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Abstract. The atomic forces formulation based on the Dirac-Kohn-Sham equation

and the flexible (APW+lo/LAPW)+LO basis set is presented. The formulation was

implemented in the code FlapwMBPT and allows a user to easily switch between

different basis functions of the augmentation type (APW or LAPW) and between

different kind of local orbitals. Similar to the work (Phys.Rev.B 91 (2015) 035105), the

implementation takes into account small discontinuities of the wave functions, density,

and potential at the muffin-tin sphere boundaries. Applications to the materials

with strong relativistic effects, such as α-Uranium, PuCoGa5, and FePt, demonstrate

robustness of the method. The comparison of the calculated forces with the ones

obtained by numerical differentiation of electronic free energy shows close agreement

with deviations about 0.1% or less.
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1. Introduction

One of many achievements of the Density Functional Theory [1, 2] (DFT) is its ability

to provide accurate total energy of an interacting many-electron system as a function

of external fields such as an electrostatic field generated by nuclei in a solid. Naturally,

it is important to be able to find an arrangement of nuclei in a solid (crystal structure)

which corresponds to a minimal total energy of the whole system (electrons plus nuclei).

Another important field of interest is a study of the response of a solid when its nuclei

are pushed slightly from their equilibrium positions. In both situations, the ability

to evaluate accurate derivatives of total energy with respect to the atomic positions

(forces) represents an important tool. In the context of an equilibrium structure search

(geometry optimization), availability of the forces greatly helps, providing the directions

where atoms should be moved in order to reach their equilibrium positions. In the
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context of small deviations from equilibrium (phonons), availability of the forces allows

one to use the finite displacement method [3, 4, 5] to calculate phonon frequencies

without employing the more technically involved linear response approach [6].

In a family of methods based on the Augmented Plane Waves (APW) basis set

[7], such as the Linearized Augmented Plane Waves (LAPW, [8]), the formulation of

how one can evaluate atomic forces was given by Yu et al. [9]. The work by Yu et

al. demonstrated that breaking the space into non-overlapping muffin-tin (MT) spheres

and the so-called interstitial region (IR), which is an important attribute of the APW-

family of methods, leads to an additional contribution to atomic forces, the Pulay term

[10]. Since then, there were a few enhancements introduced, such as the inclusion of

additional surface terms when one uses basis sets with discontinuities across the MT

boundaries (for instance in APW+lo basis set, [11]). Also, Klüppelberg et al. [12]

presented a refinement of the approach by carefully taking into account the tails of

the high-energy core states as well as small discontinuities in wave functions, density,

and potential at the MT spheres. Independently, Soler and Williams formulated their

variant of the LAPW method [13, 14] with perfectly continuous basis functions, as well

as the algorithm of the forces evaluation within their approach. Their construction

certainly has some advantages, but the complications related to the fact that inside

of the MT spheres one has to deal with momentum independent functions as well as

with momentum dependent plane waves. This makes it inconvenient especially if one is

interested in advanced methods going beyond DFT such as GW approximation.

One of the limitations of the existing formulations of the atomic force evaluation is

that they are based on the non-relativistic Kohn-Sham equations. However, in materials

where elements from the far end of the periodic table are present, one has to use the

fully relativistic approach based on the Dirac-Kohn-Sham (DKS) theory [15, 16, 17, 18].

Therefore, this work has its principal goal in removing the above mentioned limitation.

The derivation of the expression for forces goes closely along the lines paved in previous

works by Yu et al. and by Klüppelberg et al., but with DKS equations as a background

theory. Whereas our derivation is directly relevant to the fully relativistic theory, we

specifically are pointing out in the text, where the difference from the non-relativistic

theory enter. Throughout the paper the atomic units are used with Rydbergs as units of

energy. The term ”free energy” is used for the electronic free energy in an electrostatic

field of nuclei fixed at their equilibrium positions (Coulomb interaction between fixed

nuclei is included). The temperature in the equations is used with the Boltzmann’s

constant kB absorbed, i.e. the term ”T” is used instead of kBT .

2. General derivation of the atomic force expression

The force Ft exerted on an atom positioned at t is defined as the derivative of free energy

F of a solid: Ft = −dF
dt

. Thus, it is convenient to begin with writing down an expression

for free energy which corresponds to a specific level of theory. In the context of a

joint description of the relativistic and magnetic effects within the Relativistic Density
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Functional Theory (RDFT), the corresponding expression was developed in works by

Rajagopal, Callaway, Vosko and Ramana [15, 16, 17, 18]. Principal equations of this

theory are briefly capitalized here for convenience. In RDFT, free energy of a solid

with the density of electrons n(r) and magnetization density m(r) can be written as the

following:

F = −T
∑
kλ

ln(1 + e−(εkλ−µ)/T ) + µN

−
∫

Ω0

dr[n(r)Veff (r) + m(r) ·Beff (r)]

+

∫
Ω0

dr[n(r)Vext(r) + m(r) ·Bext(r)]

+

∫
Ω0

dr

∫
Ω

dr′
n(r)n(r′)

|r− r′|

+

∫
Ω0

drn(r)εxc[n(r),m(r)] + Enn, (1)

where T stands for the temperature, sum runs over the Brillouin zone points k and

band indexes λ, εkλ is the band energy, µ is the chemical potential, and N is the total

number of electrons in the unit cell. In the integrals, Ω0 is the volume of the primitive

unit cell and Ω is the volume of the whole solid. Effective scalar potential Veff (r)

is a sum of an external scalar field Vext(r) and induced fields (Hartree (electrostatic)

VH(r) = 2
∫
dr′ n(r′)
|r−r′| and exchange-correlation Vxc(r) = δExc[n(r),m(r)]

δn(r)
):

Veff (r) = Vext(r) + VH(r) + Vxc(r), (2)

whereas the effective magnetic field Beff (r) represents a sum of external Bext(r) and

induced Bxc(r) = δExc[n(r),m(r)]
δm(r)

magnetic fields:

Beff (r) = Bext(r) + Bxc(r). (3)

Exc in the above formulae stands for the exchange-correlation energy which is a

functional of n(r) and m(r) :
∫

Ω0
drn(r)εxc[n(r),m(r)]. Enn in (1) is the nuclear-

nuclear electrostatic interaction energy. One-electron energies εkλ are the eigen values of

the following equations (Dirac-Kohn-Sham equations):(
K̂ + Veff (r) + βσ̃ ·Beff (r)

)
Ψk
λ(r) = εkλΨk

λ(r), (4)

where Ψk
λ(r) stands for the Bloch periodic band function (four-component). The kinetic

energy operator K̂ has the Dirac form (electron rest energy has been subtracted):

K̂ = cα · p + (β − I)
c2

2
, (5)

and σ̃ are the 4× 4 matrices, combined from the Pauli matrices σ:

σ̃ =

(
σ 0

0 σ

)
. (6)
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c in equation (5) is the light velocity (c = 274.074 in our unit system), p is

the momentum operator (≡ −i∇), α, and β are Dirac matrices in the standard

representation, and I is the unit 4× 4 matrix.

Finally, with the electron energies and the band state functions available, the

electronic and magnetization densities are defined as the following

n(r) =
∑
kλ

fk
λΨ

†k
λ (r)Ψk

λ(r), (7)

and

m(r) =
∑
kλ

fk
λΨ

†k
λ (r)βσ̃Ψk

λ(r), (8)

with fk
λ being the Fermi-Dirac distribution function (fk

λ = 1

1+e
(εk
λ
−µ)/T ).

Now we are differentiating the Eq.(1) term by term. For the first and the second

terms on the right hand side one gets:

− d

dt

(
−T

∑
kλ

ln(1 + e−(εkλ−µ)/T ) + µN

)

= −
∑
kλ

1

1 + e(εkλ−µ)/T

(
dεkλ
dt
− dµ

dt

)
−N dµ

dt
=
∑
kλ

fk
λ

dεkλ
dt
. (9)

The terms from the third to the sixth on the right hand side of (1) are represented

by integrals over the unit cell. In APW-related methods, it means technically the sum of

the integrals over the non-overlapping MT spheres and over the interstitial region (IR).

As authors of work [12] pointed out, the integrals should be differentiated with care,

namely, the change of the integration domain when atom (and its muffin-tin sphere)

moves should be taken into account. The generic differentiation formula obtained in

[12] is the following:

d

dt

∫
Ω0

drf(r) =

∫
Ω0

dr
df(r)

dt
+

∫
St

dS[fMT (r)− f IR(r)], (10)

where the surface integral is taken over the MT sphere of atom t. dS = edS, and e = r−t
|r−t|

denotes the normal vector on the MT sphere of atom t that points into the interstitial

region. fMT (r) and f IR(r) distinguish between the MT and the IR representations of

the function f . Let us now apply the generic formula (10) to the integrals in (1):

− d

dt

(
−
∫

Ω0

dr[n(r)Veff (r) + m(r) ·Beff (r)]

)
=

∫
Ω0

dr[
dn(r)

dt
Veff (r) + n(r)

dVeff (r)

dt

+
dm(r)

dt
·Beff (r) + m(r) · dBxc(r)

dt
]
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+

∫
St

dS[nMT (r)V MT
eff (r)− nIR(r)V IR

eff (r)]

+

∫
St

dS[mMT (r) ·BMT
eff (r)−mIR(r) ·BIR

eff (r)], (11)

where we have assumed that only the induced magnetic field depends of the position of

atom t.

− d

dt

(∫
Ω0

dr[n(r)Vext(r) + m(r) ·Bext(r)]

)
= −

∫
Ω0

dr[
dn(r)

dt
Vext(r) + n(r)

dVext(r)

dt
+
dm(r)

dt
·Bext(r)]

−
∫
St

dS[nMT (r)V MT
ext (r)− nIR(r)V IR

ext (r)]

−
∫
St

dS[mMT (r) ·BMT
ext (r)−mIR(r) ·BIR

ext(r)], (12)

− d

dt

(∫
Ω0

dr

∫
Ω

dr′
n(r)n(r′)

|r− r′|

)
= −

∫
Ω0

dr
dn(r)

dt
VH(r)

−
∫
St

dS[nMT (r)V MT
H (r)− nIR(r)V IR

H (r)]

, (13)

− d

dt

(∫
Ω0

drn(r)εxc[n(r),m(r)]

)
= −

∫
Ω0

dr[
dn(r)

dt
Vxc(r) +

dm(r)

dt
·Bxc(r)]

−
∫
St

dS[nMT (r)εMT
xc (r)− nIR(r)εIRxc (r)], (14)

Collecting all derivatives together and assuming self-consistency (i.e. equations (2)

and (3) are met) we obtain the following force:

Ft = −
∑
kλ

fk
λ

dεkλ
dt

+

∫
Ω0

dr[n(r)
dVeff (r)

dt
+ m(r) · dBxc(r)

dt
]

+

∫
St

dS[nMT (r)V MT
xc (r)− nIR(r)V IR

xc (r)]

+

∫
St

dS[mMT (r) ·BMT
xc (r)−mIR(r) ·BIR

xc (r)]

−
∫
St

dS[nMT (r)εMT
xc (r)− nIR(r)εIRxc (r)]

+ FHF
t , (15)
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where the Hellmann-Feynman force has been introduced:

FHF
t = −

∫
Ω0

drn(r)
dVext(r)

dt
− d

dt
Enn. (16)

Hellmann-Feynman force is proportional to the gradient of the full electrostatic

potential at the center of atom t (excluding the field from its nuclear), [9]:

FHF
t = 2Zt

∂

∂t

(∫
Ω

dr
n(r)

|t− r|
−

′∑
Rt′

Zt′

|t− t′ −R|

)
= −Zt∇V ′el−stat(r)

∣∣∣
r→t

, (17)

where Zt is the nuclear charge of atom t, the integration in the first right hand side

expression is performed over the whole solid, and the sum is taken over all unit cells

(indexed here by translation vector R) and over all atoms in the unit cell (atom t in the

central unit cell is excluded from the sum). This consideration makes the evaluation of

the Hellmann-Feynman term easy.

In order to bring the remaining terms of (15) to the form convenient for evaluation

one has to consider the derivative of the one-electron energies. This is done in the next

section. Let us also to point out that the derivation performed up to this point is quite

generic with respect to the degree of inclusion of the relativistic effects. The only formal

difference is that we use vectors of the magnetization and the magnetic field as it is

usually done in the RDFT with magnetic effects, instead of spin up and spin down

quantities as it is done in the non-relativistic spin-polarized DFT.

3. Specifics of differentiation of the Dirac-Kohn-Sham eigenvalues

Differentiation of the Kohn-Sham (Dirac-Kohn-Sham) eigenvalues with respect to

atomic positions is rather involved. In order to keep derivation as clear as possible

we will do it in a step by step fashion. Essentially the derivation is very similar to the

one done by Yu et al. [9] and by Klüppelberg et al. [12]. We repeat all the steps here

to make it clear where the fully relativistic formalism enters and where the formulae

are independent on the formalism (relativistic or non-relativistic). We will consider the

derivatives of the valence and core states separately beginning with the valence states.

As a first step, we show explicitly that only the derivatives of the basis functions

enter the expression for the forces but not the derivatives of the coefficients. It can be

done generically without specification of the basis set or relativistic effects. In methods

which use non-orthogonal basis sets the eigenvalues can be found as the ratio of the

expectation values of the hamiltonian and overlap matrices:

ε =

∑
ij A

∗
iHijAj∑

ij A
∗
iOijAj

, (18)

where sums run over the basis set indexes and Ai are the expansion coefficients. Again,

using generic differentiation which we denote as prime, we obtain:
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ε′ =
∑
ij

(
A′∗i HijAj + A∗iH

′
ijAj + A∗iHijA

′
j

)
+ ε
∑
ij

(
A′∗i OijAj + A∗iO

′
ijAj + A∗iOijA

′
j

)
=
∑
ij

(
A′∗i [Hij − εOij]Aj + A∗i [H

′
ij − εO′ij]Aj + A∗i [Hij − εOij]A

′
j

)
=
∑
ij

A∗i [H
′
ij − εO′ij]Aj, (19)

where we have used the fact that matrix equations are solved numerically exactly (i.e.

for instance
∑

j[Hij − εOij]Aj is zero with computer accuracy). From (19), it is obvious

that we have to differentiate only the matrix elements but not the coefficients.

Before proceeding further, let us briefly specify the basis functions (or their

combinations) which we are using. As it becomes common practice in the APW-based

calculations [19, 20, 21], we use generic combination of an augmentation function (APW

or LAPW) and local orbitals of different kind. As local orbitals, we use the so called

’lo’-orbitals which have discontinuity in its small component (in its derivative in non-

relativistic formulation) at the MT sphere boundaries. It is used in combination with

APW augmentation [11] to improve variational flexibility of the basis set. Next type

of the local orbital is the so called High Derivative Local Orbitals (HDLO) [22, 19, 20]

which can be used in combination with LAPW or APW+lo to further enhance the

accuracy of the basis set in the range of energies corresponding to the valence bands.

Finally, the so called High Energy Local Orbitals (HELO’s, [19, 20]) can be included

in a basis set to describe semicore states or high energy states in the conduction band

range of energies.

Hamiltonian and overlap matrix elements are represented by the volume integrals

over all MT spheres in the unit cell and over the interstitial region. For the

basis functions with discontinuities at the MT surfaces (for instance if the APW+lo

combination is used), matrix elements of the hamiltonian include the surface correction

terms as it was specified in Ref. [11] for the non-relativistic case and in [21] for the

fully relativistic case. The recipe (10) is applied for the differentiation when integration

domain changes. Still using generic indexes for the basis set but specifying the band

index and the k-point (i.e. using fk
i as generic basis functions and εkλ as eigenvalues) as

well as the specific form (4) of the Dirac-Kohn-Sham hamiltonian HDKS, we obtain:

dHk
ij

dt
− εkλ

dOk
ij

dt
= P kλ

ij

+

∫
Ω0

drf
†k
i (r)[

dVeff (r)

dt
+ βσ̃ · dBeff (r)

dt
]fk
j (r)

+

∫
St

dS
(
f
†k(MT )
i (r)[HDKS − εkλ]f

k(MT )
j (r)− f

†k(IR)
i (r)[HDKS − εkλ]f

k(IR)
j (r)

)
, (20)
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where the terms which later will contribute to the Pulay force have been collected into

the quantity P kλt
ij :

P kλt
ij =

∫
Ω0

dr
df
†k
i (r)

dt
[HDKS − εkλ]fk

j (r)

+

∫
Ω0

drf
†k
i (r)[HDKS − εkλ]

dfk
j (r)

dt
+

d

dt
S
k(DISC)
ij . (21)

Derivatives of the terms which appear in the hamiltonian when some of the basis

functions have discontinuities were denoted as d
dt
S
k(DISC)
ij . We do not specify them here

because they will be combined with other explicitly dependent on the atomic position

terms in the same way as they were combined in the derivation of the matrix elements

of the hamiltonian [21].

At this point of the derivation we have to take into account the differences between

basis functions of augmentation type (APW and LAPW) and local basis functions

(lo, HDLO, and HELO). Also, taking the derivatives assumes an understanding of the

quantities themselves. So, in order to avoid the repetition of a rather lengthy derivation

of the basis functions and matrix elements which has been done in [21], we ask the

reader to have the paper [21] at hand for quick references (we will refer to the equations

in that paper as (I-???) with ’???’ as the equation number). Keeping this in mind, let

us proceed with formal differentiation.

For the augmentation functions defined in (I-12,39), the derivative is not zero only

in the MT sphere of atom t:

d

dt
Πk

Gs(r) = i(k + G)Πk
Gs(r)−∇Πk

Gs(r), (22)

where the first term comes from the augmentation constraints and the second from the

dependence of the radial functions on atomic position. Derivative of the local functions

(I-46) also has two terms stemming from a formal Bloch factor and from the same

position dependence:

d

dt
Λk
tnilµ(r) = ikΛk

tnilµ(r)−∇Λk
tnilµ(r). (23)

Let us first consider the contribution of the gradient terms (which is generic) from

(22) and (23) into the quantity P kλt
ij in (21):

−
∫

Ωt

dr∇ f
†k
i (r)[HDKS − εkλ]fk

j (r)−
∫

Ωt

drf
†k
i (r)[HDKS − εkλ]∇fk

j (r)

= −
∫

Ωt

dr∇
(
f
†k
i (r)[K̂ − εkλ]fk

j (r)
)
−
∫

Ωt

drVeff (r)∇[f
†k
i (r)fk

j (r)]

−
∫

Ωt

dr∇[f
†k
i (r)βσ̃ · fk

j (r)]Beff (r)

= −
∫
St

edSf
†k(MT )
i (r)[K̂ − εkλ]f

k(MT )
j (r)−

∫
Ωt

drVeff (r)∇[f
†k
i (r)fk

j (r)]
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−
∫

Ωt

dr∇[f
†k
i (r)βσ̃ · fk

j (r)]Beff (r). (24)

Let us now consider the contribution from the augmentation parts of the derivatives

in (22) and (23). It is easier to take the derivative of the final matrix element, however.

In this case one can automatically include the derivatives of the discontinuities because

the corresponding contributions to the matrix elements have exactly the same structure

of explicit dependence on the atomic positions as the volume integral contributions [21].

Distinguishing the cases of the matrix elements between two augmentation functions

(AA) specified in (I-60,61,68), between the local and the augmentation function (BA)

specified in (I-63,64,69), and between two local functions (BB, I-66,67,70) one obtains

the corresponding contribution to the quantity (21):

i(G′ −G)
[
F t
G′−G

∑
il

Dkil
Gs;G′s′ [h

til

GG′ − εkλotilGG′ ]

+
∑

ilµ;i′l′µ′

Nt
l∑

(ww′)=1

y
∗(w)k
tilµ;Gsy

(w′)k
ti′l′µ′;G′s′

∫
Ωt

R
†(w)t
ilµ (r)ĤNMTR

(w′)t
i′l′µ′(r)dr

]
(25)

for the AA type, and

iG′
[
F t
G′−G

∑
il

Dkil
Gs;G′s′ [h

til

GG′ − εkλotilGG′ ]

+
∑
i′l′µ′

Nt
l∑

w′=1

y
(w′)k
ti′l′µ′;G′s′

∫
Ωt

R
†(LOC)t
nilµ (r)ĤNMTR

(w′)t
i′l′µ′(r)dr

]
(26)

for the BA type. Derivatives of the matrix elements of BB type equal to zero. The above

expressions (25) and (26) comprise a matrix with indexes running over the whole basis

set. Anticipating a convolution of this matrix with the variational coefficients (see Eq.

(19)), it is convenient to denote this convolution as Ckt
λ for a future use. The equations

(25) and (26) are the place where most of the differences between the fully relativistic

and the non-relativistic formulations are concentrated. Whereas it is not the goal of

this work to give a comprehensive account of all levels of the relativistic effects, it is

helpful to know where the differences are located. Particularly, if one needs to recover all

non-relativistic equations, the quantities Dkil
Gs;G′s′ , h

til

GG′ , and otilGG′ which are defined in

(I-59,60,61) for the fully relativistic case, have to be replaced with their non-relativistic

analogues.

Now it is a time to perform the Brillouin zone and the band index sums in the basis

set convolution of the expression (20) and, correspondingly, to evaluate the first term

on the right hand side of (15):

−
∑
kλ

fk
λ

dεkλ
dt

= −
∑
kλ

fk
λ

∑
ij

A
∗k
iλ

[dHk
ij

dt
− εkλ

dOk
ij

dt

]
Ak
λ

= FPulay
t,val −

∫
Ω0

dr[nval(r)
dVeff (r)

dt
+ mval(r)βσ̃ · dBeff (r)

dt
]
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−
∑
kλ

fk
λ

∫
St

dS
[
Ψ
†k(MT )
λ (r)[HDKS − εkλ]Ψ

k(MT )
λ (r)−Ψ

†k(IR)
λ (r)[HDKS − εkλ]Ψ

k(IR)
λ (r)

]
,(27)

with the valence Pulay force

FPulay
t,val = −

∑
kλ

fk
λCkt

λ +
∑
kλ

fk
λ

∫
St

dSΨ
†k(MT )
λ (r)[K̂ − εkλ]Ψ

k(MT )
λ (r)

+

∫
Ωt

drVeff (r)∇nval(r) +

∫
Ωt

dr∇[mval(r)] ·Beff (r). (28)

For the core states we can formally repeat all above steps which we have done for

the valence states, with a number of simplifications. The simplifications are related to

the following two facts: i) each core state is an exact solution of the Dirac-Kohn-Sham

equation for a spherically symmetric potential as opposite to an expansion in a basis set

for the valence levels; ii) core states are strictly confined inside the corresponding MT

sphere with zero values and derivatives at the boundary. As a result, all surface terms

related to the augmentation or the discontinuities disappear. Equations (27) and (28)

for the core states, therefore, can be simplified as the following:

−
∑
c

dεc
dt

= FPulay
t,cor −

∫
Ω0

dr[ncor(r)
dVeff (r)

dt
+ mcor(r)βσ̃ · dBeff (r)

dt
], (29)

with c running over the core states of atom t and with the core Pulay force

FPulay
t,cor =

∫
Ωt

drVeff (r)∇ncor(r) +

∫
Ωt

dr∇[mcor(r)] ·Beff (r). (30)

Finally we can include the contribution from the eigenvalue derivatives (27) and

(29) into a general force equation (15) to finish the derivation:

Ft = FHF
t + FPulay

t,cor + FPulay
t,val + FSurf

t,kin + FSurf
t,other, (31)

where we have made the following definitions:

FSurf
t,kin = −

∑
kλ

fk
λ

∫
St

dS
[
Ψ
†k(MT )
λ (r)[K̂ − εkλ]Ψ

k(MT )
λ (r)

−Ψ
†k(IR)
λ (r)[K̂ − εkλ]Ψ

k(IR)
λ (r)

]
, (32)

FSurf
t,other = −

∫
St

dS[nMT (r)V MT
eff (r)− nIR(r)V IR

eff (r)]

−
∫
St

dS[mMT (r) ·BMT
eff (r)−mIR(r) ·BIR

eff (r)]

+

∫
St

dS[nMT (r)V MT
xc (r)− nIR(r)V IR

xc (r)]

+

∫
St

dS[mMT (r) ·BMT
xc (r)−mIR(r) ·BIR

xc (r)]

−
∫
St

dS[nMT (r)εMT
xc (r)− nIR(r)εIRxc (r)], (33)
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Table 1. Structural parameters of the solids considered in this work. The parameters

correspond to the equilibrium geometries with zero forces. The change in atomic

positions when we evaluate the forces is specified for each case later.

Space Wyckoff RMT

Solid group a(Å) b(Å) c(Å) positions (aB)

α-U 63 2.854 5.869 4.955 0;0.1025;0.25 2.602333

PuCoGa5 123 4.2354 6.7939 Pu: 0;0;0 Pu, Ga(1): 2.829752

Co: 0;0;1/2 Co, Ga(4): 2.34805

Ga(4): 0;1/2;0.3086

Ga(1): 1/2;1/2;0

FePt 123 2.7248 3.78 Fe: 0;0;0 Fe, Pt: 2.55

Pt: 1/2;1/2;1/2

4. Performance tests

This section presents results of the calculations. In order to make presentation more

compact, principal structural parameters for studied solids have been collected in Table

1 and the most important set up parameters have been collected in Table 2. The

APW type of the plane waves augmentation was used for the ”physically relevant”

orbital momenta which roughly correspond to the shells which have electrons in a free

atom. This type of augmentation was accompanied with addition of two local orbitals

(lo and HDLO) in order to enhance variational freedom. For higher orbital momenta,

LAPW type of augmentation was applied. The separation of the augmentation strategy

into APW+lo and LAPW was suggested in Ref. [11]. Additional use of HDLO’s was

advocated in [19, 20] and, in the context of the fully relativistic calculations, in [21]. High

energy Local Orbitals (HELO’s) were used for the ”physically relevant” orbital momenta,

but their effect on the calculated values of the forces was rather small. Radii of the

Table 2. Principal set up parameters of the studied solids.

Core Lmax Lmax
Solid states Semicore Ψ/ρ, V APW+lo+HDLO RKmax

α-U [Kr]4d,4f 5s,6s,5p,6p,5d 12/8 3 12.0

PuCoGa5 Pu: [Kr]4d,4f,5s Pu: 6s,5p,6p,5d Pu: 12/10 Pu: 3 9.0

Co: [Ne] Co: 3s,3p Co: 10/10 Co: 2

Ga: [Ne] Ga: 3s,3p,3d Ga: 10/10 Ga: 2

FePt Fe: [Ne] Fe: 3s,3p 10/10 Fe: 2 12.0

Pt: [Kr] Pt: 5s,5p,4d,4f Pt: 3
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Table 3. Calculated α-U free energy (Ry), forces (mRy/aB), and forces evaluated by

numerical differentiation of the free energy, for the different Brillouin zone samplings.

Forces were evaluated for the structure with atomic positions t = ±0.13B + 1/4C

which is slightly perturbed from the equilibrium one with atomic positions t =

±0.1025B+1/4C. The free energy corresponding to the perturbed structure is denoted

as F(0) in the table. In order to evaluate the forces numerically, two additional

small distortions relative to the already perturbed structure were considered. Atomic

positions for these distorted structures were t = ±(0.13±∆)B+1/4C with ∆ = 0.0005.

Free energies are given relative to the constant -112276 Ry.

Number of Numerical Mismatch

k-points F(−∆) F(0) F(+∆) Force force (%)

144 -0.4468887 -0.4463283 -0.4457661 -50.6287 -50.6095 -0.04

384 -0.4466470 -0.4460889 -0.4455300 -50.3776 -50.3570 -0.04

700 -0.4465695 -0.4460026 -0.4454351 -51.1774 -51.1415 -0.07

1152 -0.4466360 -0.4460739 -0.4455112 -50.7377 -50.7087 -0.06

2560 -0.4465665 -0.4460026 -0.4454378 -50.9115 -50.8845 -0.05

muffin-tin spheres were selected to be the largest allowed (no overlapping). In the cases

of competing sizes the ratio was 1:1. All results presented below correspond to the fully

relativistic approach (FRA). A few tests performed with simplified relativistic approach

(SRA, [21]) have shown very little difference with FRA. All calculations have been

performed for the electronic temperature T = 300K. Exchange-correlation functional

corresponded to the local density approximation (LDA) as parametrized in [23].

Special remark is about core states. As authors of the Ref. [12] stress, those

core states which are not exactly confined inside their MT spheres may affect the

calculated forces noticeably. Such core states were allowed in [12] to extend beyond their

MT spheres and into the interstitial region and in other MT spheres with subsequent

correction of the calculated forces via the plane waves expansion of their tails. This

approach allows one to minimize the size of the matrices as only valence states need to

be described by the basis set. The price, however, is the increased complexity of the core

states treatment. Another way to handle the ”shallow” core states is to include them in

the list of the semicore states. In this case the size of the matrices increases slightly, but

strict confinement of the remaining (’deep”) core states inside their MT spheres makes

the algorithm simpler, which is especially important when one builds approaches of a

higher complexity (like the GW approximation) on top of the DFT code. This approach

is accepted in the FlapwMBPT code.

Principal results of this work, demonstrating the accuracy of the calculated forces,

are collected in Table 3 (for α-uranium) and in Table 4 (for PuCoGa5 and FePt). The

tables also include the free energies which were used for the numerical evaluation of the

forces. For the numerical differentiation we used three point formula F ′(0) = F (∆)−F (−∆)
2∆

with ∆ specified in Tables 3 and 4. Let us first discuss α-uranium. As one can see
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from the Table 3, the deviation of the calculated forces from the numerical ones is

very small (about 0.05%), which demonstrates high accuracy of the implementation.

It is interesting, that the deviation is essentially independent on the sampling of the

Brillouin zone. When the number of k-points increases, the forces and the numerical

forces change slightly, but their difference is almost constant. This fact supports the

robustness of the implementation. One has to mention that the forces evaluated by

numerical differentiation are not exact. Not only they depend on the step ∆ in the

above formula (though this dependence was rather small in all cases considered in this

work), but the free energies corresponding to the shift by +∆ and −∆ are subjects to

different numerical errors. For instance, MT radii can be dependent on ∆ (as they were

in this work). Thus, comparison of the directly and numerically evaluated forces should

not be considered as a test of the directly evaluated forces against the numerical ones

but, rather, as a test of the consistency of the algorithms involved in both, energies and

forces.

Whereas the accuracy of the basis set used in the calculations for α-U was specially

studied in our previous work [21], basis sets used in the calculations for PuCoGa5 and

FePt have not been specifically tuned to reach very high accuracy. This, most likely,

explains slightly bigger mismatch between the directly and numerically evaluated forces

in these two cases. Nevertheless, the mismatch is small (about 0.5%) and acceptable in

most situations. It demonstrates, that the algorithm of the force evaluation is accurate

enough not only when one sort of atoms is present (α-U) but also in materials with

different atoms (PuCoGa5) and in materials with a long range magnetic order (FePt).

Finally, table 5 presents the components of the forces for all solids studied in the

work. First interesting observation is that Hellmann-Feynman and Pulay (core part) are

far the biggest components (especially for actinide atoms) and they cancel each other in

Table 4. Calculated free energy (Ry), forces (mRy/aB), and numerical forces for

PuCoGa5 and ferromagnet FePt. Forces were evaluated for the structures with Pu and

Pt atoms shifted from their equilibrium positions: tPu = 0.02C and tPt = 1/2A +

1/2B+0.52C correspondingly. Free energy corresponding to these perturbed structures

is denoted as F(0) in the table. In order to evaluate the forces numerically, two

additional small distortions relative to already perturbed structure were considered.

Plutonium positions for these distorted structures were tPu = (0.02 ± ∆)C with

∆ = 0.0004, and platinum positions were: tPt = 1/2A + 1/2B + (0.52 ± ∆)C

with ∆ = 0.0005. Values of forces are given for Pu and Pt atoms correspondingly.

Total number of k-points in the Brillouin zone was 486 and 6000 for PuCoGa5 and

FePt correspondingly. Free energies are given relative to the constants -81550 Ry for

PuCoGa5 and -39414 Ry for FePt.

Numerical Mismatch

Solid F(−∆) F(0) F(+∆) Force force (%)

PuCoGa5 -0.9305437 -0.9303248 -0.9301012 -43.0625 -43.0829 0.05

FePt -0.5907798 -0.5907130 -0.5906452 -18.756 -18.843 0.46
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Table 5. Calculated components of the forces exerted on all atoms. Forces correspond

to the structure distorted from the equilibrium as described in tables 3 and 4. Surface

(kinetic) term corresponds to the contribution to the force from the discontinuity of

the kinetic energy at the MT surface as it is specified in the eq. (32). Surface (other)

include the contributions from all other discontinuities as it is specified in the eq. (33).

Group of four Gallium atoms (in undisturbed structure) becomes splitted in two groups

(2 atoms each) with slightly different forces which are separated by the slash in the

table.

Structure α-U PuCoGa5 FePt

Atom U Pu Co Ga(4) Ga(1) Fe Pt

Hellmann-Feynman 399.284 -996.116 -89.242 -381.61/24.874 67.072 -20.333 28.551

Pulay(core) -440.654 954.318 64.177 242.442/-2.174 -38.228 28.868 -46.512

Pulay(valence) -8.712 -9.682 29.136 134.506/-0.482 -27.138 25.793 -14.979

Surface(kinetic) -0.883 8.311 -2.408 14.172/-12.201 0.734 -15.713 14.208

Surface(other) 0.054 -0.006 -0.0004 0.0005/-0.0003 -0.0009 0.086 -0.024

Total -50.912 -43.063 1.663 9.51/10.016 2.44 18.702 -18.756

Sum of totals (drift) 0 -0.020 -0.054

Table 6. Forces exerted on atoms in α-U, PuCoGa5, and FePt evaluated in non-

relativistic (NR) and in scalar-relativistic (SR) approximations. Only total force is

given. In other respects, the structure of the table is similar to the structure of the

Table 5.

Structure α-U PuCoGa5 FePt

Atom U Pu Co Ga(4) Ga(1) Fe Pt

Total, NR -51.757 -46.037 4.176 8.243/12.868 -0.410 24.993 -24.939

Total, SR -51.547 -42.607 1.915 2.961/15.927 2.893 18.845 -18.784

considerable degree. Both of them come from the inner part of the MT spheres stressing

the importance of correct numerical description in that area of the unit cell. Second

observation is that the kinetic surface term prevails (considerably) over all other surface

terms. This fact essentially supports the approximation accepted in the Ref. [9] where

only kinetic operator discontinuity was taken into account. Careful analysis of all other

discontinuities performed by authors of Ref. [12] had shown, however, the importance

of these additional terms in enhancing the accuracy of the calculated forces. Thus, the

other surface contributions were kept in this work and, as one can see, they are not

negligible despite their relative smallness.

Whereas the principal goal of this work was the development and testing of the

atomic forces in fully relativistic approach, it is interesting to know how the taking

into account of the relativistic effects changes the results. Table 6 presents such an

analysis. In it, the atomic forces in all three compounds studied in this work evaluated
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without any relativistic effects (non-relativistic, NR) and with the scalar relativistic (SR)

effects (but not spin-orbit interaction) included are presented. All set up parameters

(except for the relativistic effects) were exactly the same as in the fully relativistic (FR)

calculations (Table 5). As one can see, the results obtained in the NR approach deviate

considerably from the results obtained with the FR approach. The largest force (in

a specific compound) differs up to 30% (FePt). Some vectors even change the sign

(the force exerted on the one of Gallium atoms in PuCoGa5). When we include the

relativistic effects at the SR level, the largest force (among the atoms in a specific

compound) improves. The improvement is especially noticeable in FePt. At the same

time, one still can see considerable deviations from the FR result for the forces of smaller

amplitude in PuCoGa5. Thus, even the scalar-relativistic approach cannot be considered

as sufficient if one performs, for instance, the structural optimization, or the phonon

spectra calculations for compounds with heavy atoms.

Conclusions

In conclusion, a formulation of the atomic forces evaluation in the framework of the

relativistic density functional theory was given. It is formulated for the APW/LAPW

family of basis sets with a flexible inclusion of different kind of local orbitals (lo, HDLO,

HELO). The method has been implemented in the computer code FlapwMBPT and

successfully applied to the atomic forces evaluation in α-U, PuCoGa5, and FePt. The

formulation of the forces evaluation in the fully relativistic framework brings in an

opportunity to study, for instance, the phonon spectra in actinide materials with greater

reliability than it was previously available with scalar-relativistic approaches. It can also

increase the efficiency of the calculations. For example, the recent successful study of

the phonon spectra in α-Plutonium [24] used the small-displacement method [25] and

numerical differentiation of the total energies for the force evaluation. The study could

be done more easily with the direct evaluation of the forces.
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