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Abstract

Distribution system modelling and analysis with growing penetration of DER requires more detailed and accurate distribution
load modelling. Smart meters, DER monitors, and other distribution system sensors provide a new level of visibility to
distribution system loads and DERs. However, there is a limited understanding of how to efficiently leverage the new
information in distribution system load modelling. This paper presents the assessment of 11 methods to leverage the emerging
information for improved distribution system active and reactive power load modelling. The accuracy of these load modelling
methods is assessed both at the primary and the secondary distribution levels by analysing over 2.7 billion datapoints of
results of feeder node voltages and element phase currents obtained by performing annual quasi-static time series (QSTS)

simulations on EPRI’s Ckt5 feeder model.

1 Introduction

Accurate modelling of loads is fundamental for distribution
system modelling and many applications in distribution
operations and planning [1]. In particular, accurate load
modelling is important for DER hosting capacity studies and
system expansion planning. In static load modelling, loads
can be represented by their active and reactive power
information. With the advent of advanced metering
infrastructure (AMI), load information could be recorded at a
desired resolution, and loads could be represented with their
historical data. However, this process requires cleaning and
processing large data sets, without a clear understanding of
the accuracy gained in doing so. Moreover, many utilities
have still not deployed AMI, and many existing AMI systems
do not provide reactive power measurements. In general,
there is a limited understanding in how to efficiently utilize
the new level of visibility provided by AMI to reach an
appropriate trade-off between model accuracy and effort [2].

Alternatively, loads can be represented using fewer data
sources, such as substation SCADA, but with reduced spatial
or temporal granularity. Conventionally, loads have been
represented with load allocation, where a known feeder head
demand is allocated to individual loads based on their energy
consumption (kWh) or based on the rating of the service
transformer that supplies them [1], [3]. However, this
traditional load modelling provides limited spatial and
temporal detail [1], [4].

Prior research has investigated the value of improved spatial
and temporal active power information. Spatially, the
application of load’s historical information such as load kWh
or load classes instead of transformers kVA ratings was
investigated in [1], [3], [4], [5], [6], [7]. References [1], [4],
and [7] has shown that, from commonly used load allocation
methods, the best temporal load modelling accuracy is
achieved with monthly kWh allocation. The value of utilizing
SCADA measurement captured at multiple geographical
locations to increase grid visibility and load model accuracy
was also investigated in [1]. However, the reactive power
modelling was simplified, and the value of increased load
allocation frequency was not investigated.

This paper shows the analysis of 11 methods to leverage the
emerging information for improved distribution system active
and reactive power load modelling. The analysed methods
represent a range of approaches to leverage different levels of
visibility to distribution feeder load conditions. Annual quasi-
static time series (QSTS) simulations are performed with
OpenDSS [8] to quantify the accuracy of the different load
modelling methods in presenting the thermal loading and
nodal voltages. Additionally, the accuracy of the load
modelling methods was evaluated separately for primary and
secondary distribution circuit levels. The secondary circuit
accuracy evaluation provides fundamental insights for
emerging applications including studies of smart inverter
functions [9], and adaptation of demand response [10].
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2 Methodology

The overall approach of this study consists of two steps. In
the first step, QSTS simulation with the reference active and
reactive power AMI data set was performed to obtain
emulated measurements that were assumed to be available
according to the spatial and temporal granularity of each load
modelling method. In the second step, these emulated
measurements were utilized to model the loads according to
the methodology of each modelling method of interest. The
accuracy of the load modelling methods was then assessed by
evaluating the differences in voltages and element thermal
loading between their QSTS results and the QSTS results of
the reference data set.

2.1 Case Study Distribution Circuit Model

The accuracy of different load modelling methods was
analysed on the EPRI’s “Ckt5” feeder model that is
distributed with the OpenDSS software [8]. Ckt5 is a model
of a 5-km long real U.S. 12.47 kV distribution feeder that
supplies 1,379 residential loads through 591 MV/LV service
transformers. To facilitate easier comparison of the analysed
load modelling methods, controllers for switched-capacitor
banks were disabled. The circuit model has no voltage
regulators, or load tap changer (LTC). In the Reference case,
all loads were directly modelled with AMI active and reactive
power measurements with 15-min resolution obtained from a
U.S. utility. After integrating the Reference case AMI data,
the ratings of some service transformers and service lines
were increased to avoid threshold violations.

2.2 Load Modelling Methods

Table 1Error! Reference source not found. summarizes the
11 load modelling methods in four research areas that were
analysed to investigate the value of alternative spatial and
temporal information.

2.2.1 Common Load Modelling Practice: The first load
modelling method, referred as business-as-usual (Case BAU),
represents a load allocation practice commonly applied by
North American distribution utilities. With this method, load
allocation was performed for the feeder peak load and all
loads were uniformly scaled for other time instances based on
the feeder head load active power load profile. Results from

this method were used to benchmark the potential
improvement provided by other improved modelling
methods.

2.2.2 Value of Load Allocation Frequency: Performing load
allocation more frequently may offer better representation of
the spatial-temporal diversity of the feeder loads. This
research area investigated the value of increasing the load
allocation frequency from a single (peak load) time instance
(case BAU) to monthly peak load time instances (case
Monthly), and to every time instance (case Time-wise).

2.2.3 Value of Feeder Sensors: Conventional load modelling
methods are based on limited visibility [1], [4], where the
individual load consumption is traditionally assumed to

follow the shape of the load at the feeder head. This research
area assessed the value of the visibility provided by a single
feeder head sensor (case BAU), three added feeder sensors
(case BAU_S), service transformer measurements (case
BAU_TS), and AMI active power (but not reactive power)
data from every load (case Ref PAMI).

2.2.4 Value of Reactive Power Information: The load
modelling methods discussed above modelled the reactive
power consumption of loads based on system-wide annual
average power factor (PF). This research area investigated the
value of additional detail in reactive power modelling. To
analyse the value of AMI reactive power measurements, a
modified version of the Reference case was created by
assuming a full observability of active power from AMI but
where the reactive power of loads was modelled based on a
constant single feeder-wide power factor (case Ref PAMI).
To analyse the value of temporal feeder-level reactive power
measurements, a modified version of Case BAU was created
by adjusting all loads to follow the feeder PF at every time
step (case BAU_FPF). The value of spatial load-specific
reactive power information was analysed with cases
BAU_CYPF and Monthly_CYPF. Finally, the value of both
improved spatial and temporal reactive power information
was analysed with load-specific monthly average (case
Monthly_ CMPF).

Table 1 The 11 analysed load modelling methods with high,
medium, and low detail shown in green, yellow, and white
shading, respectively.

Load Active Power Load Reactive Power
Measurement Measurement SCADA tiaid
Case 5 3 P&I .
= s Resolution Type Resolution Type (_ e ,) Allocation
Abbreviation . . Visibility
(Temporal | (Spatial |(Temporal (Spatial Frequency
Level
Info) Info) Info) Info)
15-minute | Load-specific | 15-minute Load-specific
Reference N/A N/A
kW kW kvar kvar / /
Peak month | Load-specific Yearly System-wide
BAU KWh KWh average PF | _average PF Feederhead Peak month
Monthly | Load-specific Yearly System-wide
hl h
Monthly kWh kWh average PF average PF Feederhead pomts
" " Monthly | Load-specific Yearly System-wide i
Time- Feederhead 15 Mi
ime-wise kWh kWh average PF average PF eedernea "
Feederhead
Peak month | Load-specific Yearly System-wide
A
BAUS kWh kWh average PF average PF el Peak mortth
sensors
BAU TS Peak month | Load-specific Yearly System-wide A rel ook month
- kWh kWh average PF average PF
15-minute | Load-specific Yearly System-wide
Ref_PAMI kW kW average PF average PF N/A N/A
BAU FPF Peak month | Load-specific | 15-minute  Feederhead Fesderhead |Paak mowth
- kWh kWh kvar kvar
Peak month | Load-specific Yearly Load-specific
BAU_CYPF «Wh Wh average PE PF Feederhead Peak month
Monthly_CMPF Monthly | Load-specific | Monthly  Load-specific Feederhead Month
| kWh kWh average PF PF
Monthly | Load-specific Yearly Load-specific
Monthly_CYPF KWh KWh | average PF oF Feederhead =~ Month
3 Results

The results for nodal voltages and element thermal loadings
were grouped according to different levels of interest. Nodal
voltages were grouped into three categories: V_MV, V_LV1
and V_LV2. The first category (V_MV) is the analysis of the
medium-voltage level of the distribution system that
conventionally has been the focus of feeder-wide studies. The



CIRED 2020 Berlin Workshop

CIRED

Berlin, 4 - 5 June 2020

Paper 462

remaining categories (V_LV1 and V_LV2) are the service
transformer secondary, and customer interconnection points,
respectively. Three equipment categories were considered for
thermal loading analysis: medium-voltage level lines
(L_MV), low-voltage level service lines (L_LV), and
MV/LV service transformers (Xfmr).

As follows, the accuracy of the analysed load modelling
methods is quantified based on the accuracy of the lowest
voltage conditions and the highest thermal loadings, two
metrics that are of key interest for distribution planners. The
accuracy of the other load modelling methods was
summarized as the average (over all nodes and elements)
difference/error (of the minimum voltages and maximum
loadings) against the Reference case.

3.2 Accuracy of Common Load Modelling Practice

Table 2 shows the average error (over nodes and elements) of
the yearly minimum node voltages and maximum element
loadings against the Reference case.

Table 2 Average errors for the BAU case

Elements Error against reference
c V_mv [pu] +0.0025
s |V.v1 [pu] +0.0048
V_Iv2 [pu] +0.0062
< L_mv [%] -0.73
g L_Iv [%]
Xfmr [%]

As shown in Table 3, BAU captured the nodal voltages and
thermal loading at the primary distribution level (V_MV and
L_MYV) with a reasonable accuracy but quite inaccurately at
the low-voltage secondary circuit level. On average, BAU
overestimated the minimum load voltages by 0.006 pu, which
is equivalent to 12% of ANSI C84.1 service voltage range A
(£0.05pu). Note that this is the average (over all loads) and
the minimum voltage of some loads was considerably more
underestimated. BAU also underestimated, on average, the
maximum service transformer loading by 27% (and much
more for some service transformers). To summarize, BAU
was found to be satisfactorily accurate at the MV level but
unable to capture the extreme conditions at the secondary
circuit level.

3.3 Value of Load Allocation Frequency

Table 4 compares the errors for the three load allocation
frequency cases. As shown in Table 4, increased load
allocation frequency slightly improved the accuracy of load
modelling when compared with BAU. This improvement was
more noticeable in the low-voltage secondary circuits than at
the medium-voltage level. For instance, the average accuracy
improvement for minimum LV2 nodal voltage and maximum
Xfmr thermal loading was 0.0007 pu (1.5%) for time-wise
allocation, and 0.0002 pu (1.2%) with monthly allocation. In
this study, worst-case conditions for voltage and thermal
loading were found during the peak load month, and since the
other two alternative methods have similar load models
during the peak month, the accuracy of these methods was

not significantly improved. The differences could be more
noticeable for other metrics not analysed here.

Table 4 Average errors for load allocation frequency cases

Elements BAU Monthly |Time-wise
c V_mv [pu]| +0.0025 | +0.0025 +0.0019
S |V_Ivl[pu]| +0.0048 | +0.0047 +0.0040
V_Iv2 [pu]| +0.0062 | +0.0060 | +0.0053
x L_mv [%] -0.73 -0.70 -0.61
g L_lv [%]
Xfmr [%]

3.4 Value of Feeder Sensors

Table 5 compares the results for the cases with different
feeder sensors. The results indicate that the increased grid
active power visibility can improve load modelling accuracy.
Sensors at the transformer or customer level noticeably
improved the accuracy of the simulated secondary circuit
voltages, and service transformer and line loadings. In
BAU_TS, some errors can be observed in the L_LV lines as
BAU_TS did not represent load diversity downstream of the
service transformers. Ref PAMI was the most accurate
method when reactive power information is not available.

Table 5 Average errors for feeder sensor cases

Elements BAU BAU_S BAU_TS |Ref PAMI
c V_mv [pu]| +0.0025 | +0.0024 | +0.0022 | +0.0022
S |V_lvl[pu]| +0.0048 | +0.0047 | +0.0023 [ +0.0023
V_Iv2 [pu]| +0.0062 | +0.0059 | +0.0026 | +0.0024
. L_mv [%] -0.73 -0.62 -0.09 -0.08
§ L_lv [%] +0.25
Xfmr [%] -0.06 +0.19

3.5 Value of Reactive Power Information

Table 6 compares the results for the cases with different
reactive power modelling approaches. As Table 6 shows,
additional spatial and temporal reactive power information
provided little accuracy improvement for thermal loading.
However, the accuracy of nodal voltages was sensitive to the
choice of spatial and temporal reactive power information.
Spatially, the reactive power at a single location may not be a
good representation of the reactive power for all locations
(BAU_FPF). Temporally, utilizing annual average of the
loads’” PF (BAU CYPF and Monthly CYPF) resulted in a
less accurate load model as compared to BAU. On the other
hand, monthly average load-specific PF (Monthly CMPF)
provided a noticeable accuracy improvement for the overall
nodal voltages.

Table 6 Average errors for reactive power cases

El BAU BAU_FPF BAU_CYPF | Monthly_CYPF |Monthly_CMPF
V_mv [pu]|  +0.0025 -0.0040 +0.0036 +0.0036 +0.0001
'é V_Ilvi[pu]| +0.0048 -0.0025 +0.0060 +0.0058 +0.0021
V_Iv2 [pu]| +0.0062 -0.0013 +0.0073 +0.0071 +0.0033
" L_mv [%] -0.73 -0.46 -0.73 -0.70 -0.70
S| Livinl
Xfmr [%]

4 Conclusion

This paper analysed the value of improved spatial and
temporal active and reactive power information for
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distribution system load power modelling. A reference was
obtained from QSTS results with full visibility to the active
and reactive power of all loads. Nine improved methods were
benchmarked against a load modelling practice commonly
applied by North American distribution utilities. The key
findings include:

e The load modelling method conventionally applied by
North American utilities (BAU) resulted in satisfactory
results at the primary distribution level. However,
voltage and thermal loading results were not accurate at
the secondary distribution level. On average, the annual
minimum load voltages were overestimated by 12% of
ANSI C84.1 service voltage range A (£0.05pu), and the
annual thermal element loading was underestimated by
27%.

e Increasing the load allocation frequency from annually
(BAU) to monthly (Monthly), and to time-wise (Time-
wise) yielded limited benefits for the analysed case study
since the annual peak load already captured some of the
most extreme conditions. This may not generally apply
under different feeder load conditions, or other metrics
not analysed in this paper.

e Load modelling accuracy increased as grid visibility
level was increased from feeder head level (BAU), to
feeder sensors (BAU_S), to service transformer level
(BAU_TS), and to load level (Ref _PAMI).

e From the analysed cases, load modelling with utilizing
active power AMI with system-wide PF (Ref PAMI)
showed the best load modelling accuracy at both primary
and secondary distribution levels.

e Improved spatial and temporal reactive power
information provides small accuracy improvement for
the thermal loading. However, monthly average load-
specific PF (Monthly_ CMPF) showed the best overall
nodal voltage accuracy without a full integration of AMI
data into the model.
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