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Three Topics

1. H Diffusion in PdH

2. Molecular Dynamics for MgH_

3. “Molecular” Dynamics for Mg-B-H



The First Topics

H Diffusion in PdH_



Statistically Averaged Diffusivities

* Coordinates of N hydrogen atoms (i=1, 2, ..., N)att=jAt,j=1, 2, ..., m (m = t,,p/At) are ai(t) .

* m+1-k displacement measurements for hydrogen atom i over a kAt period: Aa; ;(kAt) = oy(jAt-
At+kAt) - au(jAt-At) where j=1, 2, ..., m+1-k.

* This allows calculations of hydrogen mean square displacement MSD

* Mean square displacement is fitted to diffusivitiesb
N m+l- 120 F dt=0.0005 ps, At=11.0 ps, typ =440 ns o
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(b) hydrogen composition x = 0.7
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 Arrhenius plots account
for all diffusion pathways

1 MD results fall exactly on
lines (~ 0 errors)

(J The MD does not have
time and length scale
issues

] Hydrogenation leads to
non-linear Arrhenius
behavior



Table 1.

Measured and predicted activation energy Q and pre-exponential
factor Do as a function of phase and temperature.
Authors Phase T(X) |Q(eV) | Do (A%ps)
Arons et al [2,3] B 110-300 | 0.210 -
50-100 | 0.150 ---
Cornell et al [4] B 195-300 | 0.228
100-195 | 0.100 ---
Mazzolai et al [5] B 250-270 | 0.210
130-200 | 0.130 ---
Burger et al [6] B 230-320 | 0.210
180-230 | 0.060 ---
Torrey et al [7] B >220 0.240 -—-
<220 0.080 ---
Beg et al [15] B 293-473 | 0.146 | 1.10x10"
Seymour et al [16] B 296-413 | 0.229 | 9.30x10°
Davis et al [17] B 300-400 | 0.228 | 3.00x10!
Majorowski et al [ 18] B 208-338 | 0.287 | 1.13x10?
Bucur [19] o 278-323 | 0.054 | 2.48x10!
Holleck [20] a 533-913 | 0.055 | 2.94x10!
Simmons et al [21] o 273-650 | 0.062 | 6.10x10!
Maeda et al [22] o 773-1373 | 0.215 | 2.80x10!
Hara et al [23] o 523-773 | 0.219 | 2.40x10!
Pietrzak et al [24,25] o 273-473 | 0.230 | 2.20x10!
Yoshihara et al [26] a 273-350 | 0.231 | 2.91x10!
Zuchner [27] a 200-700 | 0.250 | 5.25x10!
MD fitted Eqgs. o 300-600 | ~0.15 | ~3.5x10!
(1) -(5) B (x=0.8) | 600 ~0.20 | ~7.8x10!
B (x=0.8) 300 ~0.14 | ~1.7x10!

X. W. Zhou, T. W. Heo, B. C. Wood, V. Stavila, S. Kang, and

M. D. Allendorf, Scr. Mater., 149, 103 (2018)
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The Second Topic

Molecular Dynamics for MgH_



One Criterion to Emphasize for Potential

1. Must ensure stable simulations of the phase being studied
2. This phase therefore has a lower energy than any other
configurations

3. Any other configurations include infinite number of
amorphous structures

4. Very difficult to achieve because cannot possibly include
infinite number of amorphous phases in the fitting

5. Crystalline growth simulation is sufficient to validate that a
potential satisfies this criterion
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The Third Topic

“Molecular” Dynamics for Mg-B-H



Mg-B-H Potential - Motivation

Hydrogen is an efficient and clean energy carrier

Solid state hydrogen storage materials draw interests due to
an ideal combination of volumetric and gravimetric densities

HyMARC (Hydrogen Materials Advanced Research
Consortium) aims to develop an understanding on how to
improve (de)hydrogenation kinetics

Magnesium boron hydrides are one type of materials being
explored within HYMARC



Perspective

Example Molecules

1 LLNL is developing a phase field

model for (de)hydrogenation
kinetics of MgBxHy

1 The phase fiecld model requires
thermodynamic and kinetic
properties as inputs

1 Many molecules may occur, and
many exhibit amorphous structures v
= challenging for DFT studies

d We will use MD to fill the gaps

[ByoH ol ™




Molecular Dynamics Challenges

1 Traditional MD can only simulate atoms, but we have molecules

J We will develop an innovative “molecular” dynamics method

> An intra-molecule force field to stabilize molecules

» An inter-molecule force field to capture energetics
» MD must track which atom 1s in which molecule

1 As a first trial, we parameterize force fields DFT energies between
two 1solated molecules

 Five molecules (Mg, H,, MgH,, BH,, B,,H,,) are considered



36 Inter-Molecule Interactions

JdFora Mg + H, + BH, + MgH, + B,,H,, model, there
are 36 inter-molecule interactions:

Mg-Mg(Mg-Mg), Mg-H,(Mg-H), Mg-BH,(Mg-B,Mg-H),
Mg-MgH,(Mg-Mg,Mg-H), Mg-B,,H,,(Mg-B,Mg-H), H,-
H,(H-H), H,-BH,(H-B,H-H), H,-MgH,(H-Mg,H-H), H, -
B,,H,, (H-B,H-H), BH,-BH,(B-B,B-H,H-H), BH,-MgH, (B-
Mg, B-H,H-Mg H-H), BH,-B,,H,,(B-B,B-H,H-B,H-H),
MgH,-MgH,(Mg-Mg,Mg-H,H-H), MgH,-B,H,,(Mg-B,Mg-
H,H-B,H-H),B,,H,,-B,,H,,(B-B,B-H,H-H)



MD Implementation

P ] Atom-based MD does not
3%3 know molecules

 Assign different atom
types for different
molecules

 Create mapping tables
between atom types and
pair interactions




b4

“Molecular” Dynamics Simulation

MgB H,




SUMMARIES

JdMD effectively determine H diffusivities
in PdH,

d Our Mg-H bond order potential can
simulate MgH, growth

Jd“Molecular” dynamics simulations of Mg-
B-H systems are possible



