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3 Disordered Materials for Energy



4 I Disordered Materials for Energy: Silicate Glass
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5 I Disordered Materials for Energy: High Entropy Alloys
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Stepanov, N. D., et al. "Structure and mechanical properties of a light-weight A1NbTiV high entropy alloy." Materials Letters 142 (2015): 153-155.



6 Disordered Materials for Energy: Metallic Glass

Li, Jinyang, et al. "Recent advances in metallic glass nanostructures: synthesis strategies and electrocatalytic applications." Advanced materials 31.7 (2019): 1802120.
http://wwwyalescientific.org/2016/03/will-cars-run-on-hydrogen-bulk-metallic-glasses-make-electrocatalysts-cheaper-and-more-efficient/



7 Disordered Materials for Energy: Borosilicate Glass

United States Patent [19]

Chickering et al.

[54] NUCLEAR WASTE ENCAPSULATION IN
BOROSILICATE GLASS BY CHEMICAL
POLYMERIZATION

[75] Inventors: Ronald W. Chickering, Hempfield
Township, Westmoreland County;
Bulent E. Yoldas, Churchill; Bruce
H. Neuman, Salem Township,
Westmoreland County, all of Pa.

[73] Assignee: Westinghouse Electric Corp.,
Pittsburgh, Pa.

https://phys.org/news/2016-11-radioactive-immobilized-glass-millions-years.html



8 Disordered Materials for Energy: Borosilicate Glass

Wekome to Hanford
S. Department Of En''rgir

Wednesday, March 11, 2020 9:04am

In this 2019 photo, a sign at the Hanford Nuclear Reservation is posted near Richland. (AP Photo/Elaine
Thompson, file)

Hanford nuclear waste
cleanup efforts c
delayed
A new report d• not mention the Dept. of Energy moving radioactive
capsules to s. er storage.

I Wednesday, March 11, 2020 9:04am IIE:1211=

https://www.heraldnet. com/northwest/hanford-nuclear-waste-cleanup-efforts-could-be-delayed/
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10 Two Case Studies

Bulk Metallic Glass
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12 The Glassy State
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13 Downside to Bulk Metallic Glass
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Sato, Yuji, et al. "Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation
theory." Scientffic reports 7.1 (2017): 1-9.



14 Bulk Metallic Glass for Compliant Mechanisms
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Homer, Eric R., et al. "New methods for developing and manufacturing compliant mechanisms utilizing bulk metallic glass."
Advanced Engineering Materials 16.7 (2014): 850-856.



15 Downside to Bulk Metallic Glass

Unpublished — Courtesy of Prof. Eric Homer.



16 Glassy Structure on Two Scales
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Argon, A. S., and H. Y. Kuo. Materials science and Engineering 39.1 (1979): 101-109.



17 STZ Dynamics

1. Load applied to finite element model, calculate stress.

2. Each element/node is a potential shear
transformation zone. Calculate stress-biased activation
rate for each potential STZ.

-1-F • Qo

3. Select one shear transformation and a time step via
kinetic Monte Carlo.

4. Apply local plastic shear strain to finite element mesh.
Return to 1.

Packard, C. E., et al. "Cyclic hardening of metallic glasses under Hertzian contacts:

STZ Shess
Strains GPa

!ICI
0.1

0.4 5
0.2

0    0

rim

Elapsed Time : 4.DQ s

Experiments and STZ dynamics simulations." Philosophical Magaine 90.10 (2010): 1373-1390.



1 8 STZ Dynamics: Successes
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Stage III: Growth following nucleation
(acceleration of cluster 'a' following criticality)

Accumulated strain: 0.00044
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Stage IV: Relaxation thickening
(deceleration and relaxation)
Accurnulated strain: 0,00064

Stage V: Flow thickening
(shear band thickening)

Accumulated strain: 0.0144

Homer, Eric R. "Examining the initial stages of shear localization in amorphous metals." Acta Materialia 63 (2014): 44-53.



19 li Metallic Glass Matrix Composites

Wu, Y, et al. "Formation of Cu—Zr—Al bulk metallic glass composites with improved tensile properties." Acta Materialia59 .8 (2011): 2928-2936.

Hardin, Thomas J., and Eric R. Homer. "Microstructural factors of strain delocalization in model metallic glass matrix composites." Acta Materialia 83 (2015): 203-215.



20 Impact of Recent Research

Two modern developments spurred
the development of next-generation
mesoscale metallic glass models

Proliferation of nanomechanical
testing

Appreciation of importance of the
structure of glass
o MD & experimental insights on
atomic configurations

o Glass viewed as heterogeneous
nanocomposite

•

1
1

Liontas, Rachel, et al. Acta Materiarza 118 (2016): 270-285.



21 200x Speedup, I 8x Sizeup

STZ Strains
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Homer, Eric R. Acta Materialia 63 (2014): 44-53..

Homer, Eric R., and Christopher A. Schuh. Modelling and

Simulation in Materials Science and Engineering

18.6 (2010): 065009.

Harris, Matthew B., Lars S. Watts, and Eric R. Homer.

Acta Materialia 111 (2016): 273-282.

Homer, Eric R., and Christopher A. Schuh.

Acta Materialia 57.9 (2009): 2823-2833.

Hardin, Thomas J. Computational Mechanics (2018): 1-10.

Chen, C. Q., Y. T. Pei, and J. Th M. De Hosson.

Acta Materialia 58.1 (2010): 189-200..

Gu, X. Wendy, et al., Nano letters 14.10 (2014): 5858-5864.

Chen, Chang Qiang, et al. Physical Review B 83.18 (2011): 180201.
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22 I Competitive Shear Localization •
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itil11111

Hardin, Thomas J. "Accelerating coupled finite element-kinetic Monte Carlo models: 200x speedup of shear transformation zone dynamics simulations."
Computational Mechanics (2018): 1-10.
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23 Potential Energy Landscape Ansatz

1. Configurational potential energy decompose into a portion which correlates with molar volume
(dilatative CPE), and one which does not (isochoric CPE). Experiments have shown that shear
modulus maps to total CPE.

U * = Ui* -k U1;

2. The density of "polyamorphs" of the glass plotted on the isochoric x dilatative axes can be
represented by this simple combinatorial density of states.

- bn Ref r(3 + a + b) " 1) 

(URef)2 r(i + a ) 11(1 + b) URef/ URef

(a)

3. The glass can transition between any two
"polyamorphs," and the transition state barrier height is
constant.



24 I STZ Dynamics with Potential Energy Landscape
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Y. Q. Cheng, E. Ma, Applied _13 ysics Letters, vol. 93, art. 051910, 2008.



25 STZ Dynamics with Potential Energy Landscape
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26 Looking Forward: Bridging Scales, a Tale of Two Samples

Composition

Molar Volume

XRD

Adapted from Miyazaki, Narumasa, et al. "Prediction of pressure-promoted thermal rejuvenation in metallic glasses." npj Computational Materials 2 (2016): 16013.

Gao, Qian, et al. "Crystallization kinetics of the Cu50Zr50 meollic glass under isothermal conditions."Journal of Solid State Chemistg 244 (2016): 116-119.



27 Looking Forward: Bridging Scales, a Tale of Two Samples

Sample 1 Sample 2

1
Von Mises Atomic Strain distributions in uniaxial tensile tests. Strain rate = 108 /s, Temperature = 300 K in both cases.

1
Adapted from Miyazaki, Narumasa, et al. "Prediction of pressure-promoted thermal rejuvenation in metallic glasses." npj Computational Materials 2 (2016): 16013.



28 I Looking Forward: Bridging Scales, a Tale of Two Samples

Sample 1

Locations of icosahedral short-range atomic clusters

Sample 2

Adapted from Miyazaki, Narumasa, et al. "Prediction of pressure-promoted thermal rejuvenation in metallic glasses." npj Computational Materials 2 (2016): 16013.



29 I Loose Ends

1. How does the glass change as we do [process] to it?

2. How does the structure of the glass impact its [property]?



High Entropy Alloys



Why Bother?
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Miracle, Daniel B., and Oleg N. Senkov. "A critical review of high entropy alloys and related concepts." Acta Materialia 122 (2017): 448-511.

Gludovatz, Bernd, et al. "A fracture-resistant high-entropy alloy for cryogenic applications." Science 345.6201 (2014): 1153-1158.
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32 Thermodynamic Rationale
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George, Easo P., Dierk Raabe, and Robert O. Ritchie. "High-entropy alloys." Nature Reviews Materials 4.8 (2019): 515-534.



33 Pareto Front

fl(A) > fl(B)
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Public Domain.



34

c‘... we must begin to think differently about the scope
of complex concentrated alloy studies. A small handful
of equiatomic or near-equiatomic compositions are
commonly used as a proxy for all the alloys in a multi-
component phase diagram. We need to explore a
broader range of compositions in promising alloy
systems."

Miracle, D. B. "High entropy alloys as a bold step forward in alloy development." Nature communications 10.1 (2019): 1-3.



35 I Problems with Direct High-Throughput Simulation of HEA

1. Random nature of HEAs requires large
cells to capture representative properties.

2. Large cell size implies first principles not an
option; so MD is the best we can do.

3 Large number of constituents implies
challenging construction of empirical
potential.

4. Even with perfect empirical potential,
difficulty of constructing meaningful
simulations within performance constraints.
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36 I Spectral Neighbor Analysis Potential (SNAP)
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Thompson, Aidan P., et al. "Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials."Journal of Computational
Nysics 285 (2015): 316-330.



37 High-Throughput Analysis of Al-Ti-Nb System w/SNAP potential
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38 I High-Throughput Analysis of Al-Ti-Nb System w/SNAP potential

o
E 1400 -
0)
v)v)
? 1200 -

,._

n3Tp 1000 -
E

c_
800

=
a)
u 600 -to

.._..
-0
T) 400 -
5=
a)=
c 200 -
a).6,
o
c
co 0z

Scatter Plot of Objectives

10'00 12 ' ' 150 1500 1750 2000 2250 2500 2750

Liquidus (K)

Compositions of Pareto

Optimal Designs

Ti
A
/ •
/ •
/ •

•/
/ •
/ •
/ •

k X• . • .

1. ‘.. ♦,./ \.• . / .• . / \• . •
k * X• • • . • .• . / . • .• . / . ♦• .• . • . • .• . • . • \• . • . •• . • ._x! Ix

k * • . • . • . • .• . • . • .
•• . //•

/ •. • . • .• . . • . • \
• . . • . •
I% .

0 
•
• /

/ • / • / •

• / • / %

Aleil- 0- - - - -‘L _v_ _11_ A Nb



Attempts at Additively Manufacturing H EAs
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Courtesy of Dr. Andrew Kustas, Sandia.



40 Attempts at Additively Manufacturing HEAs

Courtesy of Dr. Andrew Kustas, Sandia.
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