

Final Technical Report

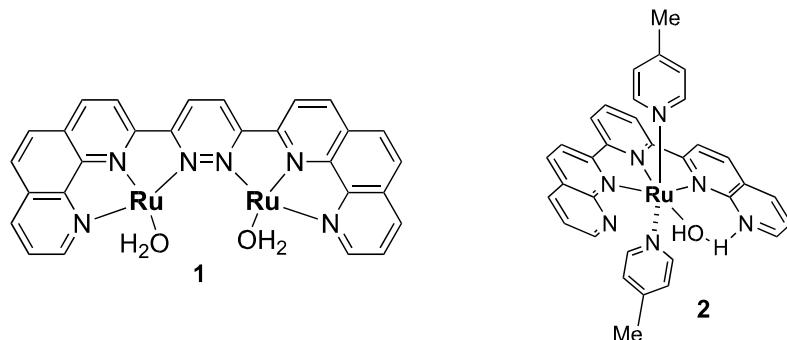
Department of Energy Award no. DE-FG02-07ER15888

Institution: University of Houston

Project Title: Further Studies on Photocatalytic Water Decomposition

Principal Investigator: Randolph Thummel

Time Period: July 2007 - December 2020

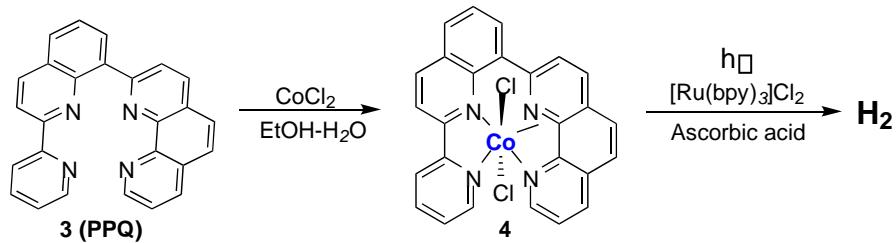

Final Report Award # DE-FG02-07ER15888 (3- 18-2021)

“Further Studies on Photocatalytic Water Decomposition”

Randolph Thummel (PI)

Department of Chemistry, University of Houston, Houston, TX 77204-5003

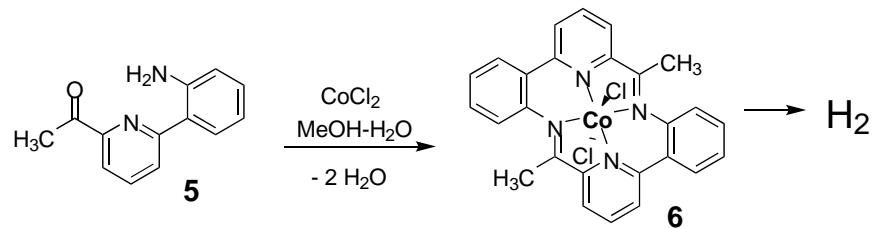
The initial ideas underlying this project were first developed during a sabbatical by RT as a Senior Fulbright Scholar in the laboratory of Professor Jean-Marie Lehn at the University of Strasbourg. Professor Lehn had recently been awarded the Nobel Prize for his work on Supramolecular Chemistry. The project, as it was originally proposed upon my return to Houston, involved using the excited state of an appropriate photocatalyst to bring about the bond-breaking (O-H) and bond making (O=O and H-H) steps involved in water decomposition. The original idea was to design a bridging ligand that would hold two Ru(II) centers such that the two Ru-O species would interact in a favorable manner (**1**). We discovered that when **1** was exposed to Ce(IV) as a sacrificial electron acceptor, tiny oxygen bubbles were readily observed. Even more remarkable, however, was the observation that a mononuclear complex such as **2** was also active as a water oxidation catalyst. This simple observation opened the flood gates for the development of a whole new approach to catalyst design. The so-called “nucleophilic attack” mechanism was proposed. It was suggested that Ru(IV)=O was sufficiently electrophilic to be attacked by water leading to formation of the critical O-O bond.



We discovered that photochemically generated Ru(III) could also serve as an electron acceptor and thus we were able to use light to initiate photooxidation of a metal bound water molecule. Unfortunately a stoichiometric electron acceptor was still required.

A single crystal X-ray analysis of **2** revealed an intramolecular N-H bond involving a non-coordinated nitrogen on the 1,8-naphthyridine nucleus. This observation suggested the possibility of intramolecular assistance to the O-H bond cleavage. We are currently considering

the possible role of an internal base to assist in the deprotonation step. In particular we are considering the likelihood of a seven-coordinate trigonal bipyramidal Ru species. There is precedent for such species.


A persistent problem associated with our approach to ligand design is the necessity for a stoichiometric oxidizing agent (Ce(IV)). This requirement precluded the development of a truly catalytic species. The obvious solution is that we need to make oxygen and hydrogen concurrently. By comparison with the oxidation process, water reduction should be much simpler. It must involve the elementary process of proton reduction. A variety of transition metals have been explored in this regard. One of the more active systems involves Co(II). Co(II) complexes prefer a square planar geometry with an internal bite angle of about 90°. We were able to make a slight variation in our polypyridyl ligands to provide a more square-planar environment. This was accomplished by replacing a pyridyl binding unit with a quinoline-2,8diyl, effectively increasing the size of one chelate ring from five atoms to six. We named the parent member of this family PPQ (pyridyl-phenanthrolinyl-quinoline). The resulting complex with Co(II) uses $[\text{Ru}(\text{bpy})_3]^{2+}$ as a photosensitizer and ascorbic acid as a sacrificial electron donor to reduce water and give hydrogen. Interestingly, the same ligand with Ru(II) is a good catalyst for water oxidation and also provides oxygen when Fe(II) is used as the active metal.

A critical factor in the development of an effective water decomposition catalyst involves a better understanding of the catalyst deactivation process. For example we have discovered that the central pyridazine ring in catalyst **1** may be oxidatively cleaved into two equivalent pieces and each of these can function as an effective catalyst. Since a secondary product may indeed be the active species, care must be taken in the use of strong sacrificial reagents.

We have discovered that an appropriate anilino-acetyl pyridine can cyclodimerize to form what is effectively a cyclotetrapyridine analog. The Co(II) ion acts as a template for the cyclodehydration that leads to **6**. No cyclization at all is observed in the absence of the templating metal. Since metal complexes of Co(II) are effective in water reduction, the method

allows for the direct formation of the catalytically active species without the need for an intermediate ligand synthesis step. This approach holds promise for self-assembly type chemistry as well as self-repair.

Publications 2004-2021 acknowledging DOE support (49)

"2,9-Di-(2'-pyridyl)-1,10-phenanthroline: a Tetradentate Ligand for Ru(II)" R. Zong and R. P. Thummel, *J. Am. Chem. Soc.* **2004**, 126, 10800-10801.

"Ru(II) Complexes of Di-[1,10]-phenanthrolinyl Diazines" D. Brown, R. Zong and R. P. Thummel, *Eur. J. Inorg. Chem.* **2004**, 3269-3272.

"The Design and Study of Bi[1,8]-naphthyridine Ligands as Potential Photooxidation Mediators in Ru(II) Polypyridyl Aqua Complexes" Zong, R.; Naud, F.; Segal, C.; Burke, J.; Wu, F.; Thummel, R. P. *Inorg. Chem.* **2004**, 43, 6195-6202.

"Enhanced Luminescence in a Pt(II) Complex Involving a Six-Membered Chelate Ring" Y.-Z. Hu, M. H. Wilson, R. Zong, C. Bonnefous, D. R. McMillin, and R. P. Thummel, *JCS Dalton Trans.* **2005**, 354-358.

"[1,10]-Phenanthrolin-2-yl Ketones and their Coordination Chemistry," Bark, T. G.; Thummel, R. P. *Inorg. Chem.* **2005**, 44, 8733-8739.

"2,2';9',2"-Terphenanthroline," Zong, R.; Thummel, R. P. *Inorg. Chem.* **2005**, 44, 5984-5986.

"A New Family of Ru Complexes for Water Oxidation," Zong, R.; Thummel, R. P. *J. Am. Chem. Soc.* **2005**, 127, 12802-12803.

"Synthetic Approaches to Polypyridyl Bridging Ligands with Proximal Multidentate Binding Sites," Zong, R.; Wang, D.; Hammitt, R.; Thummel, R. P. *J. Org. Chem.* **2006**, 71, 1676-175.

"Ru(II) Complexes of Tetradentate Ligands Related to 2,9-Di(pyrid-2'-yl)-1,10-phenanthroline," Zhang, G.; Zong, R.; Tseng, H.-W.; Thummel, R. P. *Inorg. Chem.* **2008**, 47, 990-998.

"Enhanced Metal Ion Selectivity of 2,9-Di-(pyrid-2-yl)-1,10-phenanthroline and Its Use as a Fluorescent Sensor for Cadmium(II)" Cockrell, G. M.; Zhang, G.; VanDerveer, D. G.; Thummel, R. P.; Hancock, R. D. *J. Am. Chem. Soc.* **2008**, 130, 1420-1430.

"Direct Accesss to 4-Carboxy-1,8-naphthyridines and Related Compounds through PfitzingerType Chemistry," Zong, R.; Zhou, H.; Thummel, R. P. *J. Org. Chem.* **2008**, 73, 4334-4337.

"The Preparation and Study of a Family of Dinuclear Ru(II) Complexes which Catalyze the Decomposition of Water," Deng, Z.; Tseng, H.-W.; Zong, R.; Thummel, R. *Inorg. Chem.* **2008**, 47, 1835-1848.

"Mononuclear Ru(II) Complexes That Catalyze Water Oxidation," Tseng, H.-W.; Zong, R.; Muckerman, J. T.; Thummel, R. *Inorg. Chem.* **2008**, 47, 11763-11773.

"1,5-Naphthyridine As a New Linker for the Construction of Bridging Ligands and Their

Corresponding Ru(II) Complexes," Singh, A. N.; Thummel, R. P. *Inorg. Chem.* **2009**, *48*, 6459-6470.

"Photobiological Activity of Ru(II)-Dyads Based on (Pyren-1-yl)ethynyl Derivatives of 1,10-Phenanthroline," Monro, S.; Scott, J.; Chouai, A.; Lincoln, R.; Zong, R.; Thummel, R. P.; McFarland, S. A. *Inorg. Chem.* **2010**, *49*, 2889-2900.

"Eu(III) Complexes of Tetradeятate Ligands Related to 2,9-Di(pyrid-2'-yl)-1,10-phenanthroline and 2,2'-Bi-1,10-phenanthroline," Zong, R.; Zhang, G.; Eliseeva, S. V.; Bünzli, J.-C. G.; Thummel, R. P. *Inorg. Chem.* **2010**, *49*, 4657-4664.

"Differences of pH-Dependent Mechanisms on Generation of Hydride Donors using Ru(II) Complexes Containing Geometric Isomers of NAD⁺ Model Ligands: NMR and Radiolysis Studies in Aqueous Solution," Cohen, B. W.; Polyansky, D. E.; Zong, R.; Zhou, H.; Ouk, T.; Cabelli, D.; Muckerman, J. T.; Thummel, R. P.; Fujita, E. *Inorg. Chem.* **2010**, *49*, 8034-8044.

"Water Oxidation by a Mononuclear Ruthenium Catalyst: Characterization of the Intermediates," Polyansky, D. E.; Muckerman, J. T.; Rochford, J.; Zong, R.; Thummel, R. P.; Fujita, E. *J. Am. Chem. Soc.* **2011**, *133*, 14649-14665.

"Effects of a Proximal Base on Water Oxidation and Proton Reduction Catalyzed by Geometric Isomers of [Ru(tpy)(pynap)(OH₂)]²⁺," Boyer, J. L.; Polyansky, D. E.; Szalda, D. J.; Zong, R.; Thummel, R. P.; Fujita, E. *Angew. Chem. Int. Ed.* **2011**, *50*, 12600-12604.

"Ruthenium(II)-Cored Polythiophene Dendrimers," Deng, S.; Krueger, G.; Taranekar, P.; Sriwichai, S.; Zong, R.; Thummel, R. P.; Advincula R. C. *Chem Mater.* **2011**, *23*, 3302-3311.

"Polydentate Analogs of 8-Hydroxyquinoline and their Complexes with Ruthenium," El Ojaimi, M.; Thummel, R. P. *Inorg. Chem.* **2011**, *50*, 10966-10973.

"Further Observations on Water Oxidation Catalyzed by Mononuclear Ru(II) Complexes," Kaveevivitchai, N.; Zong, R.; Tseng, H.-W.; Chitta, R.; Thummel, P. *Inorg. Chem.* **2012**, *51*, 2930-2939.

"*Trans*-[Ru^{II}(dpp)Cl₂]: A Convenient Reagent for the Preparation of Heteroleptic Ru(dpp) Complexes where dpp is 2,9-Di-(pyrid-2'-yl)-1,10-phenanthroline," Zong, R.; Wang, B. Thummel, R. P. *Inorg. Chem.* **2012**, *51*, 3179-3185.

"A Molecular Light-driven Water Oxidation Catalyst," Kaveevivitchai, N.; Chitta, R.; Zong, R.; El Ojaimi, M.; Thummel, R. P. *J. Am. Chem. Soc.* **2012**, *134*, 10721-10724.

"Water Oxidation with Mononuclear Ruthenium (II) Polypyridine Complexes Involving a Direct Ru^{IV}=O Pathway in Neutral and Alkaline Media," Badiei, Y.; Polyansky, D. E.; Muckerman, J. T.; Szalda, D. J.; Haberdar, R.; Zong, R.; Thummel, R. P.; Fujita, E. *Inorg. Chem.* **2013**, *52*, 8845-8850.

“Enabling Light-Driven Water Oxidation via a Low-Energy Ru^{IV}=O Intermediate,” Lewandowska-Andralojc, A.; Polyansky, D. E.; Zong, R.; Thummel, R. P.; Fujita, E. *Phys. Chem. Chem. Phys.* **2013**, *15*, 14058-14068.

“A Ru(II) Bis-terpyridine-like Complex that Catalyzes Water Oxidation: the influence of Steric Strain,” Kaveevivitchai, N.; Kohler, L.; Zong, R.; El Ojaimi, M.; Mehta, N.; Thummel, R. P. *Inorg. Chem.* **2013**, *52*, 10615-10622.

“Component Analysis of Dyads Designed for Light-Driven Water Oxidation,” Kohler, L.; Kaveevivitchai, N.; Zong, R.; Thummel, R. P. *Inorg. Chem.* **2014**, *53*, 912-921.

“Visible Light-driven Hydrogen Evolution from Water Catalyzed by A Molecular Cobalt Complex,” Tong, L.; Zong, R.; Thummel, R. P. *J. Am. Chem. Soc.* **2014**, *136*, 4881-4884.

“New Water Oxidation Chemistry of Seven-Coordinate Ruthenium Complexes with Tetradeinate Polypyridine-type Ligands,” Muckerman, J. T.; Kowalczyk, M.; Badie, Y.; Polyansky, D. E.; Yang, L.; Concepcion, J. J.; Zong, R.; Thummel, R.; Fujita, E. *Inorg. Chem.* **2014**, *53*, 69046913.

“Ultrafast Structural Dynamics of Cu(I)-Bicinchoninic Acid and Their Implications for Solar Energy Applications,” Fransted, K.; Jackson, N.; Zong, R.; Mara, M.; Huang, J.; Harpham, M.; Shelby, M.; Thummel, R.; Chen, L. X. *J. Phys. Chem. A* **2014**, *118*, 10497-10506.

“Light-driven Proton Reduction in Aqueous Medium Catalyzed by a Family of Cobalt Complexes with Tetradeinate Polypyridine-type Ligands,” Tong, L.; Kopecky, A.; Zong, R.; Gagnon, K. J.; Ahlquist, M. S. G.; Thummel, R. P. *Inorganic Chemistry*, **2015**, *54*, 7873-7884.

“Ruthenium Catalysts for Water Oxidation Involving Tetradeinate Polypyridine-type Ligands,” Tong, L.; Zong, R.; Zhou, R.; Kaveevivitchai, N.; Zhang, G.; Thummel, R. P. *Faraday Discussions*, **2015**, *185*, 87-104.

“Iron Complexes of Square Planar Tetradeinate Polypyridyl-type Ligands as Catalysts for Water Oxidation,” Wickramasinghe, L. D.; Zhou, R.; Zong, R.; Vo, P.; Gagnon, K.; Thummel, R. P. *J. Am. Chem. Soc.* **2015**, *137*, 13260-13263.

“Mononuclear Ruthenium Polypyridine Complexes that Catalyze Water Oxidation,” Tong, L.; Thummel, R. P. *Chemical Science*, **2016**, *7*, 6591-6603.

“Uncovering the Role of Oxygen Atom Transfer in Ru-based Catalytic Water Oxidation,” Moonshiram, D.; Pineda-Galvan, Y. : Erdman, D.; Palenik, M.; Zong, R.; Thummel, R. P.; Pushkar, Y. *J. Am. Chem. Soc.* **2016**, *138*, 15605-15616.

“The synthesis, photophysical properties and water oxidation studies of a series of novel photosensitizer-catalyst assemblies,” Nair, N. V.; Zhou, R.; Thummel, R. P. *Inorg. Chim. Acta* **2017**, *454*, 27-39.

“A ruthenium water oxidation catalyst containing a bipyridine glycoluril ligand,” Mane, V. S.; Kumbhar, A. S.; Thummel, R. P. *Dalton Trans.* **2017**, *46*, 12901-12907.

“Photochemical and Photobiological Activity of Ru(II) Homoleptic and Heteroleptic Complexes Containing Methylated Bipyridyl-type Ligands,” Kohler, L.; Nease, L.; Vo, P.; Garafolo, J.; Heidary, D. K.; Thummel, R. P.; Glazer, E. C. *Inorg. Chem.* **2017**, *56*, 12214-12223.

“Evidence for Oxidative Decay of a Ru-Bound Ligand During Catalyzed Water Oxidation,” Kagalwala, H.; Tong, L.; Zong, R.; Kohler, L.; Ahlquist, M. S. G.; Fan, T.; Gagnon, K. J.; Thummel, R. P. *ACS Catal.* **2017**, *7*, 2607-2615.

“Combined Effect of Hydrogen Bonding Interactions and Freezing of Rotameric Equilibrium on the Enhancement of Photostability,” Golec, B.; Nawara, K.; Gorski, A.; Thummel, R. P.; Herbich, J.; Waluk, J. *ChemPhysChem*, **2018**, *20*, 13306-13315.

“Transition Metal Complexes and Photodynamic Therapy from a Tumor-Centered Approach: Challenges, Opportunities, and Highlights from the Development of TLD1433,” Monro, S.; Colon, K. L.; Yin, H.; Roque, III, J.; Konda, P.; Gujar, S.; Thummel, R. P.; Lilge, L.; Cameron, C. G.; McFarland, S. A. *Chem. Rev.* **2019**, *119*, 797-828.

“Early photophysical events of a ruthenium(II) molecular dyad capable of performing photochemical water oxidation and of its model compounds,” Nastasi, F.; Santoro, A.; Serroni, S.; Campagna, S.; Kaveevivitchai, N.; Thummel, R. P. *Photochem. Photobiol. Sci.* **2019**, *18*, 2164-2173.

“Photoinduced oxidation of an indole derivative: 2-(1'H-indol-2'-yl)-[1,5]naphthyridine,” Golec, B.; Nawara, K.; Thummel, R. P.; Waluk, J. *Photochem. Photobiol. Sci.* **2019**, *18*, 2225-2231.

“Detection of the site protected 7-coordinate Ru^{V=O} species and its chemical reactivity to enable catalytic water oxidation,” Pineda-Galvan, Y.; Ravari, A.K.; Shmakov, S.; Lifshits, L.; Kaveevivitchai, N.; Thummel, R. P.; Pushkar, Y. *Journal of Catalysis*, **2019**, *375*, 1-7.

“First-row transition metal polypyridine complexes that catalyze proton to hydrogen reduction,” Tong, L.; Duan, L.; Zhou, A.; Thummel, R. P. *Coord. Chem. Revs.* **2019**, *402*.

“Near-infrared absorbing Ru(II) complexes act as immunoprotective photodynamic therapy (PDT)agents against aggressive melanoma” L. M. Lifshits, J. A. Roque III, P. Konda, S. Monro, H. D. Cole, D. von Dohle, S. Kim, G. Deep, R. P. Thummel, C. G. Cameron, S. Gujar, and S. A. McFarland, *Chem. Sci.*, **2020**, *11*, 11740-11762.

“Fluorescence and Metal-Binding Properties of the Highly Preorganized Tetradentate Ligand 2,2'-Bi-1,10phenanthroline and Its Remarkable Affinity for Cadmium(II)” Tucker, L. E.; Littman, G. C.; Uritis, S.; Nugent, J. W.; Thummel, R. P.; Reibenspies, J. H.; Jones, S. B.; Lee, H.-S.; Hancock, R. D. *Inorg. Chem.*, **2020**, *59*, 13117-13127.

“Revisiting Dinuclear Ruthenium Water Oxidation Catalysts: Effect of Bridging Ligand Architecture on Catalytic Activity” Kagalwala, H. N.; Deshmukh, [M. S.](#); Ramasamy, E.; Nair, N.; Zhou, R.; Zong, R.; McCormik, L.; Chen, P.-A. and Thummel, R. P. *Inorg. Chem.* **2021**, *60*, 1806-1813.