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Motivation: National Security

= Multiscale flow, transport, and mechanical deformation in fractured/porous media

= Key processes to many security systems: monitoring of nuclear explosion test, subsurface energy resources
recovery, and nuclear waste disposal

= Path-dominant and discontinuous features of fractured media pose significant challenges to understanding
and control of physical mechanisms underlying complex behavior in fractured and deformable media
= Complex, multiscale, multiphysics processes

= Standard simulation tools lack important physics and coupling, and are too expensive and not flexible
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3 | Physics-Informed Machine Learning

e Physics-based ML can overcome the shortcomings of
traditional ML methods where data-driven models have
faltered beyond the data & physical conditions for training
and validation

e Physical constraints, theoretical equations, and relations
can be incorporated for data-driven model (e.g., trained
model)

e There are many ways to incorporate these principles, but
these have not been thoroughly investigated yet

e “This computational technique is transforming science,
but physics may yet hold the key to explaining why”
(Buchanan, Nature Physics, 2019)
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4 | Porous Media and Pore Network (PN) Systems

= Challenge: Complexity in geometry, size, scale, and compositions |

Glass bead pack Sandstone Chalk Shale
(100 pm-1mm) (10’s-100’s pum) (10 nm - 100um) (1 nm - microns)

Binary
3D images

PN from microCT image PN from microCT image
Xtlas.pergeos.com PN from FIB-SEM image



s | Semantic Image Segmentation

Shale Carbonate Chalk

Original Image

Ground Truth

Segmentation

e VGG16+UNET (transfer learning)

Carbonate Chalk Sandstone
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e Stokes Flow (Low Reynolds number, no slip boundary)
pV?*u—Vp = 0 The balance of forces in a non-accelerating fluid

Vu = 0 The conservation of mass for incompressible fluids

e Darcy’s Flow at continuum scale

Vz—E(ﬁ—pg) AP =P, —P

out

w\ L

e K: Intrinsic permeability (m?) - a measure of the ability of a porous
material to allow fluids to pass through it.

e K: can be estimated using numerical simulations (stokes flow
equation, pore network modeling) or empirical relations
(Kozeny-Carman equation)
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7 I Data Generation (Images, Pore Network, Properties)

1. Image generation (Sphere packing or machine learning methods)

2. Pore network characterization (porosity, surface area, permeability
using Open source Porespy/OpenPNM or commercial PerGEOS)

3.  Normalization of data

Estimation

‘ of properties

e K = f(porosity, surface area)
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8 ‘ Porous Media Properties

e K = f(porosity, surface area)

LogyoK, vs. Porosity
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Physics-Informed ML for permeability prediction @)

Image Classification Permeability Prediction
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e [ffect of CNN architecture
e Methods of how to incorporate physical properties

e Balance between CNN features and physical properties on training



10 I CNN architecture with physical information

Convolutional Neural Network (Case: CNN1)
(Case: CNN1-modified)
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Connected
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e A total of 345 images [276 for training and 69 for testing]
e Porosity and surface area values per each image

e Mean square error as a loss function
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‘ Impact of p

nysical data

CNN1 + Porosity & SA CNN1 with{ Image Only
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e Addition of physical quantities (porosity and surface area) improves permeability prediction
compared to image only case
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2 | Impact of physical data
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e Two physical quantities improve the prediction
better than cases with porosity or SA only
e One physical quantity still better than image only
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‘ Comparison with a shallow CNN and numeric data input

| Two physical data processed with '
: multilayer perception, then

| concatenated with CNN output
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e The method to incorporate physical quantities significantly impacts the prediction
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Permeability (Predicted)

‘ Impact of the Size of MLP output
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e The balance of information between CNN and physical data impacts the prediction
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15 ‘ Impact of combining method of physical data
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e MLP output rather than direct numerical data improves the prediction
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e CNN predicts permeability better with solid phase (obstacles) as true input
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18 I Near Future Works

Incorporation of physical features and data can enhance ML prediction

°> Permeability prediction with physical data performed better than the case with image
only

> More complex image data with real earth materials will be used with transfer learning
using preexisting models (e.g.,, VG(G16) as in semantic image segmentation

° 3D model is under evaluation for 3D permeability prediction

° Incorporation of physical features and equations/residual as physical constraints has
a broad implication for PIML




