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Abstract (A ( charel BXpemen: — | BEREE * GIF Vg4 = -6V condition at 1 Mrad shows V; rebound of about 100 mV indicative of
. : : N+S 2.4-3.0um - . buildup of radiation-induced acceptor-type trap states at the Si/SiO2 interface.
TID study on radiation-hardened power MOSFET was carried out as a function of 0z (765015 ptype) 10} P "PEOTTHYPE Hab  Si/Si .
: . . . ' * TCAD results of AV; as a function of interface trap density (Fig. 5, right panel)
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 Despite the engineered radiation hardness, these devices are susceptible to TID , , . . | 0.15
. i . o ) ] Fig. 1 Cross-sectional SEM of NMOS power MOSFET Fig. 2 I,—Vs plot showing match between 0.8
effects. The primary degradation mode due to ionizing radiation exposure is a shift  jayice showing (A) junction depths, channel length and ~ experimental data (gray lines) and TCAD N Centrold = 757 B ot
in the threshold voltage (AV;). (B) gate oxide thickness. (C) Junction doping and simulation (red) on linear (left panel) and semi- | centroid = >nm —9— 0051
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* This work examines and compares post-irradiation test data and simulation results T xide Charce Densty (cn) Interface Trap Density (cm )
for transistors exhibiting significant defect growth and annealing effects due to TID. Results & DlSCUSSlOn Fig. 5 TCAD results for AV as a function of positive bulk oxide charge density for different charge centroid

locations (left) and interface trap density for various energy locations in the band-gap (right).
Time-Dependent Response:

V.. = 0V During Irradiation at GIF: e '
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Experlmental Details AV; shows Log(t) recovery rate irrespective of V. and dose-rate [2,3] . V- recovery slightly above 200 krad and a Z; Ves=OV /] ] i
Radiation Sources & Dosimetry: * Annealing rate [slope of AV versus log(t)] is lower for -V condition than for +Vg, strong rebound for higher TID levels. AV, > 7T
oy e . . oy . . 0.4} /
. GIF: Co-60 source at 250 rad(Si)/s with total measurement uncertainty < 10% condition explained by tunneling of electrons from silicon into the oxide traps. [4] rebound of 300 mV at 500 krad suggests an s
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_ _ * For -V, charge centroid near gate; for +V. charge centroid near silicon channel; interface trap density of ~ 8x10'°/cm? (Fig. 02}

*  LINAC: Nominal electron energy 20 MeV; dose-rate 1.1e10 and 1.1el1 rad(Si)/s Capture'cross—section decreases exponentially with distance from the channel 5) 1l

with pulse width ranging from 9 us — 36 us. Measurement accuracy £10% : £ . WA
interface [5] e At the 1 Mrad condition, a ~350mV 010,/
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* International Rectifier’s NMOS power MOSFETs IRHNJ53130 with “moderate” TID | LT negative bulk oxide[7] charge and accounts Fig. 6 AVy versus TID for Vg = OV sample
hardness of 300 krad (Si). ’ T o 1 ' for nearly all of the rebound effect w.r.t the irradiated at GIF (left panel), and corresponding

<-02| T < 08 gt | 500 krad sample |,—Vss measurements (right panel).

* GIF: Vg, = -6V (off-state), +6V (on-state), and OV with Vo = 28V. Samples O £ " peiepeatain
accumulated TID from 100 krad to 1Mrad with intermittent I-V measurements B e R £ A7 e | . lusi 2 Fut Work
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* LINAC: Vi = -6V (off-state), +6V (on-state) with V. = 28V. Individual devices W AVy = 0.1275Log(y) - 15552 X ™ porepeonparin |
exposed to 100, 200, 500, and 1000 krad(Si). [No dose accumulation as in GIF I R R i N S T O T * __RT annealing indicate AV; recovery rate of NMOS power MOSFET devices linear
case.] 1000 e — LI e e e e e with TID up to 1 Mrad, independent of dose rate. '

* Pre- and post-irradiation 15—V, and 15V, sweeps using Keysight B1505A Fig. 3 (Left) AV, as a function of post-irradiation annealing time; devices were irradiated at V. = 6V. * For Vg # 0 GIF samples, AV versus TID trends consistent with the TCAD results for

parametric analyzer (Right) annealing rate as a function of TID for Vg, = +6 and -6V. various charge-centroid locations and acceptor-type interface traps
Threshold Voltage v/s TID Response: ——— e For LINAC sam i
. . ples, however, the AV; magnitudes were the same (up to 500 krad
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Simulation Set Up +  For a given Vg5, max. AV, for GIF devices is o e _ A _ TID) irrespective of gate bias during exposure and require further
e 2D TCAD simulations of power MOSFET devices were performed using CHARON. half compared to that for LINAC devices. This ‘a.\“*--"" \f‘\. verification/assessment
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« A normal-environment device calibration was performed by modifying junction - tdue tg Ilonger eXposure tlrrt\ed(llow (jIcO(SSIGF = 8 S | GIF V=0V sample exhibited strong V; rebound for TID > 200 krad. Post-TID 5=V
doping and its placement, SD parasitic resistance, mobility, and saturation velocity ra e) and fonger measurement delay at ¢ o\ JE T R A characterization reveals formation of acceptor-type interface traps and formation
oarameters facility leading to longer sample annealing = AT of negative bulk oxide charge.
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