

Revealing the structure and composition of small interfacial volumes composed within reactive multilayer thin films

D.P. Adams, M.J. Abere, C. Sobczak, P.G. Kotula, T. Beechem III, C. Saltonstall,
Z. McClure*, A. Strachan*

Sandia National Laboratories

*Purdue University

The nature of thin interfacial volumes (complexions) that form within vapor-deposited multilayers impact overall film function and application, yet, little is often known about the physical structure and chemical makeup of these nanometer-scale thick regions. For example, atomic species deposited as part of a multilayer can mix across interfaces leading to a modified compositional profile that affects a vital material characteristic such as thermal conductivity or stored chemical energy. With this presentation, we describe the chemical arrangement and phase of thin interfacial volumes developed in reactive Al/Pt and Co/Al multilayers and highlight their impact on film performance. Both sputter-deposited multilayers develop nanoscale, blended volumes at metal/metal interfaces as a result of favorable alloying thermodynamics. The thickness of these mixed volumes are \sim 15 nm and 5 nm, respectively. Portions of the intermixed Al-Pt and Al-Co volumes are amorphous. Aberration-corrected transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) are used to further determine the compositional profiles within the blended regions. Application of a thickness-resolved Cliff-Lorimer K factor enabled mapping of nanoscale compositional variations through thickness. Direct comparisons of composition maps to complimentary, high-resolution TEM images also pinpoint a range of composition that is associated with the development of an amorphous structure. In particular, amorphous $\text{Al}_x\text{Pt}_{1-x}$ is formed over a range of Al-rich composition from $x = 0.4$ to 0.8 consistent with the previous, ion-beam analysis by Blanpain et al. (Phys. Rev. B 39, 13067). Lastly, we present results from complimentary Molecular Dynamics (MD) simulations that investigate the stability of amorphous atomic structures developed in binary metal systems. MD simulations were used to melt and quench model $\text{Al}_x\text{Pt}_{1-x}$ alloys of various fixed composition to obtain relaxed, but heavily disordered, structures like those observed by experiment. The MD simulations generally confirm a stable, amorphous bimetal structure in Al-rich $\text{Al}_x\text{Pt}_{1-x}$. The predicted compositional range of amorphous $\text{Al}_x\text{Pt}_{1-x}$ and that estimated from TEM/EDS have been verified by separate control experiments that co-deposit blended alloy thin films of different uniform composition.

This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories, a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-NA-0003525.