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2 Motivation: National Security

• Multiscale flow, transport, and mechanical deformation in fractured/porous media

• Key processes to many security systems: monitoring of nuclear explosion test, subsurface energy resources
recovery, and nuclear waste disposal

• Path-dominant and discontinuous features of fractured media pose significant challenges to understanding
and control of physical mechanisms underlying complex behavior in fractured and deformable media

• Complex, multiscale, multiphysics processes

• Standard simulation tools lack important physics and coupling, and are too expensive and not flexible
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3 Physics-Informed Machine Learning

• Physics-based ML can overcome the shortcomings of
traditional ML methods where data-driven models have
faltered beyond the data & physical conditions for training
and validation

• Physical constraints, theoretical equations, and relations
can be incorporated for data-driven model (e.g., trained
model)

• There are many ways to incorporate these principles, but
these have not been thoroughly investigated yet

• "This computational technique is transforming science,
but physics may yet hold the key to explaining why"
(Buchanan, Nature Physics, 2019)
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4 Porous Media and Pore Network (PN) Systems

• Challenge: Complexity in geometry, size, scale, and compositions

Glass bead pack
(100 prn-1mm)

Binary
3D images

Sandstone
(10's-100's µm)

PN from microCT image PN from microCT image

Chalk
(10 nm - 100µm)

Shale
(1 nm - microns)

Xtlas.pergeos.com PN from FIB-SEM image



5 I Semantic Image Segmentation
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6 I Physics of Interest: Fluid Flow in Porous Media
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• Darcy's Flow at continuum scale
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• K: Intrinsic permeability (m2) - a measure of the ability of a porous
material to allow fluids to pass through it.

• K: can be estimated using numerical simulations (stokes flow
equation, pore network modeling) or empirical relations
(Kozeny-Carman equation)



7 I Data Generation (Images, Pore Network, Properties)

1. Image generation (Sphere packing or machine learning methods)

2. Pore network characterization (porosity, surface area, permeability
using Open source Porespy/OpenPNM or commercial PerGEOS)

3. Normalization of data

2D Sphere packing
Pore Network
Construction

Estimation
of properties

• K = f(porosity, surface area)



8 Porous Media Properties

• K = f(porosity, surface area)

Log10K„ vs. Porosity
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9 I Physics-Informed ML for permeability prediction
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• Effect of CNN architecture

Permeability Prediction

la) Regular CNN

Convolutional layer

".

Convolutional layer Pooling layer Pooling layer

• Methods of how to incorporate physical properties

Wu et al., 2018

• Balance between CNN features and physical properties on training



10 I CNN architecture with physical information

Convolutional Neural Network (Case: CNN1)
(Case: CNN1-modified)
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Surface area 0.09189]

• A total of 345 images [276 for training and 69 for testing]

• Porosity and surface area values per each image

• Mean square error as a loss function
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Linear Activation
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11 I Impact of physical data
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12 I Impact of physical data
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• Two physical quantities improve the prediction

better than cases with porosity or SA only

• One physical quantity still better than image only
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13 Comparison with a shallow CNN and numeric data input

Two physical data processed with 1
multilayer perception, then
concatenated with CNN output I
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14 I Impact of the Size of MLP output

Two physical data processed with
multilayer perception, then
concatenated with CNN output
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15 I Impact of combining method of physical data

Two physical data processed with
I multilayer perception, then
concatenated with CNN output  1)* •
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16 I Impact of Binary Image Input
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1 7 Visualizing Activations
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18 I Near Future Works

Incorporation of physical features and data can enhance NIL prediction
o Permeability prediction with physical data performed better than the case with image
only

O More complex image data with real earth materials will be used with transfer learning
using preexisting models (e.g., VGG16) as in semantic image segmentation

o 3D model is under evaluation for 3D permeability prediction

o Incorporation of physical features and equations/residual as physical constraints has
a broad implication for PIML


