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Novel Materials for Unattended Sensing to
Support Future Treaties

Primary Objective (from BAA): "Identify microscale or nanoscale structures and

phenomena in materials that can provide passive or active indicators of interference with

unattended monitoring or sensing to support compliance with treaties."

OUR APPROACH: Research how short (ns) and ultra-short (fs, ps) pulsed

laser light interacts with surfaces to create color patterns and complex

morphological features for use as passive indicators of interference/tamper
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Rapid laser color marking processes are desired
for fabricating complex markings and patterns.

• Our approach:

- rastered, focused laser spot (1064 nm)

- nanosecond pulse duration for local heating

- metal reacts with air to form coating

• Variety of bulk materials form color layers

Stainless steel 304L R — 0.73

Dual phase steel (50% ferrite) R — 0.72

Titanium CP2 grade R — 0.57

Titanium alloy Ti6AI4V R 0.37

KovarTm (FeNiCo) R — 0.63
GeoroTM (Au88Ge12) R — 0.74

Copper R — 0.97

• FY 14 work has expanded to study
coloring of thin metal films

- Titanium R — 0.57
- Chromium R — 0.62
- Vanadium R — 0.54

Stainless Steel 304L

Bulk Titanium (CP2 grade) Titanium film (3 microns)
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Our research of laser-fabricated color oxides has
investigated the physical origins of color and
spectral reflectance and their relation to processing.
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Colored appearance can now be predicted using
measured optical constants (of film, substrate)
and oxide layer thickness, roughness.
• Spectrophotometer Measurement

• Ellipsometer Simulation
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Alternative laser-based processes have been
developed to pattern alternative intrinsic markings.

• Our approach:

- rastered, pulsed laser spot (ns, ps or fs)

- formation of complex, periodic ripple patterns

- desire to control some characteristic of pattern (for including

encrypted information much like a barcode)

- also would benefit from randomly formed or placed

features for validation of authenticity of marking

• Applicable to materials that do not form colored oxides.
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Key discoveries from our research of laser-
induced periodic surface structures (LIPSS).

• First study to:

- identify timescales for ripple formation (pump-probe)

- show that a combination of Fresnel diffraction
and surface plasmon polaritons affect LIPSS
formation.

- investigate the effects of polarization with
respect to pre-existing feature orientation
(Fresnel diffraction).

- discover the effects of surface asperity height
on EM field periodicity and amplitude.

Side view

Si

CCD

Pump Beam

Ripple formation
at - 50 picoseconds

V.Li te r

f=200rn

50X Sample

NA.= 0.55

Final surface
morphology

Onset of
surface
melting
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Tasks for FY14

• Modeling the formation of laser-induced periodic structures

Sub-task 2.4 Investigate roles of surface plasmon polaritons,
effects of fluence, site specificity.

Sub-task 2.5 Model light solid interactions using EM solver multi-source
scattering, interference.

• Investigate stability of laser-defined markings

Sub-task 6.4 Corrosion testing that implements salt fog / spray.

• Research methods for feature interrogation

Sub-task 7.1 Investigate light-based methods for pattern inspection and
authentication. This includes microspectrophotometry and speckle.

D.P. Adams 2014 9



Work completed in FY14 involved modeling
of light - solid interactions and validation
experiments.

• Experiments with pre-fabricated (well defined)
mesa structures

- light polarization orientation w/ respect to edge

- fluence (which can drive plasmon intensity)

•Modeling (COMSOL, Lumerical) accounts for

- incident wavelength
- pulse duration
- fluence
- feature geometry (height, etc.)
- Fresnel diffraction
- surface plasmon excitation
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Modeling completed in FY14 explains many of
the observed complexities of markings.

Vary alignment of polarization direction
with respect to step edge to activate
surface plasmons to different degrees
(similar to expts.)

Vary step height of mesa

Predict field variations across surface

• Compare with measured ripple patterns

All Mesa heig ht

Si

a. Fresnel diffraction

Au Mesa heig ht

1!1
Si

b. Fresnel diffraction & surface

plasmon excitation
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Modeling completed in FY14 explains many of
the observed complexities of markings.

Vary alignment of polarization direction
with respect to step edge to activate
surface plasmons to different degrees
(similar to expts.)

Vary step height of mesa

Predict field variations across surface

• Compare with measured ripple patterns

Example where surface plasmon

excitation is minimized

• Predictions:
- no EM field variation on Au
(similar to experiments)

- shifted period with increased
mesa height (not validated in lab).

All Mesa heig ht

Si

a. Fresnel diffraction

Field profile at Si Surface
•
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Au Mesa height

Si

b. Fresnel diffraction & surface

plasmon excitation
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Modeling has explored effects of surface
plasmon excitation.

Predictions :

• Periodic field variations on Si and Au
(similar to ripple patterns formed in lab).

• Periodic field variations extend to greater
distance from step edge (similar to ripple
patterns formed in lab).

• In-plane periodicity of EM field variations
shifts to dimensions below the primary
wavelength of incident light (similar to ripple
patterns formed in lab).

• Second harmonic in periodicity due to
traveling wave from opposing edge.
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Surface ripple patterns produced on real
surfaces are complex markings with intrinsic
features.

• User controlled features

- average wavevector of ripples (via polarization)

• Spontaneous characteristics

- location (maps to initial asperity location)

- ripple period (attributed to degree of plasmon
excitation which relates to orientation of
polarization to local step edge).

Example wherein polarization is varied
in discrete square macro-areas and
ripples form at asperities with unique
periods (due to relative alignment).

Periodic ripple pattern on Stainless Steel 304L
formed around an initial surface defect

field

D.P. Adams 2014

Polarization varied in
neighboring 'squares'



Colored oxide coatings do not change in humid
environments but exhibit poor resistance to
corrosion when immersed in salt water.

•Previous year's research showed excellent

0.9

0.8

mechanical properties (hardness, toughness, 0.7

work of adhesion) for color coatings made on 0_6

steel, titanium, etc. 0.5

0.4

0.3

•Continued research demonstrates no
change in chromaticity (colored appearance)

0.2

after 3 years of room temperature aging.
0.1

0

dnitial work involving immersion in salt water solution for

0 0.1 0.2

25 days showed poor corrosion resistance
(SS 304L oxides) in extreme environments.

Motivation for current FY task:
Investigate corrosion resistance in salt fog
environments.

Initial

1 1

After 3 years
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Work in FY14 involved additional corrosion
testing including salt fog experiments.

• Salt fog test conforms to ASTM B117 standards.

• Exposure time of 100 hours for each sample.

• Colored oxide layers made to different thickness.

• Salt Fog testing results:

- Steel (553044 For a range of oxide thickness — 150 nm,
there was no corrosion. Corrosion when thickness > 200 nm.

- Titanium (CP2 grade): No indication of corrosion to date.
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Results from salt fog tests;
color layers on stainless steel
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Additional corrosion testing has included
anodic polarization tests for localized attack.

• Anodic testing results:

- Titanium (CP2 grade): no corrosion attack (thin, thick coatings).

- Steel (SS304L): localized pitting at cracks in oxide coatings.

Reference Electrode (SCE)

Working Electrode

Counter Electrode

IN2 gas

Salt Bridge —1"-

Containing

KCL

l'Fitinuni
Solution

Nletal Sample

I

Before
Testing

After
Anodic

Polarization
Testing

U ntreated
SS 304L

U ntreated
S 304L

Ti 7.6 W, 300 mm/s
Before Anodic Polarization

Ti 7.6 W, 300 mm/s
After Anodic Polarizatio

30 mm/s
h=489 nm

30 mm/s
h=489 nm

300 mm/s
h=147 nm

Ti 7.6 W, 90 mm/s
Before Anodic Polarization

Ti 7.6 W, 90 mm/s
After Anodic Polarization

350 mm/s
h=100 nm

350 mm/s
h=100 nm

Strategy for future: development of new processes for stainless steel oxides
that prevent cracking (pre-heating, post-anneal, multi-scan laser processes)
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Research of speckle analysis for feature
detection and pattern validation at long
standoff distances.

• Laser scan direction can be varied in color
features independently of color (which is
controlled by fluence).

• Scan direction gives rise to large scale features
- 50 pm period which are detected by
speckle.

• Long working distance (up to meter) utilized.

41.

\\

D.P. Adams 2014 18



Research of speckle analysis for feature
detection and pattern validation at long
standoff distances.

Speckle

• Laser scan direction can be varied in color
features independently of color (which is
controlled by fluence).

• Scan direction gives rise to large scale features
- 50 1.tm period which are detected by
speckle.

• Long working distance (up to meter) utilized.
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Work in FY14 involved investigation of
microspectrophotometry as a method for
mapping and validating uniqueness of markings.

• Utilized a Craic Inc. UV-Vis-IR microspectrophotometer

• Measurements spanned millimeter areas.

• Detected large color islands with unique reflectance spectra

(compared with the surrounding material).
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Work in FY14 involved investigation of
microspectrophotometry as a method for
mapping and validating uniqueness of markings.

•

it

Utilized a Craic Inc. UV-Vis-IR microspectrophotometer IP
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Work in FY14 involved investigation of
microspectrophotometry as a method for
mapping and validating uniqueness of markings.

• Utilized a Craic Inc. UV-Vis-IR microspectrophotometer.

• Measurements spanned millimeter areas.

• Detected large color islands with unique reflectance spectra

(compared with the surrounding material).
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Four presentations were delivered in past year,
and two received presentation awards.

S. Lawrence et al. at the lnternat. Conf. on Metal Coatings
and Thin Films (San Diego, CA, 4/28/14)
Title: Electrochemical and Chemomechanical performance
of Laser Oxide Coatings on Metallic Substrates.

G. Neiser et al. at the Rio Grande Symposium on Adv.
Materials (Albuquerque, NM, 10/3/13)
Title: Stability of Colored Oxide Films fabricated on Ti.

3. S.K. Lawrence et al. at the Gordon Conf. on Thin Film &
Small Scale Mechanical Behavior (Waltham, MA, 7/13/14)
Title: Development of Mechanically and Environmentally
Stable Oxide Coatings by Pulsed Laser Irradiation.

4. R. Murphy et al. at Surface Analysis 2014 (Albuquerque, 6/11/13)
Title: Ellipsometric Analysis of Laser Fabricated Oxides on Ti.

5ilver Medal Award Winner
ICMCTF 2014

Samantha K. Lawrence
Purdue Universdy, USA

"Electrochemical and Chemomechanical
Performance of Laser Oxide Coatings

on Metallic Substrates"

In recognition of exceptional research,
demonstrated skills in writing ond

presentation, awarded in open competition
by

the Advanced Surface Engineering Division

Total Number of Presentations for project (to date) = 25.
2



Multiple peer-reviewed publications and a patent.

"Method of Intrinsic Marking" U.S. Patent # 8,685,599 (1 Apr 2014).

"Polarization dependent formation of femtosecond laser-induced periodic surface
structures near stepped features", R.D. Murphy et al. App. Phys. Lett. 104 (2014)
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This technology can potentially benefit the
warfighter.

•lntrinsic marking — no adhesive

•Applicable to various materials

•Color for easy recognition

•Advanced, encrypted barcoding

•Complex features that are virtually
impossible to replicate

Scenario 1

1111161.0.11441.1.4J,

H •,

\or

• General asset protection (applied in the field)

MIN

• Enable rapid geolocation (with something as simple
as cell phone)

Now incorporate color
and intrinsic surface ripples
for added complexity.

Borrowed from website:
Laser Photonics, Inc.
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This technology can potentially benefit the
warfighter.

•lntrinsic marking — no adhesive

•Applicable to various materials

•Color for easy recognition

•Advanced, encrypted barcoding

•Complex features that are virtually
impossible to replicate

Scenario 2

1111161.0.11441.1.4J,

H •,

\or

• Preventing counterfeit parts in the field

MIN

• Critical assets marked with non-transferable tag

Now incorporate color
and intrinsic surface ripples
for added complexity.

Borrowed from website:
Laser Photonics, Inc.

• Archived microstructural features for unambiguous verification.

reduce risk of substitution.

D.P. Adams 2014



Summary

➢ Pulsed-laser color marking of oxidation of metals, alloys.

• Aspects of complex, macro-scale color patterns can be tailored

- average color, location, laser scan direction (for speckle analysis)

• Other characteristics are formed spontaneously:

- color islands, their different spectral reflectance, location

• Large palette of colors (R, chromaticity) on different component materials

• Detailed optical properties (n,k) measured >>> colors can now be predicted

• Oxide coatings adhere well, are hard, and exhibit good wear resistance

• Oxide coatings are stable over time and for moderate temperatures (250°C for multiple hours)

• All oxide coatings on Ti show good corrosion resistance (salt fog, local polarization testing)

• Some oxide coatings on steels show good corrosion resistance (salt fog exposure)

DTRA Sandia National Laboratories

P,dams Hodges Saiz

➢ Nano-scale ripples are a second form of archivable marking.

• Aspects of ripple markings are tailored (i.e., set by user)

- average ripple wavevector is set by incident light polarization

• Other characteristics are formed spontaneously:

- ripple formation at local initial protrusions; period of ripples owes to plasmon excitation

• Origin of ripple patterns identified (interference of scattered light with impinging light)

• Time scales for surface ripple formation (- 50 ps) demonstrated by ultrafast pump-probe microscopy
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Optical properties of color layers have not
changed significantly over two years
(normal aging).

0.9

0.8
• 200 samples tested by aging at 75°F,
40% relative humidity, lighted room 0.7

• Tested samples were various oxide 0.6
coatings made on SS304L, Ti

0.5
• No detectable change in chromaticity

(within uncertainty) 0.4

• No detectable change in spectral 0.3

reflectance (within uncertainty)
0.2

0.1

0
0

Initial
+ After 2 years

±±

Also, there are no detectable changes in

colored, micro-precipitates after 2 years.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7

chromaticity, x

0.8
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Accelerated aging at high temperature reveals
high decornposition temperatures (~250°C) for
colored oxides. 0 6

• No detectable change in chromaticity (x,y)
up to 250°C for multiple hours.

0.5

x

0.4

• No detectable change in spectral reflectance 0.2

up to 200°C for multiple hours.

• We turn to XRD for phase identification
associated with transformation

Ex. Oxides made on Ti6AI4V were
aged at high temperature
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Accelerated aging at high temperature reveals
high decomposition temperatures (~250°C) for
colored oxides.

• No detectable change in chromaticity (x,y)
up to 250°C for multiple hours. 80

70

0 60

• No detectable change in spectral reflectance
up to 200°C for multiple hours. al 40

a)
30

Cr 20

• We turn to XRD for phase identification
associated with transformation
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Ex. Oxides made on Ti6AI4V were
aged at high temperature

One sample
Dwell Time at Temp = 1 hr

Anneal temperatures
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Oxide thickness, in part, determines color.

• Scanning electron microscopy shows
oxide layers are — 10 - 500 nm.

• Thickness generally increases with fluence
or decreasing scan speed (at fixed Pavg).
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Example: Oxides on Stainless Steel 304L
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University Collaborations
in 2013

• Sub-contract extended with Univ. of Michigan

• Ryan Murphy (Applied Physics grad. student)
Graduated with PhD : 2/2013 (100% commitment)
Now a post doc at Sandia working with this team

• Basic research of surface roughness evolution
during pulsed laser irradiation involving ultrafast
pump-probe microscopy

• Sub-contract extended with Purdue Univ.

• Samantha Lawrence (Materials Science & Engineering
Expected PhD date: 2014, 25% time commitment

• Research of the mechanical properties of laser-fabricated
metal oxides (includes study of hardness, adhesion,
phase, variations through thickness)

All students and professors
are US citizens

D.P. Adams 2012
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Technical Objectives for FY11
have been completed

• Research pixel-by-pixel control of laser color features using 10-200 ns light

• Research effects of pulse frequency on color layer formation

• Investigate microstructure, composition, optical properties of color layers

• Research hardness and modulus of color layers (nanoindentation)

• Implement a thermal modeling code to simulate the effects of laser irradiation
(fixed position, varies pulse duration, rate, energy per pulse, wavelength)

• Qualify ultrafast pump-probe instrument (Univ. of Michigan)

• Research temporal evolution of laser-induced periodic surface structures

Sandia
National
laboratories

D.P. Adams 2013



Technical Objectives for FY12
have been completed

Research includes 

• the physical and chemical properties of laser color layers

• micro-color centers forming at selective sites within macro-scale patterns

• the toughness of laser-fabricated color layers

• heat-affected zones via thermal modeling

• feasibility of picosecond and single nanosecond laser coloring of metals

• the temporal evolution of laser-induced periodic structures

• the origin of laser-induced surface ripples

• site-selective formation of periodic surface topographv

Sandia
National
Laboratories

D.P. A



Technical Objectives of FY 13

Research of

• Stability of laser-fabricated markings
- Normal aging (room temperature, multiple years)
- Accelerated thermal aging (elevated temperature, short time)

• Mechanical properties of laser-defined color oxide layers
- Toughness
- Coefficient of friction

• Modeling heat affected zones assoc. with scanned, ns irradiation
- Thermal modeling of pulsed heat input
- Multiple substrates

• Complex markings that combine periodic ripples, colors 1 >
- All-in-one process involving ns irradiation Hypothesis:
- Two step process involving ns and fs irradiation colors and

morphology

An additional Year 3 task involved publishing results from Year 2.

D.P. Adams 2013


