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+ | Disordered Materials for Energy: Silicate Glass
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s | Disordered Materials for Energy: High Entropy Alloys
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Stepanov, N. D,, et al. "Structure and mechanical properties of a light-weight AINbTIV high entropy alloy." Materials Letters 142 (2015): 153-155.



| Disordered Materials for Energy: Metallic Glass

Li, Jinyang, et al. "Recent advances in metallic glass nanostructures: synthesis strategies and electrocatalytic applications." Advanced materials 31.7 (2019): 1802120.

http://www.yalescientific.org/2016/03 /will-cars-run-on-hydrogen-bulk-metallic-glasses-make-electrocatalysts-cheaper-and-more-efficient/




- | Disordered Materials for Energy:

United States Patent i
Chickering et al.

[54] NUCLEAR WASTE ENCAPSULATION IN
BOROSILICATE GLASS BY CHEMICAL
POLYMERIZATION |

[75] Inventors: Ronald W. Chickering, Hempfield
Township, Westmoreland County;
Bulent E. Yoldas, Churchill; Bruce
H. Neuman, Salem Township,
Westmoreland County, all of Pa.

[73] Assignee: Westinghouse Electric Corp.,
- Pittsburgh, Pa.

https://phys.org/news/2016-11-radioactive-immobilized-glass-millions-years.html

Borosilicate Glass




s | Disordered Materials for Energy: Borosilicate Glass

Welcome = aford .

U S. Department of Energy

Wednesday, March 11, 2020 9:04am

In this 2019 photo, a sign at the Hanford Muclear Reservation is posted near Richland. (AP Photo/Elaine
Thompsaon, file)

Hanford nuclear waste
cleanup efforts c
delayed

A new report dg#€ not mention the Dept. of Energy moving radioactive
capsules to sgffer storage.

Wednesday, March 11, 2020 S:04am

https://wwwheraldnet.com/northwest/hanford-nucleat-waste-cleanup-efforts-could-be-delayed/
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v I Two Case Studies

Bulk Metallic Glass High Entropy Alloys







12 | The Glassy State
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5 | Downside to Bulk Metallic Glass
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Sato, Yuiji, et al. "Predictive modeling of Time-Temperature-Transformation diagram of metallic glasses based on atomistically-informed classical nucleation
theory." Scientific reports 7.1 (2017): 1-9.



1 I Bulk Metallic Glass for Compliant Mechanisms

Homer, Eric R., et al. “New methods for developing and manufacturing compliant mechanisms utilizing bulk metallic glass.”
Advanced Engineering Materials 16.7 (2014): 850-856.



5 | Downside to Bulk Metallic Glass
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Unpublished — Courtesy of Prof. Eric Homer.



i I Glassy Structure on Two Scales

Argon, A. S., and H. Y. Kuo. Materials science and Engineering 39.1 (1979): 101-109.




17 | STZ Dynamics

1. Load applied to finite element model, calculate stress.

STZ Stress
Strains GPam
2. Each element/node is a potential shear . =
. = 5 = - 5
transformation zone. Calculate stress-biased activation 02|}

rate for each potential STZ.

—~ T+ K2

3. S.elec.t one shear transformation and a time step via |
kinetic Monte Carlo.

. . . Elapsed Time : 0.00 s
4. Apply local plastic shear strain to finite element mesh.

Return to 1.

Packard, C. E., et al. "Cyclic hardening of metallic glasses under Hertzian contacts:

Experiments and STZ dynamics simulations." Philosophical Magazine 90.10 (2010): 1373-1390.



18 | STZ Dynamics: Successes
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Stage lI: STZ Clustering "0
(competition between clusters) &
Accumulated strain: 0.006 b ]

Stage llI: Growth following nucleation
€ (acceleration of cluster ‘a’ following criticality) =———
Accumulated strain: 0.00044

Homer, Eric R. "Examining the initial stages of shear localization in amorphous metals." Acta Materialia 63 (2014): 44-53.

Stage IV: Relaxation thickening
(deceleration and relaxation)
Accumulated strain: 0.00064

Qw\““

Stage V: Flow thickening
(shear band thickening)
Accumulated strain: 0.0144




v I Metallic Glass Matrix Composites

el ! |

Wu, Y., et al. "Formation of Cu—Zr—Al bulk metallic glass composites with improved tensile properties." Acta Materialia59.8 (2011): 2928-29306.

Hardin, Thomas J., and Eric R. Homer. "Microstructural factors of strain delocalization in model metallic glass matrix composites." Acta Materialia 83 (2015): 203-215.



» I Impact of Recent Research

Two modern developments spurred
the development of next-generation
mesoscale metallic glass models

Proliferation of nanomechanical
testing

Appreciation of importance of the
structure of glass

o MD & experimental insights on
atomic configurations

° Glass viewed as heterogeneous
nanocomposite

500 nm
I

Liontas, Rachel, et al. Acta Materialia 118 (2016): 270-285.



21 | 200x Speedup, |8x Sizeup

Homer, Eric R. Acta Materialia 63 (2014): 44-53..

Homer, Eric R., and Christopher A. Schuh. Modelling and
Simulation in Materials Science and Engineering
18.6 (2010): 065009.

Harris, Matthew B., Lars S. Watts, and Eric R. Homer.
Acta Materialia 111 (2016): 273-282.

Homer, Eric R., and Christopher A. Schuh.
Acta Materialia 57.9 (2009): 2823-2833.

Hardin, Thomas J. Computational Mechanics (2018): 1-10.

Chen, C. Q., Y. T. Pei, and J. Th M. De Hosson.
Acta Materialia 58.1 (2010): 189-200..

Gu, X. Wendy, et al., Nano letters 14.10 (2014): 5858-5864.

Chen, Chang Qiang, et al. Physical Review B 83.18 (2011): 180201.
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| Competitive Shear Localization
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Hardin, Thomas J. "Accelerating coupled finite element-kinetic Monte Catlo models: 200x speedup of shear transformation zone dynamics simulations.*
Computational Mechanics (2018): 1-10.
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2 | Potential Energy Landscape Ansatz

1. Configurational potential energy decompose into a portion which correlates with molar volume
(dilatative CPE), and one which does not (isochoric CPE). Experiments have shown that shear
modulus maps to total CPE.

U*:UI*‘I_UB

2. The density of “polyamorphs” of the glass plotted on the isochoric x dilatative axes can be
represented by this simple combinatorial density of states.

D(U*,U%) — nRef  T'(3+4a+b) U \* ( U5\’
I»~D/ (URD2T(1 + a)(1 + b) \ URet [ Ref

(a) (t

3. The glass can transition between any two
“polyamorphs,” and the transition state barrier height is
constant.




2 I STZ Dynamics with Potential Energy Landscape
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Y. Q. Cheng, E. Ma, Applied Physics Letters, vol. 93, art. 051910, 2008.



s I STZ Dynamics with Potential Energy Landscape
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Y. Q. Cheng, A. ]. Cao, E. Ma, Acta Materialia, vol. 57, pp. 3253-3267, 2009.



2% | Looking Forward: Bridging Scales, a Tale of Two Samples
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Adapted from Miyazaki, Narumasa, et al. "Prediction of pressure-promoted thermal rejuvenation in metallic glasses." npj Computational Materials 2 (2016): 16013.

Gao, Qian, et al. "Crystallization kinetics of the Cu50Zr50 metallic glass under isothermal conditions." Journal of Solid State Chemistry 244 (2016): 116-119.




27 | Looking Forward: Bridging Scales, a Tale of Two Samples

Sample 1 Sample 2
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Von Mises Atomic Strain distributions in uniaxial tensile tests. Strain rate = 10® /s, Temperature = 300 K in both cases.

Adapted from Miyazaki, Narumasa, et al. "Prediction of pressure-promoted thermal rejuvenation in metallic glasses." npj Computational Materials 2 (2016): 16013.



2 | Looking Forward: Bridging Scales, a Tale of Two Samples

Sample 1 Sample 2

Locations of icosahedral short-range atomic clusters

Adapted from Miyazaki, Narumasa, et al. "Prediction of pressure-promoted thermal rejuvenation in metallic glasses." npj Computational Materials 2 (2016): 16013.



» | Loose Ends

1. How does the glass change as we do [process] to it?

2. How does the structure of the glass impact its [property]?



High Entropy Alloys
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31 | Why Bother!?
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Courtesy of Dr. Andrew Kustas, Sandia.

Miracle, Daniel B., and Oleg N. Senkov. "A critical review of high entropy alloys and related concepts." Acta Materialia 122 (2017): 448-511.

Gludovatz, Bernd, et al. "A fracture-resistant high-entropy alloy for cryogenic applications." Seence 345.6201 (2014): 1153-1158.



| Thermodynamic Rationale

Spinodal decomposition Single solid solution
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George, Easo P, Dierk Raabe, and Robert O. Ritchie. "High-entropy alloys." Nature Reviews Materials 4.8 (2019): 515-534.



» | Pareto Front
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Public Domain.
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(44

... we must begin to think differently about the scope
of complex concentrated alloy studies. A small handful
of equiatomic or near-equiatomic compositions are
commonly used as a proxy for all the alloys in a multi-
component phase diagram. We need to explore a
broader range of compositions in promising alloy
systems.”

Miracle, D. B. "High entropy alloys as a bold step forward in alloy development." Nazure communications 10.1 (2019): 1-3.



s | Problems with Direct High-Throughput Simulation of HEA

55

Random nature of HEAs requires large
cells to capture representative properties.

Large cell size implies first principles not an
option; so MD i1s the best we can do.

Large number of constituents implies
challenging construction of empirical
potential.

Even with perfect empirical potential,
difficulty of constructing meaningful
simulations within performance constraints.

>

Mesoscale

Time Expenditure

Accuracy / Predictive Power




i I Spectral Neighbor Analysis Potential (SNAP)
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github.com/FitSNAP/FitSNAP
By Dr. Aidan P. Thompson et al.

Accuracy / Predictive Power
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Thompson, Aidan P, et al. "Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials." Journal of Computational

Physics 285 (2015): 316-330.
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7 I High-Throughput Analysis of Al-Ti-Nb System w/SNAP potential
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3 I High-Throughput Analysis of Al-Ti-Nb System w/SNAP potential

Nanotensile Yield (force units) / molar mass (g/mol)
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3 | Attempts at Additively Manufacturing HEAs
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Courtesy of Dr. Andrew Kustas, Sandia.



o | Attempts at Additively Manufacturing HEAs

Courtesy of Dr. Andrew Kustas, Sandia.
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