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Abstract

Risk mitigation strategies commonly use the Test Uncertainty Ratio (TUR) and End of Period

Reliability (EOPR) to ensure a measurement is adequate for making acceptance decisions. In some

cases, TUR and EOPR are used to determine an appropriate guardband factor, which is then used

to reduce the risk of an incorrect decision. Unfortunately, the common guidance of maintaining a

TUR of at least 4:1 was developed to simplify the underlying calculus in an era predating modern

computing. As such, using a TUR to determine the adequacy of a measurement and set guardband

limits assumes that the probability distributions describing the product and the measurement

uncertainty are unbiased and normally distributed. The Guide to the Expression of Uncertainty in

Measurement (GUM) and its supplements describe several situations where uncertainty in the

measurement will not follow a normal distribution. Additionally, it is frequently assumed that the

prior distribution of products being measured is normal and unbiased, often with little or no

evidence. Sometimes a 95% EOPR is even assigned with no justification. Despite the evidence of

non-normal behavior in measurements and products, risk evaluations typically assume normality

in both distributions. While evaluating the Probability of False Accept (PFA) and the Probability

of False Reject (PFR) is more challenging when the probability distributions are non-normal, the

calculus is straightforward using either numerical integration or Monte Carlo techniques. In

addition to covering methods for evaluating the actual PFA and PFR without relying on the archaic

TUR metric, this work considers several case studies of risk evaluation, including both global and

specific risk, when the product or the test measurement uncertainty do not follow normal

distributions. Neglecting non-normal behavior can greatly affect PFA and PFR by either over- or

underestimating the probabilities depending on the parameters of the distributions. A good prior

knowledge of the product being measured is required for a meaningful global risk analysis.

1. Introduction

Measurements are used to make decisions, whether for acceptance or rejection of a product, or for
a pass or fail determination on a calibration certificate. Because all measurements have some
inherent uncertainty, there is always some probability of making an incorrect pass or fail
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determination. Risk is calculated from a combination of test measurement uncertainty and the
known distribution of products being tested [1], [2].

The Guide to the Expression of Uncertainty in Measurements (GUM) [3] recommends ways to
evaluate the test measurement uncertainty distribution. It is limited to cases where the
measurement equation can be modeled by a linear expansion and it converts all the input
uncertainties into normal distributions. These simplifications result in a statement of total
uncertainty that is always described by a normal distribution. As GUM Supplement 1 [4] describes
in detail, a Monte Carlo (MC) method can be used to propagate uncertainty without these
limitations. An MC uncertainty calculation results in a histogram representation of the uncertainty
distribution. Depending on the measurement equation and inputs, this histogram may be highly
non-normal.

The product distribution requires prior knowledge of the products being measured. While this
information is sometimes scarce, it is essential for an accurate determination of risk. Non-normal
distributions in the product can arise from physical limitations, non-normally distributed
components used in manufacturing, or other factors in the process. For example, if a normal
distribution is used to model the prior knowledge of a component's mass, it would predict some
small but finite probability of the component having negative mass, which is clearly impossible.
A bounded distribution, such as a gamma distribution, may be more appropriate in such cases.

Traditional risk analysis, which calculates the Probability of False Accept (PFA) and the
Probability of False Reject (PFR), typically considers the probability distributions involved to be
normal. The Test Uncertainty Ratio (TUR) is often used as a simple metric for understanding and
controlling risk, but it is also based on normal distributions and in fact was introduced to simplify
calculations before modern computers could readily solve integration problems [5].

The assumption of normality is clearly not always justified. Compliance with ANSI/NCSL
Z504.3's requirement to maintain less than 2% PFA [6] cannot be ensured if non-normal behavior
is neglected. Risk in non-normal distributions was considered in [7] by using a series
approximation for the distribution, however its accuracy depends on the suitability of the series
approximation, and due to computational limitations of the time it did not consider asymmetric or
biased distributions. NCSLI's Recommended Practice 18 [8] sets up the calculus for risk analysis
using any probability distribution yet makes a normal assumption for most further analysis. This
work seeks to understand the potential effects of non-normal behavior — including asymmetry,

bias, and "peakedness" — in distributions used for risk analysis and to offer solutions accounting
for these effects where the only approximation is due to numerical integration techniques.
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2. Calculating Risk

In terms of metrology, risk is the probability of making an incorrect decision based on a
measurement result. Two types of risk are considered: specific risk and global risk.

Specific risk is the probability that a given test measurement result indicates a product is within

specifications when it is actually outside specifications. This risk is due to the inherent uncertainty

in the test measurement. It can be calculated by integrating the Probability Density Function (PDF)

of the test measurement uncertainty outside of the specification limits.

LL co

PFAly = f Ptest(t — y) dt + f Ptest (t — y) dt
—co UL

Here, PFAI y is the PFA given the measurement result y. The function Nest (t — y) is the PDF of

the test measurement with measured value y. The upper and lower specification limits are given

by UL and LL, respectively. The specific risk is illustrated in Figure 1, where the upper tail of the

probability curve falls above the UL specification limit. The area under this curve represents the

probability (specific risk) of incorrectly accepting a product given this measurement result.

LL y UL

Figure 1. Specific risk given a measurement result of y.

Global risk is the probability that a test measurement on any product results in an incorrect pass
determination. It is also called the PFA or consumer's risk. In addition to the test measurement
probability distribution, it must account for the probability of encountering a product at that
measured value. It is computed by integrating the joint PDF of the test measurement, Nest (t — y)

and the PDF of the unit under test puut (t). Global risk cannot be calculated without specifying a
distribution of values for the product, which is obtained from prior knowledge and measurements
of the product.
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UL iLL UL

PF A = Ptest(t — y)puut(t) dt dy + Ptest(t — 31)19uut(t) dt dy
LL —co LL UL

— Product Distribution

— Test Distribution

LL y UL

Figure 2. Global risk (PFA) combines the specific risk with the probability of encountering

a product with value y.

The joint probability accounts for the assumption that it is less likely to encounter a product near
the specification limit than a product near the center of the limits

Similarly, the PFR, also called producer's risk, is the probability that a measurement result
indicates a product is outside the limits when its true value is actually within the limits

LL fUL oo r
PFR = f Ptest(t — y)puut(t) dt dy + Ptest(t — ,Y)19uut(t) dt dy

—co LL UL LL

Determining puut (t) can be challenging without sufficient data about the product being measured.
Frequently, the End of Period Reliability (EOPR), also called in-tolerance probability (ITP), is

used to estimate the standard deviation of puut(t) [8]; however, this approach also assumes a
normal and unbiased distribution of products. When bias is present, the mean of the product
distribution puut (t) does not fall halfway between LL and UL.

Previous studies analyzed these risk integrals under the assumption that the probability
distributions for both the measurement process and the product were normal. While this may be
true in many cases, the GUM and its supplements provide several examples of uncertainty
distributions not resulting in normality For example, the test measurement distribution can be non-
normal if significant nonlinearities exist in the measurement model or if the distributions of the
input variables are non-normal. The product distribution may not be normal if the product is
manufactured from several non-normal components or if there is other bias or nonlinearity in the

manufacturing process or stability of the product.
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3. Computing Risk with Non-Normal Distributions

Except for a few simple PDFs for p,,,,t(t) and pt„t(t — y), the PFA and PFR equations do not

have closed-form solutions. However, it is not difficult to evaluate the integrals numerically. The

simplest approach is to define a sufficient range of t, compute the PDFs over this range of t, and

use trapezoidal integration approximation. Many statistical computing libraries have built-in

numerical integration functions that take the guesswork out of determining the appropriate range

of t, step sizes, etc.

A second approach requires no calculus. If random samples can be generated from the two

probability distributions, an MC method can be used. First, draw a random sample from the product

distribution p,,,,t(t). Then use that sample as the y value for drawing a random sample from

Ptest (t — y). After generating a few million samples, finding PFA and PFR simply becomes a

matter of counting the number of samples that fall in the false accept or false reject region

compared to the total number of samples drawn. Figure 3 illustrates an MC risk calculation on a

measurement where both PDFs are normal, with a TUR of 4, LL = —1, and UL = 1.
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Figure 3. Monte Carlo risk evaluation.

1 3

Both approaches lend themselves to computing risk based on non-normal distributions. With

numerical integration, all that is required is a PDF for each distribution. The MC method requires

a random number generator that can draw samples from each distribution, already available in

most statistical software for many common distribution types or even histogram-based

distributions.
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An uncertainty calculation using MC methods produces a histogram of the measurement's possible

true values. This histogram needs to be converted into a PDF to define either pt„t(t — y) or

Puut (t). The PDF can be approximated by either a piecewise function connecting the top of each

histogram bar, or finding the best fit of the histogram to a known distribution, such as a skew-

normal distribution. To avoid the complexities and potential errors arising from a poor choice of

distribution to fit, piecewise PDF approximations are used for the analysis here. The example risk

calculations and plots below were made using open-source software developed by the Primary

Standards Lab at Sandia National Laboratories [9] to compute risk and other uncertainty-related

calculations.

4. Case Studies

To illustrate the effects of non-normal distributions in risk analysis, three case studies are provided:

• Measurement of a step height standard with non-normal measurement uncertainty due to
nonlinearity in the measurement model

• Measurement of the step height standard with non-normal inputs to the measurement model

• Measurement of the time constant of a Resistor-Capacitor (RC) circuit with uniformly
distributed components

Non-normal test distribution due to nonlinearity: step height standard

A step-height check standard is calibrated using a ratio method by comparison against a calibrated

reference. The measurement equation is

X cal v
meascorr v

A meas

Where Ycorr is the corrected measurement of the check standard, Ymeas is the uncorrected-- 
measurement, Xmeas is a measurement on a reference standard using the same measurement

equipment, and )(cal is the calibrated value of the reference standard. With values and (k = 1)

uncertainties of Y-meas= 698 nm ± 20 nm, Xmeas= 180 nm ± 20 nm, and )(cal= 182 nm 5 nm, the

uncertainty in Karr can be found using the GUM and MC (GUM-S1) methods. The probability

density for Korr is shown in Figure 4.
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Figure 4. Uncertainty evaluation of step height standard.

Note the slight difference between the GUM and MC results. Using the GUM method, Ycorr = 706

nm ± 82 nm (k = 1) while the MC method results in an asymmetric 95% coverage range of 571

nm to 913 nm. In an uncertainty evaluation, the difference is frequently neglected, and a standard

deviation is taken of the MC samples resulting in an uncertainty with a normal distribution.

Next, consider using these distributions in a risk analysis. Suppose there is a requirement that the

step height be less than 900 nm. It should be apparent from the plot that the GUM's normal

approximation and MC's more accurate histogram-based PDF will result in different specific risk

values.

Table 1 shows a significant difference in specific risk probability when each measurement result

above is used to check whether the standard is less than 900 nm or, alternatively, greater than 550

nrn.

Table 1. Specific risk of step height standard calculated using a normal PDF from the

GUM approximation and a histogram PDF from MC uncertainty analysis.

Specific Risk Calculated Using:

Limit Normal PDF (GUM) Histogram PDF (MC)

< 900 nm 0.90% 2.97%

> 550 nm 2.75% 0.80%

Now consider global risk. Assume the standard has lower and upper specification limits of 450 nm

and 1050 nm, respectively. Global risk requires knowledge of a product distribution: here, assume

a normal product distribution with standard deviation of 200 nm with no bias (mean of 750 nm).
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Because bias in the distributions has a large effect on risk [10], a negatively biased product

distribution (mean of 500 nm — i.e. not centered within the specification limits) is also considered.

Table 2 shows the global false accept risk calculated using both GUM and MC results.

Table 2. Global risk of step height standard calculated using a normal PDF from the GUM

approximation and a histogram PDF from MC uncertainty analysis.

Global Risk (PFA) Calculated Using:

Bias Normal PDF (GUM) Histogram PDF (MC)

None 2.81% 2.82%

Negative 5.54% 6.18%

There is only a modest difference in PFA for the non-biased case but a larger variation in PFA for

the biased case. Without bias, the reduction in PFA due to false accept below the lower limit is

made up for with additional PFA above the upper limit, resulting in the insignificant difference

due to the numerical nature of the histogram and integration method. When the product distribution

is biased, this tradeoff is not symmetrical, leading to a difference in total PFA.

Non-normal test distribution due to uniformly distributed inputs: step height standard

Next, consider the same step-height case study, but with the input uncertainties for each variable

as uniform distributions. Uniform distributions are commonly used to specify uncertainty due to

manufacturer's specifications. Both GUM and MC uncertainty calculations are shown in Figure 5,

and result in approximately the same standard uncertainty (and therefore same TUR value) as a

traditional risk assessment, but the two results have different PDFs.
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Figure 5. Uncertainty evaluation of step height standard with uniform inputs.
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Choosing limits of less than 825 nm or greater than 625 nm, the specific risk for this measurement

result is shown in Table 3. Again, there is major discrepancy in risk values depending on the choice

of distribution. Applying the GUM approach produces an error of about 3% PFA at the lower limit.

Table 3. Specific risk of step height standard calculated using a normal PDF from the

GUM approximation and a histogram PDF from Monte Carlo uncertainty analysis.

Specific Risk Calculated Using:

Lirnit Normal PDF (GUM) Histogram PDF (MC)

< 825 nm 0.70% 0.14%

> 625 nm 4.48% 1.54%

Using the specification limits (450 nm, 1050 nm) and product distributions with and without bias

from the previous example, the global risk can also be calculated, as shown in Table 4. In this case,

with no bias, the assumption of a normal distribution would pass Z540.3's 2% PFA requirement

but the more accurate MC result would fail by a slight arnount. Both methods fail Z540.3's 2%

PFA if the negative bias in the product identified from past experience is included in the global

risk computations.

Table 4. Global risk of step height standard calculated using a normal PDF from the GUM

approximation and a histogram PDF from MC analysis.

Global risk (PFA) calculated Using

Bias Normal PDF (GUM) Histogram PDF (MC)

None 1.90% 2.06%

Negative 3.24% 3.70%

Non-normal product distribution: RC Circuit

The previous two examples considered non-normality in test measurement uncertainty. This

example considers the effects of a non-normal product distribution.

An RC circuit is constructed from off-the-shelf components. The components are specified with

tolerances, assumed to be uniform distributions for use in an uncertainty analysis. The time

constant of the circuit is given by

= RC.

Using R = 32 Id2 ± 5% and C = 1 [IF ± 10%, the GUM and MC uncertainty evaluations lead to the

probability distributions shown in Figure 6, both methods resulting in i= 32.0 ms ± 2.1 ins. While

the same standard uncertainty results from both methods, the probability distributions differ.
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Figure 6. Uncertainty evaluation of RC circuit time constant.

Consider lower and upper specification limits of 28.5 ms and 35.5 ms. Suppose that each RC circuit

is measured using an oscilloscope with 2% uncertainty in the time measurement. The global false

accept risk resulting from both GUM and MC uncertainty evaluations can be computed and is

shown in Table 5. Using a normal approximation from the GUM method passes Z540.3's 2% PFA

requirement, but the more appropriate MC result fails slightly.

Table 5. Global risk of RC circuit calculated using a normal PDF from the GUM

approximation and a histogram PDF from MC uncertainty analysis.

Global Risk Calculated Using:

Risk Normal PDF (GUM) Histogram PDF (MC)

False Accept 1.59% 2.10%

False Reject 2.99% 3.93%

5. Generalization

The previous examples demonstrate how risk can be affected by non-normal behavior and

assumptions about the product. Unfortunately, it is difficult to know beforehand how great the

effect will be without performing a full risk calculation using both GUM and MC results. To

generalize the effects, two probability distribution parameters are considered: skewness and

kurtosis.

Skewness is a measure of symmetry in a probability distribution [11]. A normal distribution is

symmetric and thus has skewness of zero. Figure 7 (left) illustrates skewed distributions with

positive, negative, and zero skew while maintaining a constant standard deviation and median.

2020 NCSLI Workshop & Symposium: The SI Unleashed: Bridging Science & Metrology
Gaylord Rockies & Convention Center, Aurora, Colorado, August 24-27, 2020



Kurtosis is a statistic for comparing the strength of a distribution's tails to its peak [11]. By

definition, a normal distribution has kurtosis of 3. Frequently, "excess kurtosis" is used by

subtracting 3 so that a normal distribution has excess kurtosis of O. Then distributions with positive

excess kurtosis have stronger tails than a normal distribution, and distributions with negative

excess kurtosis have weaker tails. Figure 7 (right) illustrates distributions with varying kurtosis

that maintain a constant median and standard deviation.
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Figure 7. Distributions with varying skewness and kurtosis that maintain constant

standard deviation and median.

Specific risk with skew and kurtosis in test measurement

First, consider specific risk with various skew parameters. In Figure 8, the x-axis indicates a

measured value normalized in terms of the test measurement's standard deviations, such that a

value of 0 indicates a measurement at the specification limit, and a value of -1 indicates a

measurement 1 standard deviation below the limit. To increase the clarity of these figures, the

lower limit is not shown (consider it to be many standard deviations below the O limit). A measured

value at the limit results in the familiar 50% probability of an incorrect decision given this

measurement result. Values of skewness greater than zero show higher specific risk compared to

zero skewness, but values less than zero decrease the specific risk. The effect would be flipped at

the lower specification limit, with positive skewness decreasing specific risk. The change in risk

due to excess kurtosis depends on how close the measured value is to the specification limit.

Because of its symmetry, kurtosis effects would be identical at the upper and lower limits.
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Global Risk with skew and kurtosis in test measurement (unbiased product)

0.0

Global risk evaluated as a function of skew and kurtosis in the test measurement is shown in Figure

9, assuming a normal and unbiased product distribution with itp of 75%. The skew parameter has

no effect on global risk because any additional risk of false decision below the limit is offset by

reduced risk of false decision above the limit (or vice versa). Kurtosis affects global risk especially

at a lower TUR due to changes in the strength of the tails compared to the center of the test

measurement uncertainty.
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Figure 9. Global PFA risk as a function of skewness and kurtosis in the test measurement

distributionl. The product distribution is normal and unbiased.

The slight waviness in the skewness plots of Figure 9 and Figure 10 near skewness of zero, especially noticeable at
lower TURs, stems from a small finite probability of values entering the upper left or lower right quadrant of the
MC risk evaluation plot (Figure 3). While technically a correct pass/fail decision is made in these quadrants, the
decision is made for the wrong reason. Having probability in these regions reduces the calculated PFA by an amount
that varies with skewness.
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Global risk with skew and kurtosis in test measurement (biased product)

When a bias is present in the product distribution (Figure 10), there is asymmetry, and the change

in PFA below the limit is no longer equally offset by change in PFA above the limit.
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Figure 10. Global PFA risk as a function of skewness and kurtosis in the test measurement

distribution, with a biased normal product distribution.

While the trends in these plots are specific to the parameters of the distributions used to calculate

them, they can be generalized to other distributions. Skewness in the test measurement has little

effect on global PFA, assuming the product distribution is unbiased and normal. Kurtosis has more

influence, but as TUR is increased, the effects of both skewness and kurtosis are diminished.

Skewness and kurtosis are just two parameters used to quantify non-normality; the full

characteristics of the actual distribution should always be considered in a complete risk evaluation.

6. Guardbanding

When an unacceptable level of risk is determined for a measurement process, guardbanding can

mitigate the risk by adjusting the upper and lower specification limits Typically, guardbanding

has been based on the root-sum-square (RSS) method or other calculations involving the TUR

[12]. Of course, guardbanding based on TUR again assumes normal distributions are defining the

risk calculation. An alternative is to use the equation for global PFA with guardbanding:

UL—GB LL fUL—GB foo

PFAGB = ptest(t y)puut(t) dt dy + Ptest(t y)puut(t) dt dy
I —LL+GB oo LL+GB UL

and use numerical minimization to solve for the value of the guardband GB that produces an

acceptable PFA. While not nearly as easy as an arithmetical calculation on TUR, this method is

guaranteed to set the global PFA to an acceptable level. In theory, the equation could be further

complicated by applying a different guardband factor to the upper and lower limits.
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If guardbanding is calculated based on the GUM' s normal approximation and a TUR value using

the RSS method, the actual risk may be higher than anticipated. Consider the RC circuit measured

previously. The PFA and PFR determined using the normal assumption with different

guardbanding methods was calculated and compared to the actual PFA and PFR determined using

the full histogram PDF. While the differences in percentages may seem small, even a few tenths

of a percent increase in actual false accept rate can be significant when dealing with large numbers

of products or high costs and consequences of false acceptance.

Table 6. RC circuit risk with guardbanding.

Guardband PFA calculated

using normal

assumption

Actual

PFA

PFR calculated

using normal

assumption

Actual

PFR

None 1.59% 2.10% 2.99% 3.93%

RSS Method (TUR) 1.01% 1.35% 4.66% 6.05%

Target 0.8% 0.80% 1.07% 5.60% 7.25%

Where prior knowledge of the product is scarce, or where a manufacturing process is not in control

and varies greatly over time, it may be beneficial to calculate a guardband based only on specific

risk. Such a method, based on expected costs of false accept and false reject conditions, is

described in Reference [13]. While this method is likely to produce a more conservative guardband

limit, it makes no unjustified assumptions about the product.

7. Conclusions

Many uncertainty calculations lead to non-normal probability distributions. If non-normal

behavior is not accounted for in a risk evaluation, the false accept and false reject probabilities

may be under- or overestimated. It is recommended to evaluate uncertainty using both the GUM

methodology as well as an MC analysis and compare the results to check for non-normal behavior

in the test measurement. An accurate understanding of the product's prior distribution is also

essential to accurately determine global risk. The TUR as a risk metric assumes normal

distributions and may not always be appropriate; maintaining a TUR of 4 is not sufficient to

guarantee PFA risk of less than 2% if non-normal behavior or bias is present in the underlying

distributions. With modern computing power, a full risk evaluation including arbitrary probability

distributions is not difficult and should be used when there is sufficient data to characterize the test

measurement and product distributions.
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