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Disclaimer

This is a technical presentation that does not take into account the contractual
limitations or obligations under the Standard Contract for Disposal of Spent
Nuclear Fuel and/or High-Level Radioactive Waste (Standard Contract) (10
CFR Part 961). For example, under the provisions of the Standard Contract,
spent nuclear fuel in multi-assembly canisters is not an acceptable waste form,
absent a mutually agreed to contract amendment.

To the extent discussions or recommendations in this presentation conflict with
the provisions of the Standard Contract, the Standard Contract governs the
obligations of the parties, and this presentation in no manner supersedes,
overrides, or amends the Standard Contract.

This presentation reflects technical work which could support future decision
making by DOE. No inferences should be drawn from this presentation
regarding future actions by DOE, which are limited both by the terms of the
Standard Contract and a lack of Congressional appropriations for the
Department to fulfill its obligations under the Nuclear Waste Policy Act including
licensing and construction of a spent nuclear fuel repository.
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Cross-Cutting Topics

■ Geologic Disposal Safety Assessment (GDSA) reference
cases, modeled with the PFLOTRAN code, are based on
large, higher-temperature waste packages
• Waste package degradation model

• Waste form degradation model

• Effects of different geologies

• Effect of high-temperature on engineered barriers (e.g., bentonite)

■ Thermal and shielding implications for the transportation
schedule
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Waste Package Degradation Model (Mariner et al. 2016)

• Waste package degradation (PFLOTRAN)
• Current implementation for "canister vitality is a

simple probabilistic rate

• temperature-dependent

• can also simulate early failures

• Future development:

• mechanistic corrosion (general, localized)

• effects of groundwater chemistry / redox

• seismic, igneous (site specific)
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Waste Form Degradation Model (Mariner et al. 2016)

• Waste form degradation (PFLOTRAN)
• Current implementation is simple spent nuclear fuel (SNF) dissolution

rate that begins following waste package failure
• Instant release fraction (specified radionuclides)

• Fractional dissolution (e.g., 10-7/yr)
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Waste Form Degradation Model (cont.)

• Fuel Matrix Degradation Model (FMDM)
• Radiolysis

• Oxidation of H2 via noble metal particle (NMP) catalyst

• 1-D reactive transport through alteration layer

• Growth of the alteration layer

• Diffusion of reactants/products through alteration layer

Input Outputs

• Initial concentration profiles across 1D corrosion/water layer
(UO2(s), UO3(s), U04(s), H202, U022+, UC032 , UO2, C032 ,
02, Fe2+, and H2)

• Initial corrosion layer thickness
• Dose rate at fuel surface (= f (time, burnup))
• Temperature
• Time, time step length
• Environmental concentrations (C032-, 02, Fe2+, and H2)

• Final concentration
profiles across 1D
corrosion/water layer

• Final corrosion layer
thickness

• Fuel dissolution rate

• Can be coupled to PFLOTRAN
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Waste Form Degradation Model (cont.)

■ DPC considerations
• In-package chemistry and UO2 degradation

• elevated temperature, boiling?

• reduced instant release fraction for higher burn-up fuels?

• effects of different geologies (e.g., groundwater chemistry)

• filler materials chemical effects

• criticality event?

— changes to radionuclide inventory

— additional radiolytic oxidants from beta and gamma radiation

• Cladding degradation

• elevated temperature?

• criticality event?

— intact cladding required

• Neutron absorbers

• Boral® degradation
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Interactions with Engineered Barriers (Rutqvist 2019)

• For DPC direct disposal, a peak backfill temperature of 200°C
is likely to occur, unless the SNF is aged for hundreds of
years before backfilling (Hardin et al. 2015)

• For clay-based materials, a peak temperature of 100°C is
often adopted to limit thermal-hydrologic-mechanical-
chemical effects (e.g., chemical changes, material
degradation, clay phase change, smectite swelling)

• FEBEX: bentonite heated to 100°C in 18-year test at Grimsel Test Site

• Backfill peak temperature >100°C is currently being evaluated

• Mont Terri: ongoing in-situ heater test up to 140°C in Opalinus Clay
(Rutqvist et al. 2018; 2019)

• HotBENT: planned heater test at 150°C to 200°C at Grimsel Test Site

• Bentonite backfill mixtures can be engineered to increase the thermal
conductivity by mixing in graphite or graphene oxide

• Jobmann and Buntebarth 2009; Chen et aI. 2018
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Interactions with Engineered Barriers (cont.)

• The THMC effects of high-temperature
on bentonite and near-field host rock
are being examined in multiple SFWS
Work Packages
• Argillite Disposal R&D

• Engineered Barrier System (EBS) R&D

• International Collaborations Research

• These effects will be captured in GDSA
reference cases
• DPC disposal in unsaturated alluvium

• DPC disposal in saturated argillite
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Implications for Transportation

• The same tools and specific data that are used to evaluate
criticality margin for the direct disposal of DPCs can also be
used to evaluate the thermal and shielding criteria to
determine when the DPC is transportable —

• UNF-ST&DARDS and the Unified Database (UDB)
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Unified Database (UDB) checks against transportation Certificate
of Compliance (CoC) limits can be used to determine dates when
SNF could be shi• •ed
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Unified Database (UDB) checks against transportation Certificate
of Compliance (CoC) limits can be used to determine dates when
SNF could be shi• •ed
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Questions?
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