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Abstract— We address the problem of simultaneous coverage
control and stochastic, multi-target tracking with multiple
pursuers with limited range sensors. We formulate the problem
as a constrained stochastic optimization problem that is non-
convex due to the joint sensing model. We exploit the closed-
form solution of the forward stochastic reach set to estimate
the joint likelihood of target locations, and construct an open-
loop control policy for the pursuers. We numerically evaluate
our approach in simulation experiments, and show that com-
putational complexity is dependent of the number of pursuers,
but not on the number of targets. Our results indicate that
this approach can be used to construct optimal mobile sensor
trajectories, in accommodate complex, stochastic environments
with realistic sensing models.

I. INTRODUCTION

We consider the problem of UAV-based simultaneous
tracking and coverage in stochastic, dynamic environments,
which is necessary for data collection, remote observation,
search and rescue, and other applications. In many cases,
UAVs are deployed as mobile sensors to monitor dynamic
and uncertain phenomena. Positioning of the UAVs depends
not only upon the location of relevant phenomena on the
ground, but also on the UAV's sensing capabilities, and
may be subject to a variety of other constraints (i.e., fuel
minimization, flight time constraints, collision avoidance).
Further, coordination amongst UAVs in fleets is needed lever-
age sensing from individual UAVs, to minimize duplication
due to sensor overlap.
Much of work in coverage and tracking applications has

focused on coordination amongst vehicles via distributed
control, in an environment which is presumed to be deter-
ministic, although potentially time-varying. Gradient-based
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controllers allow the vehicles to optimally navigate through
a region of interest while exploiting sensing performance
[1]—[4]. However, a similar foundation in stochastic environ-
ments is lacking. Our focus is on problem of simultaneous
coverage and tracking in stochastic dynamic environments,
with multiple vehicles that have sensing limitations.
One approach to this problem employs a partitioning of

the environment, so that each pursuer is responsible for one
cell in the partition. In [5], [6] the authors presume that
the position of the target is discontinuous, and modeled by
a random variable. These methods translate the stochastic
behavior of the targets in the density function directly,
and utilize a time-varying probability density function to
account for both target tracking and coverage tasks. In [7],
the authors use decentralized adaptive control to drive a
network of mobile robots in the direction of an optimal
sensing configuration [7]. The time-varying density function
is unknown, and the robots acquire this information online
using an adaption law from sensory measurements.

Information theoretic methods seek to simultaneously
achieve stochastic coverage and exploration. A mutual infor-
mation approach that utilizes a particle filter representation
has been used in [8] to design a scalable method that local-
izes a stationary target and explores an unknown region using
multiple robots. In [9], the authors suggest an exploration via
optimal SLAM control that exploits the gradient of mutual
information; the targets' states are assumed to be discrete
random variables which are estimated by a linear consensus
algorithm. In [10], the authors propose a filter to estimate the
targets' joint density, instead of estimating individual target
locations. This approach maximizes the acquired information
regardless of number of targets. An ergodic receding horizon
approach was proposed in [11], that avoids exhaustive search
and uses sensor feedback to adaptively update the expected
information density [12].
Some work has also been done to exploit the joint detec-

tion by all sensors. The authors in [13], [14] consider limited-
range sensors, and employ a joint probability detection
function A consensus-based method was investigated in [15],
that maximizes the probability of consensus target detection
among mobile sensors, but with significant computational
complexity. Other work has employed both sensor-consensus
and sensor-fusion for sensor deployment problems [16].
Our approach invokes an optimization framework inspired

by [1], but that can handle stochastic target dynamics as
well as the shared observation by multiple pursuers, which
have limited range sensors. We employ results from for-
ward stochastic reachability analysis [17] to determine the

SAND2020-3615C

This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.



2

5

1

5

-2

1

cr(1/12), and probability measure Pw(ce E B) = f80,(q)dq
for probability density function ow : r and a Borel

2 set B E v(W) [1 8].
We define the likelihood that the ith target is at a location

q E Q at time t as Oit(q) : [0, 1]. Let Eti be the event
1 5

that the ith target is located within the interval [q, q + dq] at
time t, then we have

11D(£7) = 01(q)dq. (2)

We define the aggregate relative likelihood that there exists
0 5 a target within the desired interval, that is,

0

Fig. 1. Aerial vehicles (the pursuers) must assure coverage of the
environment as well as tracking of stochastic ground vehicles (the targets).
The mean trajectories for the targets are depicted by ̀ *', and level sets of
each targets' initial probability density functions are also shown.

likelihood of the targets' position, as well as the forward
reachable set of the pursuer to ensure that pursuers can
coordinate to reach the desired locations at the desired
time. The main advantage of our framework is that it its
computational complexity is independent of the number of
targets we wish to observe, and that it accommodates the
potential for joint detection amongst multiple sensors. In
lieu of artificially partitioning the environment, collision
avoidance constraints are embedded within the optimization.
While non-convex, first and second derivatives are available
to facilitate nonlinear methods such as sequential quadratic
programming
The remainder of the paper is as follows: Mathemat-

ical preliminaries and the problem formulation are given
in Section II. We characterize optimization problems for
pursuer trajectories and for the corresponding optimal control
in Section III. Section IV provides numerical results from
simulation. A summary is presented in Section V.

II. PROBLEM SETUP

We consider the problem of simultaneous optimization
of coverage and tracking of multiple stochastically moving
targets by multiple pursuers in a bounded and predefined
environment of interest Q c Rm, as in Fig. 1.

A. Target and pursuer dynamics

We model the ith target as a linear time-invariant dynam-
ical system

xt+1 = Axit (1)

with state xi E RV', disturbance process wi E W C RP,
and constant matrices A, B, of appropriate dimensions, for
i E {1, • • • , N}. We presume wi is an independent and
identically distributed random vector in the probability space
(W, 0-(W),11),) defined by sample space W, sigma-algebra

n

43.t(q) = P U e;) •
i=i

(3)

We also model the ith pursuer as a linear time-invariant
dynamical system

Bpursuer uit (4)pt±i = APursuerpit

with state piEXERm, controlled input ui E Lf C
Rr, and system matrices APursuer, BPursuer of appropriate
dimensions for i E {1, • • • ,n}. Let uit = 7r'ti be an open-
loop control action, and ,A4 be the set of all feasible control
policies. We define the one-step reach set for the ith pursuer
at time t,

Reach(Pit) = fp E x 371 c s.t. pt = 91 (5)

with open-loop control sequence 71
[17].

= _i}

B. Pursuer sensing model

We presume each pursuer is equipped with a range sensor,
and that signal strength decays with the Euclidean distance
between the sensor and the source. We describe exponentially
decaying sensing performance for the ith pursuer in terms
of the sensing function p : R>0 —> [0, 1],

Pak' — = (6)

in which Xi E R± and fio E (0, 1] depend on the physical
characteristics of the sensor. For ./z4 that denotes the event
in which the ith pursuer located at pi detects the source at
q E Q at time t, we have that IP(A) = Pak/ — That
is, the sensing function describes the likelihood of the ith
sensor detecting a target at location q.

Because sensing regions associated with multiple pursuers
can overlap, we must account for the likelihood of joint
detection by multiple pursuers. We represent the event that
there exists at least one pursuer that detects a target at loca-
tion q E Q at time t as LfiL1M, hence the joint probability of
detection is IP(uriL1.,40. Assuming that pursuer observations
are obtained independently, i.e., P(mnAl) = P(m).P(An,
we apply the inclusion-exclusion principle to obtain

IP (U Ait) = 1 — [1 P (Aat )] (7)
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Fig. 2. Sensing function (6), for Ai = 0.25, Ai = 1, and Ai = 2, with
fz° = 1. For a norm-based distance x, the sensing function describes the
ability of the sensor to accurately evaluate information a distance x from
the sensor.

Denoting T(q,pt) = IP(U7_1Ait), and applying (6), we
rewrite (7) to obtain the joint probability of detection by
all pursuers

-7(q,pt) = 1 — [1 — 
f(11q—PitIl)J. 

(8)
i=i

As opposed to the case in which there is a single pursuer
[19], (8) is important because it accounts for the potential
for simultaneous observation by multiple sensors. Without
accounting for the joint probability of detection, pursuers
could select trajectories which essentially duplicate work
being done by other pursuers.

III. OPTIMAL PURSUER TRAJECTORIES AND CONTROL

We seek to maximize the likelihood that with a given set
of pursuers, we can optimally cover a bounded region and
track anticipated target movement. To do so, we separate the
problems of trajectory optimization and controller synthesis
into two problems, solved sequentially. Feasibility of result-
ing trajectories is ensured by capturing pursuer dynamics in
the trajectory optimization problem.

A. Optimization of Pursuer Trajectories

We draw upon an approach originally described in [3], in
which coverage and tracking over a pursuer-partitioned space
is accomplished through maximization of an expected-value
multi-center function, that captures limitations of sensing
performance, weighted by the relative importance of the area
to the covered.

Definition 1 (Expected-value multi-center function [3])
From Ch. 2.3.1 in [3]. Given a bounded measurable set
Q C Rm, points pi E i E {1, . , an importance
function '11) : R 11:>0, and a performance function
f : R>0 R, that is non-increasing and piecewise
continuously differentiable, the function H : N such
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Fig. 3. Aggregate density overapproximation, (qt), generated from a sum
of four individual density functions, cPi (qt), each of which is described by
a Gaussian distribution .1\1(µ,, a) for µ= xx and v= yy.

that

H(pi, • • • ,pn) = f m
Q iE{1

ax
,••• ,n} 

f (1Iq — pill)0(q)dq (9)

is an expected-value multi-center function.

Solving (9) results in a choice of pi that optimally cover a
region S, weighted by the importance function 0, for some
sensing performance f that is uniform for all points pi.
While it is straightforward to employ the aggregate relative
likelihood (3) as the importance function, the fact that we
employ a non-partitioned approach to pursuer positioning
means that replacing the performance function with individ-
ual pursuer sensing functions (6) will be ineffective. Instead,
we re-interpret the maximization over all sensing functions
to accommodate the potential for joint sensing.

74 (Pit )14 • • • )prti) = f T(q,Pt)(13t(q)dg (10)

However, the aggregate likelihood </it (.) is in general
difficult to compute. By Boole's inequality, the upper bound

t(q) P(67)
=1

is straightforward to compute, since

IP(E1) = E Oit(q) (12)
i=1 i=i

Hence we obtain the approximation

7i(Pit • • • prt') = f (q P t)( t (q) d q (13)

that represents the objective function we wish to maximize
through pursuer trajectory selection. Fig. 3 depicts the over-
approximation (Di (q) for a scenario in which each of four
targets generates a Gaussian likelihood c/4(q).
We maximize (13) to optimize the joint probability of

detection, weighted by an overapproximation of the likely



target positions. Hence we seek to solve following optimiza-
tion problem:

maximize
Pt ,P? ,13"t'

T

(pl,R,•••,141)
t=1

subject to pit E Reach(pit_1), Vi E
rmin llpit pit 11 Vj E {1, • • • ,n : j

(P1)
The decision variables are the positions of the pursuers,
pt = (131,13? , , Al, over a time horizon of length T .
The pursuer positions are subject to pursuer dynamics under
open-loop control, via the one-step reachable set (5), in
the first constraint. The second constraint assures collision
avoidance.

B. Numerical computation

First, we note that the constraint associated with the
dynamics of the pursuer are convex.

Lemma 1 [20, Section 5] If the control space II is convex,
the reach set Reach(pt) is convex.

Computation of the one-step reach set is straightforward via
MPT [21].

Second, we note that the forward stochastic reach prob-
ability density [17] provides a closed-form expression for
43(qt) in (12), the over-approximation of the aggregate rela-
tive likelihood.

Lemma 2 [17, Proposition 1] For all i = 1, . . . , N, and
t E [1, T], Let 4 E X be the known initial position for the
ith target in (1), and random process wi , EA E
RP, then the system trajectory of (1) is

where

= Atxto +ct(1t),1 it,„,.)

Eit = ct (It E,„.)c7

(14)

(15)

(16)

Ct = [B AB A2B . . . At-1B] E R"(tP) is the
controllability matrix for system (1), and It is the t x t identity
matrix.

Lemma 2 provides closed-form expressions for each target
separately; (12) is constructed from their sum.

Lastly, there are non-convexities associated with both
the collision avoidance constraint as well as the objective
function in (P1).

Unfortunately, unlike in the single-pursuer case [19],
which exploits concavity of the sensing function f and non-
negativity of the density function .1)t(q) to assure convexity
of the objective function [1, Lemma 3 8], the objective
function (13) is non-convex. While lit (q) clearly satisfies
the non-negativity property, the joint sensing function (8)
is not concave. However, solutions to (P1) are amenable
to gradient-based methods, since analytical expressions are
available for first and second derivatives of (13).

By taking partial derivative of (13) with respect to the ith
pursuer's location pt at time t, we obtain

8.F(q,pt).5(q)dg
apl JQ 814

fi A —q fi

JQ [Mg — — PlIl k 1,k0i(1 f k 43' (q)dq

(17)
The analytical expression for the Hessian matrix of the
objective function can be similarly obtained, but is omitted
here due to space limitations.

Since the closed-form expression for the gradient and
Hessian matrix of the objective function are available, and
the objective function and the constraints are continuous and
have continuous first derivatives, we can employ numerical
solutions based in sequential quadratic programming [22,
Chapter 18], interior point methods [23], or difference-of-
convex programming [24] for locally optimal solutions.
We also note that the choice of time horizon will have

a significant impact on the computation time in solving
(P1). While moderately longer time horizons may improve
capacity to plan, shorter time horizons can improve compute
time and responsivity to current information [25].

C. Controller synthesis

Presuming a solution to (P1) has been obtained, we then
pose an optimization problem construct the control law for
each pursuer. Let ut = . . . , q) be the concatenated
vector of all pursuers' controls. We design an open-loop
control policy via the following optimization problem,

EUT Ptut t
t=1

(BPursuer 0 In )tit = Pt — Pt—i

ut E Lfn

minimize
ut

subject to
(P2)

for positive semi-definite matrices Pt E r 2n x 2n and

Bputsuer as defined in (4). This optimization problem gener-
ates a sequence of control actions that minimizes the control
effort to drive the pursuer from the initial position to the
desired location.

IV. EXPERIMENTAL RESULTS

We evaluate our method on a variety of scenarios, designed
to validate our approach and elucidate relevant phenomena.
In all scenarios, we consider an environment with Q =
[-2, 2] x [-2, 2] C R2 and a time horizon of length T = 30.
All numerical computations were implemented in MATLAB
R2018a on an Intel Core i7 CPU with 3.6GHz clock rate
and 16GB RAM. We employed MATLAB's nonlinear solver,
finincon, to implement an SQP-based solution to (P1), and
CVX to implement the solution to (P2. All optimizations of
(P1) were implemented in a one-step horizon as in [8], in an
iterative fashion over 30 time steps.
We presume 2D point-mass pursuer dynamics, with

Apursuer = I2, and Bpursuer = Ts/2, input bounds LI =
[-1,1] x [-1, 1] and sampling time T, = 0.1. The sensing
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function (6) has constants Ai = 0.25, fi° = 1 for i E
{1, , n}, meaning that all pursuers are similarly equipped.
We presume that the safety radius is rnain = 0.2.
The target dynamics are described by

xit+l

wt

= 4+134,
ArCtti,Ei)

(18)

(19)
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Fig. 5. Computation time with varying number of targets for n = 5
pursuers, based on 20 simulations for each scenario (from the same initial
condition).

with B = Bp ursuer •
We consider scenarios with up to 10 targets, for which we

specify a variety of means and variances (Table I).
Fig. 4 depicts a representative scenario with more targets

than pursuers. As expected, the pursuers move towards areas
of high likelihood of target detection, while maintaining
separation mandated by collision avoidance. The sensor
performance function decays relatively slowly, so the relative
merit of joint sensing, rather than the collision avoidance
radius, is the predominant factor in determining spacing
between pursuers. For this scenario, computation time was
25.1 seconds.
We fixed the number of pursuers at n = 5, and ran

20 simulations from the same initial condition for varying
numbers of targets. The mean and standard deviations in
computation time are shown in Fig. 5. As expected, the
computation time is independent of the number of targets.
We then fixed the number of targets at 5 and varied the

number of pursuers from n = 1 to n = 10, again running 20
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simulations from the same initial condition. The mean and
standard deviations for computation time are shown in Figure
6. As expected, the computational time increases as the
number of pursuers increases, due to the additional decision
variables. However, for higher numbers of pursuers, there is
not much corresponding increase in computation time. This
is ostensibly due to the fact that the space is "saturated"
with pursuers, and the increased coverage from the additional
pursuers is essentially trivial.

For a scenario in which there are 6 targets and 3 pursuers,
we evaluated the effect of the sensing function decay rate. For
a given disturbance sequence and a fixed initial condition, we
simulated trajectories for Ai = 0.25, Az = 1, = 2 (i.e., all
three sensing functions depicted in Figure 2). As before, we
presume that the decay constant is the same for all pursuers.
As shown in Figure 7, the trajectories are fairly similar, with
slightly more spread amongst the pursuers for lower decay
rates. Because each UAV can assure high quality information
over a broader region in this case, the UAVs can spread out
to capture more of the underlying distribution.
We computed the corresponding optimal control for this

scenario by solving (P2) with Pt = I2n (i.e., minimizing
control effort) for each of the three values of k. We
computed the 2-norm of the control effort for each pursuer.
In Figure 8, we see that the total control effort is shared
amongst pursuers due to the coupling inherent in the joint
likelihood of detection (13), and that as expected, the control
effort does not vary excessively for different sensing function
decay rates.

V. CONCLUSION

We presented a solution for simultaneous coverage and
tracking of multiple targets with stochastic dynamics in by
multiple pursuers. We constructed a variant of an expected
value multi-center function, to capture the expected likeli-
hood of target locations, weighted by sensing limitations of
the pursuers. By maximizing this function, subject to one-
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Fig. 7. Snapshot of the final configuration (at t = 30) for the 3 pursuer, 6
target scenario. The black '*' indicate the targets' final expected position.
Trajectories for pursuer 1, pursuer 2, and pursuer 3 are indicated by green,
blue, and red, respectively. The squares, circles, and diamonds, depict the
pursuers' trajectories under three different sensing functions, determined by
= 0.25, Xi = 1, and Xi = 2, respectively, for i E {1, ,

step reachability constraints to capture the pursuer dynamics,
we obtain feasible pursuer trajectories that accommodate
joint sensing in a dynamic, stochastic environment. We im-
plemented our approach using sequential quadratic program
to solve for the local optima of the resulting nonlinear
constrained optimization problem. We constructed an opti-
mal open-loop control sequence from the optimized pursuer
trajectories, to drive the pursuers to the desired locations.
Numerical examples were shown to validate the proposed
algorithm.
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