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Wide-Bandgap Materials Enable Compact Power Converters

SNL GaN HEMT “Coin Converter”
90V, 90 mA - 215 W/in3

SNL SiC hybrid switched-capacitor boost converter (ARPA-E)

*  First prototype: 0.5 kV - 10.1 kV (gain = 16.8) at 2.6
kW, 95.3% efficient, 410 in3

* Second prototype: +2% efficiency, 55% volume

Over an Order of Magnitude
Improvement in Power Density is SOA commercial microinverter
Enabled by WBG and UWBG 250 W in 59 in3 = 4.2 W/in3
Semiconductors Compared to Si

Gedtm
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+ Benefits of Wide-Bandgap Semiconductors

Fundamental Materials Capabilities Conventional
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Power Diodes

An ideal diode is the
perfect switch.

v

Normal device I-V curve.
Reverse blocking limited by the
breakdown voltage V.
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Impact lonization

Energetic electron *—

Impact ionization:
1. An energetic carrier collides with an atom.
2. Energy is transferred to the atom and creates an electron-hole pair.
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Electric Field

The ‘Critical’ Electric Field
—>
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X=0 X=W,

fOWD apexp [foD(an — ap)dx'] dx = fOWD o exXp [— foD(ap - an)dx’] dx = 1

The critical field is defined as the maximum electric field that
leads to avalanche breakdown in a 1D analytical model.
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s Selberherr’s Impact lonization Model

Selberherr’s Impact lonization model relates

the impact ionization coefficients, o, and a,
to the local electric field using three fitting

parameters.

IMPACT IONIZATION PARAMETERS FOR GAN

Reference Electrons Holes
Ay (cm™) By (V/em) Ap (cm™) Bp (V/cm)
Cao et al. 4.48 x 108 3.39 x 107 7.13 x 10° 1.46 x 107
Jietal. 2.11 x 10° 3.69 x 107 4.39 x 10¢ 1.80 x 107
Maeda et al.* | 1.30 x 10° 1.18 x 107 1.30 x 10° 1.18 x 107

2 Evaluated at room temperature

These three reports assume | =1 and |, = 1

Selberherr, S. Analysis and Simulation of Semiconductor Devices. Wien, New York: Springer-Verlag, 1984.
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9 Edge Terminations

Edge terminations are required to control the electric fields near the pn junction
and to prevent premature breakdown of devices.

Several methods exist, such as guard rings, junction-termination extensions
(JTE), and beveled terminations.

The focus of this work 1s on the use of JTEs. Typically, JTE structures are
fabricated by dopant implantation at the surface of the device.

Howevet, due to the present difficulty of implanting Mg in GaN, an alternative
method would be to selectively etch back the p-GalN region to a target thickness.

The JTE total dose 1s then the doping concentration and thickness product of
the remaining p-type material.
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o A Single Zone Etched |TE

Single-Zone JTE
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Breakdown of a Single-Zone JTE

« The doping of the p-region along with
the thickness, t;, of the JTE region is
critical for determining the dose of the
JTE.
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* In this example, the thickness of t, is set
to 260 nm and the value of WJTE is set
to 20 ym, then as a function of p-region
doping, a single JTE is expected to
produce a peak breakdown at the
optimal JTE dose as shown here.
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Breakdown Voltage (V)
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« The peak profile depends entirely on the

: e S— impact ionization parameters used.
1016 1017 1018 1019

P-layer [Mg] Concentration (cm'3)

All simulations use Silvaco ATLAS TCAD software
www.Silvaco.com
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W 1, the Width of the JTE Region
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The value of W can decrease
the breakdown field if it is too
small.

In this sweep of W, , the
value of t; and the doping
resulting in the peak
breakdown in the previous
slide are utilized. Additionally
we use the impact ionization
values of Ji et al.
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A Three Zone Etched |JTE
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14 Breakdown of a Three-Zone |TE

produce optimal breakdown values increases

« The range of p-region [Mg] concentrations that ‘

16 17 18 19
10 10 10 %" The impact of the different impact ionization

. -3
P-layer [Mg] Concentration (cm ™) terms is more apparent here.

—— —— by adding additional JTE zones.
1,262 | Ji .
Maeda  In this figure, the design constraint was
31009 Y e | arbitrarily selected to require the breakdown
Q 80% oF max Vi to achieve 80% of the theoretical max. This
= oR resulted in t1, t2, and t3 being set to 260, 151,
S st 1 and 93 nm respectively for the impact
JPT Y ORI .. S~ - Ao, . . T : jonization coefficients for Ji. For Maeda, t1,
§ 80% of max Vo t2, and t3 were set to 260, 91, and 32 |
O 400 respectively.
o
200 « Each JTE region used the same value of WJTE =
20 pm. |
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s Field Profile at 10'7 cm-3 [Mg]
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s Field Profile at 6.3%x10!'7 cm-3 [Mg]
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17 Field Profile at 1.1x10'8 cm-3 [Mg]
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s Field Profile at 1.7x10'8 cm-3 [Mg]
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19 Field Profile at 10'? cm-3 [Mg]
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Conclusion

The Etched Multi-Zone JTE has the potential to increase the effectiveness of the edge
termination by allowing more precise control of the JTE dose.

The impact 1onization coefficients used can alter the fabrication tolerance of a given multi-zone

JTE design.
Future work will investigate the impact of surface charges from oxide traps and etch damage.

Sandia National Laboratories is currently investigating the effectiveness of the multi-zone JTE
design and results will be presented at a future time.
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