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Abstract

Additive Manufacturing (AM) of porous polymeric materials, such as foams, recently became a
topic of intensive research due their unique combination of low density, impressive mechanical
properties, and stress dissipation capabilities. Conventional methods for fabricating foams rely on
complex and stochastic processes, making it challenging to achieve precise architectural control of
structured porosity. In contrast, AM provides access to a wide range of printable materials, where
precise spatial control over structured porosity can be modulated during the fabrication process
enabling the production of foam replacement structures (FRS). Current approaches for designing
FRS are based on intuitive understanding of their properties or an extensive number of finite element
method (FEM) simulations. These approaches, however, are computationally expensive and time
consuming.  Therefore, in this work, we present a novel methodology for determining the
mechanical compression response of direct ink write (DIW) 3D printed FRS using a simple cross-
sectional image. By obtaining measurement data for a relatively small number of samples, an
artificial neural network (ANN) was trained, and a computer vision algorithm was used to make
inferences about foam compression characteristics from a single cross-sectional image. Finally, a
genetic algorithm (GA) was used to solve the inverse design problem, generating the AM printing
parameters that an engineer should use to achieve a desired compression response from a DIW
printed FRS. The methods developed herein present an avenue for entirely autonomous design and

analysis of additively manufactured structures using artificial intelligence.
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A novel approach was developed to determine the mechanical properties of additively manufactured

(AM) foam replacement structures (FRS) using a neural network and computer vision algorithms.

Using this methodology, simulation times can be dramatically reduced, allowing for the

implementation of a genetic algorithm which can determine the optimal AM parameters to achieve

a targeted mechanical compression response.



1. Introduction

Naturally occurring porous materials such as wood, bone, and cork found widespread uses
throughout history due to their mechanical robustness despite their light weight. Recently, man-
made porous materials, commonly known as foams, became a topic of intensive research with
increasing applications in transportation, packaging, insulation [1], sports equipment [2, 3],
aerospace [4, 5], and biomedicine [6, 7].

Traditional foams, a type of cellular solid, consist of stochastic arrangements of material and
voids which lead to their unique properties [8, 9]. Various methodologies have been utilized for
preparing foams including phase separation [10, 11], internal phase emulsion [12, 13], immersion
precipitation [14, 15], direct templating[16, 17], and gas foaming [18]. Many of these methods
rely on multi-step procedures which typically require high temperatures, pressures, or chemical
leeching and result in relatively stochastic nucleation of pores.  This can be highly disadvantageous
for engineers who wish to gain precise control over the density or mechanical properties of foams
for specific applications. Some attempts to generate foams with varying pore densities have been
made by adjusting gas pressure, particulate size, or temperature. A notable example for generating
more direct control over pore size and relative density is the use of sacrificial materials, such as salt
or urea prills, which can be leached out after being placed in water baths [19-21]. These methods,
however, are time and process intensive while producing highly ordered foams with precise spatial
control and micro-scale features, remains a crucial challenge.

In recent years, additive manufacturing (AM), also known as 3D printing, presented itself as a
solution to this problem since complex designs can be rapidly implemented and manufactured with
high spacial control without the need for expensive tooling, casting dies, or post-processing [22-
24]. Direct-ink write (DIW) 3D printing, in particular, came under special attention due to its
ability to process a wide range of materials including elastomers [25-27], ceramics [28, 29],
conductive pastes [30-32], hydrogels [33, 34], and other smart materials [35-39]. Due to this wide
library of printing materials and precise extrusion process, many efforts have been made to fabricate
engineered structures that behave like foams, or foam replacement structures (FRS), using DIW.
In 2006 Lewis et. al printed colloidal gels which could span gaps in underlying layers and ultimately

produce an FRS with an array of material and voids [35].  Since then, more complex cellular solids,



have been developed to generate FRS with unique strain-energy absorption capabilities or strength-
to-weight ratios [5, 40].  Still, the FRS designs presented in these works are highly experience-
dependent, relying on unit cell designs intended for specific applications, demonstrating a need for
the investigation of tunable foam design strategies which can solve a variety of realistic mechanical
loading scenarios.

Multiple design strategies have been employed to further modify the mechanical response of
foams by altering the matrix material or pore design. For example, grayscale 3D printing has been
introduced allowing mechanical tunability for foam matrix materials [41]. Karyappa, et. al.
combined DIW and immersion precipitation to fabricate foams which have widely tunable porosity
from micro to nano scales [42]. In addition to adjustments in pore dimensions and matrix material,
entire foam architectures may also be altered to produce unique mechanical responses. Duoss et.
al. DIW printed two elastomeric foams with slightly differing configurations, however, each
exhibited drastically distinct load responses ultimately suggesting the ability to independently tailor
mechanical response of cellular solids via micro-architected designs [22]. Apart from intuitive
design strategies, finite element method (FEM) simulations have been employed to characterize
layers of viscoelastic materials and use them to find optimal designs for energy dissipation in
packaging and helmet applications [43]. Many researchers have also attempted to model porous
foams directly, though the viscoelastic models are exceedingly nonlinear while microstructural
models for highly complex 3D structures are challenging, especially at large deformations[44-46].
The primary drawback of FEM simulations, however, is that they are computationally expensive
and exploring a large design space, with many architectures or pore sizes, would be very time
intensive. We therefore seek a strategy that can reproduce mechanical characteristics such as
compression curves within times on the order of minutes on simple desktop or laptop computers, so
that engineers may use such models to explore a large design space. Artificial neural networks
(ANNSs), a subset of machine learning (ML) methods, are capable of rapidly interpolating to identify
trends and patterns within complex data, and therefore serve as an excellent solution to the problem
of accurately modelling mechanical characteristics in a computationally cheap and efficient manner.

Due to their ease of implementation, rapid pattern recognition, and ability to make complex
decisions, ANNSs have found widespread use in search engines, financial modelling, marketing, and
self-driving vehicles. Recently, ANNs have been applied to classical mechanics problems such as
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predicting the crack propagation characteristics of metals [47], torsion in iron alloys [48], or multi-
scale quantum mechanical models [49, 50]. Gu, et. al. utilized ANNSs to design fracture resistant
composite structures with varying toughness and strength ratios [S1].  This approach, however,
relies on data gathered from thousands of FEM simulations for 2D architectures, limiting its
applicability for directly modeling complex 3D porous micro-structures. Recently, Jordan, et. al.
substituted FEM simulations for a small set of experimental results to train an ANN which could
describe the temperature and strain rate dependent mechanical response of polypropylene [52].
Here, a relatively small experimental set could be used to train an ANN that accurately represents a
complex architectural design space. In creating an ANN model, however, one must provide
adequate inputs that describe the situation to be predicted. To increase the usability and convenience
of the model, the process of extracting inputs based on simple measurements or calculations should
be rapid and automated. In many applications ranging from self-driving vehicles to mechanical
property prediction based on material geometry, simple images may contain the information which
must be input to the ANN model. The automatic inspection and rapid data acquisition from images
for this purpose can be readily achieved using computer vision.

Computer vision has seen rapid advancements in recent years extracting and utilizing critical
parameters from images enabling technologies such as self-driving cars, automated health
monitoring [53, 54], and facial recognition. The most common use of computer vision in the field
of mechanics is for digital image correlation (DIC) which is used to determine the displacement of
a structure as a function of time [55-59]. These approaches, however, use computer vision to track
pattern displacement over large time intervals and therefore require substantial datasets and complex
analysis software, rather than the analysis of simple static images. While these studies demonstrate
possible applications of using ML in materials design, they were mostly focused on using ML
models to predict properties of materials or structures rather than designing new structures with
desired properties. To design a foam to have specific mechanical behavior, the design problem must
be framed as an optimization problem to find the optimal design parameters.

A genetic algorithm (GA) is a multi-objective optimization technique which mimics the
process of natural selection to achieve optimal design solutions based on a desired outcome.
Consequently, GAs have demonstrated great promise in rapidly discovering optimized solutions for
complex design problems in chemistry[60], electromagnetics[61], molecular modelling[62],
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composite design[63], 4D printing [64, 65], and a variety of other engineering disciplines [66, 67].
Regarding the mechanics of composites, training an ANN can often become computationally
unfeasible due to the large mesh densities and representative volume element (RVE) sizes required
to achieve a size converged piece of training data for the GA to utilize. For this reason, researchers
have turned to GAs for determining optimal composite designs for critical aerospace components
[68], prosthetics [69], lattice structures [70, 71], among other exciting applications.

In this work, we develop a novel methodology for approaching both the mechanical analysis
and the design of DIW printed FRS using a combination of ANN, computer vision, and GA. An
ANN is utilized to predict the mechanical compression characteristics of printed FRS. By using
computer vision algorithms, static cross-sectional images of experimental specimens could provide
adequate ANN inputs describing the FRS printing parameters. The advantage of rapidly obtaining
compression characteristics based on printing parameters allowed us to implement a GA, rapidly
solving optimization problems in a complex design space. As a result, the GA could tackle the
inverse problem of obtaining ANN inputs, or FRS printing parameters, to yield a desired mechanical
compression response.

We begin this study in Section 3.1 by DIW printing an array of FRS with various thicknesses,
filament spacing, and filament diameters. ~After compression testing, general trends within the data
can be identified as the printing parameters are adjusted, however, capturing the complex
relationship between each of the variables is tedious. In Section 3.2, a computer vision algorithm
is produced which can determine foam printing parameters from a cross-sectional image with a
small error.  Section 3.3 presents the implementation of an ANN that will be trained using the
experimental data developed in Section 3.1. The ANN can then be used to not only accurately
predict the compression behavior of a foam using its cross-sectional image but can also be employed
to infer the compression data of foams for which we have no prior mechanical data. Lastly, in
Section 3.4, a GA is developed which solves the engineering design problem of finding printing
parameters, i.e. ANN inputs, to obtain a desired compression curve.  This methodology
demonstrates the great potential for motivating the design of additively manufactured structures that
cannot be driven by mechanical models due to their complexity, time of implementation, or

nonexistence.



2. Materials and Methods
2.1 Materials
2.1.1 SE 1700

The material used in this study was a two-part silicone elastomer, DOWSIL SE 1700, produced
by DOW Chemical (Midland, MI, USA). The silicone ink was prepared for printing by
homogenizing at a ratio of 10:1 part A:B in a vacuum planetary mixer (Think ARV 310, Thinky
Inc., Laguna Hills, CA, USA) for 60 s at 2000 rpm and 7 kpa. Following mixing, the silicone resin
was transferred to 60 mL syringes and centrifuged at 2000 rpm for 3 minutes prior to printing. The
rheological properties of SE 1700 and the suitability of its use with DIW printing techniques did not

require characterization beyond what has been previously reported [22].

2.2 Printing and Characterization Methods
2.2.1 Direct ink write (DIW)

A custom engineered deposition system having computer-controlled motion stages was used
to translate a build platen in the X-Y plane. A constant displacement syringe pump affixed to the
translating motion stage of the Z-axis provided a method of depositing silicone at known volumetric
dispense rates. Custom toolpath generation software was used to coordinate the movement of the
XYZ motion stages and material extrusion pump to fabricate FRS from predefined toolpaths. Key
design variables and printing conditions of the FRS are presented in Table 1. The silicone elastomer
was printed at room temperature onto aluminum plates pretreated with a PTFE mold release agent.
After printing, the FRS was transferred to an oven and cured for 30 minutes at 150°C, followed by

24 hours at 125°C.

Table 1: Critical FRS design and printing parameters. For each nozzle size used to print FRS, the
number of printed layers was incremented by 5 layers up to the maximum number of layers shown.
The spacing between filaments was incremented by integer multiples of the nozzle diameter. In total,

250 unique FRS were printed.

Nozzle Extrusion Layer Number | Filament Spacing Printing Number
Diameter Rate Hight of layers (x’s nozzle Speed of unique
(mm) (cm?/min) (mm) diameter) (mm/s) FRS




0.250 0.0972 0.2150 5-60 1-10 40 120

0.410 0.2543 0.3526 5-40 1-10 40 80
0.584 0.4701 0.5022 5-25 1-10 40 50

2.2.2 Compression testing

To obtain the compression data for the FRS, a simple compression test was performed using
an Instron (Norwood, MA, USA) 5564 Universal Testing Machine. During testing, samples were
centered on the bottom stationary platen (platen size, 6 inches diameter). The indenter or “ram”
(moving platen) had a diameter of 1.125 inches. Both platens were made of polished stainless steel.
The platens were cleaned and inspected to ensure that they were free of dust or broken particles
from previous experiments. The compression rate was 0.2 mm/s. To characterize the mechanical
compression response of the FRS, the nominal stress and compression gap were measured. The
nominal stress is defined as the measured force divided by the area of the FRS’s 2D footprint. The
compression gap is defined as the gap between the two platens. In this work, only the first
compression loading cycle was observed as subsequent compression cycles lead to different
mechanical compression responses [72].  The first three compression cycles for FRS 51-53 were

plotted and can be seen in Figure S1 in the Supplementary Information (SI).

2.2.3 Imaging of foams
Cross-sectional images of the FRS were obtained using an optical microscope (Keyence VHX
5000). A scale bar was superimposed on each image to be later read by the computer vision

algorithm developed in this study. Sample cross-section images can be seen in Figure S2 in the SI.

2.3 Machine Learning Methods

The computer vision, neural network, and genetic algorithm were written using Matlab R2020a
(MathWorks Inc., Natick, MA, USA). Special toolboxes were installed to perform certain actions.
To perform the computer vision tasks, the Computer Vision toolbox was installed. The training
and execution of the ANN relied on the Statistics and Machine Learning, GPU coder, Parallel

Computing, Deep Learning, and MATLAB Compiler SDK Toolboxes.



3. Results & Discussion
3.1 DIW of FRS

The use of DIW printing provides the advantage of printing complex architectures with precise
dimensional accuracy and can therefore be used to print structures that perform like foams. In this
study the silicone elastomer was DIW printed on a flat substrate to produce a wide variety of FRS
structures with simple cubic architectures. A schematic of the DIW printing process utilized to
produce the FRS can be seen in Figure 1a. The inset of Figure 1a shows each of the FRS design
parameters that will be modulated during this study, namely the filament diameter, filament spacing,
and number of layers. An image of a DIW printed FRS is shown in Figure 1b. Figures 1c and
1d are graphical depictions of the entire design space that will be focused on in this study. As seen
in Figure 1c, three different filament diameters were used while the number of layers was adjusted
linearly, in intervals of five, for each. Finally, Figure 1d shows that for every layer height, ten
filament spacings were printed. Modulating the DIW design parameters in this manner led to 250
unique printed FRS designs. Tabulated values for each of the printing parameter combinations

used and the associated foam numbers are listed in Table S1 in the SI.
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Figure 1: FRS printing parameters and experimental design space. a) Schematic of FRS being DIW
printed with the inset highlighting the three primary design parameters adjusted throughout the study:
namely, filament diameter, filament spacing, and number of layers. b) Photograph of a DIW printed
FRS. ¢) Graph depicting the filament diameter and number of layers design space for the 250 printed
FRS used in this study. d) Graph showing the filament spacing variable as a function of the printed
FRS number with the inset demonstrating that the spacing was changed for each foam in the design

space.

3.1.1 Compression results

Following AM of the silicone FRS, their performance was evaluated through analysis of
mechanical compression results. It is important to note that we observed the nominal stress as a
function of the FRS compression gap as it provides a direct mapping of printed FRS performance
in 1D compression behavior to end-use applications. A further discussion regarding the use of this
method for more general loading scenarios can be found in Section 4. The general trends and
results are shown below in Figure 2.  Figure 2a shows the compression results for FRS 91 through
FRS 97 which have the same filament diameter and number of layers (0.250 um and 50, respectively)
but have different filament spacings. This graph demonstrates that by increasing the filament
spacing while fixing the other two printing parameters, the FRS trend from stiff to soft. This is
consistent with typical foam mechanics where higher relatively density leads to higher stiffness.
Alternatively, Figure 2b shows that by increasing the number of layers, while fixing the filament
diameter and spacing (0.250 um and 5, respectively), the FRS have similar plateau stresses but
differing plateau lengths.

Some interesting observations can be made about the FRS characteristics when a derivative of
the nominal stress with respect to the compression gap is plotted. The results for FRS 51 through
FRS 57 are plotted in Figure 2¢ and two critical points are highlighted with roman numerals.
Roman numeral (I) indicates where the foam transitions from its initial, linear-elastic response to
the buckling plateau region. In this region, the stress remains relatively constant despite an
increased deformation. This is caused by a buckling response of the FRS causing it to become
softer. Roman numeral (II) indicates a second change in the slope of the compression curve where
the FRS enters densification. This occurs when the pore walls begin to come into contact with
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each other making the FRS behave like a solid polymer resulting in the FRS becoming
asymptotically stiff. A photograph of a FRS at each of these points can be seen in Figure 2d. The
relative location of these points can be used as critical design parameters for engineers when
deciding how to construct their foams for specific applications.

It may be possible to capture the general trend observed in these figures using a complicated
power law relationship between the printing parameters and compression results. However, when
multiple variables are adjusted, it will be become increasingly complicated to draw relationships
with their resulting mechanical compression properties. Therefore, it is imperative to capture the
trend using a more complicated model, however, microstructural FEM simulations tend to be
computationally expensive, especially for large displacements where elements contact or become
inverted. Therefore, using the data recorded in this section, an artificial neural network (ANN)
was trained to capture the complex relationship between the printing parameters and resulting

mechanical response.
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Figure 2: Compression characteristics of various DIW printed FRS, or foams. a) Compression
curves for foams that have varying filament spacings demonstrating a trend from stiff to soft with
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increasing filament spacing. b) Compression curves for FRS that have varying layer heights
demonstrating differing plateau stresses but highly differing plateau lengths. c¢) Derivative of the
compression curve with roman numerals (I) and (II) indicating the critical points during the
compression of an FRS. d) Images of an FRS at each of the points indicated by roman numerals in

Figure 2c¢ indicating when an FRS begins to buckle (I) and densify (II).

3.2 Computer vision

Computer vision tools have seen large advancements in recent years enabling rapid
identification of critical features from images. Cross-sectional images of the DIW printed FRS
were taken and a computer vision algorithm was written to determine the filament diameter, filament
spacing, and number of layers. Figure 3a shows a cross-sectional image of an FRS with labels of
each of the parameters being mined. The following section details the design, results, and accuracy
of the computer vision algorithm using the methods outlined in the reference [73] where sigmoidal
functions were observed.

To determine the relevant information from the cross-sectional images, novel methods and
various pre-built algorithms were combined. To find the filament diameter, the Sobel and Canny
edge finding algorithms were implemented. More information on these methods can be found in
Sharifi, et. al. [74]. Based on the detected edges, object polarization was used to find the circles
as their color differed greatly compared to the surrounding regions. In some cases, additional
circles were found by the algorithm and omitted using a 5% outliers filter. Figure 3b shows an
example of the kept and omitted circles highlighted with blue and red, respectively. To validate
the algorithm, the resulting accuracy of each edge detection method is depicted graphically in Figure
3c. Here, the error between the filament diameter detected by the computer vision algorithm and
the measured filament diameter were calculated and plotted with their relative frequency. From
this data it was determined that the Canny edge finding method determined the filament diameter
with a higher accuracy and would be used for the remainder of the study.

To find the number of layers of an FRS, the Canny edge detection method was used, followed
by the Hough line finding algorithm [75]. Figure 3d shows the lines detected using this method,
as indicated by green lines overlaid on the image. By identifying the top and bottom lines,
subtracting the distance between them in the y direction, and dividing by the filament diameter (as
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determined by the computer vision algorithm), an estimation of the number of layers could be made.
Figure 3e shows that the number of layers found using this method closely matches the number of
printed layers. Lastly, the spacing between the filaments was determined by subtracting the
distance between centroids of the circles found in Figure 3b in the x-direction. Figure 3f shows

the error using this approach follows a zero-centered Gaussian curve and therefore is highly accurate.
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Figure 3: Results of the computer vision algorithm. a) Sample cross-sectional image fed to the

computer vision algorithm which was used to determine the primary FRS printing parameters
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labeled in the image. b) Circles found using the computer vision algorithm with the blue circles
being kept and the red being omitted using an outlier approach. c) Relative frequency of filament
diameter error when using the Canny and Sobel edge finding techniques. d) Lines found using the
Hough lines finding technique for determining the number of layers. ) Comparison between the
number of layers detected by the computer vision algorithm vs. the number of printed layers for the
first 100 FRS. f) Frequency of error values for the filament spacing as determined by the computer

vision algorithm demonstrating a high frequency of zero error.

3.3 Artificial Neural Network

When engineers design foams, they need to understand how they will act in the context of their
desired applications. However, complex architectural geometry, large elastic deformations, rate
dependencies, and temperature dependencies make it extremely difficult to precisely model the
mechanical compression response of foams. Therefore, a model which can accurately predict
foam behaviors for a large design space, using a relatively small experimental set is required.
ANNsSs are a class of machine learning algorithms that can be used to rapidly parameterize a design
space. ANNSs are comprised of a collection of interconnected nodes, sometimes called neurons.
ANNSs aggregate neurons into multiple layers which create mathematical relationships between
inputs and outputs based on a set of training data.  For further information and terminology
surrounding ANNSs please refer to Hecht-Nielson, et. al. [76]. Here, an ANN was trained using the
mechanical compression results of the printed FRS studied in Section 3.1 and was able to

successfully parameterize a complex architectural design space for large deformations.

3.3.1 Design of the neural network

The ANN used in this study is a shallow neural network with an input layer of 3 nodes, a single
hidden layer with 500 nodes, and an output layer of 400 nodes as shown schematically in Figure 4a.
The inputs to the ANN are the three printing parameters: filament diameter, filament spacing, and
number of layers. The outputs are 200 x points and 200 y points which form a single compression
curve. The ANN was trained using backpropagation and a mean square error (MSE) was utilized
to rate the error at various epochs, or iterations. The training set was made up of the experimental
compression data gathered from the 250 printed FRS as described in Section 3.1. The data was
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split into 80% training, 10% validation, and 10% testing data to properly interrogate the accuracy
of the ANN. The ANN was determined to be sufficiently trained when the MSE reached a value
of 0.1. Training the ANN took 67 seconds in a total of 2870 epochs, or iterations. For further
information about the training of the ANN and its accuracy in recreating the relationship between

the FRS printing parameters and compression curves please see Section S4 in the SI.

3.3.2 Predictions using neural network

The ANN described above can accurately predict the compression response of AM foams
given their printing parameters. Figure 4b shows a comparison between the compression response
recording during experiments and the response generated by the ANN. It is important to note that
the compression curves used in Figure 4b were not used in the training set. In addition to
accurately predicting the compression behavior of FRS within the design space of the ANN, the
network can also make inferences about FRS within gaps in the design space. Figure 4c shows the
ANN-predicted compression curve for a hypothetical FRS with printing parameters between those
of Foams 81 and 92. Here, both the filament spacing and the number of layers were adjusted to
design parameters that were not used to train the ANN. The ANN accurately predicted a
compression curve for 2.5 filament spacings and 48 layers, demonstrating its ability to make
accurate inferences about FRS that are within the design space for which the ANN has no prior data.
To validate this prediction, the FRS was printed, and its resulting compression curve, as determined
by experiment, demonstrates good agreement with the ANN prediction as seen in Figure 4c.

Due to the advantages garnered by the computer vision and ANN algorithms, they could be
combined to generate mechanical compression data using a simple cross-sectional image of a
printed FRS. A demonstrative example is shown in Figure 4d. Here, the computer vision
algorithm determines the DIW printing parameters using a cross-sectional image of Foam 22.
Then, using these parameters as inputs, the ANN can accurately (within 4.1% mean error) predict
the FRS’s resulting mechanical compression response. This entire process takes less than a few

seconds of computational time.
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Figure 4: Results using the artificial neural network (ANN). a) Schematic of the ANN architecture
consisting of the three layers used to predict the relationship between the DIW printing parameters
and the FRS’s mechanical compression curve. b) The neural network can be used to accurately
predict the compression data from experiments that were not included in training data. c) The neural
network can accurately make inferences about FRS that are within gaps in the design space. d) By
combining the neural network and computer vision algorithms, an FRS’s mechanical compression

response could be accurately predicted using a cross-sectional image.

3.4 Genetic Algorithm for FRS Design

The results outlined in Section 3.3 can be used to rapidly model FRS from a large architectural
design space, even up to large deformations. The advantages garnered by this approach allow
engineers to rapidly characterize foams, however, searching an extremely large design space for an
optimized FRS design based on specific mechanical constraints may remain a challenge. This
problem can be solved by employing another Al-based solution, called a GA, which can rapidly

search the design space to find optimized solutions based on target parameters. Figure 5a shows
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the four compression parameters that an engineer would use when designing an FRS, namely,
stiffness, plateau stress, plateau length, and densification length.

A flow chart detailing the GA-based design process can be seen in Figure 5b. By inputting
the four target compression parameters, the GA will output the FRS printing parameters needed to
produce the desired mechanical compression response. The gray section of Figure 5b represents
the GA. First, the target compression parameters are used to generate a target compression curve
which will be used as the goal of the GA-optimization algorithm. The GA begins by creating an
initial population, or first generation, of randomly generated printing parameters within the design
space. Next, the ANN developed in Section 3.3 generates compression curves based on the first
generation of printing parameters. To determine if the generated compression curves match the
target compression curve a fitness function is utilized for optimization. The expression used to

determine the fitness of the compression curve for the 200 y-values is as follows,

) 200
= — target 2 1
Ty 200 Zl \/(yiarge _ y;_zctual) (1)
=
where y:“9°" is the y point on the target compression curve, y*“? is the y point generated by

the ANN [64]. The fitness for the x values, Fy , is also calculated in this way. F, and F, are
then normalized between 0 and 1 such that an overall fitness function can be expressed as follows,

F = Frormx + Frormy (2)
Here, the goal is to minimize the error between the target x-y values and the ANN-generated x-y
values, which can be expressed as

min F , (3)

xyactual

for each generation, or iteration of the GA. If an optimized solution is not found the next
generation of ANN input parameters is developed by keeping the best solutions from the previous
generation and performing mutation and crossover operations to the remainder of the population.
For more details on how this process works the readers are referred to Coley, et. al. [66].

To test the viability of the GA for solving a foam design problem, a target compression curve
was developed based on four critical foam design parameters. In this example, the densification
length, plateau length, plateau stress, and stiffness were set to 9mm, 6mm, 0.125 MPa, and 0.4,

respectively.  Figure 5c shows the fitness of a population of printing parameters as a function of
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the generation, or iterations through the GA. It was observed that 20 individuals in a single
population could achieve the best fitness and fastest convergence. The target and achieved
compression curves can be seen in Figure 5d with the inset shows the resulting 3D printing
parameters determined by the GA to produce an FRS with the desired compression curve. Lastly,
Figure 5e shows that the GA-based design approach may not always produce unique solutions.
Here, two 3D printing parameter design solutions were discovered, greatly increasing a designer’s
potential for achieving a desired response. These results demonstrate great promise for engineers
seeking to design foams with specific mechanical characteristics in both a time and computationally

efficient manner.
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Figure 5: Using a genetic algorithm (GA) to design foams based on target mechanical properties.
a) The four mechanical compression parameters input into the GA to construct a target compression
response for a foam. b) Flowchart detailing the components of the genetic algorithm used to

determine the optimal FRS printing parameters based on target compression parameters. c)
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Convergence statistics for the GA for three different population sizes. d) The resulting 3D printing
parameters determined by the GA to achieve the target compression curve. €) The GA can also

determine multiple 3D printing parameter solutions for a single target compression curve.

3.5. Discussion

This work presents an avenue for dramatically reducing computational and experimental costs by
implementing Al-based approaches in the mechanical characterization and design of AM
components. While this study focuses on the mechanical compression response of an elastomer-
based FRS, this method can be extended to include other materials such as metals, ceramics, or other
polymers.  Furthermore, other mechanical loading scenarios such as tension or shear can be
observed and utilized to train the ANN. The primary implications of this work are three-fold, and
each are discussed individually below.

First, we demonstrate that the use of computer vision algorithms can provide real-time, vision-
based inspection technique for AM components. This approach can be especially well-suited for
high production volume AM environments where each printed object cannot be inspected for its
mechanical readiness prior to use. This methodology can be extended to include estimations of
the mechanical properties of multi-material AM composites where building constitutive models may
not be feasible.

Next, this work demonstrates that ANNs can provide a ready alternative for providing
mechanical models when traditional methods such as FEM and continuum mechanical models fall
short.  For the case of foams, it is very difficult to accurately capture large deformations using
FEM models due to element inversions. Therefore, in this study we replace the entire simulation
process using a trained ANN. Furthermore, to discover new constitutive laws, experimental data
and Al can be used to fill gaps in continuum mechanical models. This approach is called a data-
continuum hybrid approach. Using this approach, material laws are substituted for constitutive
relationships derived from the ANN. As anotable example, Jordan, et. al. utilized an experimental
data set to train a neural network to discover the hardening law for polypropylene up to 60% strain.
When combined with existing viscoelastic models, constitutive equations were developed which

accurately estimated the polypropylene stress evolution for all strain and temperature histories [52].
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While constitutive models describing soft material systems remain a challenge, utilizing data-driven
and Al-based predictive modeling can provide a ready solution.

Lastly, we demonstrate that predictive algorithms, such as ANNSs, are extremely applicable for
rapidly and efficiently providing data for computationally heavy optimization algorithms, such as
GAs, which must explore large parameter spaces. Using traditional simulation techniques, such
as FEM, to provide inputs to a GA can be time or computationally prohibitive, requiring multiple
hours or even days to find a solution. In this paper, by employing an ANN as the de-facto
simulation methodology, a large printing parameter design space was rapidly searched, and an
optimal solution was found in about one minute of computation time.

Apart from the primary implications of this work, there are some drawbacks and areas where
further investigation is required. First, this study only considers one loading type, namely, 1D
compression. Many foams and FRS are subject to more complex 3D loading scenarios such as
shearing or off-angle compression.  Further, different displacement rates were not investigated.
To achieve this, more experimental data and a full-field loading experiment would need to be
performed and input into the ANN. Therefore, the approach presented here is not a general
framework for 3D loading scenarios. Another drawback of this approach is that ANNs are very
good at interpolation within large dimensional spaces and with sufficient training data, but typically
suffer very poor performance when attempting data extrapolation. Therefore, if the training data
does not fully capture the mechanical response of a foam, the ANN will not be able to accurately
predict its behavior. The computer vision software presented herein was developed for the specific
FRS images gathered in the lab. The image contrast, color scheme, and general shape of critical
FRS parameters were well-known, which is not always the case when attempting to image foams
or other AM-based structures. Therefore, to develop a more robust computer vision software,
further image filtering, processing, and parameter searching techniques should be included.

Finally, to augment the limitations presented above, we propose parallel avenues of future work.
First, the use of in-situ characterization methods to inspect AM feedstocks at the time of printing
will be developed. This will ensure that the chemical compositions of resins used to print FRS
geometries or other AM hardware is considered and well understood at the time of fabrication.
Furthermore, the computer vision software can be extended to determine if the FRS being observed
matches the printing parameters outlined by the toolpath generation software.  This may be
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achieved through acquiring additional images of a printed structure and observing key geometrical
parameters during or after printing. Using this modified approach, it may be possible to directly
extract FRS porosity which could be used as ANN inputs or as machine tool closed loop control
parameters. Lastly, incorporation of additional physical parameters to the ANN such as material
modulus, coefficient of thermal expansion, and elongation at break will be pursued. This will
improve the utility of the method we present while enabling links to physics-based modeling of FRS

which may have or require varying material properties.

4. Conclusion

In summary, we presented a novel, Al-based approach for determining the compression
behavior of DIW printed foam replacement structures (FRS) using simple cross-sectional images.
By recording experimental data for a relatively small number of samples, computer vision and ANN
algorithms were utilized to make inferences about an FRS’s mechanical compression response.
Using this approach, engineers can rapidly make predictions about a foam’s mechanical properties
and their applicability for specific applications without the need for extensive experimentation or
computational modelling. Finally, using the ANN for simulation results, a GA was developed
which could rapidly (~60s) discover the optimal DIW printing parameters to produce FRS for target
mechanical compression responses. We have therefore demonstrated an Al-based framework for
predicting compression characteristics and, using this method, a time and computationally efficient

method for designing 3D structures for specific engineering applications.
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S1. Multiple Mechanical Compression Cycle Hysteresis

As noted in the manuscript, only the first compression cycle was studied and used in the
ANN. This is because subsequent compression cycles of the same foam result in a softening
effect.  Figure S1 shows the first three mechanical compression cycles observed in the

experiments for FRS 51-53.
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Figure S1: First three mechanical compression cycles for FRS 51-53 demonstrating a softening
effect. The solid lines show the first compression cycle while the dotted lines show the second

and third compression cycle.

S2. Images of DIW printed foams

Cross-sectional images of the DIW printed foam replacement structures (FRS) were

obtained to be later used by the computer vision algorithm developed in this study. 250 total
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cross-sectional images were taken and utilized. Figure S2 shows a sample of four FRS; FRS

2, FRS 17, FRS 51, and FRS 97. Their corresponding printing parameters are detailed below

in Section S2.
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Figure S2: Images of some sample DIW printed FRS a) FRS 2, b) FRS 17, ¢) FRS 51, d) FRS

97.

S3. Tabulated foam printing parameters
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Each of the 250 DIW printed FRS used in this study had unique printing parameters.
Table S1 lists each of the DIW printing parameters and the corresponding FRS number as
referenced within the figures and graphics in the article. It should be noted that the filament
spacing is the number of filament diameters between each DIW printed line in the final FRS
structure. A direct calculation of the filament spacing in millimeters can be determined by

multiplying the filament diameter by the filament spacing number.

Table S1: DIW printing parameters and the corresponding FRS number for the design space

explored in this experiment.

Filament

FRS Diameter Filament
Number | (mm) Layers Spacing

FRS 1 0.25 5 1
FRS 2 0.25 5 2
FRS 3 0.25 5 3
FRS 4 0.25 5 4
FRS 5 0.25 5 5
FRS 6 0.25 5 6
FRS 7 0.25 5 7
FRS 8 0.25 5 8
FRS 9 0.25 5 9
FRS 10 0.25 5 10
FRS 11 0.25 10 1
FRS 12 0.25 10 2
FRS 13 0.25 10 3
FRS 14 0.25 10 4
FRS 15 0.25 10 5
FRS 16 0.25 10 6
FRS 17 0.25 10 7
FRS 18 0.25 10 8
FRS 19 0.25 10 9
FRS 20 0.25 10 10
FRS 21 0.25 15 1
FRS 22 0.25 15 2
FRS 23 0.25 15 3
FRS 24 0.25 15 4
FRS 25 0.25 15 5
FRS 26 0.25 15 6
FRS 27 0.25 15 7
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FRS 28 0.25 15 8
FRS 29 0.25 15 9
FRS 30 0.25 15 10
FRS 31 0.25 20 1
FRS 32 0.25 20 2
FRS 33 0.25 20 3
FRS 34 0.25 20 4
FRS 35 0.25 20 5
FRS 36 0.25 20 6
FRS 37 0.25 20 7
FRS 38 0.25 20 8
FRS 39 0.25 20 9
FRS 40 0.25 20 10
FRS 41 0.25 25 1
FRS 42 0.25 25 2
FRS 43 0.25 25 3
FRS 44 0.25 25 4
FRS 45 0.25 25 5
FRS 46 0.25 25 6
FRS 47 0.25 25 7
FRS 48 0.25 25 8
FRS 49 0.25 25 9
FRS 50 0.25 25 10
FRS 51 0.25 30 1
FRS 52 0.25 30 2
FRS 53 0.25 30 3
FRS 54 0.25 30 4
FRS 55 0.25 30 5
FRS 56 0.25 30 6
FRS 57 0.25 30 7
FRS 58 0.25 30 8
FRS 59 0.25 30 9
FRS 60 0.25 30 10
FRS 61 0.25 35 1
FRS 62 0.25 35 2
FRS 63 0.25 35 3
FRS 64 0.25 35 4
FRS 65 0.25 35 5
FRS 66 0.25 35 6
FRS 67 0.25 35 7
FRS 68 0.25 35 8
FRS 69 0.25 35 9
FRS 70 0.25 35 10
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FRS 71 0.25 40 1
FRS 72 0.25 40 2
FRS 73 0.25 40 3
FRS 74 0.25 40 4
FRS 75 0.25 40 5
FRS 76 0.25 40 6
FRS 77 0.25 40 7
FRS 78 0.25 40 8
FRS 79 0.25 40 9
FRS 80 0.25 40 10
FRS 81 0.25 45 1
FRS 82 0.25 45 2
FRS 83 0.25 45 3
FRS 84 0.25 45 4
FRS 85 0.25 45 5
FRS 86 0.25 45 6
FRS 87 0.25 45 7
FRS 88 0.25 45 8
FRS 89 0.25 45 9
FRS 90 0.25 45 10
FRS 91 0.25 50 1
FRS 92 0.25 50 2
FRS 93 0.25 50 3
FRS 94 0.25 50 4
FRS 95 0.25 50 5
FRS 96 0.25 50 6
FRS 97 0.25 50 7
FRS 98 0.25 50 8
FRS 99 0.25 50 9
FRS 100 0.25 50 10
FRS 101 0.25 55 1
FRS 102 0.25 55 2
FRS 103 0.25 55 3
FRS 104 0.25 55 4
FRS 105 0.25 55 5
FRS 106 0.25 55 6
FRS 107 0.25 55 7
FRS 108 0.25 55 8
FRS 109 0.25 55 9
FRS 110 0.25 55 10
FRS 111 0.25 60 1
FRS 112 0.25 60

FRS 113 0.25 60
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FRS 114 0.25 60 4
FRS 115 0.25 60 5
FRS 116 0.25 60 6
FRS 117 0.25 60 7
FRS 118 0.25 60 8
FRS 119 0.25 60 9
FRS 120 0.25 60 10
FRS 121 0.41 5 1
FRS 122 0.41 5 2
FRS 123 0.41 5 3
FRS 124 0.41 5 4
FRS 125 0.41 5 5
FRS 126 0.41 5 6
FRS 127 0.41 5 7
FRS 128 0.41 5 8
FRS 129 0.41 5 9
FRS 130 0.41 5 10
FRS 131 0.41 10 1
FRS 132 0.41 10 2
FRS 133 0.41 10 3
FRS 134 0.41 10 4
FRS 135 0.41 10 5
FRS 136 0.41 10 6
FRS 137 0.41 10 7
FRS 138 0.41 10 8
FRS 139 0.41 10 9
FRS 140 0.41 10 10
FRS 141 0.41 15 1
FRS 142 0.41 15 2
FRS 143 0.41 15 3
FRS 144 0.41 15 4
FRS 145 0.41 15 5
FRS 146 0.41 15 6
FRS 147 0.41 15 7
FRS 148 0.41 15 8
FRS 149 0.41 15 9
FRS 150 0.41 15 10
FRS 151 0.41 20 1
FRS 152 0.41 20 2
FRS 153 0.41 20 3
FRS 154 0.41 20 4
FRS 155 0.41 20 5
FRS 156 0.41 20 6
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FRS 157 0.41 20 7
FRS 158 0.41 20 8
FRS 159 0.41 20 9
FRS 160 0.41 20 10
FRS 161 0.41 25 1
FRS 162 0.41 25 2
FRS 163 0.41 25 3
FRS 164 0.41 25 4
FRS 165 0.41 25 5
FRS 166 0.41 25 6
FRS 167 0.41 25 7
FRS 168 0.41 25 8
FRS 169 0.41 25 9
FRS 170 0.41 25 10
FRS 171 0.41 30 1
FRS 172 0.41 30 2
FRS 173 0.41 30 3
FRS 174 0.41 30 4
FRS 175 0.41 30 5
FRS 176 0.41 30 6
FRS 177 0.41 30 7
FRS 178 0.41 30 8
FRS 179 0.41 30 9
FRS 180 0.41 30 10
FRS 181 0.41 35 1
FRS 182 0.41 35 2
FRS 183 0.41 35 3
FRS 184 0.41 35 4
FRS 185 0.41 35 5
FRS 186 0.41 35 6
FRS 187 0.41 35 7
FRS 188 0.41 35 8
FRS 189 0.41 35 9
FRS 190 0.41 35 10
FRS 191 0.41 40 1
FRS 192 0.41 40 2
FRS 193 0.41 40 3
FRS 194 0.41 40 4
FRS 195 0.41 40 5
FRS 196 0.41 40 6
FRS 197 0.41 40 7
FRS 198 0.41 40 8
FRS 199 0.41 40 9
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FRS 200 0.41 40 10
FRS 201 0.584 5 1
FRS 202 0.584 5 2
FRS 203 0.584 5 3
FRS 204 0.584 5 4
FRS 205 0.584 5 5
FRS 206 0.584 5 6
FRS 207 0.584 5 7
FRS 208 0.584 5 8
FRS 209 0.584 5 9
FRS 210 0.584 5 10
FRS 211 0.584 10 1
FRS 212 0.584 10 2
FRS 213 0.584 10 3
FRS 214 0.584 10 4
FRS 215 0.584 10 5
FRS 216 0.584 10 6
FRS 217 0.584 10 7
FRS 218 0.584 10 8
FRS 219 0.584 10 9
FRS 220 0.584 10 10
FRS 221 0.584 15 1
FRS 222 0.584 15 2
FRS 223 0.584 15 3
FRS 224 0.584 15 4
FRS 225 0.584 15 5
FRS 226 0.584 15 6
FRS 227 0.584 15 7
FRS 228 0.584 15 8
FRS 229 0.584 15 9
FRS 230 0.584 15 10
FRS 231 0.584 20 1
FRS 232 0.584 20 2
FRS 233 0.584 20 3
FRS 234 0.584 20 4
FRS 235 0.584 20 5
FRS 236 0.584 20 6
FRS 237 0.584 20 7
FRS 238 0.584 20 8
FRS 239 0.584 20 9
FRS 240 0.584 20 10
FRS 241 0.584 25 1
FRS 242 0.584 25
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FRS 243 0.584 25 3
FRS 244 0.584 25 4
FRS 245 0.584 25 5
FRS 246 0.584 25 6
FRS 247 0.584 25 7
FRS 248 0.584 25 8
FRS 249 0.584 25 9
FRS 250 0.584 25 10

S4. Artificial Neural Network (ANN) Results

The experimental compression data was used to train the ANN with an 80, 10, 10
percent split between training, validation, and testing, respectively. = For each epoch, or
iteration, the ANN attempts to confirm the learned relationship between the inputs and outputs
by validating the data. Here, we selected the ANN to finish training when a relationship with
a low enough MSE is achieved for 6 different validation checks. Figure S3a shows the results
of the ANN gradient descent as well as a graph depicting the validation attempts. Here, the
ANN is attempting to validate the accuracy of the trained neural network using some of the
validation data. The number of successful validation checks per epoch are shown with red
diamonds demonstrating that when the threshold of six successful validations were achieved,
the algorithm was successfully trained. Figure S3b shows that the ANN is sufficiently trained
when the training data MSE reaches a minimum designated value of 0.1.  Figure S3c
demonstrates that the first x value that the neural network exports corresponds with the foam

printed height, or the first value in the experimental compression curve.
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Figure S3: ANN training results. a) A rapidly decreasing error gradient as a function of training
iterations as well as an increasing number of successful validation checks. b) Neural network
convergence where the mean square error reaches a minimum after 2870 epochs. c) First x value
output by the neural network vs. the first x value of the experimental compression curve. This

first x value corresponds with the DIW printed FRS’s height value.

39



