

Anomaly Detection and Surety for Safeguards Data

PRESENTED BY

Natacha Peter-Stein¹, David Farley¹, Constantin Brif¹,
Nicholas Pattengale¹, Chase Zimmerman¹
Yifeng Gao², Jessica Lin²
Mitchell Negus³, Rachel Slaybaugh³

¹Sandia National Laboratories, Albuquerque, NM and Livermore, CA

²George Mason University, Fairfax, VA

³University of California, Berkeley, CA

SAND2020-3517PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Introduction

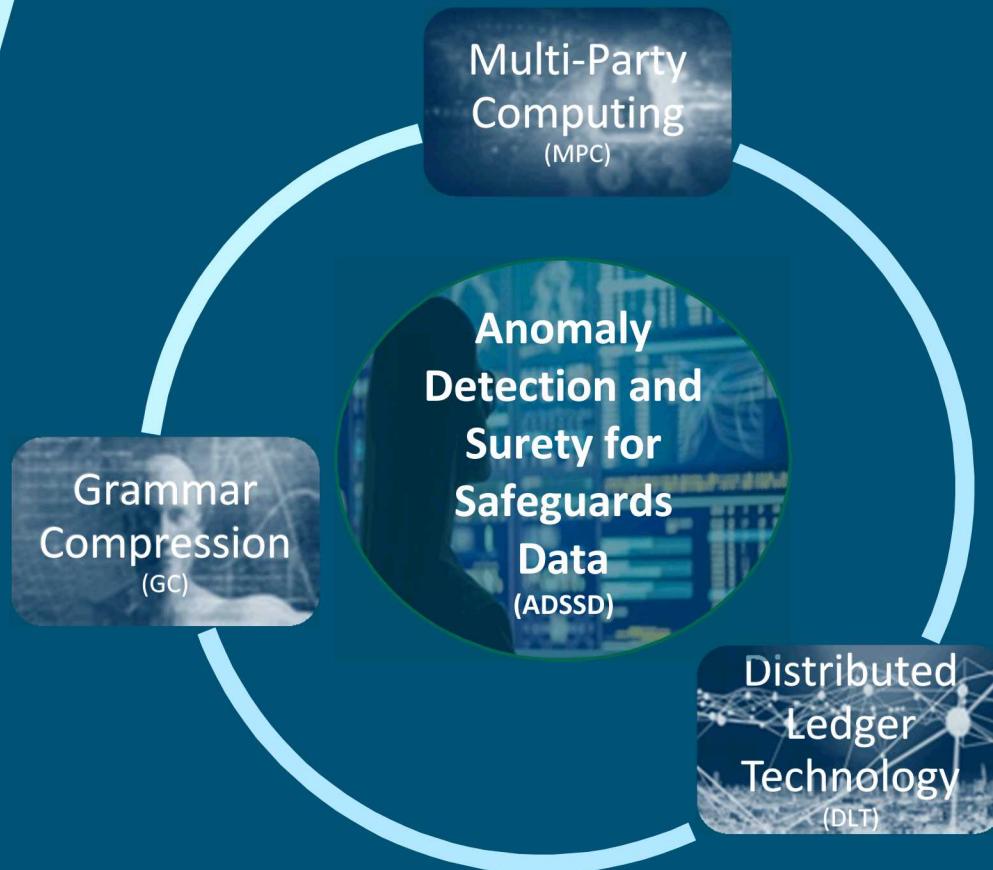
Nuclear Safeguards – data-rich field

- Ideal for the application of modern data analytics techniques
- Technologies necessary for the IAEA implementation not sufficiently mature

Data Analytics Project

- Multidisciplinary teams at ORNL, LANL and SNL working together to advance the suite of data analytic capabilities to support safeguards activities at declared facilities
 - Data conditioning
 - Safeguards questions development
 - Red teaming exercises

The SNL team is focused on data surety and anomaly detection


“to ensure Continuity of Knowledge and improve timely diversion detection”

Project Overview

Goals

Technical Approach

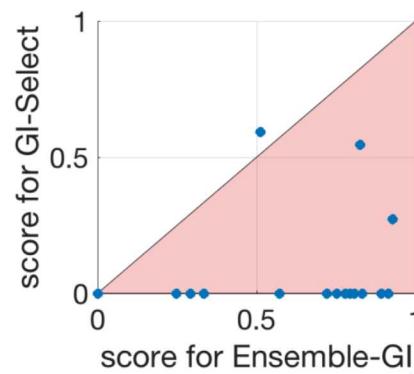
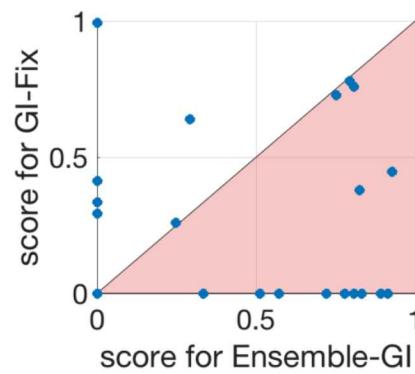
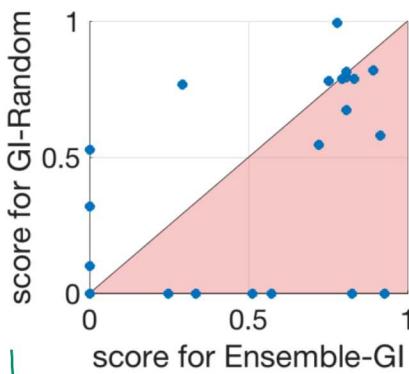
Investigation of three core data analysis and management methods and their applicability for international safeguards

- *Anomaly detection based on the GC method*
- *Develop and test a novel safeguards data authentication, integration, and analysis workflow on the foundation of DLT*
- *How operator data could assist in drawing safeguards conclusions in a MPC environment*

Project Deliverables

Title	Description	Status
Use Case documentation	Report on proposed safeguards use cases	Complete
Prioritized anomaly detection methods	Report on the prioritization method and selected anomaly detection methods	Complete
Down-selection of technologies and data for prototype DLT system	Report on selected type of prototype DLT system	Complete
MPC Viability Assessment	Report on test scenarios with known anomalies to evaluate how easily anomalies in raw data sequences convert through a garbled circuit	Complete
Implement anomaly detection methods	Software tool implementing selected anomaly detection methods	9/30/2020
First prototype DLT system	Software tool implementing first version of prototype DLT system	9/30/2020
Application of MPC-based protection to actual data	Report on application of MPC approach to actual data streams (e.g., MINOS)	9/30/2020
Demonstration of the full system	Software tool(s) implementing GC anomaly detection, MPC-based data protection, and DLT-based data surety that works with the integrated system and with common data streams	9/15/2021

Why Grammar Compression Based Anomaly Detection is Useful for Safeguards Data





- We are developing a practical method for effective and efficient detection of anomalies in multivariate time-series data obtained from safeguards used for monitoring of civilian fuel cycle activities.
- The key component of the proposed approach is the cutting-edge method of unsupervised anomaly detection based on ***grammar compression*** (GC).
- This method has a number of crucial advantages important for analysis of safeguards data.

Challenges Posed by Safeguards Data	Capabilities of GC
Safeguards generate large amounts of data (about one million reports generated each year need to be analyzed).	GC is a cutting-edge technique that <i>scales linearly</i> with data size and has demonstrated superior performance for a number of real-world applications.
We need to address the multivariate character of data obtained from heterogeneous sensors, including video cameras, radiation detectors, electronic seals, etc.	GC can be extended to include the capability for detection of correlated (sub-dimensional) anomalies in high-dimensional data.
Data analysis involves imprecisions (approximation errors) associated with the extraction of discrete features from continuous waveforms.	GC approximates time-series data in a way that lower-bounds the true distance for the original time-series. Moreover, GC can be extended to incorporate <i>ensemble learning</i> for improved robustness against approximation errors.
Training datasets with labeled “normal” and “abnormal” events are lacking.	GC employs unsupervised learning, i.e., compares the data against themselves, and therefore does not require a labeled training set.

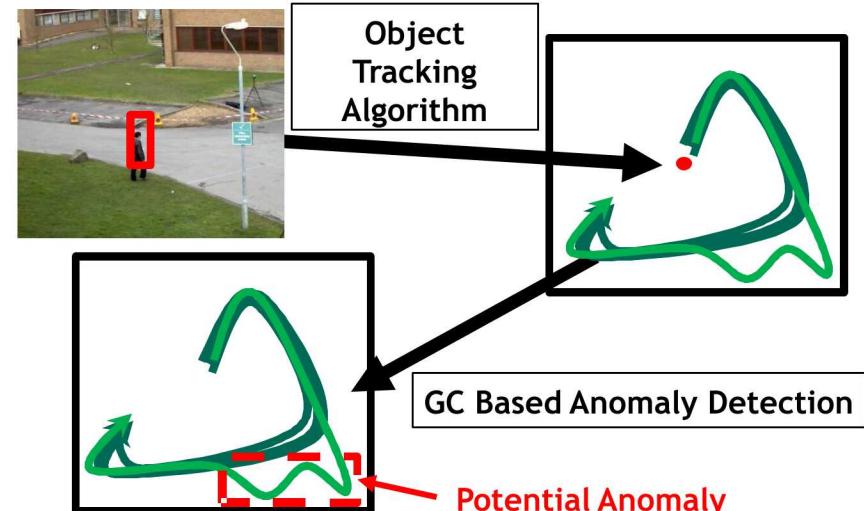
Recent Advances: Ensemble GC

- We combined GC with ***ensemble learning*** to achieve robust and efficient anomaly detection.
- Ensemble learning uses averaging over multiple algorithm executions with randomly selected values of discretization parameters. This achieves detection accuracy comparable to that of exact algorithms while maintaining a linear time complexity. [Paper presented in EDBT 2020 \(March 2020\)](#).

To evaluate performance of ensemble GC we used 6 different datasets and 25 time series for each type of data. Plots below show comparison against four baseline methods for one of the datasets. A point in the lower triangle corresponds to a superior performance by ensemble GC compared to the baseline method.

Compared against three variations of parameter value selection approach (random, fixed, and optimized) in the standard GC method

Compared against *Discord Discovery*, the state-of-the-art method that scales quadratically with data size


Performance comparison: Score averaged over 25 time series

Ensemble GC	GC-Random	GC-Fix	GC-Select	Discord
0.473	0.372	0.241	0.056	0.400

Future Plans for GC Extensions and Tests

Using GC to Detect Anomalies in Video Data

- How to detect anomalies in video data?
- A straightforward approach is to consider each pixel as a separate time series.
- The proposed approach is to use tracking of moving objects: First, use an object tracking algorithm to extract trajectories of all moving objects. Second, use GC to detect anomalous trajectories.

Detecting Anomalies on Extra-Long Scale

- GC is a “greedy” algorithm that tends to focus on variations that occur on a short time scale.
- To detect anomalies on extra-long scale (time series with millions of data points) we propose to leverage a new variable-length motif discovery algorithm, Hierarchy based Motif Enumeration (HIME).
- Motifs are recurrent patterns in a time series.
- Motif discovery can be used as a key step in anomaly detection — subsequences that contain least number of frequent motifs are anomaly candidates.

Testing GC extensions on MINOS data

- Some of the MINOS datasets are of particular interest to us in order to test & evaluate the developed GC-based anomaly detection methods:

ORNL Distributed Fiber Optic Sensor (DFOAS), ORNL MUSE, ORNL Ground Truth

Conduct "Blue Team/Red Team" exercises in Year 3 (FY21)

- For GC, we will see if we can find the same anomaly in the Np-Pu data (logs), that we found in the MINOS/MUSE data of Year 2.

Distributed Ledger Technology (DLT) provides improved data integrity, provenance

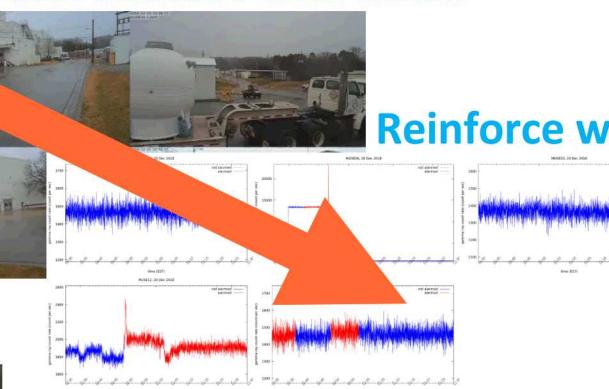
Ledgered data is pervasive throughout safeguards, and it is natural to consider how this nominally siloed data can be responsibly fused and strengthened via contemporary techniques.

Use of Distributed Ledger Technology could improve data efficiency and surety, a rare two-for-one opportunity

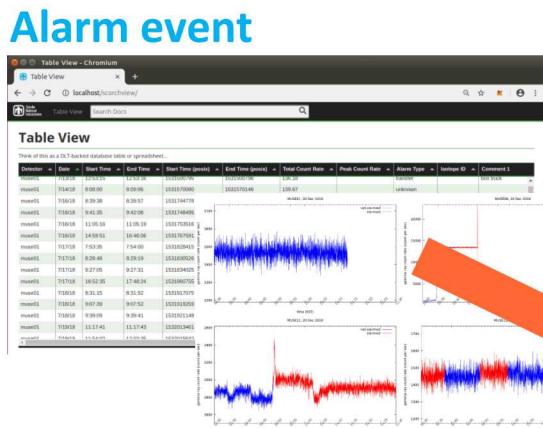
We consider adoption tiers, with varying levels of potential impact

1. Database/ledger -> distributed append-only database/privateDLT
2. Fuse traditionally disparate data, as appropriate, to improve timeliness and continuity of knowledge
3. Physical adds to operator protocols, **boost** data approaches

Modality	IAEA Data Sources	Operator Data Sources
Quantitative Sensors	Gamma ray spectrometry (U and Pu isotopes)	Water chemistry (pH, ppm levels, conductivity, hydrogen, oxygen, chloride, fluoride, boric acid concentrations),
	X-ray spectrometry (element identification, container thicknesses)	Primary and secondary loop temperatures, pressures, flow rates, water levels
	Neutron counting (U and Pu amount/enrichment verification)	Accelerometers (vibration FFT)
Operational Signatures	Power monitor (Advanced Thermo-hydraulic Power Monitor)	Ex-core neutron flux (noise shows vibration, phase differences between detectors) Reactor power Control rod positions Steam generator pressures & flow rates Valve settings (open/closed) Radiation monitors Motor current signature analysis (>350 motors to drive pumps, fans & compressors)
	Cerenkov radiation viewing	acoustic emissions monitoring (emitted from equipment and pressure boundaries) Odor, burning, fumes
Containment & Surveillance	Camera surveillance	Security cameras
	Load cells (weight measurements)	
Off-site Laboratory	Seal inspection	RFID tracking
	Containment verification (e.g. laser reflectometry)	
Off-site Laboratory	Destructive Assay (alpha, x-ray, gamma, mass spectrometry, etc.)	Personnel radiation monitors
Environmental Sampling	Particles	Gas effluents
Documentation	Inspector reports, Inventory ledger reconciliation	Maintenance reports, INPO/WANO visits, Regulator event notification reports
Design Information	3-D laser range finder	Security personnel


Table 1: Types of data sources typically used by the IAEA for safeguards at nuclear power plants; and typical data sources used by civilian reactor operators.

9


FY2020 Progress to date: Ethereum prototype on MINOS/MUSE data, two notional workflows

Corroborate with video

Reinforce with gamma

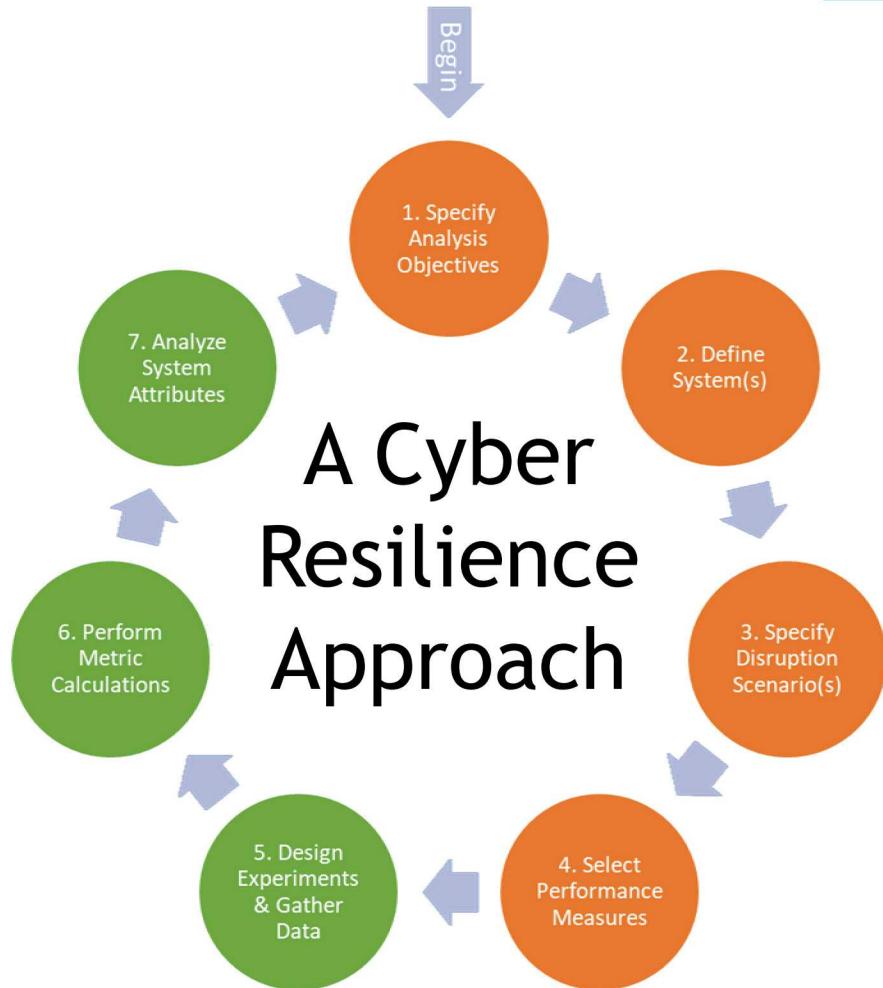
Investigate in time-series

Explain with video

Further refined prototype presented in INMM 2019 (July 2019)

- Ported from multichain to ethereum (per downselect)
- Streamlined data ingestion via smart contract orchestrator (scorch), which coordinates data submission across ethereum nodes, better simulating real-world data create/flow

Future Plans for DLT



Technical challenges

- Resilience Metrics
 - Leveraging other Sandia work, adapt
 - Relative opacity of current practices
- Technical versus structural difficulties
 - “Live” DLT may not be policy palatable
 - Should weigh against timeliness concerns

Future work for the remainder of project

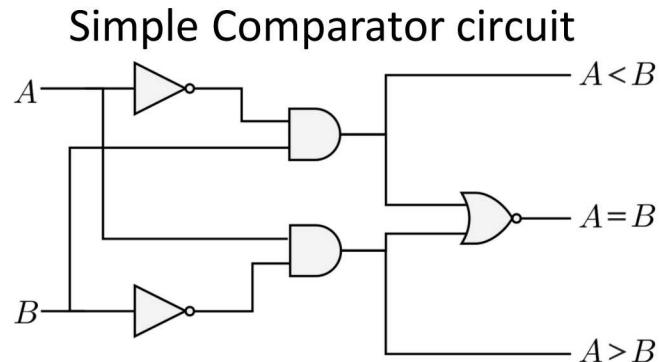
- Refine data model
 - Which data/metadata for time series
 - Differential privacy for some data?
- Use actual MC&A data stream
- Conduct “**Blue Team/Red Team**” exercises in Year 3 (FY21)
 - Still determining the best exercise construct for DLT considerations

Multi-Party Computation (MPC) provides a means to share proprietary or sensitive data

Generally missing from the IAEA collection is the plethora of 'big data' being continually generated by the nuclear facility for operator purposes, but this data is considered proprietary by the nuclear facility operators.

Use of Multi-Party Computation (MPC) could obviate the proprietary issue since the operator never reveals the underlying data

The IAEA could have a new stream of otherwise inaccessible nuclear facility operator data to complement typical safeguards data.


This same MPC technology could also allow nuclear facilities with different data sensitivity concerns to share data amongst themselves.

Modality	IAEA Data Sources	Operator Data Sources
Quantitative Sensors	Gamma ray spectrometry (U and Pu isotopes)	Water chemistry (pH, ppm levels, conductivity, hydrogen, oxygen, chloride, fluoride, boric acid concentrations),
	X-ray spectrometry (element identification, container thicknesses)	Primary and secondary loop temperatures, pressures, flow rates, water levels
	Neutron counting (U and Pu amount/enrichment verification)	Accelerometers (vibration FFT)
Operational Signatures	Power monitor (Advanced Thermo-hydraulic Power Monitor)	Ex-core neutron flux (noise shows vibration, phase differences between detectors) Reactor power Control rod positions Steam generator pressures & flow rates Valve settings (open/closed) Radiation monitors Motor current signature analysis (>350 motors to drive pumps, fans & compressors)
	Cerenkov radiation viewing	acoustic emissions monitoring (emitted from equipment and pressure boundaries) Odor, burning, fumes
Containment & Surveillance	Camera surveillance	Security cameras
	Load cells (weight measurements)	
Off-site Laboratory	Seal inspection	RFID tracking
	Containment verification (e.g. laser reflectometry)	
Off-site Laboratory	Destructive Assay (alpha, x-ray, gamma, mass spectrometry, etc.)	Personnel radiation monitors
Environmental Sampling	Particles	Gas effluents
Documentation	Inspector reports, Inventory ledger reconciliation	Maintenance reports, INPO/WANO visits, Regulator event notification reports
Design Information	3-D laser range finder	Security personnel

Table 1: Types of data sources typically used by the IAEA for safeguards at nuclear power plants; and typical data sources used by civilian reactor operators.

“Garbled Circuits” (2-party MPC) is working

The **CypherCircuit** Python library has been built and is running on applicable problems.

FACILITY

```

1 circuit = CircuitBoard()
2 A, B = Wire(circuit), Wire(circuit)
3 comparator = OneBitComparator(A, B)
4 circuit.garble()
5 diagram = circuit.sketch()
6 encoding = circuit.encode([0, 1])
    
```

IAEA

```

1 circuit = CircuitBoard(diagram)
2 decoding = circuit.decode(encoding)
3 print(decoding)
    
```

Out [1]: [1, 0, 0]

*Data shown here from a 2018 CVT Presentation on MINOS data analysis.
(Authors: A. Rajadhyaksha, N. Hubley, G. Fairchild, P. Schuster, E. Casleton.
11/1/2018)

Future Plans for MPC/Garbled Circuits

Technical challenges

- *CypherCircuit* is currently slow (minutes for a solution)
 - Can switch to CYTHON and/or C/C++
 - FPGA acceleration?
- Implementation is secure for *semi-honest adversary* (follows the protocol, but tries to figure out other party's data)
 - There are methods to address *malicious adversary*, but needs work
- Need a defined dataset
 - MINOS/MUSE correlated with Np-Pu data

Future work for the remainder of project

- Address speed and security improvements
- Use actual safeguards-relevant data streams
- Conduct "**Blue Team/Red Team**" exercises in Year 3 (FY21)
 - For MPC/Garbled Circuits, we will see if we can find the same anomaly in the Np-Pu data (logs), that we found in the MINOS/MUSE data of Year 2.

**Anomaly Detection and
Surety for Safeguards Data**

Thank you!