows much

more quickly than b5. It is noticeable that there is a change in the rate of P decay,

correlated with an increase in the growth of the amplitude of bn. In addition there are

exponential fits to bn = ai exp(γit), labelled fi, i =3, 4, 5 corresponding to bi. The

coefficients were chosen to align with the simulation data where the growth rate is

largest. The fits indicate that γτA ≈ 0.054S
−4/9
wall .

The resistivity in the simulations varies as T−3/2, and depends on the temperature

T profile. Although the peak value of S = 106, at the q = 2 rational surface rs = 0.6a,

the value of S = S2 = 7× 104. Using this value,

γτA = 2.2S−1/3S
−4/9
wall (4)

assuming the S−1/3 scaling from the linear simulations Fig.6(b) and theory (14).

Fig.3(b) collects the τTQ data for simulations with Swall = 103, 104, 105, 106. The

TQ time is measured as the time difference (t30−t90)/.6, where t90 is the time at which

the temperature is 90% of its peak value, and t30 is the time when it has 30% of its

maximum value. It can be seen that there are two asymptotic dependencies of τTQ on

Swall. For smaller values of Swall, the simulations are fit by a curve τTQ/τA ≈ 40S
4/9
wall.

For larger Swall, the simulations tend to τTQ/τA = 8000 = const. The vertical line at

Swall = 7× 103 is the JET value. The asymptotic dependencies will be derived below

(24). Fig.3(b) is consistent with τTQ = 0.4S1/3S
4/9
wallτA, or (1).

Fig.4 shows contour plots of temperature T in the (R,Z, 0) plane from nonlinear

simulations with Swall = 104, labelled P4 in Fig.3(a), at four times. The equilibrium T

is shown in Fig.4(a). Fig.4 (b) shows T at 1943τA, just before the slope of P4 sharply

decreases. At this time P4 is 70% of its initial value. Perturbations with (m,n) = (2, 1)

and (3, 2) are visible. At(c) t = 2403τA during the middle of the TQ, P4 has 30% of

its initial value, and at (d) t = 2879τA, it is near the end of the TQ.

The above simulations used an equilibrium reconstruction with q < 1 on axis ini-

tially. This caused a large (1, 1) mode which produced a turbulent state. Another

equilibrium reconstruction was used, in which q = 1.05 at the magnetic axis. This

prevented the growth of the (1, 1) mode which initiated the nonlinear disruption simu-

lations. Fig.5(a) shows temperature contours at t = 3381τA, initialized with the q > 1

equilibrium. There is no (1, 1) and no initial turbulent state, but nonlinearly the in-
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Figure 3: (a) History of total pressure P and wall normal magnetic field perturbation bn as

a function of time. As bn increases in time, P falls more rapidly. Three cases are shown,

with S = 106, and Swall = 103, 104, 105. The subscript in the label refers to Swall such that

Pa, ba, fa correspond to Swall = 10a, where fa is an exponential fit to bn. (b) τTQ/τA vs. Swall.

The fits are to S
4/9
wall and constant.

stability is similar to Fig.4. Fig.5(b) shows nonlinear simulations initialized with both

equilibrium reconstructions. In both cases Swall = 7000, the JET value. The total

pressure P1 and wall magnetic perturbation b1 use the equilibrium with q < 1. The

TQ has a slow timescale, produced by the internal MHD modes, and a faster timescale

caused by the RWTM. This behavior is similar to the cases in Fig.3(a). The total

pressure P2 and wall magnetic perturbation b2 use the equilibrium with q > 1. There

are no modes except for the RWTM. The pressure P2 is constant until the mode starts

to grow. The absence of the internal modes causes a time delay in the TQ. The growth

of b1 and b2 are similar, but with the time delay, because the RWTM grows from a

smaller initial perturbation. Without the RWTM, there would be no TQ. This shows

that the TQ is more like the single mode theory [5] than the overlapping island mode

[3]. Even though in the q < 1 case this model may apply, the TQ of the bulk plasma

energy is caused by a large RWTM.

4 Linear stability

Linear stability calculations indicate the presence of the resistive wall tearing mode.

To carry out the linear simulations, the q > 1 equilibrium reconstruction was used, in

which q = 1.05 at the magnetic axis, to eliminate the (1, 1) mode. Fig.6 (a) shows the

linear growth rate as a function of Swall which is consistent with γτA ∝ S
−4/9
wall , where

S = 106. A least squares fit [26] gives γτA ∝ S−0.37
wall . Fig.6 (b) shows linear growth
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(a) (b) (c) (d)

Figure 4: Simulation of JET shot 81540, with Swall = 104. The time history is shown in

Fig.3(a). (a) initial temperature T . (b) temperature T at t = 1945τA, showing (2, 1) and

(3, 2) magnetic perturbations. At this time P ≈ 70% of its initial value. (c) T at t = 2428τA.

At this time P ≈ 30% of its initial value. (d) T at t = 2888τA, at the end of the simulation.

(a)

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5

 P
, b

n 

t / (1000 τA)

P,  bn 

p1
b1
p2
b2

(b)

Figure 5: (a) Plot of temperature at t = 3381τA in a simulation with q > 1 initially. The

plot is qualitatively similar to Fig.4(c). (b) nonlinear simulations comparing the equilibria

with initial on axis q > 1 and q < 1 as in Fig.3(a). In these simulations Swall = 7000, the

experimental value. When q > 1, there is no other instability besides the RWTM, and the

TQ is produced only by the RWTM.
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Figure 6: (a) Linear growth rate γ as a function of Swall, from simulations of JET shot 81540

. The growth rate is consistent with S
−4/9
wall . (b) Growth rate as a function of S, consistent

with S−1/3 scaling.

rate as a function of S, which is consistent with γ̂ ∝ S−1/3, where Swall = 103. The

same fit gives γτA ∝ S−0.34. Combining the fits to these curves is consistent with the

RWTM scaling (2).

The growth rate can be obtained from a limit of the dispersion relation obtained in

[6]. Here another derivation is given. The linear growth rate of the tearing mode [27]

is given by

γτA = 0.55

(

mq′rs
q2

)2/5

(∆′rs)
4/5S−3/5 (5)

where rs is the rational surface and m is the poloidal mode number. For simplicity, a

zero pressure circular large aspect ratio geometry is assumed, with no toroidal current

for r > rs. The task is to obtain ∆′ when there is a resistive wall at r = rw. For

rs < r < rw, ψ = Arm +Br−m. At r = rs, ∆
′ = ∆′

+ −∆′
−. The contribution ∆′

− from

the interior r < rs is assumed known. The exterior part is given by

∆′
+ =

ψ′
+

ψ+

=
m

rs

Arms −Br−m
s

Arms +Br−m
s

. (6)

For rw < r, ψ = Fr−m. At the wall, continuity of ψ requires

Fr−m
w = Armw +Br−m

w (7)

and the evolution of ψ due to the resistive wall is given by [18]

γψw =
ηwall

δwall
(ψ′

w+ − ψ′
w−) =

m

τwall
(−Fr−m

w −Armw +Br−m
w ) (8)

Eliminating F between (7) and (8) to obtain A/B and substituting in (6),

rs
m
∆′

+ =
r2ms + r2mw (1 + δ)

r2ms − r2mw (1 + δ)
(9)
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where

δ =
2m

γτwall
(10)

Let γτwall ≫ 1, so that 1 ≫ δ, and expand (9) in δ,

rs
m
∆′

+ = −r
2m
w + r2ms
r2mw − r2ms

(

1− 2δ
r2ms r2mw
r4mw − r4ms

)

(11)

Now let it be assumed that ∆′ is small. The first term in (11), which is negative, is

assumed to nearly cancel ∆′
−, so that ∆′ = 0 if the wall is an ideal conductor, δ = 0.

The RWTM is marginally stable for an ideal wall. Then

rs∆
′ =

4m2f

γτwall
. (12)

where

f =
(rs/rw)

2m

[1− (rs/rw)2m]2
(13)

Substituting in the tearing dispersion relation (5) gives, with m = q = 2,

γτA = c0S
−1/3S

−4/9
wall (14)

where

c0 = 2.46

(

q′rs
q

)2/9

f4/9 (15)

This gives the scaling of γ with S, Swall, and rs/rw. For example, let rs = .6a, rw = a,

then f4/9 = 0.45; if rs = .8a, rw = 1.4a, the same f is obtained. For (rs/rw)
4 ≪ 1,

f4/9 ≈ (rs/rw)
16/9.

The nonlinear simulations show that the linear dispersion relation holds even as the

mode grows to large amplitude. This is analogous to the resistive (1, 1) internal kink

[28], which grows at the linear rate to large amplitude, and also has a S−1/3 scaling of

the growth rate.

It is worth comparing the growth rate of the RWTM to the resistive wall mode

(RWM) [9, 10, 11]. The RWM growth rate is γRWM = c2S
−1

wall. This is less than the

RWTM growth rate if c0S
−4/9
wall S−1/3 > c2S

−1

wall. or

Swall >

(

c2
c0

)9/5

S3/5 (16)

This is essentially the validity condition for (12). If S = 106, then (16) requires

Swall > 4000(c2/c0)
9/5. If c2 < c0 this criterion is easily satisfied. For sufficiently large

Swall, the RWTM has a larger growth rate that the RWM. It should be noted that the

RWTM and RWM occur in different instability regimes. The RWTM connects to a

marginally stable tearing mode, while the RWM connects to a marginally stable ideal

kink mode.
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5 Thermal Quench Theory

The simulation results can be analyzed as follows. The analysis shows how the two

limiting dependencies of τTQ seen in Fig.3(b) can be obtained from a model of parallel

thermal conduction. During the TQ, heat travels along the magnetic field as

∂T

∂t
=

1

r

∂

∂r
r(χ‖b

2
r + χ⊥)

∂T

∂r
(17)

where br is the normalized asymmetric radial magnetic field, assuming circular flux

surfaces for simplicity. The field is assumed stochastic, so there is an average radial

magnetic field. Integrating, the total temperature is given by

∂ < T >

∂t
= a(χ‖b

2
n + χ⊥)T

′ (18)

where < T >=
∫

Trdr, T ′ = ∂T/∂r at r = a, and bn = br at the wall. Assume that

T ′/ < T >= −a−3. The normal magnetic field at the wall is

bn = bn0 exp(γt) (19)

where bn0 is the initial amplitude, and γ is the RWTM growth rate.

Neglecting χ⊥, substituting for bn in (18) and integrating in time, from t = 0 to

τTQ,

1 =
χ‖b

2
n

2γa2
[exp(2γτTQ)− 1] (20)

This gives

tTQ =
1

2γ
ln

(

1 +
2

α

)

(21)

which has two limits,

tTQ =







(2γ)−1 ln[2/α] γtTQ ∼ 1

a2/(χ‖b
2
n) γtTQ << 1.

(22)

where

α =
χ‖b

2
n0

a2γ
(23)

An ad hoc fit to the simulations is

τTQ ≈
(

1

γ
,
a2

χ‖b
2
n0

)

min

(24)

consistent with (1).The limits correspond to the case when the RWTM is dominant,

and when its growth rate is small.
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6 Comparison with experiment

The magnetic perturbations are measured by saddle loops [21, 22] placed at a maximum

major radius of Rloop = 4.4m, the magnetic axis is approximately at R0 = 2.9m, and

the major radius of the wall is Rwall = R0 +1m. The effective cylindrical radius of the

wall is rwall = Rwall −R0 = 1m, and of the saddle loops is rloop = Rloop −R0 = 1.4m.

Between the wall and the loops, the flux varies as r−2 and the normal magnetic field as

r−3. The normal field at the wall is (rloop/rwall)
3 = 2.7. At the wall, bn = 2.7BML/B0

= 1.1BML/(T ), with B0 = 2.4T. Taking the difference of peak and initial values of

BML = (1.4 − 0.4)mT in Fig.1 then bn = 1.1 × 10−3. In Fig.5 the peak value of

bn = 1.2× 10−3, consistent with the data.

To assess whether the theoretical parameters are consistent with experiment, let

Te = T0(100eV ), n = n0(10
14cm−3), a = a0(m), B = 104B0(T ), R/a = 3, bn = 10−3b0

µ = mi/mp, λ = 15, and Swall = 104Sw0. Then [29]

χ‖ = 2.1v2teτe = 0.9× 1011
T
5/2
0

n0
cm2/s (25)

taking χ‖ = (2/3)κe‖/ne. The Alfvén time is

τA =
R

vA
= 1.4× 10−6a0(µn0)

1/2

B0

s (26)

In JET shot 81540 , with B0 = 2.4, a0 = 1, µ = 2, n0 = 0.65 then τA ≈ 0.7 × 10−6s.

Normalizing χ‖ to a2/τA and multiplying by b2n,

χ‖τAb
2
n

a2
= 1.3× 10−5 b

2
0T

5/2
0

a0B0

(

µ

n0

)1/2

. (27)

The perpendicular diffusion coefficient can be taken as the Bohm value,

χ⊥ =
1

4
ρevte = 1.2× 104cm2/s ≈ 1m2/s,

a typical value of turbulent diffusion coefficient. This is much smaller than the parallel

diffusion and will be neglected. Next the resistive diffusion time is τR = a2/η =

a2ω2
peτe/c

2 giving

S =
τR
τA

= 6× 105
a0B0T

3/2
0√

µn0
(28)

The value of γτA of a RWTM is

γτA = c0S
−4/9
wall S

−1/3 = 2× 10−4 c0(µn0)
1/6

(a0B0)1/3S
4/9
w0
T
1/2
0

. (29)

12



Let α be the ratio of the two terms in (23),

α = 6.5× 10−2 b
2
0T

3
0 µ

1/3S
4/9
w0

c0(n0a0B0)2/3
(30)

For JET parameters Sw0 = 0.7, µ = a0 = n0 = 1, B0 = 2,

α = 0.28
b20
c0

= 0.3, (31)

taking T0 = c0 = b0 = 1. This gives ln(2/α) ≈ 2 in (22), in agreement with (24).

The ratio α decreases rapidly as T−3.

7 Discussion and Conclusion

To summarize, experimental data, simulations, and theory of the TQ were presented.

The results were were obtained for a particular JET pulse 81540, which is a locked

mode pulse, like most ILW JET disruptions [22]. The data shows that the thermal

quench occurs in a fraction of the resistive wall time. In shot 81540, τTQ ≈ 0.3τwall.

The growth rate γ of the mode that terminates the TQ is γ ≈ τ−1

TQ. The growth rate

of the mode appears to scale as γ ∝ T
−1/2
e . Analysis of shots in the JET ILW 2011-16

disruption database show that the TQ time and mode growth rate have typical values

similar to shot 81540.

These features of the data were also found in simulations. The growth rate of

the mode that caused the TQ had γτA ≈ 2S−1/3S
−4/9
wall , which is the growth rate of a

RWTM. The TQ time satisfied γτTQ ≈ 1.

It was verified that the amplitude of the modes is consistent with the experimental

data, such that the locked mode amplitude at the saddle coils is of order 1mT.

Simulations were done with two equilibrium reconstructions. In one, initially q <

1, leading to a large internal kink and an outward pressure pulse, which produced

magnetic perturbations. This was followed by growth of the RWTM, which caused

the quench of the bulk plasma energy. In the other reconstruction, q > 1 initially and

the plasma was unstable only to the RWTM. Nonlinear simulations verified that the

RWTM by itself was enough to cause a TQ. Linear simulations verified the S and Swall

dependence of the RWTM.

A linear analysis of the RWTM was carried out which verified the scaling with

γ ∝ S−1/3S
−4/9
wall . This expression for the growth rate has not been given previously. It

includes the dependence of the growth rate on the ratio of the rational surface radius

to the resistive wall radius.

A simple theory obtained the asymptotic dependence of τTQ on the mode growth

as well as parallel thermal conduction when the mode growth rate is small. The theory

13



was compared with experimental data, verifying that the theory and simulations were

in agreement for the appropriate parameters.

The results are relevant to JET locked mode disruptions. It is not known how

prevalent the RWTM is in other experiments, especially in ITER. It would be desirable

to carry out simulations to find out.

The dependence of τTQ on Swall is potentially mitigating for ITER, with a longer

Swall than in JET. The TQ time might be increased from 1.5ms in JET to 5ms−10ms

in ITER. This could relax the requirements for the ITER disruption mitigation system

and runaway electron avoidance. On the other hand, higher temperatures in ITER

might suppress the effect of the RWTM. It is hoped to investigate the matter in future

work.
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