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ABSTRACT We implement and validate our data structures empirically

Given an input stream of size N, a ¢-heavy hitter is an item
that occurs at least §N times in S. The problem of finding
heavy-hitters is extensively studied in the database literature.

We study a real-time heavy-hitters variant in which an
element must be reported shortly after we see its T = ¢N-
th occurrence (and hence becomes a heavy hitter). We call
this the Timely Event Detection (TED) Problem. The TED
problem models the needs of many real-world monitoring
systems, which demand accurate (i.e., no false negatives) and
timely reporting of all events from large, high-speed streams,
and with a low reporting threshold (high sensitivity).

Like the classic heavy-hitters problem, solving the TED
problem without false-positives requires large space (Q(N)
words). Thus in-RAM heavy-hitters algorithms typically sac-
rifice accuracy (i.e., allow false positives), sensitivity, or time-
liness (i.e., use multiple passes).

We show how to adapt heavy-hitters algorithms to exter-
nal memory to solve the TED problem on large high-speed
streams while guaranteeing accuracy, sensitivity, and timeli-
ness. Our data structures are limited only by I/O-bandwidth
(not latency) and support a tunable trade-off between report-
ing delay and I/O overhead. With a small bounded reporting
delay, our algorithms incur only a logarithmic I/O overhead.
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using the Firehose streaming benchmark. Multi-threaded ver-
sions of our structures can scale to process 11M observations
per second before becoming CPU bound. In comparison, a
naive adaptation of the standard heavy-hitters algorithm to
external memory would be limited by the storage device’s
random I/O throughput, i.e., # 100K observations per second.
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1 INTRODUCTION

Real-time monitoring of high-rate data streams, with the goal
of detecting and preventing malicious events, is a critical
component of defense systems for cybersecurity [46, 56, 58]
as well as for physical systems, e.g., for water or power distri-
bution [15, 44, 47]. In such a monitoring system, the stream
elements represent the changes to the state of the system.
Each detected/reported event triggers an intervention. An-
alysts use more specialized tools to gauge the actual threat
level. Newer systems are even beginning to take defensive
actions, such as blocking a remote host, automatically based
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on detected events [38, 50]. Accuracy (i.e., few false-positives
and no false-negatives) and timeliness of event detection are
essential to these systems.

Central to these applications is the problem of timely re-
porting of heavy-hitters. In the heavy-hitters problem, we
are given a stream S = (sy, ..., sy) and a reporting threshold
T = ¢N, and we need to report all elements that occur more
than T times in S. In the real-time version, we must report
each heavy hitter soon after its T-th occurrence, where the
acceptable reporting delay is defined by the application. We
call the problem of reporting heavy-hitters with bounded
delay the Timely Event Detection (TED) problem.

In network-security monitoring applications, N is huge
(effectively infinite) and T can be very small, even a constant.
This is because anomalies in network streams are often small-
sized events that develop slowly, appearing normal in the
midst of large amounts of legitimate traffic [48, 57]. As an
example of the demands placed on event-detection systems,
the US Department of Defense (DoD) and Sandia National
Laboratories developed the Firehose streaming benchmark
suite [1, 5] to measure the performance of TED algorithms.
In the FireHose benchmark, the reporting threshold is preset
to the representative value of T = 24, i.e., ¢ = 24/N = o(1).

The classic streaming algorithms for reporting heavy-
hitters were designed assuming that only an in-RAM data
structure can keep up with high-speed streams. The chal-
lenge of detecting events entirely within RAM has inspired
a deep and beautiful literature on streaming algorithms and
database systems [4, 14, 17, 18, 20, 21, 28, 33-36, 45, 49].

However, streaming algorithms sacrifice accuracy in order
to get solutions that can fit in RAM. First, most streaming
heavy-hitter algorithms only work for high reporting thresh-
olds, e.g., T is a constant fraction of N. Second, they let
through false positives. Third, many streaming algorithms
perform some kind of sampling, and these also let through
false negatives. These inaccuracies are not the fault of the
streaming algorithms. They are an inherent limitation when
you have a large stream and a much smaller RAM size.

This paper. This paper challenges the assumption that only
in-RAM data structures can keep up with real-world streams.
We show that, by using modern storage devices and building
upon recent advances in external-memory dictionaries, we
can design on-disk data structures that can process millions
of stream events per second.

We prove our results in the external-memory model [3]. In
the external-memory model, RAM has fixed size M, and ac-
cessing it is free. The disk has unbounded size and accessing
it costs an I/O. An I/O transfers data between RAM and disk
in blocks of size B. The algorithmic advantage of external
memory is that there is unbounded storage. The algorithmic
challenge is that I/Os are expensive.

External-memory enables us to overcome longstanding
limitations in accuracy (i.e. no false-positives or negatives)
and sensitivity (i.e. small ¢) while maintaining timeliness
in event reporting, but necessitates developing new heavy-
hitters algorithms that use I/Os efficiently.

Our algorithms support both exact and approximate re-
porting of heavy hitters. Specifically, our TED algorithms
can be generalized to solve the (¢, ¢)-approximate heavy
hitters problem—where every item that occurs > ¢N times
must be reported, no item that occurs < (¢ — ¢)N times
should be reported. Items with count in between (¢ — £)N
and ¢N may be reported and these are false positives.

Timeliness, not ingestion, is the challenge in external
memory. Stream ingestion is not the bottleneck for on-
disk data structures. Optimal external-memory (EM) dic-
tionaries (including write-optimized dictionaries such as B*-
trees [9, 11, 24], COLAs [10], xDicts [23], buffered repos-
itory trees [25], write-optimized skip lists [13], log struc-
tured merge trees [54], and optimal external-memory hash
tables [30, 41]) can ingest new observations at a signifi-
cant fraction of disk bandwidth. The fastest can index using
O(% log %) I/Os per stream item, which is far less than one
I/O per item. In practice, this means that even a system with
just a single disk can ingest hundreds of thousands to mil-
lions of items per second.

For example, prior work at SuperComputing 2017 showed
that a single computer can easily maintain an on-disk B*-
tree [24] index of all connections on a 600 gigabit/sec net-
work [8]. The system could efficiently answer offline queries.
What the system could not do was detect events online.

Existing external-memory data structures do not solve
the TED problem because queries are too slow. For example,
consider a straw-man solution in which we use an external-
memory dictionary to implement the standard heavy-hitters
algorithm, Misra Gries [52]. Since Misra-Gries performs a
query for each stream observation, this approach is bottle-
necked on the dictionary searches. Once the dictionary is
larger than RAM, for a random stream, most queries will miss
the cache and require an I/O, and hence will be bottlenecked
on the latency of the storage device.

In this paper, we show how to perform timely event detec-
tion for essentially the same cost as simply inserting the data
into a B®-tree or other optimal external-memory dictionary.
Even so, we manage to answer the standing heavy-hitter
query for each new stream element.

1.1 Results

In this paper, we present external-memory algorithms for
the TED problem. We evaluate these algorithms theoretically
and empirically. In both cases, we show that these algorithms
perform much less than one I/O per query and are limited



only by I/O bandwidth (not latency). Furthermore, we show
how to provide a tradeoff between reporting delay and I/O
cost. We call these data structures leveled external-memory
reporting tables (LERTs).

We begin by presenting the Misra-Gries LERT, which
adapts the Misra-Gries heavy-hitter algorithm to solve the
TED problem in external-memory with immediate report-
ing. In particular, the Misra-Gries LERT reports each ¢-
event as soon as it occurs (no delay) at an amortized cost of
O((1/B)log(N/B)) I/Os, for sufficiently large ¢. The guaran-
tees of the Misra-Gries LERT hold for any input distribution;
see Corollary 1.

The Misra-Gries LERT serves as the basis of our main
algorithms that support much smaller ¢, but permit some
delay in reporting. We define two types of delay: time stretch
and count stretch. We say an event-detection algorithm has
time stretch 1+ « if each item s is reported at most aLg time
steps after s’s Tth occurrence, where L; is the number of time
steps between s’s first and Tth occurrences. We say that an
event-detection algorithm has count stretch 1 + w, if each
item is reported before the item’s count reaches (1 + w)T.

We design a data structure, the time-stretch LERT, that
solves the TED problem for any input stream and any ¢ >
1/M and with time stretch 1 + a at an amortized cost of
O((ITH% log %) I/Os per stream item. For constant «, this is
asymptotically as fast as simply ingesting and indexing the
data [10, 24, 25]. The time-stretch LERT guarantees hold for
any input distribution; see Corollary 2.

In our evaluations, the time-stretch LERT with stretch of 2
can ingest at = 500K insertions/sec using a single thread. We
also observed that the average empirical time stretch is 43%
smaller than the theoretical upper bound.

We design the count-stretch LERT which is tailored to
guarantee count-stretch on input distributions, where the
count of items is drawn from a power-law distribution. We
say the item counts in the stream follow a power-law distri-
bution with exponent 6 if the probability that an item has
count ¢ is proportional to ¢80,

Given an input stream with item counts distributed ac-
cording to a power-law with parameter 0, where 0 is in the
typical range of 2 to 2.96 [2, 14, 22, 29, 53], and parameters
T and w, such that T > 2.5(N/M)ﬁ, we show that the
count-stretch LERT solves the TED problem with count
stretch 1+ w at an amortized I/O cost 0(715— log %) per stream
item with high probability (w.h.p.). Thus, the count-stretch
LERT avoids expensive point queries, matching the ingestion
rate of write-optimized data structures. In our evaluations,
we find that the count-stretch LERT with stretch 1.583 can
ingest at ~ 1M insertions/sec using a single thread. With
multi-threading and de-amortization, the count-stretch LERT
scales to more than 11M insertions/sec, and the variance of

the instantaneous throughput goes down by several orders
of magnitude relative to the amortized, single-threaded ver-
sion; see Figure 5c. Moreover, the average empirical count
stretch is 21% smaller than the theoretical upper bound.

Finally, we show how to modify the count-stretch LERT to
support immediate reporting. We call the resulting data struc-
ture the immediate-report LERT and show that it solves
the TED problem much faster than the Misra-Gries LERT for
input streams drawn from power-law distributions; see The-
orem 8 for the formal I/O cost. In our evaluation, we find
that the immediate-report LERT can ingest at ~ 500K inser-
tions/sec using a single thread.

Additional Related Work

Heavy-hitter algorithms. The heavy-hitter problem has
been extensively studied in the database literature; we refer
readers to the survey by Cormode and Hadjieleftheriou [31].

There are two main strategies that have been used: deter-
ministic counter-based approaches [18, 35, 43, 49, 51, 52] and
randomized sketch-based ones [28, 32]. The first is based on
the classic Misra and Gries (MG) algorithm [52], which gen-
eralizes the Boyer-Moore majority finding algorithm [19].

Randomized sketch-based algorithms such as count-min
sketch [32] maintain a small sketch of the frequency vectors
using compact hash functions.

Database iceberg queries. The TED problem is related to
the problem of answering iceberg queries in databases [16,
37,39, 40]. An iceberg query computes an aggregate function
over some database attribute and reports the values that are
above some predetermined threshold. The main distinctions
between the two problems is: (a) iceberg queries are offline,
i.e., performed on a static dataset, and (b) the number of
reported results in iceberg queries is usually small; while the
number of reported events can be large in the TED.

Database continuous queries. The TED problem is also
closely related to answering continuous or standing
queries over a database [6, 7, 27]. A continuous query, once
issued, runs as the database is updated through inserts and
deletes. The system reports new query matches as the data-
base is updated. In TED, the database D consists of the items
from the stream seen so far, and the continuous query over
D is whether there is an item with count exactly [$N].

2 PRELIMINARIES

We review several building blocks of our data structures: the
Misra-Gries heavy-hitters algorithm [52], counting quotient
filters (CQF) [55], and cascade filters (CF) [10].

The Misra-Gries frequency estimator. The Misra-Gries
(MG) algorithm estimates the frequency of items in a stream.
Given an estimation error € and a stream S of N items from



a universe U, the MG algorithm uses a single pass over S
to construct a table C with at most [1/¢] entries. Each table
entry is an item s € U with a count, denoted C[s]. For each
s € U not in table C, let C[s] = 0. Let f; be the number
of occurrences of item s in stream S. The MG algorithm
guarantees that C[s] < fs < C[s] + eN forall s € U.

MG initializes C to an empty table and processes items in

the stream as described below. For each s; in S,

e If 5; € C, increment counter C[s;].

e Ifs; ¢ C and |C| < [1/¢], insert s; into C. Set C[s;] « 1.
e Ifs; ¢ C and |C| = [1/¢], then for each x € C decrement

Clx] and delete its entry if C[x] becomes 0.

We argue that C[s] < fs < C[s] + eN. We have C[s] < f;
because C[s] is incremented only for an occurrence of s in
the stream. We can bound how many counts are lost through
decrements: in a single decrement step caused by an item
si, [1/€] + 1 counts are decremented at once: one for each
item in the table and an instance of s;. There can be at most
LN/[1/e+1]] < &N such steps. Thus, f; < C[s] + eN.

The MG algorithm can be used to solve the (¢, ¢)-heavy
hitters problem as follows. Run the MG algorithm on the
stream with error parameter ¢. Then iterate over the set C
and report any item s with C[s] > (¢ — ¢)N.

Analogous to the (¢, ¢)-heavy hitters problem, we define
the approximate TED problem as: report all ¢-events soon
after they occur, do not report any item with count < (¢p—¢)N.
Reported items with count in between are false positives.

Counting Quotient Filter. The counting quotient filter
(CQF) [55] can be viewed as a hash table based on Robin-
Hood hashing [26]. The CQF consists of an array Q of 29
slots and a hash function A mapping stream elements to p-bit
integers, where p > q. Robin-Hood hashing is a variant of
linear probing in which we try to place an element a in slot
h(a)/2P~9, but shift elements down when there are collisions.
Furthermore, Robin-Hood hashing maintains the invariant
that, if h(a) < h(a’), then a will be in an earlier slot than a’.

The CQF supports efficient insertions, queries, updates,
and deletions, just like any Robin-Hood hash table. Thus, it
is straightforward to implement the Misra-Gries algorithm
on top of a CQF, by using the CQF to store the table C.

Cascade Filter. The cascade filter (CF) is a write-optimized
data structure based on the CQF [55] and the COLA [10]. The
CF consists of multiple levels with exponentially increasing
sizes where each level is a CQF. The first level Qp is in RAM
and the rest are on SSD. There are L = log,(N/M) + O(1)
levels, where M is the size of RAM, N is the size of the dataset,
and r is the factor by which levels grow in size.

Since the cascade filter is also a map, we can use it as the
basis for an EM Misra-Gries algorithm. The total table size
is N = ©(1/¢). The amortized I/O cost to update the table
for each stream element is O(% log, (ﬁ)) However, if we

want to support immediate reporting in a CF, then a query is
triggered after each insert which costs O(log,(1/¢M)) I/Os.
Thus the overall algorithm is bottlenecked on the queries
performed for each stream element.

3 IMMEDIATE REPORTING

In this section, we first design an efficient external-memory
version of the core Misra-Gries frequency estimator and then
extend our external-memory Misra-Gries algorithm to solve
the TED problem with immediate reporting.

When ¢ = o(1/M), then simply running the standard
Misra-Gries algorithm can result in a cache miss for every
stream element, incurring an amortized cost of Q(1) I/Os per
element. Our construction reduces this to O(% log (ﬁ)),
which is o(1) when B = w(log (ﬁ))

External-memory Misra-Gries. Our external-memory
Misra-Gries data structure is a sequence of Misra-Gries ta-
bles, Co, . .., Cr—1, where L = 1+ [log,(1/(eM))] and r (> 1)
is a parameter we set later. The size of the table C; at level i
is r'M, so the size of the last level is at least 1/e.

Each level acts as a Misra-Gries data structure. Level 0
receives its input from the stream. Level i > 0 receives its
input from level i — 1, the level above. Whenever the stan-
dard Misra-Gries algorithm for the table C; at level i would
decrement an item count, the external-memory MG data
structure decrements that item’s count by one on level i and
sends one instance of that item to the level below (i + 1). The
decrements from the last level L are deleted.

We call the process of decrementing the counts of all the
items at level i and incrementing all the corresponding item
counts at level i + 1 a flush.

Lemma 1 shows that every prefix of levels Cy, . . ., Cj in the
external-memory MG data structure is a MG frequency esti-
mator, with the accuracy of the estimates increasing with j.

LEMMA 1. Let@[x] = i::o Ci[x] (where Ci[x] = 0 ifx ¢
C;). Then, the following holds:

e Cj[x] < fx < Ci[x] + (N/(r'M)), and,
o Cr1[x] £ fx < Cr_1[x] +&N.

Thus, to report (e, #)-heavy hitters (at the end of the
stream), we can iterate over the sets C; and report any ele-
ment x with counter Cr_1[x] > (¢ — ¢)N.

For the analysis, we assume that each level of the external-
memory MG structure is implemented as a B-tree.

LEMMA 2. Given e > 1/N, the amortized I/O cost of inser-
tion in the external-memory MG data structure is O(% log gLM)

When no false positives are allowed, that is, ¢ = 1/N, the
I/O complexity is O(% log %).

Misra-Gries LERT. We extend our external-memory MG
data structure to support immediate reporting. In particular,



we show that for a threshold ¢ that is sufficiently large, we
can report ¢-events as soon as they occur.

A first attempt to add immediate reporting is to compute
EL_l[si] for each stream event s; and report s; as soon as
Cr-1[si] > (¢ — €)N. However, this requires querying C; for
i=0,...,L—1 for every stream item and can cost up to
O(log(1/eM)) I/Os per stream item.

We avoid these expensive queries by using the properties
of the in-memory MG estimates Cy. If Cy[s;] < (¢ — 1/M)N,
then we know that f;, < #N and we therefore do not have
to report s;, regardless of the count for s; in the lower levels
of the external-memory data structure.

We describe the new data-structure, the Misra-Gries
LERT. Whenever we increment Cy[s; | from a value that is at
most (¢ — 1/M)N to a value that is greater than (¢ — 1/M)N,
we compute 6L_1[si] and report s; if 5L_1[si] = [(¢ — €)N].
For each entry Cy[x], we store a bit indicating whether we
have performed a query for CL-1[x]. As in our external-
memory MG structure, if the count for an entry Cy[x] be-
comes 0, we delete that entry. This means we might query
for the same item more than once; as we see below, this has
no effect on the overall I/O cost of the algorithm.!

In order to avoid reporting the same item more than once,
we can maintain, with each entry in C;, a bit indicating
whether that item has already been reported.

For the analysis, we assume that the levels of the data
structure are implemented as sorted arrays with fractional
cascading, and thus computing Cr-1[x] requires O(L) I/Os.

THEOREM 3. Given a stream of size N and parameters ¢ and
¢, wheree € [1/N, ¢) and ¢ € (1/M, 1), the approximate TED
problem can be solved with immediate reporting at amortized
1O cost O((5 + ﬁ) log ;) per stream item.

Proor. The amortized cost of performing insertions is
O((1/B)log(1/eM)). To analyze the query costs, let ¢y = 1/M,
i.e,, the frequency error of the in-memory level. Since we
perform at most one query each time an item’s count in
Co goes from 0 to (¢ — )N, the total number of queries is
at most N/((¢p — &)N) = 1/(¢ — &) = M/(¢M — 1). Since
each query costs O(log(1/eM)) I/Os, the overall amortized
I/O complexity of the queries is O((WSM%)N) log 7). O

To solve the problem exactly, that is, with no false positives
we set ¢ = 1/N in Theorem 3, and get the following corollary.

Corollary 1. Given a stream of size N and ¢ € (1/M, 1),
the TED problem can be solved with immediate reporting at
amortized I/O cost O((5 + ﬁv‘) log &%) per stream item.

Ut is possible to prevent repeated queries for an item but we allow it as it
does not hurt the asymptotic performance.

Summary. The Misra-Gries LERT supports a throughput at
least as fast as optimal write-optimized dictionaries [10, 11,
13, 23-25], while estimating the counts as well as if it had
an enormous RAM. It maintains count estimates at different
granularities across the levels. Not all estimates are actually
needed, but given a small number of levels, we can refine
the estimates by looking in only a few additional locations.

4 TIME STRETCH

The MG LERT described in Section 3 reports events immedi-
ately, albeit at a higher amortized I/O cost for each stream
item. In this section, we show that if we allow a bounded
reporting delay proportional to the time it takes an item
to become a ¢-event, we can significantly improve the I/O
performance—in particular, we can perform timely event de-
tection asymptotically as cheaply as if we reported all events
only at the end of the stream.

In particular, our data structure guarantees a time-stretch
of 1 + a, that is, it reports an item x no later than time
ti + (1 + a)F; = t, + aF;, where t; is the time of the first
occurrence of x, t, is the time of the #Nth occurence of x
and F; = t, — t; is the flow time of x.

Time-stretch LERT. We design a data structure to guar-
antee time-stretch, the time-stretch LERT. Similar to the
Misra-Gries LERT, the time-stretch LERT consists of L =
log,(1/(eM)) levels Cy, . . ., CL—1. The ith level has size r'M.
Items are flushed from lower to higher levels.

Unlike the Misra-Gries LERT, all events are detected dur-
ing the flush operations. Thus, we never need to perform
point queries. This means: (1) we can use simple sorted arrays
to represent each level and, (2) we don’t need to maintain
the invariant that level 0 is a MG data structure on its own.

Layout and flushing schedule. We split the table at each
level i into ¢ = (& + 1)/« equal-sized bins b, ..., b., each of
size ﬁ(r"M). The capacity of a bin is defined by the sum
of the counts of the items in that bin, i.e., a bin at level i can
become full because it contains ﬁ(riM) items, each with
count 1, or 1 item with count ﬁ(riM).

We maintain a strict flushing schedule to obtain the time-
stretch guarantee. The flushes are performed at the granu-
larity of bins (rather than entire levels). Each stream item
is inserted into b?. Whenever a bin bl becomes full (i.e., the
sum of the counts of the items in the bin is equal to its size),
we shift all the bins on level i over by one, and we move
all the items in b’ into bin b!*!. Since the bins in level i + 1
are r times larger than the bins in level i, bin b{“ becomes
full after exactly r flushes from b.. When this happens, we
perform a flush on level i + 1 and so on.

Finally, during a flush involving levels 0, . . ., i, where i <
L — 1, we scan these levels and for each item k, we sum its



counts. If the total count is greater than (¢ — €)N, and (we
have not reported it before?) then we report k.
We show that our data structure guarantees time stretch.

LEMMA 4. The time-stretch LERT reports each ¢-event s;
occurring at timet by t + aF;, where F; is the flow time of s;.

Proor. Consider an item s; with flow time F;. Let £ be the
largest level containing an instance of s; at time ¢ when it hits
the threshold count of §N. The flushing schedule guarantees
that, for each level i < ¢, the item s, must have waited 1/«
bins of size ”‘;:rjlw on that level before being inserted to level
¢. This is dominated by waiting time on level £ — 1. That is,
1 ar™'M 7'M

F, > — 5
a a+1 a+1

-
This level participates in a flush again after *= +11M < aF;

inserts. Thus, s; is reported at most ¢ F; time steps aftert. O
For the analysis, we treat each level as a sorted array.

THEOREM 5. Given a stream of size N and parameters ¢,
¢ € (1/M,1) and @ > 0, where ¢ € [1/N, §), the approximate
TED problem can be solved with time-stretch 1+ a at amortized
I/O cost O(“T”(% log ELM)) per stream item.

For exact reporting (no false positives), we set ¢ = 1/N.

Corollary 2. Given a stream of size N, « > 0, and ¢ €
(1/M, 1), the TED problem can be solved with time stretch 1+«
at amortized I/O cost O(“TH(% log %)) per stream item.

Summary. By allowing a little delay, we can solve the timely
event-detection problem at the same asymptotic cost as sim-
ply indexing our data [10, 11, 13, 23-25].

Thus, our results on TED problem with immediate report-
ing and with time stretch show that there is a spectrum
between completely online and completely offline, and it is
tunable with little I/O cost.

5 POWER-LAW DISTRIBUTIONS

Our results in Section 3 and Section 4 hold for worst-case
input streams. In this section, we design TED algorithms tai-
lored to perform well on practical input streams, in particular
where the item-counts follow a power-law distribution. Note
that the order of arrivals can still be adversarial.

The item counts in the stream follow a power-law distribu-
tion with exponent 6 if the probability that an item has count
c is equal to Z - ¢™?, where Z is the normalization constant.

Berinde et al. [14] consider streams where the item counts
follow a Zipfian distribution. A stream follows a Zipfian dis-
tribution with exponent « if and only if it follows a power-
law distribution with exponent = 1 + 1/« [2]. They show

For each reported item, we set a flag that indicates it has been reported, to
avoid duplicate reporting of events.

that for Zipfian distributions with ¢ > 1 (power-law dis-
tributions with 8 < 2), the MG algorithm can solve the
e-approximate heavy hitter problem using only £~/ words.
Alternatively, on such Zipfian distributions, the MG algo-
rithm achieves an improved error bound ¢ using 1/¢ words.
Our data structures based on the MG algorithm automatically
inherit these improved bounds.

In the rest of this section, we study the exact (error-free)
TED problem and design algorithms tailored for power-law
distributions with exponent 2 < 6 < 2.96, which is represen-
tative of power-law distributions observed in practice [53].

Preliminaries. We use the continuous power-law defini-
tion [53]: the count of an item with a power-law distribution
has a probability p(x)dx of taking a value in the interval
from x to x + dx, where p(x) = Z - x % where > 1and Z
is the normalization constant.?

5.1 Immediate-report LERT

First, we present the layout of our data structure, the
immediate-report LERT, and then we present its main algo-
rithms, shuffle merges and immediate-reporting queries.
Finally we analyze its correctness and I/O performance.

Layout. The immediate-report LERT consists of a cascade
of tables, where M is the size of the table in RAM and there

are L = log,(N/M) levels on disk, where N = (%) U, the

size of the stream S. The size of level i is N/(r’~%).

Each level on disk has an explicit upper bound on the num-
ber of instances of an item that can be stored on that level.
This is different from the MG algorithm, where this upper
bound is implicit: based on the level’s size. In particular, each
level i in the immediate-report LERT has a level threshold
riforl1 <i <L (g 21 >...2> 1), indicating that the
maximum count on level i can be ;.

Threshold invariant. We maintain the invariant that at
most 7; instances of an item can be stored on level i. Later,
we show how to set 7;’s based on the power-law exponent 6.

Shuffle merge. The Misra-Gries LERT and time-stretch
LERT use two different flushing strategies. Here we present
a third strategy called the shuffle merge.

The level in RAM receives inputs from the stream one at a
time. When attempting to insert to a level i that is at capacity,
instead of flushing items to the next level, we find the small-
est level j > i, which has enough empty space to hold all
items from levels 0, 1, . . ., i. We aggregate the count of each
item k on levels 0, . . ., j, resulting in a consolidated count c{c
If cf( > (¢—¢)N, we report k. Otherwise, we pack instances of
k in a bottom-up fashion on levels j to 0, while maintaining

3 In general, the power-law distribution may hold above some value ¢pin.
For simplicity, we let ¢pin = 1—for this choice Z = 6 —1and 0 > 1.



the threshold invariants. In particular, we place min{c{(, i}
instances of k on level j, and min{ci - (Z](;:yﬂ Ty), Ty} in-
stances of k on level y for 0 < y < j — 1. Because items can
end up in higher levels (compared to their level before), we
call this operation a shuffle-merge instead of a merge.

Notice that the threshold invariant prevents us from flush-
ing too many counts of an item down. Thus, items can get
packed at a level and cannot be flushed down. Specifically, we
say an item is packed at level ¢ if its count exceeds f:i h.

Too many packed items at a level can clog the data struc-
ture. In Lemma 6, we show that given a power-law stream
with exponent 0, we can set the thresholds based on 6 in a
way that no level has too many packed items.

LEMMA 6. Let the count of U distinct items in the stream of
size N follow a power-law distribution with exponent 6 > 2.
Lett; = rﬁriﬂforl <i<L-landrt = o7, The number
of keys packed in level i is at most % times size of level i.

Immediate reporting. As soon as the count of an item k
in RAM (level 0) reaches a threshold of ¢N — Z}:L 7;, the
structure triggers an immediate-reporting query, which
performs a sweep of all the L levels, consolidates the count es-
timates of k at all levels and reports if the consolidated count
reaches threshold T = §N. Reported items are remembered,
so that each event gets reported exactly once.

Analysis. Next, we prove correctness of the immediate-
report LERT and analyze its I/O complexity. We set r = e,
which we minimizes the insertion cost (in Theorem 8).

First, we prove that the immediate-report LERT reports
all ¢-events as soon as they occur.

LEMMA 7. Let S be a stream of size N where the count
of items follow a power-law distribution with exponent 2 <
0 < 2.96. W.h.p. the immediate-report LERT solves the TED
problem with immediate reporting on S.

Next, we analyze the I/O complexity of the immediate-
report LERT. Similar to Section 3, we assume each level is
implemented as a B-tree.

THEOREM 8. Let S be a stream of size N where the count
of items follow a power-law distribution with exponent 2 <
0 < 2.96. Given ¢ such that pN > 2.5(N/M)ﬁ =y, the TED

problem on S can be solved at an amortized I/O complexity

O((% & W) log %) per stream item w.h.p.

Remark on scalability. The immediate-report LERT al-
lows for strictly smaller thresholds ¢ compared to Corol-
lary 1 and Corollary 2, for power-law streams with 6 >
2+ 1/(log, (N /M)). This is because y = 2.5(N/M)51—-1 < %
when 0 > 2 + 1/(log, s(N/M)).

5.2 Count-stretch LERT

In this section, we show that if we eliminate expensive
immediate-reporting queries from the immediate-report
LERT, the data structure still supports bounded-delay re-
porting with a count-dependent delay. We say that an TED
problem algorithm has count stretch 1 + o if it reports each
key by the time its count hits (1+ w)¢N. In particular, the no-
tion of count stretch relaxes the reporting threshold, which
leads to reduced random disk accesses.

The count-stretch LERT is the following modification
of the immediate-report LERT: we eliminate immediate-
reporting queries and report an item when its count in RAM
hits §N. The data structure layout, thresholds and shuffle-
merges are the same as in the immediate-report LERT.

A count-stretch guarantee does not imply any time-stretch
guarantee. This is because the item’s arrival distribution may
be irregular: a sudden burst may get a item up to a count of
¢N quickly and it could take much longer to get from ¢Nth
occurrence to the (1 + w)¢Nth occurrence.

THEOREM 9. Given a stream of size N where the item-counts
follow a power-law distribution with exponent 2 < 0 < 2.96,
and parameters ¢, w such that §N - © > 2.5(N/M)ﬁ, the
count-stretch LERT solves the TED problem with count stretch
1+ w at amortized /O cost O( log 3%) per stream item w.h.p.

Remark on dynamically setting thresholds. If the
power-law exponent 6 is not known ahead of time, but a
feasible setting of level thresholds exist, then we can dynam-
ically update them so as to not “clog” the data structure.
Note that by Lemma 6, for § < 3, it is sufficient to en-
sure that the number of items packed at any level i do not
exceed % < % its size. We incrementally update the level
thresholds to satisfy this condition as follows. Initially, 7; = 0
for each level i. During a shuffle merge involving the first j
levels on disk, we set 7; to the minimum value such that the
number of keys packed at level j + 1 is no more than half its
size. Thus, we increment 7’s monotonically from 0 to their
feasible settings, without relying on the exponent 6.

Summary. With a power law distribution, we can support a
much lower threshold ¢ for the TED problem. In the Misra-
Gries LERT (Section 3), the upper bounds on the counts at
each level are implicit. We show that for power-law distri-
butions, we can achieve better performance by explicitly
setting these bounds in the form of thresholds.

6 IMPLEMENTATION

We now describe our implementation of the immediate-
reporting, count-stretch, and time-stretch LERT. We rep-
resent each level in the LERT as an exact counting quotient
filter [55]. In addition to the count, we store a small value



(usually a few bits) with each key, which serves different pur-
poses in the different structures. In the time-stretch LERT,
the value bits track the age of items. In the count-stretch
LERT, these bits mark whether an item has its absolute count
at a level (its aggregate count across all the levels).

Time-stretch LERT. Recall that in the time-stretch LERT
(Section 4), we split each level into ¢ = (a + 1)/« equal-sized
bins. In our implementation, instead of actually splitting
levels into physical bins we assign a value (i.e., age of the
item) of size log ¢ bits to each item which determines its bin.
The age of the item on a level determines whether the item
is ready to be flushed down from that level during a flush.

We also assign an age to each level, initialized to 0. For
each level involved in a flush its age is incremented before
the flush. The age of a level gets wrapped around back to
0 after ¢ increments. The age of the level during the flush
determines which items are eligible to be flushed down — if
an item’s age is same as the age of the level then the item has
survived ¢ flushes on that level. When an item is inserted in
a level it gets the current age of the level as its age. However,
if the level already has an instance of the item then it takes
the age of the instance on that level.

We follow a fixed schedule for flushes. A flush is performed
every (-%7)M-th stream observation. Every ri~1-th flush in-
volves level i. After every r — 1 flushes to level i, level i + 1 is
involved in the next flush. To determine the number of levels
involved in a flush, we maintain a counter per level for the
number of times the level has been involved in a flush.

Consolidating item-counts during a flush is implemented
as a k-way merge sort. We first aggregate the count of an
item across all the levels involved in the flush. We then decide
based on the age of the instance of the item in the last level
whether to move it to the next level. If the instance of the
item in the last level is aged then we insert the item with the
aggregate count in the next level. Otherwise, we update the
count of the instance in the last level to the aggregate count.

Count-stretch and Immediate-report LERT. We de-
scribe the implementation details of the count-stretch and
immediate-report LERT, including further optimizations.

Similar to the flush schedule in the time-stretch LERT we
follow a fixed shuffle-merge schedule. A shuffle-merge is
invoked from RAM after every M observations. The level
thresholds determine how many instances of an item can be
stored at that level. To satisfy threshold constraints, during a
shuffle merge, we first aggregate the count of each item and
then smear it across all levels involved in the shuffle-merge
in a bottom-up fashion without violating the thresholds.

Our implementation of the count-stretch LERT further
reduces I/O costs by following a “greedy” flushing schedule
instead of a fixed schedule. We only invoke a shuffle-merge
only if it is needed, i.e., when the RAM is at capacity.

The CQF uses a variable-length encoding for storing
counts and uses much less space compared to a unary-
encoding. Therefore, the actual number of slots needed for
storing M observations can be much smaller than M slots,
if there are duplicates in the stream. Especially, in case of
streams such as the one from Firehose, where counts have a
power-law distribution, the space needed to store M observa-
tions is much smaller than M slots. The greedy shuffle-merge
schedule avoids unnecessary I/Os that a fixed schedule would
incur during shuffle-merges.

As explained in Section 5, in the immediate-report LERT
we perform an immediate-reporting query when the count
in RAM reaches T — Y.L, 7;. To compute the aggregate count
we perform point queries to each level on disk and sum the
counts. If the aggregate count in RAM and on disk is T we
report the item, else we insert the aggregate count in RAM
and set a bit, the absolute bit, that indicates that all the
counts for the item has been found. This avoids unnecessary
point queries to disk later on. We use a lazy policy to delete
the instances of items from disk. They get garbage collected
during the next shuffle merge.

7 DEAMORTIZATION TO SUPPORT
CONSISTENT INGESTION RATES

The LERTs consider observation ¢ to occur exactly one time
step before observation t + 1. In practice, however, observa-
tion ¢ might trigger a significant rebuild of the data structure,
delaying observation ¢ +1. In a high-speed streaming context,
that observation, and potentially millions after it, would be
dropped while a rebuild is going on.

To mitigate this problem, we now describe how to deamor-
tize LERTs. Our deamortization strategy works in serial, and
also provides the foundation of the multithreading strategy
we introduce in Section 8.

To deamortize, we decompose the data structure into C
independent parts called cones that partition the space of
hashed items. Each stream item is mapped to exactly one
of these cones using a uniform-random hash function. A
cone is an independent instance of the LERT with the same
expansion factor r and the same number of levels, each of
which is 1/C-th the size of the corresponding complete level.

Each cone is independent, following its own merge sched-
ule. Incoming items are routed to the appropriate cone for
independent insertion and potential reporting. Thus, given
uniform-random hashing, each cone accounts for roughly

1/C-th of the aggregate 1/0.

Deamortization timeliness guarantees. We consider the
timeliness guarantees for the deamortized serial version of
the count-stretch and time stretch LERT. When streams are
split into substreams based on hash values, we must revisit
these guarantees. We note that count-stretch is unaffected:



LEmMMA 10. A deamortized count-stretch LERT provides the
same count stretch guarantee as the original count-stretch
LERT when run on the same input stream.

LEMMA 11. There exists an input stream for which the
deamortized time-stretch LERT provides no global time stretch.

Proor. We construct an arrival distribution that causes
an arbitrarily long time stretch for an item in a deamortized
time-stretch LERT. It begins with T — 1 observations of an
item I followed by enough distinct items that all go to the
item I’s cone (C) to cause a flush in cone C. The sequence
then has one more observation of item I followed by an
arbitrarily long sequence of observations, none of which go
to cone C. Thus, cone C has an arbitrary delay before its next
merge and item I has an unbounded reporting delay. O

THEOREM 12. Consider a random stream where each item
maps to a cone via a fixed probability distribution. If cone i runs
a time-stretch LERT guaranteeing a time stretch of (1+«), then
the deamortized time-stretch LERT will have a time stretch of
(1 + a) in expectation with respect to the full stream.

8 MULTI-THREADING

We now describe thread-safe versions of the deamortized
count-stretch and time-stretch LERT. A thread-safe imple-
mentation enables ingesting observations using multiple
threads. This is crucial for two reasons: (1) we can scale the
ingestion throughput to support high-speed streams, and (2)
multiple threads performing I/Os simultaneously can utilize
the full SSD bandwidth which would be wasted otherwise.

We use two types of locks in our design, a cone-level lock
and a CQF-level lock. The cone-level lock is a distributed
readers-writer lock implemented using a partitioned counter
(i.e., a per-CPU counter). This ensures that readers do not
thrash on the cache line containing the count of the number
of readers holding the lock. The CQF-level lock is a spin lock
as described by Pandey et al. [55].

We assign a small local insertion buffer to each thread.
Each insertion thread performs the same set of operations.
It starts by first receiving a packet of observations over a
network port or reading a small chunk (usually 1024) of
observations from an input file. Each observation is then
processed one-by-one.

Each thread must acquire two locks to do an insertion:
one read lock on the item’s cone and one lock on the region
of the CQF (i.e., the RAM level of the cone) to which the item
hashes. It tries once to acquire each lock. It does not spin or
sleep upon failing to acquire either lock. If it does not get
either of the locks in the first attempt then it releases any
acquired lock, inserts the observation in its local insertion
buffer, and continues to the next observation. When the local

buffer is full, items in the buffer are dumped into respective
cones. When dumping a buffer, the threads wait for the locks.

If it acquires both the locks in the first attempt, then it
performs the insertion and releases the lock on the relevant
region of the CQF. It then checks whether the cone needs to
perform a flush or shuffle-merge. If so, it first releases the
read lock and then tries to acquire a write lock on the cone. If
it gets the write lock in the first attempt then it performs the
flush/shuffle-merge. If it fails to acquire the write lock in its
first attempt, then some other thread is already performing
a flush/shuffle-merge. This thread can continue.

We avoid heavy contention among threads via the local
buffers, even when every thread tries to lock the same cone.
Our method scales well with increasing number of insertion
threads even for streams with skewed distributions. We show
this empirically in Section 9.8.

Using readers-writer locks at the cone level enables mul-
tiple threads simultaneously insert in different regions of
the RAM CQF of a cone by acquiring a read lock. A thread
upgrades to a write lock when it needs to do a flush/shuffle-
merge. Readers-writer locks allows us to use more threads
than cones. Even if all cones flush simultaneously, there
would still be threads processing incoming observations.

8.1 Timeliness with multi-threading

We now discuss the effect of multithreading on the timeliness
guarantees of the count-stretch and time-stretch LERT.

Measuring time. One issue that immediately arises when
trying to analyze time- and count-stretch in the multi-
threaded case is: how do we measure time? In the single-
threaded case, we measure time in terms of the number of
stream observations that the process has ingested, i.e., in
each time step, the algorithm gets to read one stream ob-
servation, perform an arbitrary amount of computation and
I/0, and generate an arbitrary number of reports. We say all
reports generated during the i-th time step occur at time i.

We generalize this in the multi-threaded model: when a
thread reports items, it uses the index of the last observation
pulled by any thread as the reporting time. This can cause
the reporting index of an item be much higher compared
to the single-threaded case because multiple threads pull a
chunk (usually 1024) of observations simultaneously. There-
fore, multi-threading adds an extra delay to the timeliness
guarantees of the time-stretch and count-stretch LERT. We
analyze this delay empirically in Section 9.4.

Count stretch. The multi-threaded count-stretch LERT has
only one new source of delay: the time that an item might
spend sitting in a thread’s local buffers. In the worst case,
an item could accumulate up to T — 1 occurrences in each
thread’s local buffer, in addition to T — 1 occurrences in the



main data structure, so that it doesn’t get reported until it
reaches a count of (T — 1)(P — 1) + 1.

To limit this pathological case, we implement a policy
to upper bound the total count that an item can have in a
thread’s local buffer. For example, we enforce that no thread
can hold more than % instances of an item in its local buffer.
Whenever the count of an item in the local buffer equals
% the thread must move that item from the thread’s local
buffer to the main data structure. This way we can bound
the maximum count of an item when it is reported.

LeEMMA 13. Given w and T such that T > P, where P is
the number of threads, a multi-threaded count-stretch LERT
guarantees a count stretch of 2 + w.

Proor. Whenever an item reaches a count of (2 + w)T it
will be reported. Because the maximum count of an item
in a thread local buffer can be % and for P threads it can
% X P = T. Therefore, maximum count in the cone can be
(24 w)T — T = (1 + )T which is the stretch guaranteed by

the count-stretch LERT. O

Time stretch. It is comparatively harder to provide a time
stretch guarantee with multiple threads compared to the
count stretch. Because time stretch depends on the arrival
distribution of other items in the stream unlike count stretch
which is independent of that.

When multiple threads are simultaneously performing
ingestion, each thread can pick a chunk of observations
from the stream. These observations can be inserted in the
data structure out-of-order based on the contention among
threads. To guarantee a time stretch with multiple threads
we need to global ordering on the observations.

Model. In each time step, a thread gets to read one ob-
servation from the stream and perform all the work on that
observation. The work includes taking a lock and inserting
the observation in the cone, inserting the observation in the
local buffer, and performing a flush/shuffle-merge on the
cone. As above, we constrain how long a thread can go be-
fore dumping its local buffer. We also constraint that every
thread has to dump their local buffer after every ¢ time steps.

Based on the above model and constraints, we can now
guarantee that the time stretch in the multi-threading case
will not be much worse than the single-threaded case.

Corollary 3. In a multi-threaded time-stretch LERT in which
each thread dumps its local buffer every t time steps, we can
guarantee a time stretch of (1 + a)Fr + t, where Fr is the time
an item takes to reach a count of T.

9 EVALUATION

In this section, we evaluate our implementations of the
time-stretch LERT (TSL), count-stretch LERT (CSL), and

immediate-report LERT (IRL) for timeliness, robustness to
input distributions, I/O performance, insertion throughput,
and scalability with multiple threads.

We compare our implementations against Bender et al’s
cascade filter [12] as a baseline for timeliness. This baseline is
an external-memory data structure with no timeliness guar-
antee. We show that reporting delays can be quite large when
data structures take no special steps to ensure timeliness.

We also evaluate an implementation of the Misra-Gries
data structure as a baseline for in-memory insertion through-
put. We implement the Misra-Gries data structure with an
exact counting data structure (counting quotient filter) to for-
bid false positives. This gives an upper bound on the insertion
throughput one can achieve in-memory while performing
immediate event-detection. The objective of this baseline is
to evaluate the effect of disk accesses during flushes/shuffle-
merges in our implementations of the TSL, CSL, and IRL.

We address the following performance questions for the
time-stretch, count-stretch and immediate-report LERT:

(1) How does the empirical timeliness of reported items com-
pare to the theoretical bounds?

(2) How robust is the time-stretch LERT to different input
distributions?

(3) How does deamortization and multi-threading affect the
empirical timeliness of reported items?

(4) How does the buffering strategy affect count stretch and
throughput?

(5) How does LERT total I/O compare to theoretical bounds?

(6) What is the insertion throughput of the time-stretch,
count-stretch and immediate-report LERT?

(7) How does deamortization and multiple threads affect
instantaneous throughput?

(8) How does insertion throughput scale with number of
threads?

9.1 Experimental setup

We describe how we designed experiments to answer the
questions above. We describe our workloads, and how we
validated timeliness and measured I/O performance.

Workload. Firehose [42] is a suite of benchmarks simulating
a network-event monitoring workload. A Firehose bench-
mark consists of a generator that feeds keys to the analytic,
being benchmarked. The analytic must detect and report
each key that has 24 observations. .

Firehose includes two generators: the power-law genera-
tor selects from a static ground set of 100,000 keys according
to a power-law distribution, while the active-set generator
allows the ground set to drift over an infinite key space. We
use the active-set generator because an infinite key space
more closely matches many real world streaming workloads.



Count stretch

2
. ; =
CF SL CSL(cones) CSL(cones-threads)

Data structures

é —
CF SL

(a) Distribution of count stretch of
different data structures.

Time stretch

(b) Distribution of time stretch of
different data structures.

Time stretch

15
14
13
1.2
11

=
= == TSL1 TSL2 TSL3

CSL(cones) CSL(cones-threads) Data structures

=

TSL4

Data structures

(c) Distribution of time stretch in
the time-stretch LERT for differ-
ent « values.

Figure 1: Data structure configuration: RAM level: 8388608 slots in the CQF, levels: 4, growth factor: 4, level thresh-
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Figure 2: Data structure configuration: RAM level:
8388608 slots in the CQF, levels: 4, growth factor: 4,
level thresholds for on-disk level: (2, 4, 8), cones: 8,
threads: 8, number of observations: 512M.

To simulate a stream of keys drawn from a huge key-space
we increase the key space of the active set to one million.

Other workloads. Apart from Firehose, we use four other
simulated workloads to evaluate the empirical stretch in the
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(b) Distribution of time stretch vs lifetime of reported
items in a TSL with 8 cones and 8 threads.

Figure 3: Data structure configuration: RAM level:
8388608 slots in the CQF, levels: 4, growth factor: 4,
level thresholds for on-disk level: (2, 4, 8), cones: 8,
threads: 8, number of observations: 512M.

time-stretch LERT. These four workloads are generated to
show the robustness of the data structure to non-power-law
distributions. In the first distribution, M (where M is the size
of the level in RAM) keys appear with a count between 24-50
and rest of the keys are chosen uniformly at random from a
big universe. In the second, M keys appear 24 times and the
rest of the keys appear 23 times. In the third, M keys appear



round robin each with a count > 24. In the fourth, for each
key we pick the count uniformly at random between 1-25.

Reporting. During insertion, we record each reported item
and the index in the stream at which it is reported by the
data structure. We record by inserting the reported item in
an exact CQF (anomaly CQF) and encoding the index as
the count of the item in the anomaly CQF. We also use the
anomaly CQF to check if an incoming item has already been
reported. We only insert the item if it is not reported yet.
This prevents duplicate reports.

Timeliness. For the timeliness evaluation, we measure the
reporting delay after its Tth occurrence. We have two mea-
sures of timeliness: time stretch and count stretch.

The time-stretch LERT upper bounds the reporting delay
of an item based on its lifetime (i.e. time between its first
and Tth instance). To validate the timeliness of the time-
stretch LERT, we first perform an offline analysis of the
stream and calculate the lifetime of each reportable item.
Given a reporting threshold T, we record the index of the
first occurrence of the item (Iy) and the index of the T-th
occurrence of the item (I7). During ingestion, we record the
index (Ig) at which the time-stretch LERT reports the item.
We calculate the time stretch (ts) for each reported item as
ts = (Ir — Ip)/(Ir — Ip) and verify that ts < (1 + ).

Multiple threads process chunks of 1024 observations from
the input stream. We consider all reports a thread generates
while processing the ith observation to occur at time i. Due
to concurrency, two observations of the same key may be
inserted into the data structure in a different order than
they are pulled off of the input stream. This may introduce
some noise in our time-stretch measurements. However, our
experimental results with and without multi-threading were
nearly identical, indicating that the noise is small.

In the count-stretch LERT, the upper bound is on the
count of the item when it is reported. To validate timeliness,
we first record indexes at which items are reported by the
count-stretch LERT (Ig). We then perform an offline analysis
to determine the count of the item at index Ig (Cr,) in the
stream. We then calculate the count stretch (cs) as cs = Cr, /T
and validate that ¢cs < (T + Zle 7;)/T.

To perform the offline analysis of the stream we first gen-
erate the stream from the active-set generator and dump
it in a file. We then read the stream from the file for the
analysis and for streaming it to the data structure. For time-
liness validation experiments we use a stream of 512 Million
observations from the active-set generator.

I/0 performance. In our implementation of the time-
stretch, count-stretch and immediate-report LERT, we al-
locate space for the data structure by mmap-ing each level
(i.e., the CQF) to a file on SSD. To force the data structure to

keep all levels except the first one on SSD we limit the RAM
available to the insertion process using the “cgroups” utility
in linux. We calculate the total RAM needed by the insertion
process to only keep the first level in RAM by adding the
size of the first level, the space used by the anomaly CQF to
record reported keys, the space used by thread-local buffers,
and a small amount of extra space to read the stream se-
quentially from SSD. We then provision the RAM to the next
power-of-two of the total sum.

To measure the total I/O performed by the data structure
we use the “iotop” utility in linux. Using iotop we can mea-
sure the total amount of reads and writes in KB performed
by the process doing insertions.

To validate, we calculate the total amount of I/O performed
by the data structure based on the number of merges (shuffle-
merges in case of the count-stretch LERT) and time-stretch
LERT and sizes of levels involved in those merges.

Similar to validation experiments, we first dump the
stream to a file and then feed the stream to the data structure
by streaming it from the file. We use a stream of 64 Million
observations from the active-set generator.

Average insertion throughput and scalability. To mea-
sure the average insertion throughput, we first generate the
stream from the active-set generator and dump it in a file.
We then feed the stream to the data structure by streaming
it from the file and measure the total time.

To evaluate scalability, we measure how data-structure
throughput changes with increasing number of threads. We
evaluate power-of-2 thread counts between 1 and 64.

To deamortize the data structures we divide them into
2048 cones. We use a stream of 4 Billion observations from
the active-set generator. We evaluate the insertion perfor-
mance and scalability for three values (16, 32 and 64) of the
DatasetSize-to-RAM-ratio (i.e., the ratio of the data set size
to the available RAM).

Instantaneous insertion throughput. We also evaluate
the instantaneous throughput of the data structure when
run using either a single cone and thread or multiple cones
and threads. We approximate instantaneous throughput by
calculating throughput (using system timestamps) every k
observations. In our evaluation, we fix x = 217,

Machine specifications. The OS for all experiments was
64-bit Ubuntu 18.04 running Linux kernel 4.15.0-34-generic
The machine for all timeliness and I/O performance bench-
marks had an Intel Skylake CPU (Core(TM) i7-6700HQ CPU
@ 2.60GHz with 4 cores and 6MB L3 cache) with 32 GB RAM
and a 1TB Toshiba SSD. The machine for all scalability bench-
marks had an Intel Xeon(R) CPU (E5-2683 v4 @ 2.10GHz
with 64 cores and 20MB L3 cache) with 512 GB RAM and a
1TB Samsung 860 SSD.
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Figure 4: Total I/O performed by the count-stretch,
time-stretch and immediate report LERT. Data struc-
ture configuration: RAM level: 4194304 slots in the
CQF, levels: 3, growth factor: 4, number of observa-
tions: 64M. Immediate-report LERT (IRL).

For all the experiments, we use a reporting threshold of
24 since it is the default in the Firehose benchmarking suite.

9.2 Timely reporting

Cascade filter. Figures 1a and 1b show the distribution of
count stretch and time stretch of reported items in the cas-
cade filter. The cascade filter’s maximum count-stretch is 3.0
and maximum time stretch is > 12, much higher than any
single-threaded count-stretch or time-stretch LERT.

Count-stretch LERT. Figure 1a validates worst-case count
stretch for the count-stretch LERT. The total on-disk count
for an element is 14, so the maximum possible count when
reported is 38 (i.e.,, 24 + 14), for a maximum count stretch of
1.583. The maximum reported count stretch is 1.583.

Time-stretch LERT. Figure 1b shows the time-stretch LERT
meets the time-stretch requirements. The maximum reported
time stretch is 1.59 which is smaller than the maximum
allowable time stretch of 2. Figure 1c shows the distribution
of empirical time stretches with changing « values. The time
stretch of any reported element is always smaller than the
maximum allowable time stretch. As the number of age bits
increases, o decreases and the time stretch decreases.

9.3 Robustness with input distributions

Figure 2a shows the robustness of empirical time stretch
(ETS) on four input distributions other than the Firehose
power-law distribution. The ETS is less than 2, the theoretical
limit of the data structure for all input distributions.

9.4 Effect of deamortization/threading

Figures 1a and 1b show the effect of deamortization and
multi-threading on timeliness in the count-stretch LERT and
time-stretch LERT.

Using 8 cones instead of one does not change the timeli-
ness of any reported item. This is because the distribution
of items in the stream is random (see Section 9.1) and we
use a uniform-random hash function to distribute items to
each cone. Each cone gets a similar number of items and the
cones perform shuffle-merges in sync (refer to Section 7).

Running the count-stretch and time-stretch LERT with 8
cones and 8 threads does affect timeliness of reported items.
Some items are reported later than the theoretical upper
bound. The reported maximum time- and count-stretch is >
5. This is because each thread inserts items into a local buffer
when it can not immediately acquire the cone lock. We empty
local buffers only when they are full. The maximum delay
happens when an item’s lifetime is similar to the time it takes
for a cone to incur a full flush involving all levels of the data
structure. Figure 3 shows the stretch of reported items and
their lifetime. The maximum-stretch items have a lifetime
~ 16M observations which is the number of observations it
takes for a cone to incur a full flush.

9.5 Effect of buffering

Figure 2b shows the empirical count stretch with three differ-
ent buffering strategies. In the first, we use buffers without
any constraint on the count of a key inside a buffer. We dump
the buffer into the main data structure when it is full. In the
second, we constrain the maximum count a key can have in
a buffer to T/P (for T = 24 and P = 8 the max count is 3). In
the third, we don’t use buffers. Threads try to acquire the
lock on the cone and wait if the lock is not available.

The empirical stretch is smallest without buffers. However,
not using the buffers increases contention among threads
and reduces insertion throughput. Using the buffers is 2.5%
faster compared to not using the buffer.

9.6 I/0 performance and throughput

Figure 4 shows the total amount of I/O performed by
the count-stretch, time-stretch and immediate-report LERT
while ingesting a stream. For all data structures, the total I/O
calculated and total I/O measured using iotop is similar.
The count-stretch LERT does the least I/O because it per-
forms the fewest shuffle-merges. The I/O for the time-stretch
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to-RAM-ratio: 16, 32, and 64. For (c): Same as Figure 1a.

LERT grows by a factor of two as the number of bins in-
creases, as predicted by the theory. The I/O for immediate-
report LERT is similar to that of the time-stretch LERT with
stretch 2. This shows that when item counts follow a power-
law distribution, we can achieve immediate reporting with
the same amount of I/O as with a time stretch of 2.

Insertion throughput. Figure 5a shows insertion through-
put using the same configuration and stream as the total-
I/O experiments. The count-stretch LERT has the high-
est throughput because it performs the fewest I/Os. The
immediate-report LERT has lower throughput because it per-
forms extra random point queries. The time-stretch LERT
throughput decreases as we add bins and decrease the stretch.

The Misra-Gries data structure throughput is 2.2 Mil-
lion ops/sec in-memory. This acts a baseline for in-memory
insertion throughput. The in-memory MG data structure is
only twice as fast as the on-disk count-stretch LERT.

9.7 Instantaneous throughput

Figure 5¢ shows the instantaneous throughput of the count-
stretch LERT. De-amortization and multi-threading improve
both average throughput and throughput variance. With one
thread and one cone, the data structure periodically stops
processing inputs to perform flushes, causing throughput to
crash to 0. With 1024 cones and four threads, the system has
much smoother throughput, never stops processing inputs,
and has about 3x greater average throughput.

9.8 Scaling with multiple threads

Figure 5b shows count-stretch LERT throughput with in-
creasing number of threads. The scalability will follow for
other variants since they all have the same insertion and

SSD access pattern. The insertion throughput increases with
thread count. We used three values of DatasetSize-to-RAM-
ratio: 16, 32, and 64. All have similar scalability curves.

10 CONCLUSION

This work bridges external-memory and streaming algo-
rithms. By taking advantage of external memory, we can
solve timely event detection problems at a level of precision
that is not possible in the streaming model, and with little
or no sacrifice in terms of the timeliness of reports.

Even though streaming algorithms, such as Misra-Gries,
were developed for a space-constrained setting, we show that
they can be made efficient in the external-memory setting,
where storage is plentiful but accessing the data is expensive.
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