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= Nuclear Safequards — data-rich field

e |deal for the application of modern data
analytics techniques

e Technologies necessary for the IAEA
implementation not sufficiently mature

m Data Analytics Project

e Multidisciplinary teams at ORNL, LANL and
SNL working together to advance the suite of
data analytic capabilities to support
safeguards activities at declared facilities

e Data conditioning
» Safeguards questions development
* Red teaming exercises

Introduction

The SNL team is focused on data
surety and anomaly detection

“to ensure Continuity of Knowledge and improve timely diversion detection”



Project
Overview

Goals

Technical
Approach

Multi-Pal [
Computing™
(MP

Anomaly
Detection and
Surety for
Safeguards

Data
(ADSSD)

Investigation of three core data analysis and management
methods and their applicability for international safeguards

Anomaly detection based on the GC method

Develop and test a novel safequards data authentication, integration,
and analysis workflow on the foundation of DLT

How operator data could assist in drawing safeguards conclusions in a
MPC environment




«| Project Deliverables

Description

Use Case documentation @ Report on proposed safeguards use cases Complete
Prioritized anomaly Report on the prioritization method and selected | Complete
detection methods anomaly detection methods
Down-selection of Report on selected type of prototype DLT system Complete
technologies and data for
prototype DLT system
MPC Viability Assessment | Report on test scenarios with known anomalies to, Complete
evaluate how easily anomalies in raw data
sequences convert through a garbled circuit
Implement anomaly Software tool implementing selected 9/30/2020
detection methods anomaly detection methods
First prototype DLT Software tool implementing first version of 9/30/2020
system prototype DLT system
Application of MPC-based | Report on application of MPC approach to actual | 9/30/2020
protection to actual data | data streams (e.g., MINQOS)
Demonstration of the full | Software tool(s) implementing GC anomaly 9/15/2021
system detection, MPC-based data protection, and DLT-
based data surety that works with the integrated
system and with common data streams




Why Grammar Compression Based Anomaly
;| Detection is Useful for Safeguards Data

*  We are developing a practical method for effective and efficient detection of
anomalies in multivariate time-series data obtained from safeguards used for
monitoring of civilian fuel cycle activities.

* The key component of the proposed approach is the cutting-edge method of
unsupervised anomaly detection based on grammar compression (GC).

*  This method has a number of crucial advantages important for analysis of
safeguards data.

Challenges Posed by Safeguards Data Capabilities of GC

Safeguards generate large amounts of data (about GC is a cutting-edge technique that scales linearly
one million reports generated each year need to be with data size and has demonstrated superior
analyzed). performance for a number of real-world applications.

We need to address the multivariate character of data  GC can be extended to include the capability for
obtained from heterogeneous sensors, including video detection of correlated (sub-dimensional) anomalies

cameras, radiation detectors, electronic seals, etc. in high-dimensional data.

Data analysis involves imprecisions (approximation GC approximates time-series data in a way that lower-
errors) associated with the extraction of discrete bounds the true distance for the original time-series.
features from continuous waveforms. Moreover, GC can be extended to incorporate

ensemble learning for improved robustness against
approximation errors.

III

Training datasets with labeled “normal” and GC employs unsupervised learning, i.e., compares the
“abnormal” events are lacking. data against themselves, and therefore does not
require a labeled training set.



| Recent Advances: Ensemble GC

*  We combined GC with ensemble learning to achieve robust and efficient anomaly detection.
* Ensemble learning uses averaging over multiple algorithm executions with randomly selected
values of discretization parameters. This achieves detection accuracy comparable to that of
exact algorithms while maintaining a linear time complexity. paper presented in EDBT 2020 (March 2020).

To evaluate performance of ensemble GC we used 6 different datasets and 25 time series for
each type of data. Plots below show comparison against four baseline methods for one of the
datasets. A point in the lower triangle corresponds to a superior performance by ensemble
GC compared to the baseline method.
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Compared against three variations of parameter value selection approach Compared against Discord
(random, fixed, and optimized) in the standard GC method Discovery, the state-of-the-

art method that scales

Performance comparison: Score averaged over 25 time series quadratically with data size

Ensemble GC | GC-Random GC-Select

0.473 0.372 0.241 0.056 0.400




.1 Future Plans for GC Extensions and Tests

N

Using GC to Detect Anomalies in Video Data - N T?:gff:g

* How to detect anomalies in video data? S % Algorithm

* Astraightforward approach is to consider <ot — «
each pixel as a separate time series. :

* The proposed approach is to use tracking of
moving objects: First, use an object tracking

algorithm to extract trajectories of all GC Based Anomaly Detection
moving objects. Second, use GC to detect
anomalous trajectories. Potential Anomaly
Detecting Anomalies on Extra-Long Scale Testing GC extensions on MINOS data
+ GCis a “greedy” algorithm that tends to focus ° Some of the MINOS datasets are of
on variations that occur on a short time scale. particular interest to us in order to test &
» To detect anomalies on extra-long scale (time evaluate the developed GC-based anomaly
series with millions of data points) we propose  detection methods:
to leverage a new variable-length motif ORNL Distributed Fiber Optic Sensor
discovery algorithm, Hierarchy based Motif (DFOAS), ORNL MUSE, ORNL Ground
Enumeration (HIME). Truth

. . . . ”» ” ° e
- Motifs are recurrent patterns in a time series. Conduct Blue Team/Red Team” exercises in

* Motif discovery can be used as a key step in ~ Year 3 (FY21)
anomaly detection — subsequences that * For GC, we will see if we can find the same

contain least number of frequent motifs are anomaly in the Np-Pu data (logs), that we
anomaly candidates. found in the MINOS/MUSE data of Year 2. |



Distributed Ledger Technology (DLT) provides
sl improved data integrity, provenance

Ledgered data is pervasive throughout
safeguards, and it is natural to consider
how this nominally siloed data can be
responsibly fused and strengthened via
contemporary techniques.

Modality

IAEA Data Sources

Operator Data Sources

Quantitative
Sensors

Use of Distributed Ledger Technology
could improve data efficiency and
surety, a rare two-for-one opportunity

We consider adoption tiers, with varying
levels of potential impact

1. Database/ledger -> distributed
append-only database/privateDLT

2. Fuse traditionally disparate data, as
appropriate, to improve timeliness
and continuity of knowledge

3. Physical adds to operator protocols,
boost data approaches

Operational
Signatures

Containment &
Surveillance

Off-site
Laboratory

Environmental
Sampling

Documentation

Design
Information

Gamma ray spectrometry (U
and Pu isotopics)

X-ray spectrometry (element
identification, container
thicknesses)

Neutron counting (U and Pu
amount/enrichment
verification)

Power monitor (Advanced
Thermo-hydraulic Power
Monitor)

Cerenkov radiation viewing

Camerasurveillance
Load cells (weight
measurements)
Seal inspection

Containment verification (e.g.

laser reflectometry)
Destructive Assay (alpha, x-
ray, gamma, mass
spectrometry, etc.)

Particles

Inspector reports, Inventory
ledger reconciliation

3-D laser range finder

Water chemistry (pH, ppm levels, conductivity,
hydrogen, oxygen, chloride, fluoride, boric acid

concentrations),

Primary and secondary loop temperatures,
pressures, flow rates, water levels

Accelerometers (vibration FFT)

Ex-core neutron flux (noise shows vibration,
phase differencesbetween detectors)
Reactor power

Control rod positions

Steam generator pressures & flow rates
Valve settings (open/closed)

Radiation monitors

Motor current signature analysis (>350 motors to
drive pumps, fans & compressors)

acoustic emissions monitoring (emitted from
equipment and pressure boundaries)

Odor, burning, fumes

Security cameras

RFID tracking

Personnel radiation monitors

Gas effluents

Maintenance reports, INPO/WANO visits,
Regulator event notification reports

Security personnel

Table 1: Types of data sources typically used by the IAEA for safeguards at nuclear power plants; and
typical data sources used by civilian reactor operators.




FY2020 Progress to date: Ethereum prototype
»1 on MINOS/MUSE data, two notional workflows

Inventory event

il Reinforce with gamma

Further refined
prototype
presented in INMM
2019 (July 2019)

Ported from
multichain to
ethereum (per
downselect)
Streamlined data
ingestion via
smart contract
orchestrator
(scorch), which
coordinates data
submission across
ethereum nodes,
better simulating
real-world data
create/flow




ol Future Plans for DLT

Technical challenges

*Resilience Metrics
* Leveraging other Sandia work, adz
* Relative opacity of current practic

1. Specify

Analysis
Objectives

7. Analyze 2. Define

System

*Technical versus structural difficultie Attributes
* “Live” DLT may not be policy palat
* Should weigh against timeliness ct

System(s)

A Cyber
Resilience

Future work for the remainder of pr SIS App ro aCh b
*Refine data model | :
* Which data/metadata for time ser ,
* Differential privacy for some data: 5. Design

Experiments
& Gather

* Use actual MC&A data stream Data

6. Perform

4. Select

Performance
Measures

* Conduct "Blue Team/Red Team” exercises Iin Year 3 (FY21)
* Still determining the best exercise construct for DLT considerations
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Multi-Party Computation (MPC) provides a
means to share proprietary or sensitive data

Generally missing from the IAEA
collection is the plethora of ‘big
data’ being continually generated
by the nuclear facility for operator
purposes, but this data is
considered proprietary by the
nuclear facility operators.

Modality

IAEA Data Sources

Operator Data Sources

Quantitative
Sensors

Use of Multi-Party Computation (MPC)
could obviate the proprietary issue since
the operator never reveals the underlying

data

The IAEA could have a new stream
of otherwise inaccessible nuclear
facility operator data to
complement typical safeguards
data.

This same MPC technology could
also allow nuclear facilities with
different data sensitivity concerns
to share data amongst themselves.

Operational
Signatures

Containment &
Surveillance

Off-site
Laboratory

Environmental
Sampling

Documentation

Design
Information

Gamma ray spectrometry (U
and Pu isotopics)

X-ray spectrometry (element
identification, container
thicknesses)

Neutron counting (U and Pu
amount/enrichment
verification)

Power monitor (Advanced
Thermo-hydraulic Power
Monitor)

Cerenkov radiation viewing

Camerasurveillance
Load cells (weight
measurements)
Seal inspection

Containment verification (e.g.

laser reflectometry)
Destructive Assay (alpha, x-
ray, gamma, mass
spectrometry, etc.)

Particles

Inspector reports, Inventory
ledger reconciliation

3-D laser range finder

Water chemistry (pH, ppm levels, conductivity,
hydrogen, oxygen, chloride, fluoride, boric acid

concentrations),

Primary and secondary loop temperatures,
pressures, flow rates, water levels

Accelerometers (vibration FFT)

Ex-core neutron flux (noise shows vibration,
phase differences between detectors)
Reactor power

Control rod positions

Steam generator pressures & flow rates
Valve settings (open/closed)

Radiation monitors

Motor current signature analysis (>350 motors to
drive pumps, fans & compressors)

acoustic emissions monitoring (emitted from
equipment and pressure boundaries)

Odor, burning, fumes

Security cameras

RFID tracking

Personnel radiation monitors

Gas effluents

Maintenance reports, INPO/WANO visits,
Regulator event notification reports

Security personnel

Table 1: Types of data sources typically used by the IAEA for safeguards at nuclear power plants; and
typical data sources used by civilian reactor operators.




12

“Garbled Circuits” (2-party MPC) is working

The CypherCircuit Python library has been built and is running on applicable

problems.
Simple Comparator circuit

L

|—_/

p-b >

A>B
FACILITY IAEA
1 ecircuit = CircuitBoard() 1 circuit = CircuitBoard(diagram)
2 A, B = Wire(circuit), Wire(circuit) 2 decoding = circuit.decode(encoding)
3 comparator = OneBitComparator (A, B) 3 print(decoding)
4 circuit.garble()
5 diagram = circuit.sketch()
6 encoding = circuit.encode([0, 1]) Out [1]: [1, 0, 0]

| Pre-Shipment | | Post-Shipment I

*Data shown here from a
2018 CVT Presentation on
MINOS data analysis.

! MY AN Y , Wy Hjey (Authors: A. Rajadhyaksha, N.
& f;}‘ 459  Hubley, G. Fairchild, P

amma count

Source: MINOS Venture

Shipment Drive-by

Schuster, E. Casleton.
11/1/2018)



51 Future Plans for MPC/Garbled Circuits

Technical challenges

* CypherCircuit is currently slow (minutes for a solution)
* Can switch to CYTHON and/or C/C++
*  FPGA acceleration?

* Implementation is secure for semi-honest adversary (follows the protocol, but
tries to figure out other party’s data)

* There are methods to address malicious adversary, but needs work

* Need a defined dataset
¢ MINOS/MUSE correlated with Np-Pu data

Future work for the remainder of project
* Address speed and security improvements
* Use actual safeguards-relevant data streams

* Conduct "Blue Team/Red Team” exercises in Year 3 (FY21)

* For MPC/Garbled Circuits, we will see if we can find the same anomaly in the
Np-Pu data (logs), that we found in the MINOS/MUSE data of Year 2.
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Thank you!



