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* Metrics and Targets
—Why do we need them?
— What does ‘better than’ mean?
—What is a meaningful metric/target?

 Demonstrate importance of quantitative metrics with
data trends

* Describe high-pressure capabilities at Sandia
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Extensive database exists for tensile behavior of
y-stainless steels in hydrogen environments
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« Strength properties are
generally not affected by
hydrogen

* Nickel correlates with
ductility in hydrogen as
well as any other indicator

« Austenite stability is not
as good an indicator when
nitrogen-strengthened
alloys are considered
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" Is tensile ductility a meaningful metric for
evaluating hydrogen effects?
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 RA can be useful
screening and
comparative measure

eg, verification of the
materials pedigree
 RA is not a useful
design parameter

- RA for high-strength
aluminum can be <20%

 Therefore, RA is not a
sufficient general metric
for materials selection
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"Fatigue life data shows less dramatic
effects from hydrogen than tensile data
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« Fatigue life data are
used in design and can
be a meaningful metric

 For example: automotive
uses performance metric
for materials selection in
hydrogen systems:

- 10° cycles to failure at
1/3 tensile strength

* Other metrics can be just
as meaningful
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' Zl'ypical austenitic stainless steel maintain high
fracture threshold in hydrogen environments

Austenitic stainless steels
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exceptional properties in hydrogen

material IR
(MPa)
316L 280
CW 316L 573
563
304L 497
452
XM-11 539
643
Nitronic 60 880
499
SCF-260 1083

T defined as the stress for with notched fatigue life ~10° cycles in H,

(100 MPa, R = 0.1, f = 1Hz)

Tensile
(MPa)

562

731
735

721
674

381
816

1018
857

1175

Diverse range of austenitic stainless steels show

Tension Fracture Fatigue
RA KJH Sfo
(%) (MPa m1/2) (MPa)
57 - 295
60 - 355
66 i 190 -
25 - 255
49 S 220 -
42 - 355
51 AN oop —~
36 - 260
53 - -
50 - 390
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!Strength and composition can be relevant metrics

. . Typical
. Yield Tensile .
material (MPa) (MPa) Cr Ni Mn N allowable

stress (MPa)
316L 280 562 17.5 12 1.2  0.04 115
CW 316L 573 731 17.5 12 1.2  0.04 218
304L 497 721 183 8.2 1.8  0.56 195
XM-11 539 881 204 6.2 9.6  0.26 207
Nitronic 60 880 1018 16.6 8.3 8.0  0.16 218
SCF-260 1083 1175 191 33 174  0.64 333
\ J \ J
| [
Wide range of strength Wide range of Ni/Mn content

« Strength reflects allowable stresses and wall thickness
« Composition is related to cost (but not only factor)
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Fatigue and fracture of ferritic steels

« Fatigue crack growth is similar for typical pressure vessel
and linepipe steels (deviations relate to fracture toughness)

Fracture resistance is consistent and acceptable for low
strength — fracture resistance of steels with tensile strength
> 900-950 MPa is unacceptable for PVs (~20 MPa m'/2)
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1 For PV applications, we identified the following metric:
* fracture resistance of 50 MPa m'2 for steel with
tensile strength > 950 MPa
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Sandia maintains unique Cépabilities tgsupport

research on Hydrogen Materials Compatig

Hydrogen Effects on Materials Laboratory

* In situ mechanical testing
(P >100 MPa and 230K < T < 400K)

* Long-term, high-pressure H2 exposure

* Pressure cycling at controlled temperature

“ ' | Active materials science commu
« Computational materials science expertise
 Full-suite of state-of-the-art materials characterization tools
* Joining laboratory (austenitic steels, non-ferrous materials)

Hydrogen Transport and

Trapping Laboratory

« Diffusion and permeation

» Thermal desorption
spectroscopy

Hydrogen-Surface

Interactions Laboratory

* Low-energy ion spectroscopy

« Ambient pressure x-ray
photoelectron spectroscopy

 Kelvin probe atomic force
microscopy




*xample of characterization at the nanomet

« HR-STEM shows some
interface dislocations

(+(112) and 3(111)) with no |

dislocations observable
within twins, matrix, or
g-martensite

* Martensite is more common
here than twinning (typical
for H-precharged samples)

« Twins and e-martensite are
generally very thin (less than
~20 {111} planes) while
spanning through most of
the grain. With twins
appearing as faulted

e-martensite
= HRSTEM - 304L forging

SHIATaBIREY (X 5‘7 strain, H-precharged
Doug Medlin (SNL/CA) g P g

lI'l Sandia National Laboratories l-& FCHydrogen and Fuel Cells Program

-

*length scale

5nm
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H-precharging is used to simulate hydrogen

service environment for some materials systems

 Exposure to gaseous H, until saturated
with hydrogen
~10 days for 4 mm round bar
Pressure: 138 MPa
Temperature: 300°C
For stainless: hydrogen content ~140 wt ppm (0.8% H/M)

» Testing in air after H-precharging

* Mechanical testing in H-precharged condition
is similar to in situ testing in high-pressure
gaseous hydrogen for tension, fatigue and
fracture

Must consider the H-solute hardening:
strength increase of 10-20%
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" General trends in hydrogen transpo ort

* Ferritic steels
— Diffusivity: 10-8 m?/s
— Solubility: 10-8 H/M MPa/2
- Lattice concentration (P=100 MPa): 0.3 ppm H/M
« Trapping concentration: 100x greater than lattice concentration

— Not amenable to gas-phase precharging

e : Solubilit
» Austenitic stainless steels (ideal gaﬁ)
— Diffusivity: 101> m?/s Cr
_ Solubility: 104 H/M MPa"'"2 K = NG

 Lattice concentration (P=100 MPa): 0.2% H/M

« Trapping concentration: <<1x lattice concentration
— Gas-phase precharging is a well-developed technology

- Specimens can be shipped anywhere on dry ice and stored for
extended time (months) at low temperature (-50°C)

* Precharging time weeks to months depending on specimen size
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’Fatigue and fracture measurements in Figh-
pressure gaseous hydrogen

* Instrumentation
— Internal load cell (w/ feedback)
— Displacement measured on sample
using LVDT or clip gauge
— DCPD measurements possible

- Mechanical loading
— Cyclic / monotonic
— Load-ratio = 0.1 t0 0.8
— Frequency = 0.002 to 10 Hz
— Loads: 1-15 kN
— ASTM E1820, E647, etc

* Environment
- — Gaseous environment
— Pressure <120 MPa
— Room temperature (some I
temperature capability)

14
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%nstanﬁlisplacement ere tests ‘Hgaseous
hydrogen environments

« Constant displacement fracture testing (ASTM E1681)
- exposed to high pressure hydrogen to evaluate
fracture thresholds |

* Relatively easy to load
and leave specimens

* Test methods often
require 1000s of hours .«

* Linear elastic method -5 -: \EE

- Requires large o ik
specimens for ductile £°| . ¢\
metals
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 Summary

* It is important to think critically about quantitative
measures of success

— What are we trying to achieve?
(cost, strength, fatigue behavior, fracture resistance, and/or other)

— On what length scale?

— What are the requirements of the application, standards and
codes? (is better the enemy of good enough...)

- National laboratories have numerous H-related
capabilities
— Thermal (gas-phase) H-precharging
— Fatigue and fracture in high-pressure gaseous hydrogen
— Hydrogen transport (TDS, diffusion/permeation)
— Static loading/displacement testing
* Should not overlook other capabilities and expertise, such as
— Expert materials science characterization
— Computational materials science



