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Abstract. The atomic forces formulation based on the Dirac-Kohn-Sham equation
and the flexible (APW+1lo/LAPW)+LO basis set is presented. The formulation was
implemented in the code FlapwMBPT and allows a user to easily switch between
different basis functions of the augmentation type (APW or LAPW) and between
different kind of local orbitals. Similar to the work (Phys.Rev.B 91 (2015) 035105), the
implementation takes into account small discontinuities of the wave functions, density,
and potential at the muffin-tin sphere boundaries. Applications to the materials
with strong relativistic effects, such as a-Uranium, PuCoGas, and FePt, demonstrate
robustness of the method. The comparison of the calculated forces with the ones
obtained by numerical differentiation of electronic free energy shows close agreement
with deviations about 0.1% or less.
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1. Introduction

One of many achievements of the Density Functional Theory [1, 2] (DFT) is its ability
to provide accurate total energy of an interacting many-electron system as a function
of external fields such as an electrostatic field generated by nuclei in a solid. Naturally,
it is important to be able to find an arrangement of nuclei in a solid (crystal structure)
which corresponds to a minimal total energy of the whole system (electrons plus nuclei).
Another important field of interest is a study of the response of a solid when its nuclei
are pushed slightly from their equilibrium positions. In both situations, the ability
to evaluate accurate derivatives of total energy with respect to the atomic positions
(forces) represents an important tool. In the context of an equilibrium structure search
(geometry optimization), availability of the forces greatly helps, providing the directions
where atoms should be moved in order to reach their equilibrium positions. In the



context of small deviations from equilibrium (phonons), availability of the forces allows
one to use the finite displacement method [3, 4, 5] to calculate phonon frequencies
without employing the more technically involved linear response approach [6].

In a family of methods based on the Augmented Plane Waves (APW) basis set
[7], such as the Linearized Augmented Plane Waves (LAPW, [8]), the formulation of
how one can evaluate atomic forces was given by Yu et al. [9]. The work by Yu et
al. demonstrated that breaking the space into non-overlapping muffin-tin (MT) spheres
and the so-called interstitial region (IR), which is an important attribute of the APW-
family of methods, leads to an additional contribution to atomic forces, the Pulay term
[10]. Since then, there were a few enhancements introduced, such as the inclusion of
additional surface terms when one uses basis sets with discontinuities across the MT
boundaries (for instance in APW+lo basis set, [11]). Also, Kliippelberg et al. [12]
presented a refinement of the approach by carefully taking into account the tails of
the high-energy core states as well as small discontinuities in wave functions, density,
and potential at the MT spheres. Independently, Soler and Williams formulated their
variant of the LAPW method [13, 14] with perfectly continuous basis functions, as well
as the algorithm of the forces evaluation within their approach. Their construction
certainly has some advantages, but the complications related to the fact that inside
of the MT spheres one has to deal with momentum independent functions as well as
with momentum dependent plane waves. This makes it inconvenient especially if one is
interested in advanced methods going beyond DFT such as GW approximation.

One of the limitations of the existing formulations of the atomic force evaluation is
that they are based on the non-relativistic Kohn-Sham equations. However, in materials
where elements from the far end of the periodic table are present, one has to use the
fully relativistic approach based on the Dirac-Kohn-Sham (DKS) theory [15, 16, 17, 18].
Therefore, this work has its principal goal in removing the above mentioned limitation.
The derivation of the expression for forces goes closely along the lines paved in previous
works by Yu et al. and by Kliippelberg et al., but with DKS equations as a background
theory. Whereas our derivation is directly relevant to the fully relativistic theory, we
specifically are pointing out in the text, where the difference from the non-relativistic
theory enter. Throughout the paper the atomic units are used with Rydbergs as units of
energy. The term ”free energy” is used for the electronic free energy in an electrostatic
field of nuclei fixed at their equilibrium positions (Coulomb interaction between fixed
nuclei is included). The temperature in the equations is used with the Boltzmann’s
constant kg absorbed, i.e. the term ”"T” is used instead of kgT.

2. General derivation of the atomic force expression

The force F; exerted on an atom positioned at t is defined as the derivative of free energy
F of a solid: F; = —%. Thus, it is convenient to begin with writing down an expression
for free energy which corresponds to a specific level of theory. In the context of a
joint description of the relativistic and magnetic effects within the Relativistic Density



Functional Theory (RDFT), the corresponding expression was developed in works by
Rajagopal, Callaway, Vosko and Ramana [15, 16, 17, 18]. Principal equations of this
theory are briefly capitalized here for convenience. In RDFT, free energy of a solid
with the density of electrons n(r) and magnetization density m(r) can be written as the
following;:

F=-TY In(l+e ST+ N
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where T' stands for the temperature, sum runs over the Brillouin zone points k and

band indexes A, €X is the band energy, p is the chemical potential, and N is the total

number of electrons in the unit cell. In the integrals, {2y is the volume of the primitive

unit cell and €2 is the volume of the whole solid. Effective scalar potential V. ;/(r)

is a sum of an external scalar field V.. (r) and induced fields (Hartree (electrostatic)
_ 0Egc[n(r),m(r)]

Vi(r) =2 [dr % and exchange-correlation V,.(r) = T(r)):

Verr(r) = Ve (r) + Vi (r) + Vae(r), (2)

whereas the effective magnetic field B.s¢(r) represents a sum of external B.,;(r) and

induced B,.(r) = W magnetic fields:

Bejj(r) = Beai(r) + Bue(r). (3)

E.. in the above formulae stands for the exchange-correlation energy which is a
functional of n(r) and m(r) : fﬂo drn(r)eg[n(r),m(r)]. E,, in (1) is the nuclear-
nuclear electrostatic interaction energy. One-electron energies €X are the eigen values of

the following equations (Dirac-Kohn-Sham equations):
(K + Vers () + 85 - Begy(r) ) W(r) = W), (4)

where UX(r) stands for the Bloch periodic band function (four-component). The kinetic
energy operator K has the Dirac form (electron rest energy has been subtracted):
2
. c

K:ca-p+(ﬁ—[)2

and o are the 4 x 4 matrices, combined from the Pauli matrices o:

- o 0
a:<00>. (©)

(5)



¢ in equation (5) is the light velocity (¢ = 274.074 in our unit system), p is
the momentum operator (= —iV), a, and [ are Dirac matrices in the standard
representation, and [ is the unit 4 x 4 matrix.

Finally, with the electron energies and the band state functions available, the
electronic and magnetization densities are defined as the following

;
n(r) =Y fXUX@)TK(r), (7)
KA
and
T ~
m(r) =Y fXU,*(r)Bov(r), (8)
KA
with f/l\‘ being the Fermi-Dirac distribution function ( f;f = é)

Lielex—m/T
Now we are differentiating the Eq.(1) term by term. For the first and the second
terms on the right hand side one gets:
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The terms from the third to the sixth on the right hand side of (1) are represented
by integrals over the unit cell. In APW-related methods, it means technically the sum of
the integrals over the non-overlapping MT spheres and over the interstitial region (IR).
As authors of work [12] pointed out, the integrals should be differentiated with care,
namely, the change of the integration domain when atom (and its muffin-tin sphere)
moves should be taken into account. The generic differentiation formula obtained in
[12] is the following;:

d df (r
o[y = [ a8 [ s - e, (10)
dt Qo Qo dt Sy

where the surface integral is taken over the MT sphere of atom ¢. dS = edS, and e = ;:E'

denotes the normal vector on the MT sphere of atom ¢ that points into the interstitial
region. fMT(r) and ff(r) distinguish between the MT and the IR representations of
the function f. Let us now apply the generic formula (10) to the integrals in (1):
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where we have assumed that only the induced magnetic field depends of the position of
atom ¢.
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Collecting all derivatives together and assuming self-consistency (i.e. equations (2)
and (3) are met) we obtain the following force:
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where the Hellmann-Feynman force has been introduced:

dVe(r)  d
FAF — _ [ ¢4 et B 1

Hellmann-Feynman force is proportional to the gradient of the full electrostatic
potential at the center of atom ¢ (excluding the field from its nuclear), [9]:

d n(r) ’ Zy
HF _ o657 9 _ e
B =220 (/er|t—r| Z|1:—t'—R|>

= _Ztv e/lfstat (I‘)

: (17)

r—t

where Z; is the nuclear charge of atom %, the integration in the first right hand side
expression is performed over the whole solid, and the sum is taken over all unit cells
(indexed here by translation vector R) and over all atoms in the unit cell (atom ¢ in the
central unit cell is excluded from the sum). This consideration makes the evaluation of
the Hellmann-Feynman term easy.

In order to bring the remaining terms of (15) to the form convenient for evaluation
one has to consider the derivative of the one-electron energies. This is done in the next
section. Let us also to point out that the derivation performed up to this point is quite
generic with respect to the degree of inclusion of the relativistic effects. The only formal
difference is that we use vectors of the magnetization and the magnetic field as it is
usually done in the RDFT with magnetic effects, instead of spin up and spin down
quantities as it is done in the non-relativistic spin-polarized DFT.

3. Specifics of differentiation of the Dirac-Kohn-Sham eigenvalues

Differentiation of the Kohn-Sham (Dirac-Kohn-Sham) eigenvalues with respect to
atomic positions is rather involved. In order to keep derivation as clear as possible
we will do it in a step by step fashion. Essentially the derivation is very similar to the
one done by Yu et al. [9] and by Kliippelberg et al. [12]. We repeat all the steps here
to make it clear where the fully relativistic formalism enters and where the formulae
are independent on the formalism (relativistic or non-relativistic). We will consider the
derivatives of the valence and core states separately beginning with the valence states.

As a first step, we show explicitly that only the derivatives of the basis functions
enter the expression for the forces but not the derivatives of the coefficients. It can be
done generically without specification of the basis set or relativistic effects. In methods
which use non-orthogonal basis sets the eigenvalues can be found as the ratio of the
expectation values of the hamiltonian and overlap matrices:

_ Zij A?Hl’in
Zij A?OijAJ’ 7

€

(18)

where sums run over the basis set indexes and A; are the expansion coefficients. Again,
using generic differentiation which we denote as prime, we obtain:
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where we have used the fact that matrix equations are solved numerically exactly (i.e.
for instance ) ;[H;; — €0;;]A; is zero with computer accuracy). From (19), it is obvious
that we have to differentiate only the matrix elements but not the coefficients.

Before proceeding further, let us briefly specify the basis functions (or their
combinations) which we are using. As it becomes common practice in the APW-based
calculations [19, 20, 21|, we use generic combination of an augmentation function (APW
or LAPW) and local orbitals of different kind. As local orbitals, we use the so called
'lo’-orbitals which have discontinuity in its small component (in its derivative in non-
relativistic formulation) at the MT sphere boundaries. It is used in combination with
APW augmentation [11] to improve variational flexibility of the basis set. Next type
of the local orbital is the so called High Derivative Local Orbitals (HDLO) [22, 19, 20]
which can be used in combination with LAPW or APW+lo to further enhance the
accuracy of the basis set in the range of energies corresponding to the valence bands.
Finally, the so called High Energy Local Orbitals (HELO’s, [19, 20]) can be included
in a basis set to describe semicore states or high energy states in the conduction band
range of energies.

Hamiltonian and overlap matrix elements are represented by the volume integrals
over all MT spheres in the unit cell and over the interstitial region. For the
basis functions with discontinuities at the MT surfaces (for instance if the APW+lo
combination is used), matrix elements of the hamiltonian include the surface correction
terms as it was specified in Ref. [11] for the non-relativistic case and in [21] for the
fully relativistic case. The recipe (10) is applied for the differentiation when integration
domain changes. Still using generic indexes for the basis set but specifying the band
index and the k-point (i.e. using f¥ as generic basis functions and € as eigenvalues) as
well as the specific form (4) of the Dirac-Kohn-Sham hamiltonian Hpgg, we obtain:

dHY o dOX _ o
dt A dt i

[ ange ) g B g

+ / as (£ @) Hpies = 10 @) = 140 @) Hpres - 1P 10) - (20)



where the terms which later will contribute to the Pulay force have been collected into
the quantity PS*:

df*(r
P = / dr fzdt( )[HDKS —axlfi(x)
Qo

dff(r) d G(DISC)

gt g (2

+ [ e s - o
Qo
Derivatives of the terms which appear in the hamiltonian when some of the basis
functions have discontinuities were denoted as %S;(D[SC). We do not specify them here
because they will be combined with other explicitly dependent on the atomic position
terms in the same way as they were combined in the derivation of the matrix elements
of the hamiltonian [21].

At this point of the derivation we have to take into account the differences between
basis functions of augmentation type (APW and LAPW) and local basis functions
(lo, HDLO, and HELO). Also, taking the derivatives assumes an understanding of the
quantities themselves. So, in order to avoid the repetition of a rather lengthy derivation
of the basis functions and matrix elements which has been done in [21], we ask the
reader to have the paper [21] at hand for quick references (we will refer to the equations
in that paper as (I-777) with '?7?” as the equation number). Keeping this in mind, let
us proceed with formal differentiation.

For the augmentation functions defined in (I-12,39), the derivative is not zero only
in the MT sphere of atom ¢:

Z%Hggﬂ::ak+(nnggm-vnggw, (22)

where the first term comes from the augmentation constraints and the second from the
dependence of the radial functions on atomic position. Derivative of the local functions
(I-46) also has two terms stemming from a formal Bloch factor and from the same
position dependence:
d o\ x

aAtm‘lu

Let us first consider the contribution of the gradient terms (which is generic) from
(22) and (23) into the quantity PS5 in (21):

(r) = ikAK

tnilp

(r) — VAX . (r). (23)

tnilu

_/Q drV f*(r)[Hpxs — exlfi(r) — / dr f*(r)[Hpxs — V()

- / arV (f4)[K — &1 15r)) - / dr Vs (r)V [ f(x) £ ()]
- / V)5 - B )

B ‘/s edS XM () [ — ] £V (x) - / drVe g7 (r) VL% (x) £5(r)



- / V[ ()55 - f4()[Buy (r). (24)

Let us now consider the contribution from the augmentation parts of the derivatives
n (22) and (23). It is easier to take the derivative of the final matrix element, however.
In this case one can automatically include the derivatives of the discontinuities because
the corresponding contributions to the matrix elements have exactly the same structure
of explicit dependence on the atomic positions as the volume integral contributions [21].
Distinguishing the cases of the matrix elements between two augmentation functions
(AA) specified in (1-60,61,68), between the local and the augmentation function (BA)
specified in (I-63,64,69), and between two local functions (BB, 1-66,67,70) one obtains
the corresponding contribution to the quantity (21):

i(G' - [FG’ G Z Dol htGdG/ — eX0Ga]
LA fw) (')
*(w w)t 2 w' )t
+ Z Z ytzl,u,Gsytz’l’ ’G’s’/Q Ril,u (r)HNMTRi’l’p/(r)dr (25)

ilp'l ! (ww')=1

for the AA type, and

1|t kil Ztil k—til
e [FG’—G E Dé&sarelhae — €X0Ga]

2 Z it | R0 B B )] (26)
iU w'=1
for the BA type. Derivatives of the matrix elements of BB type equal to zero. The above
expressions (25) and (26) comprise a matrix with indexes running over the whole basis
set. Anticipating a convolution of this matrix with the variational coefficients (see Eq.
(19)), it is convenient to denote this convolution as CX! for a future use. The equations
(25) and (26) are the place where most of the differences between the fully relativistic
and the non-relativistic formulations are concentrated. Whereas it is not the goal of
this work to give a comprehensive account of all levels of the relativistic effects, it is
helpful to know where the differences are located. Partlcularly, if one needs to recover all
non-relativistic equations, the quantities D&Y/, hGG/ and 0%, which are defined in
(I-59,60,61) for the fully relativistic case, have to be replaced with their non-relativistic
analogues.
Now it is a time to perform the Brillouin zone and the band index sums in the basis
set convolution of the expression (20) and, correspondingly, to evaluate the first term
on the right hand side of (15):

deX
SN LS W
dVers(r) dB.ss(r)

- Ff?:é?y - /§; dr[nval(r>T + mvalﬁ')ﬁ& . T]
0

[de dOk

2 dt ]AI;
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Wlth the valence Pulay force

ua t .
P! = =2 SCX+2 14 / A M0 ()[R — 105 )

+ /Qt drVep(r)Vnyq(r) +/ drV[m,,(r)] - Bess(r). (28)

Qy

For the core states we can formally repeat all above steps which we have done for
the valence states, with a number of simplifications. The simplifications are related to
the following two facts: i) each core state is an exact solution of the Dirac-Kohn-Sham
equation for a spherically symmetric potential as opposite to an expansion in a basis set
for the valence levels; ii) core states are strictly confined inside the corresponding MT
sphere with zero values and derivatives at the boundary. As a result, all surface terms
related to the augmentation or the discontinuities disappear. Equations (27) and (28)
for the core states, therefore, can be simplified as the following:

de, o dv., dB.rs(r
D DR I S L L R (29)
c Qo

with ¢ running over the core states of atom ¢ and with the core Pulay force

BLAY = [ Vigs (009000 () + [ drVime () Buso). (0
Qf Qt
Finally we can include the contribution from the eigenvalue derivatives (27) and

(29) into a general force equation (15) to finish the derivation:

Ft _ F{-IF + FPulay + FPulay + FSurf + FSurf (31)

t,cor tval t,kin t,other’

where we have made the following definitions:

il = [ as[eO i - ek

— U () [ — Kok ()] (32)
Fous — — [ asMT () VAT (x) — R (x) V()]
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Table 1. Structural parameters of the solids considered in this work. The parameters
correspond to the equilibrium geometries with zero forces. The change in atomic
positions when we evaluate the forces is specified for each case later.

Space Wyckoft Ruyr
Solid group a(A)  Db(A)  c¢(A) positions (ap)
a-U 63 2.854 5.869 4.955 0;0.1025;0.25 2.602333
PuCoGas 123  4.2354 6.7939 Pu: 0;0;0 Pu, Ga(1): 2.829752
Co: 0:0;1/2 Co, Ga(4): 2.34805

Ga(4): 0;1/2;0.3086
Ga(1): 1/2;1/2;0
FePt 123 2.7248 3.78 Fe: 0;0;0 Fe, Pt: 2.55
Pt: 1/2;1/2;1/2

4. Performance tests

This section presents results of the calculations. In order to make presentation more
compact, principal structural parameters for studied solids have been collected in Table
1 and the most important set up parameters have been collected in Table 2. The
APW type of the plane waves augmentation was used for the ”physically relevant”
orbital momenta which roughly correspond to the shells which have electrons in a free
atom. This type of augmentation was accompanied with addition of two local orbitals
(lo and HDLO) in order to enhance variational freedom. For higher orbital momenta,
LAPW type of augmentation was applied. The separation of the augmentation strategy
into APW+lo and LAPW was suggested in Ref. [11]. Additional use of HDLO’s was
advocated in [19, 20] and, in the context of the fully relativistic calculations, in [21]. High
energy Local Orbitals (HELO’s) were used for the ”physically relevant” orbital momenta,
but their effect on the calculated values of the forces was rather small. Radii of the

Table 2. Principal set up parameters of the studied solids.

Core Loae Lo
Solid states Semicore U/p, V APW+lo+HDLO RK, 0z
a-U [Kr]ad 4f 55,65,5p,6p,5d 12/8 3 12.0
PuCoGa; Pu: [Kr|4d,4f,5s Pu: 6s,5p,6p,5d Pu: 12/10 Pu: 3 9.0
Co: [Ne] Co: 3s,3p Co: 10/10 Co: 2
Ga: [Ne] Ga: 3s,3p,3d  Ga: 10/10 Ga: 2
FePt Fe: [Ne] Fe: 3s,3p 10/10 Fe: 2 12.0
Pt: [Kr] Pt: 5s,5p,4d,4f Pt: 3
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Table 3. Calculated a-U free energy (Ry), forces (mRy/ap), and forces evaluated by
numerical differentiation of the free energy, for the different Brillouin zone samplings.
Forces were evaluated for the structure with atomic positions t = +0.13B + 1/4C
which is slightly perturbed from the equilibrium one with atomic positions t =
+0.1025B+1/4C. The free energy corresponding to the perturbed structure is denoted
as F(0) in the table. In order to evaluate the forces numerically, two additional
small distortions relative to the already perturbed structure were considered. Atomic
positions for these distorted structures were t = £(0.13+A)B+1/4C with A = 0.0005.
Free energies are given relative to the constant -112276 Ry.

Number of Numerical Mismatch
k-points F(—A) F(0) F(+A) Force force (%)
144 -0.4468887 -0.4463283 -0.4457661 -50.6287  -50.6095 -0.04
384 -0.4466470 -0.4460889 -0.4455300 -50.3776  -50.3570 -0.04
700 -0.4465695 -0.4460026 -0.4454351 -51.1774  -51.1415 -0.07
1152 -0.4466360 -0.4460739 -0.4455112 -50.7377  -50.7087 -0.06
2560 -0.4465665 -0.4460026 -0.4454378 -50.9115  -50.8845 -0.05

muffin-tin spheres were selected to be the largest allowed (no overlapping). In the cases
of competing sizes the ratio was 1:1. All results presented below correspond to the fully
relativistic approach (FRA). A few tests performed with simplified relativistic approach
(SRA, [21]) have shown very little difference with FRA. All calculations have been
performed for the electronic temperature T' = 300K . Exchange-correlation functional
corresponded to the local density approximation (LDA) as parametrized in [23].

Special remark is about core states. As authors of the Ref. [12] stress, those
core states which are not exactly confined inside their MT spheres may affect the
calculated forces noticeably. Such core states were allowed in [12] to extend beyond their
MT spheres and into the interstitial region and in other MT spheres with subsequent
correction of the calculated forces via the plane waves expansion of their tails. This
approach allows one to minimize the size of the matrices as only valence states need to
be described by the basis set. The price, however, is the increased complexity of the core
states treatment. Another way to handle the ”shallow” core states is to include them in
the list of the semicore states. In this case the size of the matrices increases slightly, but
strict confinement of the remaining ('deep”) core states inside their MT spheres makes
the algorithm simpler, which is especially important when one builds approaches of a
higher complexity (like the GW approximation) on top of the DET code. This approach
is accepted in the FlapwMBPT code.

Principal results of this work, demonstrating the accuracy of the calculated forces,
are collected in Table 3 (for a-uranium) and in Table 4 (for PuCoGa; and FePt). The
tables also include the free energies which were used for the numerical evaluation of the
forces. For the numerical differentiation we used three point formula F’(0) = %
with A specified in Tables 3 and 4. Let us first discuss a-uranium. As one can see
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from the Table 3, the deviation of the calculated forces from the numerical ones is
very small (about 0.05%), which demonstrates high accuracy of the implementation.
It is interesting, that the deviation is essentially independent on the sampling of the
Brillouin zone. When the number of k-points increases, the forces and the numerical
forces change slightly, but their difference is almost constant. This fact supports the
robustness of the implementation. One has to mention that the forces evaluated by
numerical differentiation are not exact. Not only they depend on the step A in the
above formula (though this dependence was rather small in all cases considered in this
work), but the free energies corresponding to the shift by +A and —A are subjects to
different numerical errors. For instance, MT radii can be dependent on A (as they were
in this work). Thus, comparison of the directly and numerically evaluated forces should
not be considered as a test of the directly evaluated forces against the numerical ones
but, rather, as a test of the consistency of the algorithms involved in both, energies and
forces.

Whereas the accuracy of the basis set used in the calculations for a-U was specially
studied in our previous work [21], basis sets used in the calculations for PuCoGas and
FePt have not been specifically tuned to reach very high accuracy. This, most likely,
explains slightly bigger mismatch between the directly and numerically evaluated forces
in these two cases. Nevertheless, the mismatch is small (about 0.5%) and acceptable in
most situations. It demonstrates, that the algorithm of the force evaluation is accurate
enough not only when one sort of atoms is present (a-U) but also in materials with
different atoms (PuCoGas) and in materials with a long range magnetic order (FePt).

Finally, table 5 presents the components of the forces for all solids studied in the
work. First interesting observation is that Hellmann-Feynman and Pulay (core part) are
far the biggest components (especially for actinide atoms) and they cancel each other in

Table 4. Calculated free energy (Ry), forces (mRy/ap), and numerical forces for
PuCoGas and ferromagnet FePt. Forces were evaluated for the structures with Pu and
Pt atoms shifted from their equilibrium positions: tp, = 0.02C and tp; = 1/2A +
1/2B+0.52C correspondingly. Free energy corresponding to these perturbed structures
is denoted as F(0) in the table. In order to evaluate the forces numerically, two
additional small distortions relative to already perturbed structure were considered.
Plutonium positions for these distorted structures were tp, = (0.02 £ A)C with
A = 0.0004, and platinum positions were: tp; = 1/2A + 1/2B + (0.52 + A)C
with A = 0.0005. Values of forces are given for Pu and Pt atoms correspondingly.
Total number of k-points in the Brillouin zone was 486 and 6000 for PuCoGas and
FePt correspondingly. Free energies are given relative to the constants -81550 Ry for
PuCoGas and -39414 Ry for FePt.

Numerical Mismatch
Solid F(-A) F(0) F(+A) Force force (%)
PuCoGas -0.9305437 -0.9303248 -0.9301012 -43.0625 -43.0829 0.05
FePt -0.5907798 -0.5907130 -0.5906452 -18.756 -18.843 0.46
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Table 5. Calculated components of the forces exerted on all atoms. Forces correspond
to the structure distorted from the equilibrium as described in tables 3 and 4. Surface
(kinetic) term corresponds to the contribution to the force from the discontinuity of
the kinetic energy at the MT surface as it is specified in the eq. (32). Surface (other)
include the contributions from all other discontinuities as it is specified in the eq. (33).
Group of four Gallium atoms (in undisturbed structure) becomes splitted in two groups
(2 atoms each) with slightly different forces which are separated by the slash in the

table.
Structure o-U PuCoGas FePt
Atom U Pu Co Ga(4) Ga(l) Fe Pt

Hellmann-Feynman  399.284 -996.116 -89.242 -381.61/24.874 67.072 -20.333 28.551
Pulay(core) -440.654  954.318  64.177 242.442/-2.174 -38.228 28.868 -46.512
Pulay(valence) -8.712 -9.682  29.136 134.506/-0.482 -27.138 25.793 -14.979
Surface(kinetic) -0.883 8.311 -2.408 14.172/-12.201  0.734  -15.713  14.208
Surface(other) 0.054 -0.006  -0.0004 0.0005/-0.0003 -0.0009 0.086  -0.024
Total -50.912  -43.063  1.663 9.51/10.016 244 18702 -18.756

Sum of totals (drift) 0 -0.020 -0.054

Table 6. Forces exerted on atoms in a-U, PuCoGajs, and FePt evaluated in non-
relativistic (NR) and in scalar-relativistic (SR) approximations. Only total force is
given. In other respects, the structure of the table is similar to the structure of the

Table 5.
Structure a-U PuCoGas FePt
Atom U Pu Co Ga(4) Ga(1) Fe Pt

Total, NR -51.757 -46.037 4.176 8.243/12.868 -0.410 24.993 -24.939
Total, SR -51.547 -42.607 1.915 2.961/15.927 2.893 18.845 -18.784

considerable degree. Both of them come from the inner part of the MT spheres stressing
the importance of correct numerical description in that area of the unit cell. Second
observation is that the kinetic surface term prevails (considerably) over all other surface
terms. This fact essentially supports the approximation accepted in the Ref. [9] where
only kinetic operator discontinuity was taken into account. Careful analysis of all other
discontinuities performed by authors of Ref. [12] had shown, however, the importance
of these additional terms in enhancing the accuracy of the calculated forces. Thus, the
other surface contributions were kept in this work and, as one can see, they are not
negligible despite their relative smallness.

Whereas the principal goal of this work was the development and testing of the
atomic forces in fully relativistic approach, it is interesting to know how the taking
into account of the relativistic effects changes the results. Table 6 presents such an
analysis. In it, the atomic forces in all three compounds studied in this work evaluated
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without any relativistic effects (non-relativistic, NR) and with the scalar relativistic (SR)
effects (but not spin-orbit interaction) included are presented. All set up parameters
(except for the relativistic effects) were exactly the same as in the fully relativistic (FR)
calculations (Table 5). As one can see, the results obtained in the NR approach deviate
considerably from the results obtained with the FR approach. The largest force (in
a specific compound) differs up to 30% (FePt). Some vectors even change the sign
(the force exerted on the one of Gallium atoms in PuCoGas). When we include the
relativistic effects at the SR level, the largest force (among the atoms in a specific
compound) improves. The improvement is especially noticeable in FePt. At the same
time, one still can see considerable deviations from the FR result for the forces of smaller
amplitude in PuCoGas. Thus, even the scalar-relativistic approach cannot be considered
as sufficient if one performs, for instance, the structural optimization, or the phonon
spectra calculations for compounds with heavy atoms.

Conclusions

In conclusion, a formulation of the atomic forces evaluation in the framework of the
relativistic density functional theory was given. It is formulated for the APW /LAPW
family of basis sets with a flexible inclusion of different kind of local orbitals (lo, HDLO,
HELO). The method has been implemented in the computer code FlapwMBPT and
successfully applied to the atomic forces evaluation in a-U, PuCoGas, and FePt. The
formulation of the forces evaluation in the fully relativistic framework brings in an
opportunity to study, for instance, the phonon spectra in actinide materials with greater
reliability than it was previously available with scalar-relativistic approaches. It can also
increase the efficiency of the calculations. For example, the recent successful study of
the phonon spectra in a-Plutonium [24] used the small-displacement method [25] and
numerical differentiation of the total energies for the force evaluation. The study could
be done more easily with the direct evaluation of the forces.
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