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AbstraL
TID study on radiation-hardened power MOSFET was carried out as a function of

total dose, dose-rate, device state, and annealing time. Experimental data was

correlated to interface trap and oxide charge density using TCAD simulations.

Introduction
• Commercially available, radiation-hardened, planar, vertical double-diffused power

MOSFETs continue to be used pervasively for space and strategic applications.[1]

• Despite the engineered radiation hardness, these devices are susceptible to TID
effects. The primary degradation mode due to ionizing radiation exposure is a shift

in the threshold voltage (AVT).

• This work examines and compares post-irradiation test data and simulation results
for transistors exhibiting significant defect growth and annealing effects due to TID.

Experimental Details
Radiation Sources & Dosimetry: 

• GIF: Co-60 source at 250 rad(Si)/s with total measurement uncertainty < 10%

• LINAC: Nominal electron energy 20 MeV; dose-rate 1.1e10 and 1.1e11 rad(Si)/s

with pulse width ranging from 9 ids - 36 0. Measurement accuracy ±10%

Devices & Measurement: 

• International Rectifier's NMOS power MOSFETs IRHNJ53130 with "moderate" TID
hardness of 300 krad (Si).

• GIF: VGS = -6V (off-state), +6V (on-state), and OV  with VDS = 28V. Samples
accumulated TID from 100 krad to 1Mrad with intermittent I-V measurements

• LINAC: VGS = -6V (off-state), +6V (on-state) with VDS = 28V. Individual devices
exposed to 100, 200, 500, and 1000 krad(Si). [No dose accumulation as in GIF
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Fig. 1 Cross-sectional SEM of NMOS power MOSFET

device showing (A) junction depths, channel length and

(B) gate oxide thickness. (C) Junction doping and

placement used for TCAD calibration.
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Fig. 2 I D-VGS plot showing match between

experimental data (gray lines) and TCAD

simulation (red) on linear (left panel) and semi-

log (right panel) scales.

Results & Discussion
Time-Dependent Response:

• AVT shows Log(t) recovery rate irrespective of VG and dose-rate [2,3]

• Annealing rate [slope of AVT versus log(t)] is lower for -VGS condition than for +VGS
condition explained by tunneling of electrons from silicon into the oxide traps. [4]

• For -VGS charge centroid near gate; for +VGS charge centroid near silicon channel;

Capture cross-section decreases exponentially with distance from the channel

interface [5]
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• GIF VGS = -6V condition at 1 Mrad shows VT rebound of about 100 mV indicative of
buildup of radiation-induced acceptor-type trap states at the Si/Si02 interface.

• TCAD results of AVT as a function of interface trap density (Fig. 5, right panel)

indicate an interface trap density of 3-4x1010/cm2 for 100mV AVT. [6]
• AV-rfor LINAC samples (red curves, Fig. 4) is nearly the same up to 500 krad TID for

both VGS cases and needs further investigation.
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Fig. 5 TCAD results for AVT as a function of positive bulk oxide charge density for different charge

locations (left) and interface trap density for various energy locations in the band-gap (right).
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VGS = OV During Irradiation at GIF:

• VT recovery slightly above 200 krad and a

strong rebound for higher TID levels. AVT
rebound of 300 mV at 500 krad suggests an
interface trap density of f'd 8x1019cm2 (Fig.

5)

• At the 1 Mrad condition, a "'350mV
positive shift in I D-VGS curve attributable to
negative bulk oxide[7] charge and accounts
for nearly all of the rebound effect w.r.t the
500 krad sample

1x10102x10103x10104x10105x10106x1010 7x1010 8x10109x1010

Interface Trap Density (cm-2)

0.8

0.7

0.6

0.5

0.4
>

0.3

0.2

0.1

04
-0.1

-0.2

GIF •

VGs= °V /-

///////
♦

/////////

200 500 800
TID (krad)

10 1

10-1

1 0 - 2

centroid

Pre-rad
500 krad
1 Mrad

3 4 5
VG (V)

6

Fig. 6 AVT versus TID for VGS = OV sample
irradiated at GIF (left panel), and corresponding

I D-VGS measurements (right panel).

Conclusions & Future Work
• RT annealing indicate AVT recovery rate of NMOS power MOSFET devices linear

case.]

• Pre- and post-irradiation I D-VGS and ID-VD sweeps using Keysight B1505A
parametric analyzer

Simulation Set Up
• 2D TCAD simulations of power MOSFET devices were performed using CHARON.

• A normal-environment device calibration was performed by modifying junction
doping and its placement, SD parasitic resistance, mobility, and saturation velocity
parameters
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Fig. 3 (Left) AVT as a function of post-irradiation annealing time; devices were irradiated at
(Right) annealing rate as a function of TID for VGS = +6 and -6V.

Threshold Voltage v/s TID Response:

• For a given VGS, max. AVT for GIF devices is
half compared to that for LINAC devices. This

is due to longer exposure time (low dose-
rate) and longer measurement delay at GIF
facility leading to longer sample annealing

time.

• GIF data as a function of TID reveals larger

AVT for +VGS conditions relative to the -VGS
condition. This is related to oxide charge
centroid location (Fig. 5, left panel).
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• For LINAC samples, however, the AVT magnitudes were the same (up to 500 krad
TID) irrespective of gate bias during exposure and require further
verification/assessment
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Fig. 4 AVT vs. TID for LINAC and GIF samples
with VGS = -6V (left panel) and VGS = +6V (right

panel) during irradiation.

• GIF VGS=OV sample exhibited strong VT rebound for TID > 200 krad. Post-TID I D-VGS

characterization reveals formation of acceptor-type interface traps and formation
of negative bulk oxide charge.
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