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Three Topics

1. H Diffusion in Pd1-1),

2. Molecular Dynamics for MgII„

3. "Molecular" Dynamics for Mg-B-H



The First Topics

H Diffusion in PdH),



''tatistically Averaged Diffusiv. 44/
• Coordinates of N hydrogen atoms (i = 1, 2, ..., N) at t = jAt, j = 1, 2, ..., m (m = tmD/At) are ai(t) .

• m+1-k displacement measurements for hydrogen atom i over a kAt period: AN(kAt) = cci(jAt-
At+kAt) - sai(jAt-At) where j = 1, 2, ..., m+1-k.

• This allows calculations of hydrogen mean square displacement

• Mean square displacement is fitted to diffusivities D
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tMD = 2.2 ns 
PdHx: Bulk Diffusion
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(b) hydrogen composition x = 0.7
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(d) hydrogen composition x = 0.9
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LI Arrhenius plots account
for all diffusion pathways

LI MD results fall exactly on
lines (,-, 0 errors)

LI The MD does not have
time and length scale
issues

LI Hydrogenation leads to
non-linear Arrhenius
behavior



Table I. Measured and predicted activation energy Q and pre-exponential
factor Do as a function of phase and tem erature.

Authors Phase T (K) Q (eV) Do (V/ps)
Arons et al [2,3] R 110-300 0.210 ---

50-100 0.150 ---

Cornell et al [4] 13 195-300 0.228 ---

100-195 0.100 ---
Mazzolai et al [5] 0 250-270 0.210 ---

130-200 0.130 ---

Burger et al [6] R 230-320 0.210 ---
180-230 0.060 ---

Torrey et al [7] 13 >220 0.240 ---
<220 0.080 ---

Beg et al [15] 13 293-473 0.146 1.10x101

Seymour et al [16] 0 296-413 0.229 9.30x 10°

Davis et al [17] 13 300-400 0.228 3.00x101

Majorowski et al [18] i3 208-338 0.287 1.13 x 102

Bucur [19] a 278-323 0.054 2.48x 101

Holleck [20] a 533-913 0.055 2.94x101
Simmons et al [21] a 273-650 0.062 6.10x101

Maeda et al [22] a 773-1373 0.215 2.80x101

Hara et al [23] a 523-773 0.219 2.40x101

Pietrzak et al [24,25] a 273-473 0.230 2.20 x 101

Yoshihara et al [26] CC 273-350 0.231 2.91x 101

Zuchner [27] a 200-700 0.250 5.25x101
MD fitted Eqs.

(1) - (5)
a 300-600 —0.15 —3.5x 101

p (x=0.8) 600 —0.20 —7.8x 101

0 (x=0.8) 300 —0.14 —1.7x 101

X. W. Zhou, T. W. Heo, B. C. Wood, V. Stavila, S. Kang, and
M. D. Allendorf, Scr. Mater., 149, 103 (2018)

PdHx: Experimental Validation
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The Second Topic

Molecular Dynamics for MgH),



One Criterion to Emphasize for Potential

1. Must ensure stable simulations of the phase being studied
2. This phase therefore has a lower energy than any other

configurations
3. Any other configurations include infinite number of
amorphous structures

4. Very difficult to achieve because cannot possibly include
infinite number of amorphous phases in the fitting

5. Crystalline growth simulation is sufficient to validate that a
potential satisfies this criterion



Energy / volume trends of phases
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MgHx•• Transferability
Mg-hcp and MgH2-rutile growth simulations
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Mg1-1„: H Component
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The Third Topic

"Molecular" Dynamics for Mg-B-H



Mg-B-H Potential - Motivation

• Hydrogen is an efficient and clean energy carrier

• Solid state hydrogen storage materials draw interests due to

an ideal combination of volumetric and gravimetric densities

• HyMARC (Hydrogen Materials Advanced Research

Consortium) aims to develop an understanding on how to

improve (de)hydrogenation kinetics

• Magnesium boron hydrides are one type of materials being

explored within HyMARC



Perspective
Example Molecules

U LLNL is developing a phase field
model for (de)hydrogenation
kinetics of MgBxHy

U The phase field model requires
thermodynamic and kinetic
properties as inputs

U Many molecules may occur, and
many exhibit amorphous structures

challenging for DFT studies

U We will use MD to fill the gaps
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Molecular Dynamics Challenges
o Traditional MD can only simulate atoms, but we have molecules
O We will develop an innovative "molecular" dynamics method

> An intra-molecule force field to stabilize molecules

> An inter-molecule force field to capture energetics

> MD must track which atom is in which molecule

O As a first trial, we parameterize force fields DFT energies between
two isolated molecules

O Five molecules (Mg, H2, MgH2, BH4, B12H12) are considered



36 Inter-Molecule Interactions

CIFor a Mg + H2 + BH4 + MgH2 + B12H12 model, there
are 36 inter-molecule interactions:

Mg-Mg(Mg-Mg), Mg-H2(Mg-H), Mg-BH4(Mg-B,Mg-H),
Mg-MgH2(Mg-Mg,Mg-H), Mg-B12H12(Mg-B,Mg-H), H2-
H2(1-I-H), H2-BH4(1-1-B,H-H), H2-MgH2(1-I-Mg,H-H), H2-
B12H12 (H-B,H-H), BH4-BH4(13-B,B-H,H-H), BH4-MgH2(13-
Mg,B-H,H-Mg,H-H), BH4-B12H12(13-B,B-H,H-B,H-H),
MgH2-MgH2(Mg-Mg,Mg-H,H-H), MgH2-B12H12(Mg-B,Mg-
H,H-B,H-H),B12H12-B12H12(13-B,B-H,H-H)



MD Implementation

o Atom-based MD does not
know molecules

O Assign different atom
types for different
molecules

O Create mapping tables
between atom types and
pair interactions

43 c



MgB),Hy: "Molecular" Dynamics Simulation



SUMMARIES

❑ MD effectively determine H diffusivities
in P dHx

❑ Our Mg-H bond order potential can
simulate MgH2 growth

U"Molecular" dynamics simulations of Mg-
B-H systems are possible


