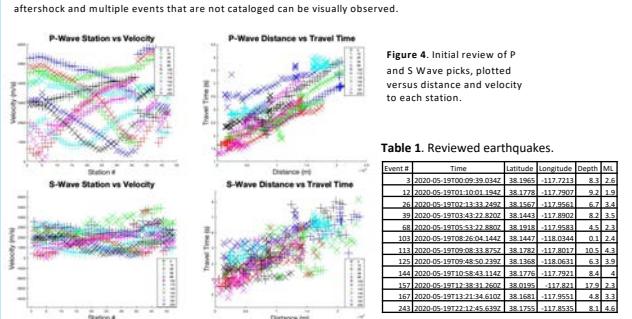
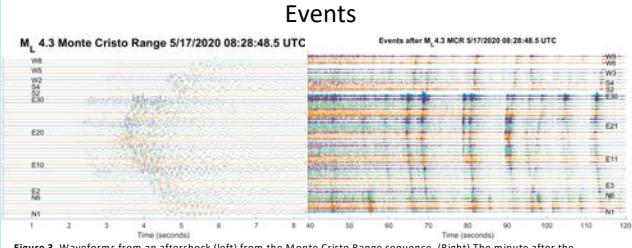
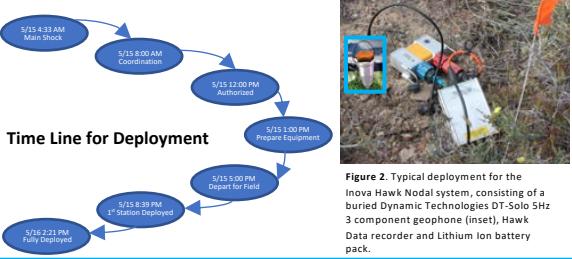
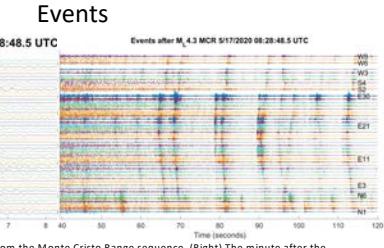


The Monte Cristo Range Mw 6.5 Nodal Geophone Rapid Deployment

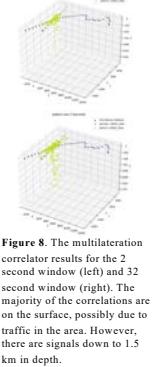



Cleat Zeiler¹, Kale McLin¹, Dan Champion¹, Michelle Scalise^{1,2}, Madison Sheridan^{1,3}, Robert White¹, Kenneth Smith², and Gabe Plank²

1 – Nevada National Security Site, 2 – University of Nevada, Reno, 3 – Texas A&M

Abstract



The Nevada National Security Site deployed 48 nodal geophones within 34 hours of the Monte Cristo Range (MCR) Mw 6.5 earthquake that occurred at 11:13 UTC May 15, 2020. The first geophone was planted within 16 hours of the main shock and a series of four deployments were conducted to maintain near continuous recording from May 15 – August 19, 2020. The systems were deployed along roads. The main line trending east-west for 15 km and a north-south line running 3 km along Highway 95 with approximately 500 m station spacing. The east-west line parallels a significant section of the ENE striking sinistral mainshock rupture. The systems recorded at 500 sps with orientation of the inline channel to the North and leveled vertically. Each deployment had fewer than two systems fail and collected a half a gigabyte of data, for a total of two terabytes of data over three months. Much of the energetic aftershock period was recorded on the dedicated nodal array near the main fault offsets of the MCR earthquakes. The main shock and subsequent large events were recorded by an additional nodal array that was already deployed at the Nevada National Security Site (NNSS) at ~200 km epicentral distance. These complementary data sets provide a unique opportunity to demonstrate the use of geophones for deployment and the recording of significant events. The initial review of data shows that for every initial cataloged event there are likely a dozen additional events that can be visually identified on the geophone data. We are developing a micro seismic localization algorithm that detects additional events in the subsurface that do not correspond to published events. We will continue to refine event locations and develop an improved velocity model for the event region.

Deployment


Acknowledgements

The nodal array would not have been possible without Jesse Bonner, and I would like to thank the second year funding to purchase the systems. Thanks Jerry and Tim Reeder all provided support to open the facility, on their day off, to make the deployment possible. The support and coordination of the deployment by the NNSS Administration was also crucial to make the deployment possible. The deployment was funded by Mission Support Test Services and the equipment was purchased under Contract No. DE-NA-22-NA-00001 with the U.S. Department of Energy National Nuclear Security Administration, for the office of Defense Nuclear Nonproliferation Research and Development (NA-22). DOE/NV/03624–1050

Conclusions

Data collected during these deployments will be a wealth of information as we continue to look at how to respond to significant events. As we look to rapidly deployable systems, having a coordination avenue, as well as, the equipment ready to go could provide a substantial savings in time. While the sixteen hours from event to first geophone plant is a typical response, we should be able to reduce the coordination time significantly. This leaves about a four hour equipment preparation and the time to transport to the epicenter, the primary controllers for response time. The initial hours after a major event are when a significant amount of the initial seismicity is generated. Comparing our visual observations to the reported events, the geophone network will be able to contribute a significant number of additional events to the locatable database. The multilateration analytic identified potential activity in the subsurface that did not correlate to known events. In addition, the technique demonstrated that longer duration signals may be generated. We will explore these signals to determine if a geophysical explanation can be established to identify the source and mechanism of these correlated events. This data set will provide multiple opportunities to discover new features in earthquake sequences, improve the local velocity model, identify smaller events, constrain the event depths, and develop subsurface imaging techniques.

