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Preface

This book describes a tool for mathematical modeling: the Python Optimization
Modeling Objects (Pyomo) software. Pyomo supports the formulation and analy-
sis of mathematical models for complex optimization applications. This capability
is commonly associated with algebraic modeling languages (AMLs), which support
the description and analysis of mathematical models with a high-level language. Al-
though most AMLSs are implemented in custom modeling languages, Pyomo’s mod-
eling objects are embedded within Python, a full-featured high-level programming
language that contains a rich set of supporting libraries. Pyomo has won awards
from the R&D100 organization and from the INFORMS Computing Society.

Modeling is a fundamental process in many aspects of scientific research, engi-
neering and business, and the widespread availability of computing has made the
numerical analysis of mathematical models a commonplace activity. Furthermore,
AMLs have emerged as a key capability for robustly formulating large models for
complex, real-world applications [37]. AMLs streamline the process of formulating
models by simplifying the management of sparse data and supporting the natural ex-
pression of model components. Additionally, AMLs like Pyomo support scripting
with model objects, which facilitates the custom analysis of complex problems.

The core of Pyomo is an object-oriented capability for representing optimization
models. Pyomo also contains packages that define modeling extensions and model
reformulations. Pyomo also includes packages that define interfaces to solvers like
CPLEX and Gurobi, as well as solver services like NEOS.

Goals of the Book

This third edition provides an updated description of Pyomo’s modeling capabilities.
A key goal of this book is to provide a broad description of Pyomo that will enable
the user to develop and optimize models with Pyomo. The book uses many examples
to illustrate different techniques that can be used to formulate models.
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Another goal of this book is to illustrate the breadth of Pyomo’s capabilities. Py-
omo supports the formulation and analysis of common optimization models, includ-
ing linear programs, mixed-integer linear programs, nonlinear programs, mixed-
integer nonlinear programs, mathematical programs with equilibrium constraints,
constraints and objectives based on differential equations, generalized disjunctive
programs, among others. Additionally, Pyomo includes solver interfaces for a vari-
ety of widely used optimization software packages, including CBC, CPLEX, GLPK,
and Gurobi. Additionally, Pyomo models can be optimized with optimizers like
IPOPT that employ the AMPL Solver Library interface.

Finally, a goal of this book is to help users get started with Pyomo even if
they have little knowledge of Python. Appendix A provides a quick introduction
to Python, but we have been impressed with how well Python reference texts sup-
port new Pyomo users. Although Pyomo introduces Python objects and a process
for applying them, the expression of models with Pyomo strongly reflects Python’s
clean, concise syntax.

However, our discussion of Pyomo’s advanced modeling capabilities assumes
some background in object-oriented design and features of the Python program-
ming language. For example, our discussion of modeling components distinguishes
between class definitions and class instances. We have not attempted to describe
these advanced features of Python in the book. Thus, a user should expect to develop
some familiarity with Python in order to effectively understand and use advanced
modeling features.

Who Should Read This Book

This book provides a reference for students, academic researchers and practitioners.
The design of Pyomo is simple enough that it has been effectively used in the class-
room with undergraduate and graduate students. However, we assume that the reader
is generally familiar with optimization and mathematical modeling. Although this
book does not contain a glossary, we recommend the Mathematical Programming
Glossary [32] as a reference for the reader.

Pyomo is also a valuable tool for academic researchers and practitioners. A key
focus of Pyomo development has been on the ability to support the formulation and
analysis of real-world applications. Consequently, issues like run-time performance
and robust solver interfaces are important.

Additionally, we believe that researchers will find that Pyomo provides an ef-
fective framework for developing high-level optimization and analysis tools. For
example, Pyomo is the basis of a package for optimization under uncertainty called
mpi-sppy, and it leverages the fact that Pyomo’s modeling objects are embedded
within a full-featured high-level programming language. This allows for transpar-
ent parallelization of sub-problems using Python parallel communication libraries.
This ability to support generic solvers for complex models is very powerful, and we
believe that it can be used with many other optimization analysis techniques.
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Revisions for the Third Edition

We have made several major changes while preparing the third edition of this book.
A subtle change that permeates the book is in how we recommend that Pyomo be im-
ported. A bigger change that permeates the book is an emphasis on concrete models.
The introductory chapter starts with a concrete model, and we emphasize concrete
models in most chapters other than the chapter devoted entirely to abstract models.
This does not reflect a change in Pyomo’s capabilities, but rather a recognition that
concrete models provide fewer restrictions on the specification and use of Pyomo
models. For example, data can be loaded by the user using general Python utilities
rather than the mechanisms supported specifically for abstract models. Thus, con-
crete models enable a more general discussion of Pyomo’s potential. Finally, we
have reorganized much of the material, added new examples, and added a chapter
on how modelers can improve the performance of their models.

Comments and Questions

This book documents the capabilities of the Pyomo 6.0 release. Further information
is available on the Pyomo website, including errata:

‘ http://www.pyomo.org

Pyomo’s open source software is hosted at GitHub, and the examples used in this
book are included in the pyomo/examples/doc/pyomobook directory:

‘ https://github.com/Pyomo/pyomo

Many Pyomo questions are posed and answered on Stack Overflow:

‘ https://stackoverflow.com/

We encourage feedback from readers, either through direct communication with the
authors or with the Pyomo Forum:

‘ pyomo-forum@googlegroups.com

Good luck!

Albuquerque, New Mexico, USA Michael Bynum
Ann Arbor, Michigan, USA Gabe Hackebeil
Albuquerque, New Mexico, USA William Hart
Albuquerque, New Mexico, USA Carl Laird
Albuquerque, New Mexico, USA Bethany Nicholson
Albuquerque, New Mexico, USA John Siirola
Livermore, California, USA Jean-Paul Watson
Davis, California, USA David Woodruff
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Chapter 1
Introduction

Abstract This chapter introduces and motivates Pyomo, a Python-based tool for
modeling and solving optimization problems. Modeling is a fundamental process in
many aspects of scientific research, engineering, and business. Algebraic modeling
languages like Pyomo are high-level languages for specifying and solving math-
ematical optimization problems. Pyomo is a flexible, extensible modeling frame-
work that captures and extends central ideas found in modern algebraic modeling
languages, all within the context of a widely used programming language.

1.1 Modeling Languages for Optimization

This book describes a tool for mathematical modeling: the Python Optimization
Modeling Objects (Pyomo) software package. Pyomo supports the formulation and
analysis of mathematical models for complex optimization applications. This ca-
pability is commonly associated with commercial algebraic modeling languages
(AMLs) such as AIMMS [1], AMPL [2], and GAMS [22]. Pyomo implements a
rich set of modeling and analysis capabilities, and it provides access to these ca-
pabilities within Python, a full-featured, high-level programming language with a
large set of supporting libraries.

Optimization models define the goals or objectives for a system under consid-
eration. Optimization models can be used to explore trade-offs between goals and
objectives, identify extreme states and worst-case scenarios, and identify key factors
that influence phenomena in a system. Consequently, optimization models are used
to analyze a wide range of scientific, business, and engineering applications.

The widespread availability of computing resources has made the numerical anal-
ysis of optimization models commonplace. The computational analysis of an opti-
mization model requires the specification of a model that is communicated to a
solver software package. Without a language to specify optimization models, the
process of writing input files, executing a solver, and extracting results from a solver
is tedious and error-prone. This difficulty is compounded in complex, large-scale,
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real-world applications that are difficult to debug when errors occur. Additionally,
solvers use many different input formats, but few of them are considered to be stan-
dards. Thus, the application of multiple solvers to analyze a single optimization
model introduces additional complexities. Furthermore, model verification (i.e., en-
suring that the model communicated to the solver accurately reflects the model the
developer intended to express) is extremely difficult without high-level languages
for expressing models.

AMLs are high-level languages for describing and solving optimization prob-
lems [26, 37]. AMLs minimize the difficulties associated with analyzing optimiza-
tion models by enabling high-level specification of optimization problems. Further-
more, AML software provides rigorous interfaces to external solver packages that
are used to analyze problems, and it allows the user to interact with solver results in
the context of their high-level model specification.

Custom AMLs like AIMMS [1], AMPL [2, 21], and GAMS [22] implement op-
timization model specification languages with an intuitive and concise syntax for
defining variables, constraints, and objectives. Further, these AMLs support speci-
fication of abstract concepts such as sparse sets, indices, and algebraic expressions,
which are essential when specifying large-scale, real-world problems with thou-
sands or millions of constraints and variables. These AMLs can represent a wide
variety of optimization models, and they interface with a rich set of solver pack-
ages. AMLs are increasingly being extended to include custom scripting capabili-
ties, which enables expression of high-level analysis algorithms concurrently with
optimization model specifications.

A complementary strategy is to use an AML that extends a standard high-
level programming language (as opposed to being based a proprietary language)
to formulate optimization models that are analyzed with solvers written in low-
level languages. This two-language approach leverages the flexibility of the high-
level language for formulating optimization problems and the efficiency of the
low-level language for numerical computations. This is an increasingly common
approach for scientific computing software. The Matlab TOMLAB Optimization
Environment [57] is among the most mature optimization software package using
this approach; Pyomo strongly leverages this approach as well. Similarly, standard
programming languages like Java and C++ have been extended to include AML
constructs. For example, modeling libraries like FlopC++ [19], Optim]J [47], and
JuMP [13] support the specification of optimization models using an object-oriented
design in C++, Java, and Julia, respectively. Although these modeling libraries sacri-
fice some of the intuitive mathematical syntax of a custom AML, they allow the user
to leverage the flexibility of modern high-level programming languages. A further
advantage of these AML libraries is that they can link directly to high-performance
optimization libraries and solvers, which can be an important consideration in some
applications.
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1.2 Modeling with Pyomo

The goal of Pyomo is to provide a platform for specifying optimization models
that embodies central ideas found in modern AMLs, within a framework that pro-
motes flexibility, extensibility, portability, openness, and maintainability. Pyomo is
an AML that extends Python to include objects for optimization modeling [30].
These objects can be used to specify optimization models and translate them into
various formats that can be processed by external solvers.

We now provide some motivating examples to illustrate the use of Pyomo in
specifying optimization models.

1.2.1 Simple Examples

Consider the following linear program (LP):

min x; + 2x,

s.t. 3x;+4x > 1
2x1+5x > 2
X1,X2 > 0

This LP can be easily expressed in Pyomo as follows:

import pyomo.environ as pyo

model = pyo.ConcreteModel ()

model.x_1 = pyo.Var (within=pyo.NonNegativeReals)
model.x_2 = pyo.Var (within=pyo.NonNegativeReals)
model.obj = pyo.Objective (expr=model.x_1 + 2xmodel.x_2)
model.conl = pyo.Constraint (expr=3*model.x_1 + 4smodel.x_2 >= 1)
model.con2 = pyo.Constraint (expr=2xmodel.x_1 + 5xmodel.x_2 >= 2)

The first line is a standard Python import statement that initializes the Pyomo envi-
ronment and loads Pyomo’s core modeling component library. The next lines con-
struct a model object and define model attributes. This example describes a concrete
model. Model components are objects that are attributes of a model object, and the
ConcreteModel object initializes each model component as they are added. The
model decision variables, constraints, and objective are defined using Pyomo model
components.

Users rarely have a single instance of a particular optimization problem to solve.
Rather, they commonly have a general optimization model and then create a particu-
lar instance of that model using specific data. For example, the following equations
represent an LP with scalar parameters n and m, vector parameters b and ¢, and
matrix parameter a:

min Z?:l CiXi
S.t. Z;’:laﬁxi > bj Vi=1...m
x; >0 Vi=1...n
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This LP can be expressed with a concrete model in Pyomo as follows:

import pyomo.environ as pyo
import mydata

model = pyo.ConcreteModel ()
model.x = pyo.Var (mydata.N, within=pyo.NonNegativeReals)

def obj_rule (model) :
return sum(mydata.c[i]*model.x[i] for i in mydata.N)
model.obj = pyo.Objective (rule=obj_rule)

def con_rule (model, m):
return sum(mydata.a[m,i]*model.x[1] for i in mydata.N) \
>= mydata.b[m]
model.con = pyo.Constraint (mydata.M, rule=con_rule)

This script requires that the data used to construct the model is available while each
modeling component is constructed. In this example, the necessary data exists in
mydata.py:

N = [1,2]

M= [1,2]

c = {1:1, 2:2}

a= {(1,1):3, (1,2):4, (2,1):2, (2,2):5}
b= {1:1, 2:2}

This LP can also be viewed as an abstract mathematical model, where unspeci-
fied, symbolic parameter values are later defined when the model is initialized. For
example, this LP can be expressed as an abstract model in Pyomo as follows:

import pyomo.environ as pyo

model = pyo.AbstractModel ()

model.N = pyo.Set ()

model.M = pyo.Set ()

model.c = pyo.Param(model.N)

model.a = pyo.Param(model.M, model.N)
model.b = pyo.Param(model.M)

model.x = pyo.Var (model.N, within=pyo.NonNegativeReals)

def obj_rule(model) :
return sum(model.c[i]+*model.x[1i] for i in model.N)
model.obj = pyo.Objective (rule=obj_rule)

def con_rule (model, m):
return sum(model.a[m,i]*model.x[1i] for i in model.N) \
>= model.b[m]
model.con = pyo.Constraint (model.M, rule=con_rule)

This example includes model components that provide abstract or symbolic defi-
nitions of set and parameter values. The AbstractModel object defers initial-
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ization of model components until a model instance is created, using user-supplied
set and parameter data. Both concrete and abstract models can be initialized with
data from a variety of different data sources, including data command files that are
adapted from AMPL’s data commands. For example:

param : N : c :=
11
2 2 ;

param : M : b :=
11
2 2 ;

param a :=

NN
NN
g1 N

1.2.2 Graph Coloring Example

We further illustrate Pyomo’s modeling capabilities with a simple, well-known op-
timization problem: minimum graph coloring (also known as vertex coloring). The
graph coloring problem concerns the assignment of colors to vertices of a graph
such that no two adjacent vertices share the same color. Graph coloring has many
practical applications, including register allocation in compilers, resource schedul-
ing, and pattern matching, and it appears as a kernel in recreational puzzles like
Sudoku.

Let G = (V,E) denote a graph with vertex set V and edge set E C V x V. Given
G, the objective in the minimum graph coloring problem is to find a valid coloring
that uses the minimum number of distinct colors. For simplicity, we assume that
the edges in E are ordered such that if (vi,v;) € E then v; < vp. Let k denote the
maximum number of colors, and define the set of possible colors C = {1,...,k}.

We can represent the minimum graph coloring problem as the following integer
program (IP):

min y

st. Yeecxvne=1 WveV
Xoj et X, e <1V(vi,n) €E (1.1)
V> C-Xye YweV,ceC

xe€{0,1} WveV,ceC

In this formulation, the variable x, . equals one if vertex v is colored with color ¢
and zero otherwise; y denotes the number of colors that are used. The first constraint
requires that each vertex is colored with exactly one color. The second constraint
requires that vertices that are connected by an edge must have different colors. The
third constraint defines a lower bound on y that guarantees that y will be no less than
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the number of colors used in a solution. The fourth and final constraint enforces the
binary constraint on x,,.

Figure 1.1 shows a Pyomo specification of the above graph coloring formulation,
using a concrete model; the example is adapted from Gross and Yellen [27]. This
specification consists of Python commands that define a ConcreteModel object,
and then define various attributes of this object, including variables, constraints, and
the optimization objective. Lines 10-24 define the model data. Line 28 is a standard
Python import statement that adds all of the symbols (e.g., classes and functions)
defined in pyomo .environ to the current Python namespace. Line 31 specifies
creation of the model object, which is an instance of the ConcreteModel class.
Lines 34 and 35 define the model decision variables. Note that y is a scalar variable,
while x is a two-dimensional array of variables. The remaining lines in the example
define the model constraints and objective. The Ob jective class defines a single
optimization objective using the expr keyword option. The ConstraintList
class defines a list of constraints, which are individually added.

When compared to custom AMLs, Pyomo models are clearly more verbose (e.g.,
see Hart et al. [30]). However, this example illustrates how Python’s clean syntax
still allows Pyomo to express mathematical concepts intuitively and concisely. Aside
from the use of Pyomo classes, this example employs standard Python syntax and
methods. For example, line 41 uses Python’s generator syntax to iterate over all ele-
ments of the colors set and apply the Python sum function to the result. Although
Pyomo does include some utility functions to simplify the construction of expres-
sions, Pyomo does not rely on sophisticated extensions of core Python functionality.

1.2.3 Key Pyomo Features

Python

Python’s clean syntax enables Pyomo to express mathematical concepts in an intu-
itive and concise manner. Furthermore, Python’s expressive programming environ-
ment can be used to formulate complex models and to define high-level solvers that
customize the execution of high-performance optimization libraries. Python pro-
vides extensive scripting capabilities, allowing users to analyze Pyomo models and
solutions, leveraging Python’s rich set of third-party libraries (e.g., numpy, scipy,
and matplotlib). Finally, the embedding of Pyomo in Python allows users to learn
core syntax through Python’s rich documentation.

Customizable Capability
Pyomo is designed to support a “stone soup” development model in which each

developer “scratches their own itch.” A key element of this design is the plug-in
framework that Pyomo uses to integrate model components, model transformations,
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1 #

2 # Graph coloring example adapted from

3 #

4 # Jonathan L. Gross and Jay Yellen,

5 # 7Graph Theory and Its Applications, 2nd Edition”,
6 # Chapman & Hall/CRC, Boca Raon, FL, 2006.

7 #

8

9 # Define data for the graph of interest.

10 vertices = set([’Ar’, 'Bo’, 'Br’, 'Ch’, ’Co’, ’Ec’,
11 "FG’, ’Gu’, 'Pa’, ’Pe’, ’'Su’, 'Ur’, ’Ve’l])
12

13 edges = set([('FG’,’Su’), ("FG’,’Br’), (’Su’,’Gu’),
14 (’Su’,’Br’), ("Gu’,’Ve’), (Gu’,’Br’),
15 (’Ve’,’Co’), (’Ve’,’Br’), (’Co’,’Ec’),
16 (’Co’,’Pe’), (Co’,’Br’), ("Ec’,’Pe’),
17 (Pe’,’Ch’), ("Pe’,’Bo’), ("Pe’,’Br’),
18 (’Ch’,”Ar’), (Ch’,’Bo’), ("Ar’,’Ur’),
19 ("Ar’,’Br’), ("Ar’,’Pa’), (CAr’,’Bo’),
20 (’Ur’,’Br’), ("Bo’,’Pa’), (’Bo’,’Br’),
21 ("Pa’,’Br’) 1)

22

23 ncolors = 4

24 colors = range(l, ncolors+1)

25

26

27 # Python import statement

28 import pyomo.environ as pyo

29

30 # Create a Pyomo model object

31 model = pyo.ConcreteModel ()

32

33 # Define model variables

34 model.x = pyo.Var(vertices , colors, within=pyo.Binary)
35 model.y = pyo.Var()

36

37 # Each node is colored with one color

38 model.node_coloring = pyo.ConstraintList ()

39 for v in vertices:

40 model . node_coloring . add(

41 sum(model.x[v,c] for ¢ in colors) == 1)
42

43 # Nodes that share an edge cannot be colored the same
44 model.edge_coloring = pyo.ConstraintList ()

45 for v,w in edges:

46 for ¢ in colors:

47 model . edge_coloring .add(

48 model .x[v,c] + model.x[w,c] <= 1)

49

50 # Provide a lower bound on the minimum number of colors
51 # that are needed

52 model. min_coloring = pyo.ConstraintList ()

53 for v in vertices:

54 for ¢ in colors:

55 model. min_coloring . add(

56 model.y >= ¢ * model.x[v,c])

57

58 # Minimize the number of colors that are needed

59 model.obj = pyo.Objective (expr=model.y)

Fig. 1.1: A concrete Pyomo model for the minimum graph coloring problem.
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solvers, and solver managers. A plug-in framework manages the registration of these
capabilities. Thus, users can customize Pyomo in a modular manner without the risk
of destabilizing core functionality.

Command-Line Tools and Scripting

Pyomo models can be analyzed both using command-line tools and via Python
scripts. The pyomo command line utility provides a generic interface to most Py-
omo modeling capabilities. The pyomo command supports a generic optimization
process. This process can easily be replicated in a Python script and further cus-
tomized for a user’s specific needs.

Concrete and Abstract Model Definitions

The examples in Section 1.2.1 illustrate Pyomo’s support for both concrete and ab-
stract model definitions. The difference between these modeling approaches relates
to when modeling components are initialized: concrete models immediately initial-
ize components, and abstract models delay the initialization of components until
a later model initialization action. Consequently, these modeling approaches are
equivalent, and the choice of approach depends on the context in which Pyomo is
used and user preference. Both types of models can be easily initialized with data
from a wide range of data sources (e.g., csv, json, yaml, excel, and databases).

Object-Oriented Design

Pyomo employs an object-oriented library design. Models are Python objects, and
model components are attributes of these models. This design allows Pyomo to au-
tomatically manage the naming of modeling components, and it naturally segregates
modeling components within different model objects. Pyomo models can be further
structured with blocks, which support a hierarchical nesting of model components.
Many of Pyomo’s advanced modeling features leverage this structured modeling
capability.

Expressive Modeling Capability

Pyomo’s modeling components can be used to express a wide range of optimization
problems, including but not limited to:

e linear programs,

e quadratic programs,

e nonlinear programs,

e mixed-integer linear programs,
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mixed-integer quadratic programs,

generalized disjunctive programs,

mixed-integer stochastic programs,

dynamic problems with differential algebraic equations, and
mathematical programs with equilibrium constraints.

Solver Integration

Pyomo supports both tightly and loosely coupled solver interfaces. Tightly cou-
pled modeling tools directly access optimization solver libraries (e.g., via static
or dynamic linking), and loosely coupled modeling tools apply external optimiza-
tion executables (e.g., through the use of system calls). Many optimization solvers
read problems from well-known data formats (e.g., the AMPL nl format [24]);
these solvers are loosely coupled with Pyomo. Solvers with Python interfaces (e.g.,
Gurobi and CPLEX) can be tightly coupled, which avoids writing external files.

Open Source

Pyomo is managed as an open source project to facilitate transparency in soft-
ware design and implementation. Pyomo is licensed under the BSD license [8],
which has few restrictions on government or commercial use. Pyomo is managed
at GitHub [53], and through the COIN-OR project [9]. Developer and user mailing
lists are managed on Google Groups. There is growing evidence that the reliability
of open source software is similar to closed source software [3, 59], and Pyomo is
carefully managed to ensure the robustness and reliability for users.

1.3 Getting Started

In order to execute all of the examples in this book the following software should
be installed:

e Python 3.6 or higher (although almost all examples will work with earlier ver-
sions of Python). Pyomo currently relies on CPython; there is only support for
Jython and PyPy for a subset of Pyomo’s capability.

e Pyomo 6.0, which is used throughout this book.

e The GLPK [25] solver, which is used to generate output for most examples in
this book. Other LP and MILP solvers can be used for these examples, but the
GLPK software is easily installed and widely available.

e The IPOPT [34] solver, which is used to generate output for nonlinear model
examples. Other nonlinear optimizers can be easily used for these examples if
they are compiled with the AMPL Solver Library [23].
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e The CPLEX [11] solver, which is used to generate output for stochastic pro-
gramming examples. This commercial solver provides capabilities needed for
these examples that are not commonly available in open source optimization
solvers (e.g., optimization of quadratic integer programs).

e The matplotlib Python package, which is used to generate plots.

Installation instructions for Pyomo are provided at the Pyomo website:
www . pyomo.org. Appendix A provides a brief tutorial of the Python scripting
language; various on-line sources provide more comprehensive tutorials and docu-
mentation.

1.4 Book Summary

The remainder of this book is divided into three parts. The first part provides an
introduction to Pyomo. Chapter 2 provides a primer on optimization and mathemat-
ical modeling, including brief illustrations of how Pyomo can be used to specify and
solve algebraic optimization models. Chapter 3 illustrates Pyomo’s modeling capa-
bilities with simple concrete and abstract models, and Chapter 4 describes Pyomo’s
core modeling components. The basics of embedding Pyomo models in scripts is in
Chapter 5. The first part closes with Chapter 6 describing interaction with solvers.

The second part of this book documents advanced features and extensions. Chap-
ter 7 describes the nonlinear programming capabilities of Pyomo, and Chapter 8 de-
scribes how hierarchical models can be expressed in Pyomo. Guidance on improv-
ing performance is given in Chapter 9. Chapter 10 describes the AbstractModel
class, the syntax of Pyomo data command files, and Pyomo’s command-line inter-
face.

The third part of the book describes some of the modeling extensions. An
overview of generalized disjunctive programming is provided in Chapter 11. Dy-
namic models expressed with differential and algebraic equations are described in
Chapter 12, and programs with equilibrium constraints are described in Chapter 13).

NOTE: This book does not provide a complete reference for Pyomo. Instead,
our goal is to discuss core functionality that is available in the Pyomo 6.0 re-
lease.

1.5 Discussion

A variety of developers have realized that Python’s clean syntax and rich set of
supporting libraries make it an excellent choice for optimization modeling [30]. A
variety of open source software packages provide optimization modeling capabil-
ities in Python, such as PuLP [49], APLEpy [4], and OpenOpt [46]. Additionally,
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there are many Python-based solver interface packages, including open source pack-
ages such as PyGlpk [50] and pyipopt [51], in addition to Python interfaces for the
commercial solvers such as CPLEX [11] and Gurobi [28].

Several features distinguish Pyomo. First, Pyomo provides mechanisms for ex-
tending the core modeling and optimization functionality without requiring edits to
Pyomo itself. Second, Pyomo supports the definition of both concrete and abstract
models. This allows the user significant flexibility in determining how closely data is
integrated with a model definition. Finally, Pyomo can support a broad class of op-
timization models, including both standard linear programs as well as general non-
linear optimization models, generalized disjunctive programs, problems constrained
by differential equations, and mathematical programs with equilibrium conditions.
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An Introduction to Pyomo






Chapter 2
Mathematical Modeling and Optimization

Abstract This chapter provides a primer on optimization and mathematical model-
ing. It does not provide a complete description of these topics. Instead, this chapter
provides enough background information to support reading the rest of the book.
For more discussion of optimization modeling techniques see Williams [58]. Imple-
mentations of simple examples of models are shown to provide the reader with a
quick start to using Pyomo.

2.1 Mathematical Modeling

2.1.1 Overview

Modeling is a fundamental process in many aspects of scientific research, engineer-
ing, and business. Modeling involves the formulation of a simplified representation
of a system or real-world object. These simplifications allow structured representa-
tion of knowledge about the original system to facilitate the analysis of the resulting
model. Schichl [56] notes models are used to:

Explain phenomena arising in a system;

Make predictions about future states of a system;

Assess key factors influencing phenomena in a system;

Identify extreme states in a system possibly representing worst-case scenarios
or minimal cost plans; and

e Analyze trade-offs to support human decision makers.

Additionally, the structured aspect of a model’s representation facilitates commu-
nication of the knowledge associated with a model. For example, a key aspect of a
model is its level of detail, reflecting the system knowledge needed to employ the
model in an application.

Mathematics has always played a fundamental role in representing and formulat-
ing our knowledge. Mathematical modeling has become increasingly formal as new

15
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frameworks have emerged to express complex systems. The following mathematical
concepts are central to modern modeling activities:

e Variables: These represent unknown or changing parts of a model (e.g., deci-
sions to take, or the characteristic of a system outcome).

e Parameters: These are symbolic representations for real-world data, and might
vary for different problem instances or scenarios.

e Relations: These are equations, inequalities, or other mathematical relation-
ships defining how different parts of a model are related to each other.

Optimization models are mathematical models with functions representing goals or
objectives for the system being modeled. Optimization models can be analyzed to
explore system trade-offs in order to find solutions to optimize system objectives.
Consequently, these models can be used for a wide range of scientific, business, and
engineering applications.

2.1.2 A Modeling Example

A Model, in the sense that we will use the word, represents items by abstracting
away some features. Everyone is familiar with physical models, such as model rail-
roads or model cars. Our interest is in mathematical models that use symbols to
represent aspects of a system or real-world object.

For example, a person might want to determine the best number of scoops of ice
cream to buy. We could use the symbol x to represent the number of scoops. We
might use ¢ to represent the cost per scoop. So then we could model the total cost as
¢ times x, which we usually write as cx.

We might need a more sophisticated model of total cost if there are volume dis-
counts or surcharges for buying fractional scoops. Also, this model is probably not
valid for negative values of x. It is seldom possible to sell back ice cream for the
same price paid for it.

It is more complicated to provide a mathematical model of the happiness associ-
ated with scoops of ice cream on an ice cream cone. One approach is to use a scaled
measure of happiness. We will do that using the basic unit of the happiness asso-
ciated with one scoop of ice cream, which we call 4. A simple model, then, would
be to say that the total happiness from x scoops of ice cream is 4 times x, which we
write as sx. For some people, that might be a pretty good approximation for values
of x between one-half and three, but there is almost no one who is 100 times as
happy to have 100 scoops of ice cream on their ice cream cone as they are to have
one scoop. For some people, the model of happiness for values of x between zero
and ten might be something like

h-(x—(x/5)%).

Note that this model becomes negative when there are more than 25 scoops on the
cone, which might not be a good model for everyone.
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It is common to want to model more than one thing at a time. For example,
you might be able to have scoops of ice cream and peanuts. Since there are multiple
things that can be purchased, we can represent the quantity purchased using a vector
x (i.e. the symbol x now represents a list). We refer to elements of the list using the
notation x; where the symbol i indexes the vector. For example, if we agree that
the first element is the number of scoops of ice cream, then this number could be
referenced using x;. For higher dimensions a fuple is used, such as i, j or (i, j) as
the index.

Let’s change ¢ to be a vector of costs with the same indices as x (i.e., ¢ is the
cost per scoop of ice cream and c; is the cost per cup of peanuts). So now, we write
the total cost of ice cream and peanuts as

2

C1X1 +Crxp = Zcixi.
i=1

Once again, this cost model is probably not valid for all possible values of all ele-
ments of x, but it might be good enough for some purposes.

Often, it is useful to refer to indices as being members of a set. For the example
just given, we could use the set {1,2} to write the total cost as

Z CiXj.

ie{1,2}

but it would be more common to use a more abstract expression like

) cixi

icd

where the set .27 is understood to be the index set for ¢ and x (and for our example
the set 7 would be {1,2}.)

In addition to summing over an index set, we might want to have conditions that
hold for all members of an index set. This is done simply by using a comma. For
example, if we want to require that none of the values of x can be negative, we would
write

x>0, i€

and we read this line out loud as “x subscript i is greater than or equal to zero for all
iin A”

There is no law of mathematics or even mathematical modeling requiring the use
of single letter symbols such as x and ¢ or i. It would be perfectly okay for the set .&/
to be composed of a picture of an ice cream cone and a picture of a cup of peanuts,
but that is hard to work with in some settings. The set could also be {Scoops,Cups},
but that is not commonly done in books because it takes up too much space and
causes lines to overflow. Also, x could be replaced by something like Quantity. Long
names are, importantly, supported by modeling languages such as Pyomo, and it is
generally a good idea to use meaningful names when writing Pyomo models. Spaces
or dashes embedded in names often cause troubles and confusion, so underscores
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are often used in long names instead.

2.2 Optimization

The symbol x is often used as a variable in optimization modeling. It is sometimes
called a decision variablebecause optimization models are built to help make de-
cisions. This can sometimes cause a little confusion for people who are familiar
with modeling as practiced by statisticians. They often use the symbol x to refer
to data. Statisticians give values of x to the computer to have it compute statistics,
while optimization modelers give other data to the computer and ask the computer
to compute good values of x. Of course, symbols other than x can be used; though
in textbooks and introductions x is often chosen.

Values such as cost (we used the symbol c) are referred to as data or parameters.
An optimization model can be described with undefined parameter values, but a spe-
cific instance that is optimized must have specific data values, which we sometimes
call instance data.

A model must have an objective to perform optimization, which is expressed
as an objective function. Optimal values of the decision variables result in the best
possible value of the objective function. It is important to note we did not say “the
optimal values” because it is often the case that more than one set of variable values
result in the best possible value of the objective function. It is common to write this
function in a very abstract way, such as f(x). Whether the best is the smallest or the
largest possible value is determined by the sense of the optimization: minimize or
maximize.

For example, suppose that x is not a vector, but rather a scalar denoting the
number of scoops of ice cream to buy. If we use the model of happiness given
before, then

f)=h-(x=(x/5)%),

where £ is given as data. (It turns out not to matter what value of 4 is given for the
purpose of finding the x that maximizes happiness in this particular example.) The
optimization problem, as we have modeled it, is given as

max - (x— (x/5)2) )
but very careful authors would write

max h-(x—(x/5)%)

to make it clear x is the decision variable. In this case, there is only one best value of
x, which can be found using numerical optimization. The best value of x turns out
to be fractional, which means that it is not an integer number of scoops. This model
might not be considered useful for a typical ice cream shop, where the number
of scoops must be a non-negative integer. To specify this requirement, we add a
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constraint to the optimization model:
max h- (x— (x/5)?)
X

S.t.

X € non-negative integers

where “s.t.” is an abbreviation for either “subject to” or “such that.” Suppose the
model is not being used in an ice cream shop, but rather at home, where the ice
cream is being served by the model user’s parent. If the parent is willing to make
partial scoops but not willing to go above two scoops, then the constraint

X € non-negative integers

would be replaced with
0<x<2.

This is not a perfect model because really, not all fractional values of x would be
reasonable.

To illustrate the model aspects discussed so far, let us return to multiple products
described by an index set .2/, so x is a vector. Let us make use of the following
model of happiness for a product index i:

hi+ (xi— (xi/di)?)

where h and d are both data vectors with the same index set as x. Further, let ¢ be a
vector of costs and u be a vector of the most of any product that can be purchased.
Assume that all products can be purchased in fractional quantities for the moment.
Finally, suppose there is a total budget given by b. The optimization problem would
be written as:

max Z hi . (xi — (x,-/di)Q) (H)
Y e
s.t. Z cixi <b
icd
0<xi<u; i€ o

Some modelers would express the last constraint separately:

m;lx Z h; - (xi — (xi/di)z) (H)

icd/

S.t. Z cixi <b
icd
xi <uji €9

x;i >0,i € .of
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It is common to put a short, abbreviated name of the model in parentheses on
the same line as the objective. The name (P) is very common, but we used (H) as a
mnemonic for “happiness.” The name (H) allows us to refer to this model later in
the chapter, where we show how to implement it in Pyomo and solve it.

2.3 Modeling with Pyomo

We now consider different strategies for formulating and optimizing algebraic opti-
mization models using Pyomo. Although a detailed explanation of Pyomo models is
deferred to Chapter 3, the following examples illustrate the use of Pyomo for model
(H).

2.3.1 A Concrete Formulation

A concrete Pyomo model initializes components as they are constructed. This allows
modelers to easily make use of native Python data structures when defining a model
instance. There are many ways to implement our model as a concrete Pyomo model,
and we start with one using Python lists and dictionaries.

NOTE: Recognizing that we will often make new instances of the model with
different data, we choose to write a Python function that takes in the required
data as arguments and returns a Pyomo model. Using this approach, enables us
to reuse the general Pyomo model with different definitions of the data.

import pyomo.environ as pyo
def IC_model (A, h, d, ¢, b, u):
model = pyo.ConcreteModel (name = "(H)")
def x_bounds (m, 1i):
return (0,u[i])

model.x = pyo.Var (A, bounds=x_bounds)

def z_rule (model) :

return sum(h[i] * (model.x[1i] - (model.x[1]/d[i])*%2)
for i in A7)
model.z = pyo.Objective (rule=z_rule, sense=pyo.maximize)

model.budgetconstr = pyo.Constraint (\
expr = sum(c[i]*model.x[1] for i in A) <= D)

return model
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In the budget constr declaration, we define the constraint directly with the expr
keyword argument, however, a construction rule could also be used. There are more
elegant ways to create this function, but this works well for our purposes.

NOTE: The backslash character at the end of a line tells Python that the line
continues; we use it to help make the lines fit on a book page. In this particular
case it is not strictly required because the line is breaking inside a parenthetical

grouping.

With particular data in hand, one can write a Python program that provides the
data to the function to obtain the fully instantiated Pyomo model. If there is a solver
installed on the computer, the Python program can then send the model to a solver
to be solved and, if successful, query the model for the solution. But before we look
into these steps, let’s consider more of the many ways this function could be written.

Note the function IC_model is just a Python function. One could have written
the Pyomo model directly in the script, or defined a function IC_model to accept
a dictionary as an argument instead of the more explicit argument list. Python pro-
grammers can probably think of more, and better, ways to write this Python code.

In addition to the modeling components already discussed, Pyomo also of-
fers sets (Set) and parameters (Param), which are components that will be dis-
cussed in subsequent chapters. In the code below, we have defined the function
ICmodel_dict that takes in a Python dictionary and makes use of Set and
Param objects to define the same model.
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import pyomo.environ as pyo

def IC_model_dict (ICD) :
# ICD is a dictionary with the data for the problem

model = pyo.ConcreteModel (name = " (H)")

model.A = pyo.Set (initialize=ICD["A"])

model.h = pyo.Param(model.A, initialize=ICD["h"])
model.d = pyo.Param(model.A, initialize=ICD["d"])
model.c = pyo.Param(model.A, initialize=ICD["c"])
model.b = pyo.Param(initialize=ICD["Db"])

model.u = pyo.Param(model.A, initialize=ICD["u"])

def xbounds_rule (model, 1i):
return (0, model.u[i])
model.x = pyo.Var (model.A, bounds=xbounds_rule)

def obj_rule (model) :
return sum(model.h[i] = \

(model.x[i] - (model.x[i]/model.d[i]) *x2)\
for i in model.R)
model.z = pyo.Objective (rule=obj_rule, sense=pyo.maximize)

def budget_rule (model) :
return sum(model.c[i]*model.x[i]\
for i in model.A) <= model.b
model.budgetconstr = pyo.Constraint (rule=budget_rule)

return model

2.4 Linear and Nonlinear Optimization Models

2.4.1 Definition

An expression in an optimization model is said to be linear if it is composed only
of sums of decision variables and/or decision variables multiplied by data. Accord-
ingly, a linear expression is a non-constant, linear function of the decision variables.
Assume x is a variable vector, ¢ is a vector of data and are indexed by .o7. Further
assume 2 and 3 are members of 7. The following are linear expressions:

Yicow CiXi
Yicor Xi

X2

C3X2 + X3
c3x0 +cox3+4
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On the other hand, the following expressions are not linear: x,-z, xpx3 and cosine(xy).

Linear expressions often result in problems that can be solved with much less
computational effort than similar models with nonlinear expressions. Consequently,
many modelers make an effort to use linear expressions as much as possible, and
some modelers strive to use only linear expressions. Additionally, many model-
ers develop linear approximations to nonlinear models in hopes of finding “good
enough” solutions to the original nonlinear model.

For illustrative purposes, let’s assume we have the following linear approxima-
tion to (H), and we will replace the objective function in (H) with

max Y i+ (1—u;/d})xi, (2.1
e

where u; is a new model parameter. We say that this expression is linear because the
decision variables are only multiplied by data, and summed. It is true the parameter
d is squared, but this is not a decision variable. The numerical value of the entire

expression
hi- (1—u;/d?)

is computed by Pyomo before the problem instance is passed to a solver, and the
task of the solver is to find optimal values for the decision variables.
2.4.2 Linear Version

If we want to modify the concrete model given on page 20 to use expression (2.1),
we would change the objective function expression rule as follows:

def obj_rule(model):
return sum(h[i]+ (1 - u[i]/d[i]**2) % model.x[i] \
for i in A)

2.5 Solving the Pyomo Model

Pyomo provides automated methods to (1) combine the model and data, (2) send
the resulting model instance to a solver, and (3) recover the results for display and
further use. Pyomo does not, itself, solve optimization problem instances. They are
always passed to a solver of some sort.
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2.5.1 Solvers

Pyomo can be installed without any solvers. For example, Pyomo can simply write
out problem instances into files suitable as direct input to a solver. This use of Pyomo
might be necessary if the solver is run separately on a different computer. Typically,
a solver should be installed and accessible to Pyomo, and most of the examples in
this book make this assumption.

Recall the objective in (H) is not a linear function of the variable, x, and the
budget constraint is linear. Although many solvers can solve an instance with a
quadratic objective and linear constraints, some solvers cannot. If the only solver
on the computer is limited to linear problems, then (H) would need to approximate
with a linear model.

2.5.2 Python Scripts

A Python script is executed using Python from the command line or within a de-
velopment environment. As with expressing the model, there are many options for
writing a script to supply its data and to solve it described in subsequent chapters.
For example, a script defining the concrete model given on page 2.3.1 can be created
by adding the following lines:

A = ['I_C_Scoops’, ’'Peanuts’]

h = {/I_C_Scoops’: 1, ’"Peanuts’: 0.1}

d = {’I_C_Scoops’: 5, ’"Peanuts’: 27}

c = {/I_C_Scoops’: 3.14, ’'Peanuts’: 0.2718}
b =12

u = {’I_C_Scoops’: 100, ’'Peanuts’: 40.6}

model = IC_model_linear (A, h, d, c, b, u)
opt = pyo.SolverFactory (’'glpk’)
results = opt.solve (model) # solves and updates model

pyo.assert_optimal_termination (results)

model.display ()

If the resulting file is called ConcHLinScript . py, then it can be run from the
terminal with the command line:

python ConcHLinScript.py

The first few lines that assign data to Python variables look a little strange, because
they are. Usually, data for optimization is read from files or databases; however, for
this textbook example we assign the data using Python literals so it is self-contained.
The last few lines create a solver, solve the model, and display the model with the
solution values. The function assert_optimal_termination halts the script
and outputs a message if the solver does not report it found an optimal solution. The
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companion function check_optimal_termination returns True if the solver
reports optimality and False if not.






Chapter 3
Pyomo Overview

Abstract This chapter provides an overview of the modeling strategies and capabil-
ities of Pyomo. A brief discussion of the core modeling components supported by
Pyomo, and some of the modeling capabilities within Pyomo (e.g., discrete variables
and nonlinear models) are provided.

3.1 Introduction

Pyomo supports an object-oriented design for the definition of optimization models.
A Pyomo model object contains a collection of modeling components defining the
optimization problem. The Pyomo package includes modeling components neces-
sary to formulate an optimization problem: variables, objectives, and constraints,
as well as other modeling components commonly supported by modern AMLs, in-
cluding index sets and parameters. These basic modeling components are defined in
Pyomo through the following Python classes:

Var optimization variables in a model

Objective expressions that are minimized or maximized in a model
Constraint constraint expressions in a model

Set set data that is used to define a model instance

Param parameter data that is used to define a model instance

In this chapter, an overview of these components and the process to define and solve
Pyomo models is given. The basic steps of a simple modeling process are as follows:

1. Create an instance of a model using Pyomo modeling components.
2. Pass this instance to a solver to find a solution.
3. Report and analyze results from the solver.

Pyomo supports general scripting with Python where a user can flexibly control
the solution process and develop a custom workflow, such as solving sequences of
problems with modifications, or more complex meta-algorithms.

27
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In this chapter, an example problem is used to illustrate the process of formulat-
ing a real-world model, including the use of modeling components, indexed com-
ponents, and construction rules. The use of scripting for more advanced workflows
is also discussed.

3.2 The Warehouse Location Problem

The warehouse location problem is used throughout this chapter. This formulation
seeks to find the locations for a set of warehouses that meet delivery demands while
optimizing transportation costs. Let N be a set of candidate warehouse locations,
and let M be a set of customer locations. For each warehouse #, the cost of deliv-
ering product to customer m is given by d, ,,. The goal is to determine the optimal
warehouse locations that will minimize the total cost of product delivery. The binary
variables y, are used to define whether or not a warehouse should be built, where
yn is 1 if warehouse # is selected and O otherwise. The variable x, , indicates the
fraction of demand for customer m that is served by warehouse 7.

The variables x and y are to be determined by the optimization solver, while all
other quantities are known inputs or parameters in the problem. This problem is a
particular description of the p-median problem, and it has the interesting property
that there will be optimal x values in {0,1} even though they are not specified as
binary variables.

The complete problem formulation is:

min Y Y dyuxim (WL.1)
xy neN meM
stY xum=1, YmeM (WL.2)
neN
Xpm <YVn, VREN, meM (WL.3)
Y <P (WL.4)
neN
0<x<1 (WL.5)
y€{0,1} (WL.6)

Here, the objective (equation WL.1) is to minimize the total cost associated with de-
livering products to all the customers. Equation WL.2 ensures that each customer’s
demand is fully met, and equation WL.3 ensures that a warehouse can deliver prod-
uct to customers only if that warehouse is selected to be built. With equation WL.4
the number of warehouses that can be built is limited to P.
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For our example, we will assume that P=2, with the following data for warehouse

and customer locations,

Customer locations M = {'NYC’, ‘LA, ‘Chicago’, ‘Houston’}
Candidate warehouse locations N = {‘Harlingen’, ‘Memphis’, ‘Ashland’}

with the costs dj, ,, as given in the following table:

NYC LA Chicago Houston
Harlingen 1956 1606 1410 330
Memphis 1096 1792 531 567
Ashland 485 2322 324 1236

3.3 Pyomo Models

Pyomo supports an object-oriented design where modeling components are added
to a Pyomo model to define the optimization problem. In this section, an overview
of the common modeling components is given, and complete Pyomo examples of
the warehouse location problem are provided.

3.3.1 Components for Variables, Objectives, and Constraints

Optimization problems require, at least, one variable and an objective function. Most
problems also include constraints. The Pyomo classes for implementing these mod-
eling components are Var, Objective, and Constraint. The following exam-
ple shows how these components could be defined:

model.x = pyo.Var()
model.y = pyo.Var (bounds=(-2,4))
model.z = pyo.Var (initialize=1.0, within=pyo.NonNegativeReals)

model.obj = pyo.Objective (expr=model.x**2 + model.y + model.z)
model.eq _con = pyo.Constraint (expr=model.x + model.y + model.z \

== 1)
model.ineqg _con = pyo.Constraint (expr=model.x + model.y <= 0)

This example includes three optimization variables (x, y, and z), a single objective,
and two constraints. For each optimization variable, an instance of the Var class
is created and that instance is added as an attribute to the model object. The code
model.x=pyo.Var () creates an instance of the Pyomo class Var and assigns
it to model.x. The model object identifies when a component is being added
and performs special processing that includes, for example, setting the name of the
instance of Var to “x”, and setting a reference to the owning model.

This example declares x as a continuous variable, but keyword arguments can
be used to define different properties of the Pyomo Var. For example, bounds is
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used to set lower and upper bounds, initialize is used to set initial values, and
within is used to set the domain. In this example, model . y has a lower bound of
—2 and an upper bound of 4, and model . z has a lower bound of 0, and no upper
bound since the keyword argument within is set to non-negative reals.

NOTE: The use of keyword arguments is common in the constructors for Py-
omo components to specify component properties. See Chapter 4 for more de-
tails about supported keyword arguments for Pyomo components.

This example defines an objective function using the Ob jective component.
The expr keyword is used to define the expression for the objective function. By
default, optimization objectives are minimized, but the sense keyword can be set
to maximize for maximization problems. This example declares an equality con-
straint and inequality constraint using Constraint components. The expr key-
word is used again to define the mathematical expressions for the constraints, in-
cluding the logical operator separating the left hand side expression and the right
hand side expression. Constraints can include a logical operator to equal to (==),
less than or equal to (<=), or greater than or equal to (>=). See Chapter 4 for a
detailed description of the Objective and Constraint components and the
available keyword arguments.

NOTE: In the previous example, the objective and constraints were defined
with the expr keyword. While this is convenient for illustrating the examples
with few lines of code, these components are often defined using construction
rules, which are discussed in more detail in Sections 3.3.3 and 4.2.1.

3.3.2 Indexed Components

In the previous example, each of the modeling components was scalar. Specifically,
each of the optimization variables x, y, and z were single values only, not vectors
or arrays. The constraints were also scalar, where each declaration created only a
single mathematical constraint. When modeling large, complex applications, it is
common to have vectors of variables and constraints whose dimension and index-
ing is determined according to model data. This is handled within Pyomo through
indexed components.

To illustrate the concept of an indexed component, consider the warehouse loca-
tion problem (WL) defined using only scalar components. Note, a better approach
using indexed components will be shown subsequently. For example, separate x
variables could be created for each pair of warehouses and customers,
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model.x_Harlingen_ NYC = pyo.Var (bounds=(0,1))
model.x_Harlingen_LA = pyo.Var (bounds=(0,1))
model.x_Harlingen_Chicago = pyo.Var (bounds=(0,1))
model.x_Harlingen_Houston = pyo.Var (bounds=(0,1))
model.x_Memphis_NYC = pyo.Var (bounds=(0,1))

model .x_Memphis_LA = pyo.Var (bounds=(0,1))

#...

and, the constraint described in WL.4 manually expanded as,

model.maxY = pyo.Constraint (expr=model.y_Harlingen + \
model.y_Memphis + model.y_Ashland <= P)

and, all the constraints in equation (WL.2) could them be explicitly written as,

model.one_warehouse_for_NYC = \
pyo.Constraint (expr=model.x_Harlingen_ NYC + \
model.x_Memphis_NYC + model.x_Ashland_NYC == 1)

model.one_warehouse_for LA = \
pyo.Constraint (expr=model.x_Harlingen LA + \
model.x_Memphis_LA + model.x_Ashland_LA == 1)

However, this would become very cumbersome for large data sets, and this is
much easier to formulate using indexed components. First, we can define a list of
valid indices for the warehouse locations and the customer locations,

N = [’Harlingen’, ’'Memphis’, ’Ashland’]
M = ['NYC’, 'LA’, ’Chicago’, ’'Houston’]

and, using this data, we can then declare variables as follows:

model.x = pyo.Var (N, M, bounds=(0,1))
model.y = pyo.Var (N, within=pyo.Binary)

We refer to N and M as index sets for the indexed variables model . x and model .y.
Specifically, the variable y is indexed over N, and the variable x is a two-dimensional
array that is indexed over both N and M. With this declaration, an element of x can
be accessed by model.x[1, j] where i and j are elements of the sets N and M,
respectively.

NOTE: Pyomo modeling components can include any number of index sets as
unnamed arguments in their declaration but they must be specified before any
other named keyword arguments. These index sets specify the valid indices for
individual elements of the component.

Given these declarations, constraint (WL.4) can be defined as

model .num_warehouses = pyo.Constraint (expr=sum(model.y[n] for n \
in N) <= P)

This declaration uses Python’s iteration syntax to sum over a set of indexed vari-
ables. The list comprehension syntax enables a concise specification of the sum-
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mation, where the syntax specifies that the terms model.y [n] are generated by
iterating over the set N. As these terms are generated, the function sum adds them
together to form the overall expression. Similarly, the objective can be defined as

model.obj = pyo.Objective (expr=sum(d[n,m]*model.x[n,m] for n in \
N for m in M))

where the terms d [n, m] *model.x [n, m] are generated by iterating over both N
and M.

3.3.3 Construction Rules

The construction of many indexed constraints is performed with construction rules.
Consider constraint (WL.2):

an,mzl, VmeM
neN

This mathematical notation indicates there is a single constraint defined for each
m in the set M. The Constraint component can be declared as an indexed con-
straint over the elements in this set. However, a mechanism is needed to provide
Pyomo with the explicit expressions for each element in M. Pyomo allows model
components to be initialized with user-defined functions called rules.

The following example illustrates the use of a construction rule to define con-
straint (WL.2):

def demand_rule (mdl, m):
return sum(mdl.x[n,m] for n in N) == 1
model.demand = pyo.Constraint (M, rule=demand_rule)

The first two lines define a Python function that will be called to produce the correct
constraint expression for each element in M. The last line in this example declares the
constraint by creating a Constraint component that is indexed over the set de-
fined by M. The rule keyword argument indicates that the function demand._rule
will be called to construct each constraint.

The first argument in the function demand_rule will automatically be set to
the instance of the model object being constructed. It is followed by arguments
providing the indices of the particular constraint being constructed. When Pyomo
constructs the Constraint object, the construction rule is called once for each of
the values of the specified index sets.

NOTE: Pyomo expects a construction rule to return an expression for every
index value. If no constraint is needed for a particular combination of indices,
then the value Constraint . Skip can be returned instead.

Construction rules can be used for most modeling components, using the rule
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keyword argument, even if the component is not indexed. Although the function
arguments for component rules are the same for all component types, the following
table illustrates that the expected type of the return value is different:

Component Construction Rule Return Types
Set A Python set or list object
Param An integer or float value
Objective An expression

Constraint A constraint expression.

3.3.4 A Concrete Model for the Warehouse Location Problem

The warehouse location problem can be defined as a concrete model as follows:

# wl_concrete.py
# ConcreteModel version of warehouse location problem
import pyomo.environ as pyo

1

2

3

4

5 def create_warehouse_model (N, M, d, P):

6 model = pyo.ConcreteModel (name=" (WL)")
7
8

model.x = pyo.Var (N, M, bounds=(0,1))

9 model.y = pyo.Var (N, within=pyo.Binary)

10

11 def obj_rule(mdl) :

12 return sum(d[n,m]*mdl.x[n,m] for n in N for m in M)

13 model.obj = pyo.Objective (rule=obj_rule)

14

15 def demand_rule (mdl, m):

16 return sum(mdl.x[n,m] for n in N) ==

17 model.demand = pyo.Constraint (M, rule=demand_rule)

18

19 def warehouse_active_rule (mdl, n, m):

20 return mdl.x[n,m] <= mdl.y[n]

21 model.warehouse_active = pyo.Constraint (N, M, \
rule=warehouse_active_rule)

22

23 def num_warehouses_rule (mdl) :

24 return sum(mdl.y[n] for n in N) <= P

25 model.num_warehouses = \
pyo.Constraint (rule=num_warehouses_rule)

26

27 return model

This file begins by importing the Pyomo environment, which defines the Python
classes used to build a model. Line 5 defines a function that will be called to create
and return the model. This is not necessary, and the model can be created directly in
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a Python script, however, this strategy is often preferred so this model construction
code can be easily reused with different data. Line 6 creates the ConcreteModel
and provides a name.

Lines 8 and 9 declare and construct the variables for the problem. The model
object is a ConcreteModel, and once these lines are executed, the variables x
and y are completely constructed with known indices. Lines 11 and 12 define the
construction rule for the objective function, and line 13 declares the objective func-
tion and assigns it to model.obj. As soon as line 13 executes, the rule declared
on lines 11 and 12 is called to construct the expression for the objective function.
Similarly, in the remaining lines of the Python file, the constraint rules are declared,
followed by the constraint objects themselves. Since this is a ConcreteModel,
the constraint rules are called when Python executes lines 17, 21, and 25. Line 27
returns the constructed model from the function.

Now that the model is defined, we can create a short Python script that solves a
particular instance of the model and shows the solution.

1 # wl_concrete_script.py

2 # Solve an instance of the warehouse location problem
3

4 # Import Pyomo environment and model

5 import pyomo.environ as pyo

6 from wl_concrete import create_warehouse_model
7

8 # Establish the data for this model (this could also be
9 # imported using other Python packages)

10

11 N = [’Harlingen’, ’Memphis’, ’‘Ashland’]

12 M = [’'NYC’, 'LA’, ’'Chicago’, ’'Houston’]

13

14 d = {('Harlingen’, ’'NYC’): 1956, \

15 ("Harlingen’, ’"LA’): 1606, \

16 ("Harlingen’, ’Chicago’): 1410, \

17 ("Harlingen’, ’Houston’): 330, \

18 ("Memphis’, ’'NYC’): 1096, \

19 ("Memphis’, 'LA’): 1792, \

20 ("Memphis’, ’‘Chicago’): 531, \

21 ("Memphis’, ’‘Houston’): 567, \

22 ("Ashland’, ’'NYC’): 485, \

23 ("Ashland’, "LA’): 2322, \

24 ("Ashland’, ’'Chicago’): 324, \

25 (" Ashland’, ’Houston’): 1236 }

26 P =2

27

28 # Create the Pyomo model

29 model = create_warehouse_model (N, M, d, P)

30

31 # Create the solver interface and solve the model
32 solver = pyo.SolverFactory(’glpk’)

33 res = solver.solve (model)
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34 pyo.assert_optimal_termination (res)
35
36 model.y.pprint () # Print the optimal warehouse locations

Line 5 imports the Pyomo environment, and line 6 imports the function defined in
wl_concrete.py to create the model from the passed in data. Lines 11 through
26 define the data for this problem. The Python lists N and M are used to specify
the valid warehouse locations and the customer locations respectively. The Python
dictionary d defines the costs associated with serving each customer from each lo-
cation, and line 26 specifies P, providing the number of warehouses needed.

In line 29 these native Python data structures are passed to the function written,
create_warehouse_location, where they are used to declare and construct
the Pyomo modeling components, the Var, Objective, and Constraint ob-
jects. The constructed model is returned from the function and assigned to model.
Line 32 creates an interface to the solver “glpk” that can be used to solve the opti-
mization problem. Line 33 calls solve to execute the solver and return a results ob-
jectto res, which is passed to the function assert_optimal_terminationin
line 34. If the solver does not report an optimal solution (possibly because the solver
is not properly installed or because there is not an optimal solution), this function
will print a message and terminate the script.

NOTE: After a Pyomo model has been constructed, the model can be printed
using the pprint method, model .pprint (). This summarizes the infor-
mation in the Pyomo model, including the constraint and objective expressions.
This can be a very useful debugging tool when a model is not generating the
expected results, since it shows the fully expanded version of the model.

In this example, the Python data for the problem (N, M, d, and P) were explicitly
defined in the script. While this is convenient to create a short book example, in
practice, much more data is often required, and this data would instead be loaded
from another source (e.g., an Excel file, or JSON file).
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Consider Figure 3.1, showing some example data for the warehouse location
problem specified in Microsoft Excel. The following script loads this data from the
Excel spreadsheet using the Python package Pandas, and then executes the same
lines as before to construct and solve the model, and report the solution.

# wl_excel.py: Loading Excel data using Pandas
import pandas

import pyomo.environ as pyo

from wl_concrete import create_warehouse_model

# read the data from Excel using Pandas
df = pandas.read_excel ('wl_data.xlsx’, ’'Delivery Costs’, \
header=0, index_col=0)

= list (df.index.map (str))

list (df.columns.map(str))

= {(r, c):df.at[r,c] for r in N for c in M}
= 2

Yo R =2
Il

# create the Pyomo model
model = create_warehouse_model (N, M, d, P)

# create the solver interface and solve the model
solver = pyo.SolverFactory ('glpk’)
solver.solve (model)

model.y.pprint () # print the optimal warehouse locations
A B € D E F

1 NYC LA Chicago Houston

2 Harlingen 1956 1606 1410 330

3 'Memphis 1096 1792 531 567

4 | Ashland 485 2322 324 1236

5

6

Fig. 3.1: This figure shows the data for our warehouse location problem as formatted in Microsoft
Excel.

3.3.5 Modeling Components for Sets and Parameters

While data can be specified using native Python types, Pyomo also includes model-
ing components Set and Param to define index sets and parameters respectively.
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A Pyomo Set component is used to declare valid indices for any indexed com-
ponent. For example, in the context of the warehouse location problem, two sets are
shown: N stores the valid warehouse locations and M stores the customer locations.
These sets can easily be declared using the following code:

model.N = pyo.Set ()
model.M = pyo.Set ()

These Set objects can be used to define indexed variables or constraints:

model.x = pyo.Var (model.N, model.M, bounds=(0,1))
model.y = pyo.Var (model.N, within=pyo.Binary)

This example passes Set objects into the Var constructor, rather than the Python
lists used in earlier examples. A Set component can be initialized by employing
the initialize keyword argument, with a Python set, list, or tuple.

Pyomo Set objects can also be indexed by other sets. Consider the following
example:

model.PremierSundaes = pyo.Set ()
model.Toppings = pyo.Set (model.PremierSundaes)

The set model.Toppings is an indexed set. If model.PremierSundaes is
given the values { PBC-Banana’, ‘Very Berry’ }, then toppings for each of these in-
dices can be defined. For example, model . Toppings [’/ PBC-Banana’ ] might
contain the set { ‘Peanut Butter’, ‘Chocolate Fudge’, ‘Banana’ }. On the other hand,
model .Toppings[’Very Berry’ ] mightcontain {‘Strawberries’, ‘Raspber-
ries’, ‘Blueberries’, ‘Crunch-berries’}.

A Pyomo Param component can be used to define data values for this problem.
In the context of the warehouse location problem, two pieces of data need to be
specified: P and d,, ;,. These parameters can be declared using the following code:

model.d = pyo.Param(model.N,model.M)
model.P = pyo.Param()

This example declares a scalar parameter P and an indexed parameter d. The pa-
rameter d is indexed by the Pyomo sets for the warehouse and customer locations
defined earlier. As with the Set object, values for these parameters could be pro-
vided through the initialize keyword argument using a Python dictionary or
by defining a construction rule.

By default, parameters are immutable, meaning once their values are set, these
values cannot be changed. This default behavior allows for increased efficiency
within Pyomo when handling expressions. However, a parameter whose values are
mutable can be defined with the mutable=True keyword argument. This can be
useful if a model should be solved multiple times with different values of some of
the parameters.

As an example, consider the warehouse location problem again. Assume signif-
icantly more data is required (e.g, a large number of potential warehouse locations
and customer locations). Using a mutable parameter for P easily shows how the op-
timal delivery costs change when the maximum number of warehouses is changed.
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The following code shows the process to define the model with a mutable param-
eter for P using the Pyomo Param object.

# wl_mutable.py: warehouse location problem with mutable param
import pyomo.environ as pyo

def create_warehouse_model (N, M, d, P):
model = pyo.ConcreteModel (name=" (WL)")

model.x = pyo.Var (N, M, bounds=(0,1))
model.y pyo.Var (N, within=pyo.Binary)
model.P = pyo.Param(initialize=P, mutable=True)

def obj_rule(mdl) :
return sum(d[n,m]+ mdl.x[n,m] for n in N for m in M)
model.obj = pyo.Objective (rule=obj_rule)

def demand_rule (mdl, m):
return sum(mdl.x[n,m] for n in N) ==
model.demand = pyo.Constraint (M, rule=demand_rule)

def warehouse_active_rule(mdl, n, m):
return mdl.x[n,m] <= mdl.yI[n]
model.warehouse_active = pyo.Constraint (N, M, \
rule=warehouse_active_rule)

def num_warehouses_rule (mdl) :

return sum(mdl.y[n] for n in N) <= mdl.P
model .num_warehouses = \

pyo.Constraint (rule=num_warehouses_rule)

return model

The key differences are the declaration of the Param object, model . P, and the use
of model.P in the num_warehouses constraint.




3.3 Pyomo Models 39

The script can be modified to load the distance data from Excel, and execute a
loop in Python to solve the optimization problem repeatedly for different values of
the mutable parameter model . P. This script is shown below.

# wl_mutable_excel.py: solve problem with different values for P
import pandas

import pyomo.environ as pyo

from wl_mutable import create_warehouse_model

# read the data from Excel using Pandas
df = pandas.read_excel ('wl_data.xlsx’, ’'Delivery Costs’, \
header=0, index_co0l=0)

= list (df.index.map (str))

list (df.columns.map (str))

{(r, c):df.at[r,c] for r in N for c in M}
=2

U R =2
Il

# create the Pyomo model
model = create_warehouse_model (N, M, d, P)

# create the solver interface
solver = pyo.SolverFactory ('glpk’)

# loop over values for mutable parameter P
for n in range(1,10):
model.P = n
res = solver.solve (model)
pyo.assert_optimal_termination (res)
print (' # warehouses:’, n, \
"delivery cost:’, pyo.value (model.obj))

NOTE: Pyomo users can leverage Python’s powerful scripting capabilities to
execute custom workflows that manipulate and optimize models. This section
has only scratched the surface of the possibilities with scripting. More details
are provided in Chapter 5.







Chapter 4

Pyomo Models and Components: An
Introduction

Abstract This chapter describes the core classes used to define optimization models
in Pyomo. Most of the discussion focuses on modeling components used to declare
parts of a model. Included is a discussion of the options used when declaring the
components and information about key component attributes and methods.

4.1 An Object-Oriented AML

Pyomo supports an object-oriented approach for representing mathematical opti-
mization models. A model object is created, and then modeling components are
added to this object to declare different parts of the model. Pyomo includes mod-
eling components commonly supported by modern AMLs: variables, constraints,
objectives, index sets, and symbolic parameters. This chapter describes the Pyomo
modeling components. In subsequent chapters, additional components are intro-
duced that provide enhanced functionality to represent advanced optimization model
features.

Users can create two types of models in Pyomo: concrete and abstract. A concrete
model is constructed “on-the-fly” as each model component is declared. Therefore,
the data associated with a concrete model must be specified before model com-
ponents are declared. A user can leverage native Python data structures to define
components in a concrete model. The ConcreteModel class is used to represent
a concrete model.

In contrast, an abstract model supports complete declaration of a model ab-
stractly. A specific problem instance is not constructed until all components are
declared and the data is provided. The AbstractModel class is used to create an
abstract model. Because abstract models allow components to reference data before
it is defined, they often rely on Pyomo data components such as Set and Param
to provide an abstract definition of the data used to construct the model (although
these components can be used on concrete models as well).
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4 Pyomo Components

The following are the core modeling components in Pyomo:

Var

Objective

Constraint

Set

Param

Expression

Suffix

The Var component is used to represent optimization variables. Py-
omo supports continuous and discrete variables, and includes sev-
eral pre-defined domains.

The Objective component defines the function or functions to
be optimized by the solver. This component contains the expression
used to define the objective function, and a flag to indicate the sense
(maximize or minimize).

Constraints are used to define additional restrictions on the op-
timization variables. The Constraint component contains ex-
pressions and the appropriate relational operator. Pyomo supports
equality (==) and general inequality (<= or >=) constraints.

The Set component represents a collection of data that can include
numeric (e.g., integer), or symbolic (e.g., string) elements. They are
most commonly used to define valid indices for other components.
Several common set operations are also supported.

The Param component is used to represent numerical or symbolic
values for data in the optimization problem. In contrast with simple
Python data types (e.g., float), Param objects support the ability
to change values (meaning they are mutable), and include features
like sparse representations and default values.

The Expression component can be used to create a Pyomo ex-
pression that can be reused in different parts of a Pyomo model.
This is useful for representing common sub-expressions for mem-
ory efficiency. Similar to mutable parameters, the underlying ex-
pression can be changed between calls to the solver.

Frequently, there is a need to provide, or receive, meta-data about
a model or a component (e.g., dual information from a constraint).
This is supported through the Pyomo Suffix component.

This chapter describes each of these components in more detail. A variety of other
modeling components are included in Pyomo, some of which are briefly discussed
at the end of this chapter and covered in more detail in the remaining chapters of

this book.

NOTE: Unless otherwise stated, the code snippets and examples used in this
chapter refer to concrete models.

4.2 Common Component Paradigms

There are behaviors common across most of the Pyomo modeling components listed

in the previous

section. Additionally, there are some common paradigms adopted
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across many components. This section describes these common behaviors.

4.2.1 Indexed Components

As shown in the previous chapter, Pyomo components can be declared as individual,
atomic entities or as indexed collections. Indexed components will appear in several
of the examples in this chapter. Consider the following model:

model = pyo.ConcreteModel ()

model.A = pyo.Set (initialize=[1,2,3])
model.B = pyo.Set (initialize=["Q’, 'R’'])
model.x = pyo.Var()

model.y = pyo.Var (model.A, model.B)

model.o = pyo.Objective (expr=model.x)
model.c = pyo.Constraint (expr=model.x >= 0)

def d_rule (model, a):
return a * model.x <= 0
model.d = pyo.Constraint (model.A, rule=d_rule)

The component c specifies a single constraint in this model, and the component
d specifies a collection of constraints indexed over the set A. The Constraint
component can be used to declare both simple constraints and indexed constraints.
In general, components can also be indexed by multiple index sets. For example,
model.y is indexed over both A and B, and it can be referenced by
model.y[1i, j] where i is any valid element from model.A and j is any valid
element from model.B (e.g.,model.y[2, Q" ]).

NOTE: Any unnamed arguments in a component constructor are assumed to
be index sets for the component. They specify the set of valid indices for the
component.

Declaration of arguments for indexed components is often more complex. For
example, the initialize keyword argument can be used when declaring a single
variable,

model.x = pyo.Var(initialize=3.14)

Specifying a value for these types of keyword arguments is straightforward when
the component is not indexed. When the component is indexed, however, we may
want to specify a different value for each of the indices. There are three approaches
typically supported for these kinds of keyword arguments.

e When a single scalar value is passed, then that value is used for all the indices
of the component.

e In many cases, you can also pass a Python dictionary (index-value pairs) where
the keys of the dictionary are valid indices for the component.
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e It is also possible to pass in a Python function to provide the value for every
index in the component. We often call these functions rules.

These uses are illustrated here:

model.A = pyo.Set (initialize=[1,2,3])
model.x = pyo.Var (model.A, initialize=3.14)
model.y = pyo.Var (model.A, initialize={1:1.5, 2:4.5, 3:5.5})
def z_init_rule(m, 1i):
return float (i) + 0.5
model.z = pyo.Var (model.A, initialize=z_init_rule)

4.3 Variables

Pyomo variables are created using the Var class, which can represent a single value
or an indexed collection of values. Variables can have initial values, and the value of
a variable can be retrieved and set by the user or by a solver as part of the solution
process.

4.3.1 var Declarations

The following code creates a non-indexed Var object:

model.x = pyo.Var()

Named and un-named arguments are supported, and Table 4.1 provides a list of the
common arguments that can be passed when declaring the Var component

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

within or specifies the valid domain or values a Pyomo Set object, Python list, or

domain for a variable rule function

bounds provides lower and upper bounds for a 2-tuple, or a rule function

the variable

initialize provides an initial value for the vari- a scalar value, Python dictionary of
able index-value pairs, or rule function

Table 4.1: Common declaration arguments for the Var component
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The domain of a variable (i.e., the set of legal values) is specified with either the
domain or within keyword options to the Var constructor:

model.A = pyo.Set (initialize=[1,2,3])

(
model.y = pyo.Var (within=model.A)
model.r = pyo.Var (domain=pyo.Reals)
model.w = pyo.Var (within=pyo.Boolean)

In this example, vy is only allowed to take on the integer values 1, 2, or 3. The variable
r can have any real value, and w is restricted to be binary (that is 0/1 or True/False).
If the domain is not specified, the default is the Reals virtual set. Other virtual sets
supported by Pyomo are defined in Table 4.2. Note that these virtual sets can also
be used in other contexts (e.g., when constructing Param objects).

Any The set of all possible values, except None
AnyWithNone The set of all possible values

EmptySet The set with no data values

Reals The set of floating point values
PositiveReals The set of strictly positive floating point values
NonPositiveReals The set of non-positive floating point values
NegativeReals The set of strictly negative floating point values
NonNegativeReals The set of non-negative floating point values
PercentFraction The set of floating point values in the interval [0,1]
UnitInterval The same as ‘PercentFraction’

Integers The set of integer values
PositiveIntegers The set of positive integer values
NonPositiveIntegers The set of non-positive integer values
NegativeIntegers The set of negative integer values

NonNegativelntegers

The set of non-negative integer values

Boolean

Binary

The set of boolean values, which can be represented as
False/True, 0/1, ‘False’/‘True’ and ‘F’/‘T’
The same as ‘Boolean’

Table 4.2: Predefined virtual sets in Pyomo.

The domain or within argument can also accept a function, which is used to
define the domain for individual elements of an indexed variable. For example:

model.A = pyo.Set (initialize=[1,2,3])

def s_domain (model,

return pyo.RangeSet (i,

i+1l, 1) # (start, end, step)

model.s = pyo.Var (model.A, domain=s_domain)

In this example, s is an indexed variable whose individual entities are defined over

consecutive integer intervals.

NOTE: While Pyomo supports a general representation for restricting the do-
main of the variables, not all solvers support this general behavior. You may
need to restrict your definitions to those supported by the selected solver.
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Variable bounds can be explicitly specified with the bounds keyword option:

model.A = pyo.Set (initialize=[1,2,3])
model.a = pyo.Var (bounds=(0.0,None))
lower = {1:2.5, 2:4.5, 3:6.
upper = {1:3.5, 2:4.5, 3:7.5}
def f (model, 1i):

return (lower([i], upper[i])
model.b = pyo.Var (model.A, bounds=f)

The bounds option can specify a 2-tuple with lower and upper values. Alterna-
tively, it can specify a function that returns a 2-tuple for each variable index. Note
that None can be used in place of the lower or upper bound to indicate no bound
should be enforced. In the code snippet above, model . a has a lower bound of 0,
and does not have an upper bound, while model . b has different bounds for each
of its indices. For example, model .b [3] has a lower bound of 6.5 and an upper
bound of 7.5.

The initial value of variables can be set with the initialize keyword argu-
ment as in the following example:

model.A = pyo.Set(initialize=[1,2,3])

model.za = pyo.Var(initialize=9.5, within=pyo.NonNegativeReals)
model.zb = pyo.Var (model.A, initialize={1:1.5, 2:4.5, 3:5.5})
model.zc = pyo.Var (model.A, initialize=2.1)

print (pyo.value (model.za)) # 9.5

print (pyo.value (model.zb[3])) # 5.5

print (pyo.value (model.zc[3])) # 2.1

For non-indexed variables, a single scalar value is provided to the initialize
keyword argument. If the component is indexed, a single value can still be provided,
in which case all entries in an indexed variable will be initialized to the same value.
As well, a dictionary can be passed in where the keys correspond to the valid indices
of the variable. Additionally, this argument can be passed a rule (a Python function)
that accepts the model and variable indices as arguments and returns the desired
initial value for that variable element:

model.A pyo.Set (initialize=[1,2,3])
def g(model, 1i):
return 31

model.m pyo.Var (model.A,

initialize=q)

value (model.m[1]))
value (model.m[3]))

print (pyo. # 3
print (pyo. # 9
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4.3.2 Working with Var Objects

When generating formatted output, or scripting advanced workflows, there are sev-
eral attributes and methods of Var commonly used. Consider the following decla-
rations:

model.A = pyo.Set(initialize=[1,2,3])

model.za = pyo.Var(initialize=9.5, within=pyo.NonNegativeReals)
model.zb = pyo.Var (model.A, initialize={1:1.5, 2:4.5, 3:5.5})
model.zc pyo.Var (model.A, initialize=2.1)

The current value of the variable can be obtained with the value () function, and
the attributes 1b and ub hold values for the lower and upper bounds on the variable,
respectively. These values may be inferred from the domain of the variable.

print (pyo.value (model.zb[2])) # 4.5
print (model.za.lb) # 0
print (model.za.ub) # None

The set1b and setub methods are used to set the lower and upper bounds on a
variable.
Variable values can be set using the Python assignment operator,

model.za = 8.5
model.zb[2] = 7.5

One can also call the set_values method to set all the variable values from a
dictionary.

Var components can be fixed to specific values. If the £ixed attribute is True,
then the variable has a fixed value that will not be altered by an optimizer. The £ix
method is used to fix elements of a Var, and the unfix method is used to unfix
elements of a Var.

model.zb.fix (3.0)

print (model.zb[1l].fixed) # True
print (model.zb([2].fixed) # True
model.zc[2].fix (3.0)

print (model.zc[1l].fixed) # False
print (model.zc[2].fixed) # True

4.4 Objectives

An objective is a function that is either minimized or maximized by a solver. The
solver searches for values of the variables that result in the best possible value of
the objective function. The following sections describe the syntax for declaring and
working with objectives.
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4.4.1 Ob jective Declarations

Most solvers can be applied to optimization models with a single objective. The
following code creates an Ob ject ive object:

model.a = pyo.Objective ()

Named and un-named arguments are supported, and Table 4.3 provides a list of the
common arguments that can be passed when declaring the Ob ject i ve component.

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists

expr provides the expression that defines any valid Pyomo expression

the objective function

rule provides the rule function that will be a function that returns a Pyomo ex-
called to access the expression that pression or Objective.Skip
defines the objective function

sense determines if the objective is to be minimize ormaximize
minimized or maximized (default is
to minimize)

Table 4.3: Common declaration arguments for the Ob ject ive component

The expr keyword can be used to specify the actual expression for the objective.
One can also use the rule keyword to specify a rule (a Python function) that re-
turns an expression. A rule provides control over how the objective is formed. Both
options are illustrated here:

model.x = pyo.Var([1l,2], initialize=1.0)
model.b = pyo.Objective (expr=model.x[1] + 2xmodel.x[2])

def m_rule (model) :
expr = model.x[1]
expr += 2xmodel.x[2]
return expr
model.c = pyo.Objective (rule=m_rule)
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Some solvers can perform multi-objective optimization with two or more objec-
tives. Multiple objectives can be declared individually or they can be indexed and
defined using a rule as shown here:

A = [’Q,r ’R,/ ,S’]
model.x = pyo.Var (A, initialize=1.0)
def d_rule(model, 1i):
return model.x[i]*%2
model.d = pyo.Objective (A, rule=d_rule)

When the Ob ject ive object is declared as an indexed component, Pyomo iterates
over all elements of the index set during object construction, passing each set ele-
ment to the function given as the argument to the rule keyword. If multiple sets are
specified in an Ob ject ive declaration, then Pyomo iterates over the cross product
of all sets, providing an element for each set to the rule function.

In some contexts, it may be convenient to not define objectives for some index
values. If the construction rule returns Objective. Skip, then the objective is
ignored.

def e_rule (model, 1i):
if i == 'R’:
return pyo.Objective.Skip
return model.x[i]*%2
model.e = pyo.Objective (A, rule=e_rule)

By default, the declaration of an Ob ject ive object indicates that the objective
is to be minimized. The sense keyword can be used to indicate an objective that is
maximized using sense=pyo.maximize

4.4.2 Working with Ob ject ive Objects

The objective function contains a few attributes that may be useful for scripting or
debugging. The expr attribute stores the expression for the objective. The sense
attribute indicates if the objective is to be minimized or maximized. The value
function can be used to compute the value of the objective. These are illustrated in
the following example:

A= ['Q", "R"]

model.x = pyo.Var (A, initialize={’Q’:1.5, 'R’":2.5})

model.o = pyo.Objective (expr=model.x[’Q’] + 2+model.x['R’])
print (model.o.expr) # x[Q] + 2#*x[R]

print (model.o.sense) # minimize

print (pyo.value (model.o)) # 6.5
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4.5 Constraints

A constraint defines one or more expressions that place limits on the feasible values
of variables. The declaration of constraint expressions is similar to the declaration
of objective function expressions. Constraints differ from objectives in that the ex-
pressions include relationships (equalities or inequalities). While objectives can be
indexed, this feature is infrequently used. In contrast, constraints are commonly in-
dexed, allowing for a collection of related constraint expressions to be constructed
and stored in a single constraint object.

4.5.1 Constraint Declarations

The following code creates a single, non-indexed Constraint object:

model.x = pyo.Var([1l,2], initialize=1.0)
model.diff = pyo.Constraint (expr=model.x[2]-model.x[1] <= 7.5)

Several named arguments are supported, and Table 4.4 lists the common arguments
that can be passed when declaring a Constraint component.

The expression specified by the expr keyword can alternatively be generated
with a rule function. For example, the diff constraint can also be declared as
follows:

model.x = pyo.Var([1l,2], initialize=1.0)
def diff rule (model) :

return model.x[2] - model.x[1l] <= 7.5
model.diff = pyo.Constraint (rule=diff_rule)

keyword description acceptable values
<un-named> reserved for specifying index sets any number of Pyomo Set objects or
Python lists
expr provides the expression that defines any valid Pyomo expression with a
the constraint relational operator, a 2-tuple, or a 3-
tuple
rule provides the rule function that willbe a function that returns a Pyomo
called to access the expression that expression with a relational op-
defines the constraint erator, a 2-tuple, a 3-tuple, or

Constraint.Skip

Table 4.4: Common declaration arguments for the Constraint component
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Constraints can be indexed, and those indices can be used to refer to specific
elements of indexed parameters and variables when constructing expressions. The
following code fragment shows an example of this:

N = [1,2,3]
a = {1:1, 2:3.1, 3:4.
b= {1:1, 2:2.9, 3:3.1}

model.y = pyo.Var (N, within=pyo.NonNegativeReals, initialize=0.0)

def CoverConstr_rule (model, 1i):
return af[i] » model.y[i] >= b[i]
model.CoverConstr = pyo.Constraint (N, rule=CoverConstr_rule)

Indexed constraints are specified in the same manner as indexed objectives. Py-
omo iterates over the cross product of the indexing sets, providing an index from
each set to the rule function. The CoverConstr constraint in this example imple-
ments the following mathematical model:

aiyi > b; Vi e {1,2,3} 4.1

Given the data specified in a and b, the model instance passed to the solver will
include the following explicit constraints:

y[1]

3.1-y[2]
4.5-y[3]

AVARAVARLY,

1
29
3.1

Three types of constraint expressions are allowed in Pyomo:

e inequality constraints have the form
expry <expr, O expr|> expr,

where expr; and expr, may be non-constant expressions. (Note that < and >
are not supported.)
e equality constraints have the form

expr| = expr,

where expr; and expr, may be non-constant expressions.
e range constraints have the form

lower < expr; < upper

where lower and upper are constant expressions and expr; is a non-constant
expression.
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In some optimization models, a constraint might not be defined for all indices.
For example, particular indices might not be physically realizable. The rule function
canreturn Constraint.Skip (or Constraint.NoConstraint) to indicate
that no constraint is associated with a particular index. For example, consider the
declaration of a notional task scheduling constraint:

TimePeriods = [1,2,3,4,5]
LastTimePeriod = 5

model.StartTime = pyo.Var (TimePeriods, initialize=1.0)

def Pred_rule (model, t):

if t == LastTimePeriod:
return pyo.Constraint.Skip
else:

return model.StartTime[t] <= model.StartTime[t+1]

model.Pred = pyo.Constraint (TimePeriods, rule=Pred_rule)

The value Constraint.Skip indicates that no constraint is being generated,
and the corresponding index value is skipped. An alternative to this approach is to
construct a sparse index set that specifies only the valid indices in the constraint.
However, this may not always be practical in complex models (for a discussion of
sparse index sets, see Section 9.4).

The value Constraint .Feasible indicates that the constraint generated for
the specified index is always feasible. Consequently, that constraint does not need to
be generated, and it is skipped. Similarly, the value Constraint.Infeasible
indicates that the constraint generated by the specified index is infeasible. This might
be used, for example, if a particular combination of parameter values produced an
invalid constraint. For this value, Pyomo raises an exception to inform the user,
because this typically indicates an error in the model or data.

4.5.2 Working with Constraint Objects

After a constraint is declared, the constraint expression is processed to identify the
elements of the logical tuple: (lower, body, upper), where the non-constant expres-
sions are pushed to the body. Hence, the 1ower and upper attributes are constant
expressions or None, and the body attribute contains a Pyomo expression. If a
Constraint contains an equality expression, then the equality attribute is
True, and the 1ower and upper attributes have the same value.
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The value of the constraint body can be evaluated using the value function.
Similarly, the 1slack and uslack methods can be used to compute slack values
(the difference between the current expression value and the lower or upper bound),
as shown in the following example:

model = pyo.ConcreteModel ()

model.x = pyo.Var(initialize=1.0)
model.y = pyo.Var (initialize=1.0)
model.cl = pyo.Constraint (expr=model.y - model.x <= 7.5)

model.c2 = pyo.Constraint (expr=-2.5 <= model.y - model.x)
model.c3 = pyo.Constraint (
expr=pyo.inequality(-3.0, model.y - model.x, 7.0))

print (pyo.value (model.cl.body)) # 0.0

print (model.cl.lslack(
print (model.cl.uslack(
print (model.c2.1lslack(
print (model.c2.uslack(
print (model.c3.1lslack(
print (model.c3.uslack(

)
)
)
)
)
)
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4.6 Set Data

A set is a collection of data, possibly including numeric data (e.g., real or integer
values) as well as symbolic data (e.g., strings) typically used to specify the valid
indices for an indexed component. Several classes can be used to define sets in
Pyomo models:

Set A generic component for declaring sets
RangeSet A component that defines a range of numbers
SetOf A component that creates a set from external data without

copying the data

4.6.1 Set Declarations

The following code creates a Set object:

model.A = pyo.Set ()

Named and un-named arguments are supported, and Table 4.5 provides a list of the
common arguments that can be passed when declaring the Set component.
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keyword

description
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acceptable values

<un-named>

initialize

reserved for specifying index sets

provides initial values to store in the
set

any number of Pyomo Set objects or
Python lists

Python list, Python dictionary, or rule
function

within specifies the valid values that can be a Pyomo Set object or Python list

domain contained in the set

ordered specifies whether or not order of the True, False,
set should be preserved Set.InsertionOrder, or

Set.SortedOrder

bounds specifies the lower and upper bounds a 2-tuple, a Python dictionary, or a
for valid values in the set rule function

filter specifies a rule for determining mem- a rule function

bership in the set

Table 4.5: Common declaration arguments for the Set component

An indexed set can also be specified by providing other sets or Python lists as
un-named arguments in the declaration:

model.A = pyo.Set ()

model.B = pyo.Set ()

model.C = pyo.Set (model.A)

model.D = pyo.Set (model.A,model.B)

Similarly, standard Python types can be used to define a set index:
model.E = pyo.Set([1,2,3])

f = set([1,2,3])

model.F = pyo.Set (f)

Set declarations can also use standard set operations to declare a set in a constructive
fashion:

model.A = pyo.Set ()

model.B = pyo.Set ()

model.G = model.A | model.B # set union
model.H = model.B & model.A # set intersection
model.I = model.A - model.B # set difference
model.J = model.A ~ model.B # set exclusive-or

Also, set cross-products can be specified with the multiplication operator:

model.A =
model.B =
model.K =

pyo.Set ()
pyo.Set ()
model.A x model.B
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The initialize keyword can be used to specify the elements in a set:

model.B = pyo.Set (initialize=[2,3,4])
model.C = pyo.Set (initialize=[(1,4),(9,16)1)

A Python dictionary can also be passed to the initialize keyword to specify
the elements for each index of an indexed set:

F_init = {}

F_init[2] = [1,3,5]

F_init[3] [2,4,6]

F_init[4] = [3,5,7]

model.F = pyo.Set([2,3,4],initialize=F_init)

Alternatively, a rule (a Python function) can be passed to the initialize key-
word to provide the elements for an indexed set. The function accepts the model and
indices and returns the desired set for that index:

def J_init (model, i, 3J):
return range (0,ix7])
model.J = pyo.Set (model.B,model.B, initialize=J_init)

The previous examples illustrate how data can be specified or dynamically gen-
erated to initialize a set. There are some contexts where it is simpler to specify the
set elements that should be omitted. The £i1ter keyword can be used to specify a
function that returns True when an element belongs in a set, and Fal se otherwise.
For example:

model.P = pyo.Set (initialize=[1,2,3,5,7])
def filter_rule (model, x):
return x not in model.P
model.Q = pyo.Set(initialize=range(1l,10), filter=filter_rule)

Here, set P contains prime values, and set Q is the set of all numbers except for the
members of P.

After an indexed set is constructed in a concrete model, sets can be added for
specific indices using the Python equal operator:

model.R = pyo.Set([1,2,3])
model.R[1] = [1]
model.R[2] = [1,2]

Validation of set data is supported in two different ways. First, a superset can be
specified with the within or domain keyword:

model.B = pyo.Set (within=model.A)

When an element is added to the set B, it is checked to confirm that it also belongs
to A. This ensures B is a subset of A.

Validation of set data can also be performed by passing a rule to the validate
keyword argument. The rule function should return True if the element that is
passed in belongs in this set, and False otherwise (Pyomo will throw an excep-
tion). For example, the following C_validate function mimics the within key-
word argument:

‘def C_validate (model, wvalue) :
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return value in model.A
model.C = pyo.Set (validate=C_validate)

Finally, note that if both the within and validate keyword arguments are spec-
ified, then the logic specified by both are applied to validate set elements.

By default, sets are ordered by insertion order. In some cases, we may want the
set elements to be in sorted order. This can be done using the Set . SortedOrder
option with the ordered keyword:

model.A = pyo.Set (ordered=pyo.Set.SortedOrder)

Sets may contain data elements that are either singletons or k-tuples. The dimen
keyword is used to specify the expected dimension of the data. The default value
is one, indicating the set will contain singleton data. In some cases, the appropriate
value of the dimension can be determined from other keyword values, but in general
the user is required to specify this keyword for tuple set data.

Ordered sets may have first and last values. The bounds option can be used to
specify a 2-tuple defining upper and lower bounds for a set. This option may be
inferred from the within argument, when the set is ordered.

The RangeSet component defines an ordered virtual set that represents a se-
quence of integer or floating point values. This sequence is defined by a start value,
a final value, and a step size. If a RangeSet is defined with a single argument, then
the argument defines the final value. The start value defaults to 1 and the step size
defaults to 1. For example, the following defines a sequence of integers from 1 to
10:

‘model.A = pyo.RangeSet (10)

IfaRangeSet is defined with two arguments, then the first is the start value and the
second is the final value. For example, the following defines a sequence of integers
from 5 to 10:

‘model.c = pyo.RangeSet (5,10)

Finally, if a RangeSet is defined with three arguments, then they are the start
value, final value and step size respectively. For example, the following defines a
sequence of floating point values from 2.5 to 10.0 with step 1.5:

‘model.D = pyo.RangeSet (2.5,11,1.5)

4.6.2 Working with Set Objects

The 1en () function returns the number of elements in the set:

model.A = pyo.Set (initialize=[1,2,3])

print (len (model.n)) # 3
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The elements in the set can be accessed with the data () method, which returns
the underlying set data as a Python tuple (or a Python dictionary for indexed sets)
as shown below:

model.A = pyo.Set (initialize=[1, 2, 3])
model.B = pyo.Set (initialize=[3, 2, 1], ordered=True)
model.C = pyo.Set (model.A, initialize={1:[1], 2:[1, 21})

print (type (model.A.data()) is tuple) # True

( ()

print (type (model.B.data()) is tuple) # True
print (type (model.C.data()) is dict) # True
print (sorted(model.A.data())) # [1, 2, 3]
for index in sorted(model.C.data() .keys()):

print (sorted (model.C.data () [index]))
# [1]
# [1, 2]

Set comparison and membership tests are supported with a variety of Python
operators:

model.A = pyo.Set(initialize=[1,2,3])

# Test if an element is in the set
print (1 in model.A) # True

# Test if sets are equal
print ([1, 2] == model.A) # False

# Test 1f sets are not equal
print ([1, 2] != model.A) # True

# Test if a set is a subset of or equal to the set
print ([1, 2] <= model.A) # True

# Test if a set is a subset of the set
print ([1, 2] < model.A) # True

# Test if a set is a superset of the set
print ([1, 2, 3] > model.A) # False

# Test if a set is a superset of or equal to the set
print ([1, 2, 3] >= model.A) # True
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Sets can also be iterated over to access individual elements in the set:

model.A = pyo.Set (initialize=[1, 2, 3])
model.C = pyo.Set (model.A, initialize={1:[1], 2:[1, 21})

print (sorted(e for e in model.nr)) # [1, 2, 3]
for index in model.C:
print (sorted(e for e in model.C[index]))
# [1]
# [1, 2]

Ordered sets include a variety of methods that reflect the ordering in the set:

model.A = pyo.Set (initialize=[3, 2, 1], ordered=True)

print (model.A.first()) # 3
print (model.A.last()) # 1
print (model.A.next (2)) # 1
print (model.A.prev(2)) # 3
print (model.A.nextw(l)) # 3
print (model.A.prevw(3)) # 1

The first () and last () methods return the first and last elements in an or-
dered set respectively. The next () method takes an element in the set and returns
the next element in the set. Similarly, the prev () method returns the previous el-
ement. The nextw () and prevw () methods operate similarly, except that they
wrap around the ends of the set. In this example, the value of nextw (1) is 3 be-
cause 1 is the last element of the set, and 3 is the next element if the set indices wrap
around. The ord () method can be used to find the position index of an element in
an ordered set, and the [ ] operator can be used to access an element given a position
index:

model.A = pyo.Set (initialize=[3, 2, 1], ordered=True)
print (model.A.ord (3) # 1
)) # 3

( 3
print (model.A.ord (1
print (model.A[1]) #

( #

)
)
3
print (model.A[3]) 1

NOTE: The position indices start at one, not zero. The order of the set is de-
termined by the sequence of the data provided when it is instantiated and the
option specified for the ordered keyword argument.

4.7 Parameter Data

A parameter is a numerical or symbolic value used to formulate constraints and ob-
jectives in a model. Pyomo parameters can be created using the Param class, which
can denote a single value, an array of values, or a multi-dimensional array of values.
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An unindexed Param component looks a lot like a scalar value, and an indexed
Param component looks a lot like a Python dictionary of values. The Param com-
ponent supports advanced features like mutability and sparse representations with
default values.

4.7.1 Param Declarations

The following code creates a Param object:

model.Z = pyo.Param(initialize=32)

Named and un-named arguments are supported, and Table 4.6 provides a list of the
common arguments that can be passed when declaring the Param component.

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or

Python lists

initialize

provides an initial value for the pa-
rameter

a scalar value, Python dictionary, or
rule function

default provides default a value to use for the a scalar value, Python dictionary, or
parameter if no value has been set rule function

validate specifies a function that is called to a function that returns True or False
determine if a particular value is valid given a particular value
for the parameter

mutable specifies whether or not the parame- True/False

ter value may change between calls to
a solver

Table 4.6: Common declaration arguments for the Param component

An indexed parameter can be specified by providing sets as un-named arguments
to the Param declaration:

model.A = pyo.Set(initialize=[1,2,3])
model.B = pyo.Set (initialize=["A’,’'B’'])
model.U = pyo.Param(model.A, initialize={1:10, 2:20, 3:30})
model.T = pyo.Param(model.A, model.B,
initialize={(1,’A"):10, (2,'B’):20, (3,’A"):30})
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The initialize keyword can be used to specify the value of a parameter as
shown in the previous two code snippets. A rule function can also be passed to the
initialize keyword to set the value of a parameter:

def X_init (model, i, 7J):
return ixj
model.X = pyo.Param(model.A, model.A, initialize=X_init)

If ordered sets are used to define the index for an indexed parameter, then the ini-
tialization function can reference previously defined parameter values:

def XX_init (model, i, 3Jj):
if i==1 or j==1:
return ixj
return ixj + model.XX[i-1, j-1]
model .XX = pyo.Param(model.A, model.A, initialize=XX_init)

The default option can be used to specify parameter values for all valid in-
dices that have not been explicitly initialized. For example, we can define an indexed
parameter that represents a 3 x 3 diagonal matrix as follows:

u={}

ull,1] = 10
ul2,2] = 20
ul[3,3] = 30

model.U = pyo.Param(model.A, model.A, initialize=u, default=0)

Similar to the Set component, there are two ways to validate parameter val-
ues. First, the within keyword option can be used to specify the valid domain of
parameter values:

model.Z = pyo.Param(within=pyo.Reals)

Validation of parameter data can also be performed with the validate option,
which specifies a function that returns True if a parameter value is valid and
False if it is not (Pyomo will throw an exception). The following example uses
the validate option to mimic the behavior of the within option:

def Y_validate (model, value) :
return value in pyo.Reals
model.Y = pyo.Param(validate=Y_validate)

Validation of indexed parameters is performed similarly. The validate op-
tion specifies a function whose arguments are the model, parameter value, and the
parameter indices:

model.A = pyo.Set (initialize=[1,2,3])
def X_validate (model, value, 1i):
return value > i
model.X = pyo.Param(model.A, validate=X_validate)

If both the within and validate options are specified, then the logic for both
of these options will be applied to validate parameter values.

The Param component can be used to represent constant values in Pyomo mod-
els; however, mutability is also supported. In the following example, Pyomo gener-
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ates the expression for the objective in this model with the form:
X1 +4xy +9x3.

Specifically, Pyomo has treated parameter values as fixed constants, and its expres-
sions simply contain the numeric constants.

model = pyo.ConcreteModel ()
p = {1:1, 2:4, 3:9}

model.A = pyo.Set (initialize=[1,2,3])
model.p pyo.Param(model.A, initialize=p)
model.x = pyo.Var (model.A, within=pyo.NonNegativeReals)

model.o = pyo.Objective (expr=sum(model.p[i]*model.x[i] for i in \
model.A))

Note that this “conversion” happens as soon as the expression is first created. The
fact that these values come from a Param component is lost, and only the numerical
values remain. This is done for efficiency. Consequently, these values cannot be
changed once the expression is created.

However, this behavior is different if the mutable option is specified while
constructing the model. If this option is True, then the parameter values are not
treated as constants. Consider the previous example again where the p parameter is
now mutable:

model = pyo.ConcreteModel ()
p = {1:1, 2:4, 3:9}

model.A pyo.Set (initialize=[1,2,3])
model.p = pyo.Param(model.A, initialize=p, mutable=True)
model.x = pyo.Var (model.A, within=pyo.NonNegativeReals)

model.o = pyo.Objective (expr=pyo.summation (model.p, model.x))

model.p[2] = 4.2
model.p[3] = 3.14

When Pyomo generates the expression for the objective in this model, it keeps
knowledge of the Param component and now has the form:

p1X1 + p2x2 + p3x3,

where the values p; are Param objects with references to the parameter values.
Here, Pyomo treats the parameter values as mutable values that may be changed later
by the user. In this example, the parameter values are changed affer the objective
expression is defined, and the resulting objective is

x1+4.2xy +3.14x3.

The parameters are only replaced with their numerical values when calling the
solver. Therefore, their values can be changed between consecutive calls to a solver.
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Mutable parameters require some additional overhead for memory and they re-
quire additional processing when translating Pyomo expressions into a form that a
solver understands. Consequently, parameters are immutable by default.

4.7.2 Working with Param Objects

Pyomo assumes parameter values are specified with a sparse representation. For
example, the Param object T declares a parameter indexed over sets A and B:

model.T = pyo.Param(model.A, model.B)

However, not all of these values are required to be defined in a model. For example:

model.B = pyo.Set (initialize=[1,2,3])
w={}

w[l] = 10
w[3] = 30
model.W = pyo.Param(model.B, initialize=w)

Parameter W is defined for indices 1 and 3, but the index set B includes 1, 2, and 3.
Ifw[2] is accessed, an error occurs and a Python exception is thrown.

As mentioned earlier, a default value can also be provided with the default
keyword argument. If a default value is provided, and a model tries to access a
value that has not been initialized, the default value is used (instead of throwing an
exception). Note that the parameter data is stored with a sparse representation, even
if the default value is specified. This is supported for memory efficiency. It provides
a convenient way for the modeler to reference sparse values without adopting a
specialized data structure.

Because of this sparse representation, several methods that consider the valid
keys of an indexed parameter require specialized behavior. Let the valid index set
refer to the complete list of all valid indices whether initialized or not, and let the
effective index set denote only the set of initialized key values in an indexed compo-
nent. If no default value is declared, then the the 1en function returns the size of the
effective index set, and the in operator tests if a specified value is in the effective
index set. Iteration is supported over values in the effective index set, and the Python
[ 1 operator can be used to access individual elements (which is the parameter value
in this example).

If a default value is declared, then all indices are equally valid in the model,
whether explicitly indexed or not. Therefore, the 1en () function returns the size
of the full index set, iteration and the in operator consider the full index set. Thus,
when a default value is specified, the parameter appears to be densely populated
with values, even if the underlying data structure is kept sparse for efficiency. This
is illustrated in the following example:

model = pyo.ConcreteModel ()

model.p = pyo.Param([1l,2,3], initialize={1:1.42, 3:3.14})

model.q = pyo.Param([1,2,3], initialize={1:1.42, 3:3.14}, \
default=0)
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# Demonstrating the len() function
print (len(model.p)) # 2
print (len(model.q)) # 3

# Demonstrating the ’in’ operator (checks against component keys)
print (2 in model.p) # False
print (2 in model.q) # True

# Demonstrating iteration over component keys
print ([key for key in model.pl) # [1, 3]
print ([key for key in model.ql) # [1, 2, 3]

The methods sparse_keys (), sparse_values (), sparse_items (),
sparse_iterkeys (), sparse_itervalues (), and
sparse_iteritems () define sparse versions of the corresponding methods de-
fined in theIndexedComponent class. These methods return values only for the
defined parameter values, whether or not a default value is specified.

4.8 Named Expressions

Pyomo expressions are mathematical statements containing numbers, parameters,
and variables combined using operators such as +,—,*,/ for example. These expres-
sions form the basis of the algebraic representation of a model, and are stored inside
constraint and objective components on the model.

The Expression component provides a mechanism for storing a Pyomo ex-
pression on a model making the expression reusable in multiple contexts, such as
a common sub-expression in one or more constraints, without the overhead of re-
generating the expression each time. In addition, the Pyomo expression stored by
the Expression component can be changed at a later time, thereby updating any
constraint or objective expressions referencing it. This provides a powerful approach
for modifying a model between calls to a solver.

The following sections describe the syntax for declaring and working with named
expressions.

4.8.1 Expression Declarations

The following code creates a single, non-indexed Expression object:

model.e = pyo.Expression ()

Named and un-named arguments are supported, and Table 4.7 provides a list of the
common arguments that can be passed when declaring the Expression compo-
nent.
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The expr or rule keywords can be used to initialize a named expression when
it is declared, as shown in the following example:

model.x = pyo.Var()
model.el = pyo.Expression(expr=model.x + 1)
def e2_rule (model) :

return model.x + 2

model.e2 = pyo.Expression(rule=e2_rule)

keyword description acceptable values

<un-named> reserved for specifying index sets any number of Pyomo Set objects or

Python lists

expr provides the expression to store any valid Pyomo expression

rule provides the rule function that will a function that returns a Pyomo ex-
be called to provide the expression to pression or Expression.Skip
store

Table 4.7: Common declaration arguments for the Expression component

As with the other core modeling components, the Expression component
can be indexed by declaring it with one or more unnamed arguments represent-
ing indexing sets. The following example declares an indexed Expression com-
ponent over all members of the index set except for the first. Indices that should
be left out of the indexed Expression component are signified by returning the
Expression.Skip attribute from the rule function.

N = [1,2,3]
model.x = pyo.Var (N)
def e_rule (model, 1i):
if i ==
return pyo.Expression.Skip
else:
return model.x[1]**2
model.e = pyo.Expression(N, rule=e_rule)

4.8.2 Working with Expression Objects

A simple use for the Expression component declares a single expression and
uses it inside an objective and a constraint declaration:

model.x = pyo.Var()

model.e = pyo.Expression (expr=(model.x — 1.0)%%2)
model.o = pyo.Objective (expr=0.l*model.e + model.x)
model.c = pyo.Constraint (expr=model.e <= 1.0)
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The value of the named expression can be computed using the value function.
Additionally, the expression stored in the named Expression component can be up-
dated. As the following example shows, updating the named expression has the
effect of updating the objective and constraint expressions where it is used:

model.x.set_value(2.0)

print (pyo.value (model.e)) # 1
print (pyo.value (model.o)) # 2
print (pyo.value (model.c.body)) # 1.0

0
1

model.e.set_value ((model.x = 2.0) *%2)
print (pyo.value (model.e)) # 0
print (pyo.value (model.o)) # 2
print (pyo.value (model.c.body)) # 0.0

.0
.0

The Expression component does not require an expression when it is declared
on a model, but it must be assigned one before the model is solved if the named
expression is used in any active objectives or constraints. Furthermore, named ex-
pressions that are used in objectives or constraints should not store relational Pyomo
expressions, that is, expressions using one or more of the operators <=, <, >=, >,
and ==.

4.9 Suffix Components

Suffixes provide a mechanism for annotating a model with auxiliary data not strictly
related to the model declaration and structure. Suffixes are commonly used by solver
plugins to store extra information about the solution of a model. More generally,
suffixes can be used to

e import information from a solver about the solution to a mathematical program
(e.g., constraint duals, variable reduced costs, basis information),

e export information to a solver or algorithm to configure the solution process
(e.g., warm-starting information, variable branching priorities), and

e tag model components with local data for later use in advanced scripting algo-
rithms.

This functionality is made available to the modeler through the Suffix compo-
nent class, providing an interface for annotating Pyomo modeling components with
additional data.

4.9.1 Suffix Declarations

The following code creates a suffix labeled foo:

model.foo = pyo.Suffix()
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Named arguments are supported, and Table 4.8 provides a list of the common argu-
ments that can be passed when declaring the Suf £fix component

keyword description acceptable values

direction specifiesif a suffix is aninputtooran Suffix.LOCAL,
output from a solver Suffix.IMPORT,
Suffix.EXPORT,
Suffix.IMPORT_EXPORT (more
details given below)

datatype specifies the particular type of data Suffix.FLOAT, Suffix.INT,
being stored in the suffix None (more details given below

initialize provides initial values for the suffix  arule function

Table 4.8: Common declaration arguments for the Suf £ix component

The Suffix component is a not an indexed component, and hence it cannot be
declared with unnamed positional arguments. The direct ion keyword argument
is used to specify the information flow for a suffix when interfacing with a solver.
This argument can be one of four possible values:

e Suffix.LOCAL: Suffix data is local to the model. It is not imported or ex-
ported by solver plugins and is the default.

e Suffix.IMPORT: Suffix data will be imported from solvers to the model by
solver plugins.

e Suffix.EXPORT: Suffix data will be exported from the model to the solver
by the plugins.

e Suffix.IMPORT_EXPORT: Suffix data is both imported and exported by
solver plugins.

Not all solver plugins are guaranteed to manage suffix information flow, but the user
controls this information flow by configuring suffix components.

The datatype keyword argument specifies the type of data held in the suffix.
This argument can be one of three possible values:

e Suffix.FLOAT: floating point data (default).
e Suffix.INT: integer data.
e None: any type of data.

This argument might be optional for some solver interfaces; however, exporting
suffix data with solvers using the n1 file interface requires all active export suffixes
have a strict datatype (i.e., the datat ype keyword cannot be None).

The following example illustrates various suffix declarations:

# Export integer data
model.priority = pyo.Suffix(direction=pyo.Suffix.EXPORT,
datatype=pyo.Suffix.INT)
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# Export and import floating point data
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT_EXPORT)

Suffixes are not guaranteed to be compatible with all solver plugins in Pyomo.
Whether a given suffix is acceptable or not depends on both the solver and solver
interface being used. In some cases, a solver plugin will raise an exception if it en-
counters a suffix type that it does not handle, but this is not true in every situation.
For example, the n1 file interface is generic to all AMPL-compatible solvers, so
there is no way for Pyomo to validate that a suffix of a given name, direction, and
datatype is appropriate for a solver. One should be careful in verifying that suffix
declarations are being handled as expected when switching to a different solver or
solver interface.

The initialize keyword argument can be used to define suffix values. This
argument specifies a function that is executed when the model is constructed. This
function returns a list or iterable of (component, value) tuples.

model = pyo.AbstractModel ()
model.x = pyo.Var()
model.c = pyo.Constraint (expr=model.x >= 1)

def foo_rule (m):
return ((m.x, 2.0), (m.c, 3.0))
model. foo pyo.Suffix (initialize=foo_rule)

4.9.2 Working with Suffixes

Consider the following example:

model = pyo.ConcreteModel ()
model.x = pyo.Var()

model.y = pyo.Var([1l,2,3])
model. foo pyo.Suffix ()

This examples includes two variable components, indexed and non-indexed, along
with a suffix component. Conceptually, the declaration of the suffix foo allows the
association of foo with each component in the model. For example:

# Assign the value 1.0 to suffix ’foo’ for model.x
model.x.set_suffix_value(’ foo’, 1.0)

# Assign the value 2.0 to suffix model.foo for model.x
model.x.set_suffix_value (model.foo, 2.0)

# Get the value of suffix ’foo’ for model.x
print (model.x.get_suffix_value(’foo’)) # 2.0

Suffix values can be assigned with set _suffix_value and they can be accessed
with get_suffix_value. This example illustrates two ways of specifying the
same suffix: with a name and with a suffix component object.
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Suffix values for indexed components can also be assigned with
set_suffix_value:

# Assign the value 3.0 to suffix model.foo for model.y
model.y.set_suffix_value (model.foo, 3.0)

# Assign the value 4.0 to suffix model.foo for model.y[2]
model.y[2].set_suffix_value (model.foo, 4.0)

# Get the value of suffix ’foo’ for model.y

print (model.y.get_suffix_value (model.foo)) # None

print (model.y[1l].get_suffix_value (model.foo)) # 3.0
print (model.y[2].get_suffix_value (model.foo)) # 4.0
print (model.y[3].get_suffix_value (model.foo)) # 3.0

This example illustrates how set_suffix_value is used to set the value for an
indexed component and a single component data object. When
set_suffix_value is called for an indexed component, by default it sets suf-
fix values for all elements or indices of the component, rather than the component
itself. Because of this, when we try to retrieve the suffix value for the model.y
component, we find that it is None.

Suffix values can also be cleared, which is equivalent to setting the value None:

model.y[3].clear_suffix_value (model.foo0)

print (model.y.get_suffix_value (model.foo)) # None

print (model.y[1l].get_suffix_value (model.foo)) # 3.0
print (model.y[2].get_suffix_value (model.foo)) # 4.0
print (model.y[3].get_suffix_value (model.foo)) # None

4.10 Other Modeling Components

This chapter presented details for some of the most common modeling components
supported by Pyomo. There are other modeling components that were not thor-
oughly discussed in this chapter. These include:

Block: The Block component provides a mechanism to declare models with re-
peated or nested structure (e.g., separate B1ock objects may exist on a model to
represent different time points in a multi-period optimization). A Block con-
sists of a collection of Pyomo modeling components. More discussion of blocks
is provided in Chapter 8.

Model: The Model component provides a container for grouping Pyomo modeling
components to form the definition of an optimization problem. Pyomo supports
both abstract and concrete modeling representations. While “model” objects
were widely used in this book (they are required to formulate and solve an
optimization problem in Pyomo), we have not discussed the fact that they are
components themselves. In fact, they inherit from the B1ock component.




4.10 Other Modeling Components 69

Complementarity: This component is used to define complementarity condi-
tions in a mathematical program with equilibrium constraints (MPEC). Several
forms of the complementarity conditions are supported. This component is doc-
umented further in Chapter 13.

ContinuousSet: This component is used to represent bounded continuous do-
mains in the context of modeling differential equations. This component is doc-
umented further in Chapter 12.

DerivativeVar: This component is used to represent derivatives of Var com-
ponents in the context of modeling differential equations. This component is
documented further in Chapter 12.

Disjunct: This component supports the Generalized Disjunctive Programming
(GDP) capability within Pyomo. A Disjunct component is a container for
an indicator variable and a set of constraints that should be active when that
indicator variable is True. This component is documented further in Chapter 11.

Disjunction: This component supports the Generalized Disjunctive Program-
ming (GDP) capability within Pyomo. A Disjunction component contains
aset of Disjunct objects connected by a logical “OR” operator. This compo-
nent is documented further in Chapter 11.

Piecewise: This component supports piecewise modeling of general functions. It
supports several different transformations to produce mixed-integer representa-
tions for the piecewise functions. Additional documentation for this component
can be found at the Pyomo website.

SOSConstraint: Special ordered sets (SOS) can be defined in Pyomo through
the SOSConstraint component. Pyomo supports special ordered sets of type
1 and 2 (SOS1 and SOS2). Additional documentation for this component can
be found at the Pyomo website.

BuildAction and BuildCheck: These components are used mainly in abstract
models and are described in Section 10.4.






Chapter 5
Scripting Custom Workflows

Abstract This chapter illustrates the use of Python with Pyomo for solution anal-
ysis and the development of custom workflows or high-level meta-algorithms. For
example, the chapter shows how to access variable and objective values, add and
remove constraints, and iterate over model components. This chapter also contains
some larger examples, to illustrate how Pyomo users can go beyond the basics and
develop custom solution and analysis strategies.

5.1 Introduction

In previous chapters, we have described how a generic optimization process can be
executed with Pyomo to construct a model, solve the model, and display the results.
The use of Python and the Pyomo API provides tremendous flexibility for the de-
velopment of advanced workflows. With some AMLs, a new scripting language is
defined that is unique to the AML, and the developers of the package produce a
parser for the new language. This separates the user from the underlying code of the
framework itself. With Pyomo, Python is used for both the overall framework and
the modeling environment. This provides the user with complete control over the
entire solution process giving two important high-level capabilities:

e Pyomo users can leverage existing Python libraries for analysis of data before
and after solving the optimization problem.

e Pyomo supports development of algorithms requiring problem transformations
and multiple solves of problems with different structure and data. Coupled with
the programming capabilities of Python, this allows users to build high-level
algorithms (e.g., Bender’s decomposition, MINLP solvers, and multi-stage ini-
tialization strategies).
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In this chapter, the basics of scripting with Pyomo will be discussed. This func-
tionality will be demonstrated on some examples, including a Sudoku solver.

NOTE: This chapter shows the power of Pyomo that can be accessed through
the Python language, and examples in this chapter may make use of methods
on components that are part of the core Pyomo infrastructure. The developers
of Pyomo try to maintain backwards compatibility where possible. However,
note that the methods described in this chapter are more likely to change than
other capabilities discussed in this book.

In Chapter 3 we introduced a warehouse location problem. This problem solved
for the optimal locations to build warehouses to meet delivery demands. Please refer
back to Section 3.2 for a detailed description of this problem.

The following example, which builds from the previous warehouse location ex-
ample, highlights the basic pieces found in almost any Python script to solve a prob-
lem in Pyomo: (1) load the necessary data, (2) create the Pyomo model, (3) perform
optimization of the Pyomo model using a solver interface, and (4) retrieve and report
the solution.

import json
import pyomo.environ as pyo
from warehouse_model import create_wl_model

# load the data from a json file
with open (’warehouse_data.json’, 'r’) as fd:
data = json.load(fd)

# call function to create model
model = create_wl_model (data, P=2)

# solve the model
solver = pyo.SolverFactory ('glpk’)
solver.solve (model)

# look at the solution
model.y.pprint ()

This script requires two additional files. The standard Python distribution in-
cludes support for reading and writing JSON files.
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The file below contains the necessary data in JSON format.

"WH": [
"Harlingen",
"Memphis",
"Ashland"
]I
"CUST": [
"NYC",
"LA",
"Chicago",
"Houston"
1,
"dist": {
"Harlingen": {
"NYC": 1956,
"LA": 1606,
"Chicago": 1410,
"Houston": 330

}l

"Memphis": {
"NYC": 1096,
"LA": 1792,
"Chicago": 531,
"Houston": 567

}l

"Ashland": {
"NYC": 485,
"LA": 2322,
"Chicago": 324,
"Houston": 1236
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The warehouse model is defined with the following code.

import pyomo.environ as pyo

def create_wl_model (data, P):
# create the model
model = pyo.ConcreteModel (name=" (WL)")
model .WH = data[’WH’]
model.CUST = datal[’CUST’]
model.dist = data[’dist’]
model.P = P
model.x = pyo.Var (model.WH, model.CUST, bounds=(0,1))
model.y pyo.Var (model.WH, within=pyo.Binary)

def obj_rule(m):
return sum(m.dist[w] [c]*m.x[w,c] for w in m.WH for c in \
m.CUST)
model.obj = pyo.Objective (rule=obj_rule)

def one_per_cust_rule(m, c):
return sum(m.x[w,c] for w in m.WH) ==
model.one_per_cust = pyo.Constraint (model.CUST, \
rule=one_per_cust_rule)

def warehouse_active_rule(m, w, c):
return m.x[w,c] <= m.y[w]

model .warehouse_active = pyo.Constraint (model.WH, \
model.CUST, rule=warehouse_active_rule)

def num_warehouses_rule (m) :

return sum(m.y[w] for w in m.WH) <= m.P
model .num_warehouses = \

pyo.Constraint (rule=num_warehouses_rule)

return model

Python allows scripting of custom workflows much more powerful than this sim-
ple example. In this chapter, a description of the steps to access model components
and modify the model programmatically will be illustrated

NOTE: Scripting is possible with abstract models although it is most common
to interact with concrete models when scripting. While the examples in this
chapter focus on concrete models, a concrete model can be created from an
abstract model using create_instance (). See Chapter 10 for more details.

5.2 Interrogating the Model

Instances of Pyomo modeling objects (e.g., Var, Param, Constraint) have sev-
eral attributes that can be accessed programmatically. These attributes can be inter-
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rogated to provide information about the state of the model. In this section, we show
how to iterate over model components and access key attributes of these compo-
nents. Chapter 4 provides additional details about the attributes of Pyomo modeling
components.

For example, one can access the actual expression for the objective function.
Consider the warehouse location problem described previously. The following code
will print the expression for the objective function, the value of the objective at the
solution, and the value of one of the variables.

import Jjson
import pyomo.environ as pyo
from warehouse_model import create_wl_model

# load the data from a json file
with open (’warehouse_data.json’, 'r’) as fd:
data = json.load(fd)

# call function to create model
model = create_wl_model (data, P=2)

# solve the model
solver = pyo.SolverFactory ('glpk’)
solver.solve (model)

# print the expression for the objective function
print (model.obj.expr)

# print the value of the objective function
# at the solution
print (pyo.value (model.obj))

# print the value of a particular variable
print (pyo.value (model.y[’Harlingen’]))

5.2.1 The value Function

Some Pyomo component attributes may contain Pyomo objects instead of native
Python numerical values. For example, the lower bound of a Var may be a simple
float (e.g., 3.2), but it may also be a Pyomo Param object with an associated
value. Because of this, it is important to use the value function to evaluate at-
tributes that are expected to return numerical values.
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The use of value is important for converting Pyomo expressions to numeric
values. This is illustrated in the following example.

import pyomo.environ as pyo

model = pyo.ConcreteModel ()
model.u = pyo.Var(initialize=2.0)

# unexpected expression instead of value

a = model.u - 1

print (a) # "u - 1"

print (type(a)) # <class \
‘pyomo.core.expr.numeric_expr.SumExpression’>

# correct way to access the value
b = pyo.value (model.u) - 1

print (b) # 1.0

print (type (b)) # <class ’float’>

In this example, a contains a Pyomo expression object (and not a numerical value
as might have been expected). This is demonstrated when we print it and check the
type. The print statement is correctly showing a description of the expression. To ob-
tain the numeric value of the variable (or other Pyomo components), pyo.value
needs to be called. Here, b contains the numeric value as expected.

This example illustrates the creation of implicit expressions and how they can
lead to unintended consequences. Users are strongly encouraged to avoid generating
expressions except as part of the model construction process.

NOTE: It is common to forget the value () function when retrieving values
from Pyomo Var components. For example, in the code shown below, Python
will actually print the representation of the variable object itself, not the value.

print (model.y)

[T

In this case, the code will print the variable name “y”, not the value.

5.2.2 Accessing Attributes of Indexed Components

The previous examples illustrate the procedure to access values of scalar variables.
The value of a particular index of an indexed variable by can be retrieved by speci-
fying the exact index.

print (pyo.value (model.y[’Ashland’]))

Itis also possible to access all the values by iterating over each element of an indexed
variable.

for i in model.y:
print (' {0} = {1}’ .format (model.y[i], pyo.value(model.y[i])))
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The loop above iterates over the keys for the indexed variable model .y. This ex-
ample could also have been written to iterate over the index set directly as shown
below.

for i in model.WH:
print (' {0} = {1}’ .format (model.y[i], pyo.value(model.y[i])))

This approach can also be used to access different attributes of variables (e.g.,
lower bound model .y [i] .1b) and other model components.

5.2.2.1 Slicing Over Indices of Components

Pyomo supports advanced slicing notation to allow for more control when looping
over individual elements of a model component. For example, we can see all of the
customers that are served from a particular warehouse with the following slicing
notation:

for v in model.x[’Ashland’, :]:
print (' {0} = {1}’ .format (v, pyo.value(v)))

NOTE: Note that the slicing notation is returning the component objects them-
selves, and not their indices. Additional information can be found in Sec-
tion 8.5.

5.2.2.2 Tterating Over All Var Objects on a Model

Pyomo also provides methods to generically loop over components on a given model
or block. In this short example, we show how to iterate over all Var objects on a
model.

# loop over the Var objects on the model
for v in model.component_objects (ctype=pyo.Var) :
for index in v:
print (' {0} <= {1}’ .format (v[index], \
pyo.value (v[index] .ub)))

# or use the following to loop over the individual

# indices of each of the Var objects directly

for v in model.component_data_objects (ctype=pyo.Var) :
print (' {0} <= {1}’ .format (v, pyo.value(v.ub)))

NOTE: These methods can be used to find all components on a Pyomo model
and iterate over them. This approach also extends to hierarchical models with
Block components. For a deeper dive into these methods, consult the online
documentation.




78 5 Scripting Custom Workflows

5.3 Modifying Pyomo Model Structure

A frequent use case is the need to repeatedly solve models with different parameter
values or minimal changes to the constraints. Mutable parameters can be used to
efficiently solve models with different parameter values. An example showing the
use of the mutable Param P is shown in Section 3.3.5.

Within Pyomo, it is possible to modify the structure of a model between solves.
For example:

e Objectives and constraints can be activated and deactivated without changing
the data stored in the model. A deactivated component will be excluded when
the Pyomo model is being sent to the solver.

e Variables can be treated as fixed or unfixed (the default).

e Pyomo also allows addition and removal of modeling components. For example,
constraints can be added or removed from a model.

The following example illustrates the use of these approaches for modifying
model structure:

import pyomo.environ as pyo

model = pyo ConcreteModel

()
model.x = pyo.Var (bounds=(0,5))
model.y = pyo.Var (bounds=(0,1))
model.con = pyo.Constraint (expr=model.x + model.y == 1.0)
model.obj = pyo.Objective (expr=model.y-model.x)

# solve the problem
solver = pyo.SolverFactory ('glpk’)
solver.solve (model)

print (pyo.value (model.x))
print (pyo.value (model.y))

# add a constraint

model.con2 = pyo.Constraint (expr=4.0xmodel.x + model.y == 2.0)
solver.solve (model)

print (pyo.value (model.x)) # 0.33

print (pyo.value (model.y)) # 0.66

# deactivate a constraint
model.con.deactivate ()
solver.solve (model)

print (pyo.value (model.x)) #
print (pyo.value (model.y)) #

# re-activate a constraint
model.con.activate ()
solver.solve (model)

print (pyo.value (model.x)) # 0.33
print (pyo.value (model.y)) # 0.66

# delete a constraint
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del model.con2
solver.solve (model)

print (pyo.value (model.
print (pyo.value (model.

# fix a variable
model.x.fix (0.5)
solver.solve (model)

print (pyo.value (model.
print (pyo.value (model.

# unfix a variable
model.x.unfix ()
solver.solve (model)

print (pyo.value (model.
print (pyo.value (model.
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5.4 Examples of Common Scripting Tasks

In this section, we will show a few scripting examples that illustrate the capabilities
shown previously. More examples can be found in the Pyomo Gallery (see www.

pyomo.org).

5.4.1 Warehouse Location Loop and Plotting

The following example formulates the warehouse location problem and solves it
repeatedly to find every possible solution. Each time a solution is found, a new cut
is added that excludes that solution, and the problem is solved again to find the
next solution. This process is repeated until the problem is infeasible, and no more

solutions can be found.
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The ConstraintList component is used to contain the list of cuts; each time
through the loop a new cut is added to this component.

import Jjson

import pyomo.environ as pyo

from warehouse_model import create_wl_model
import matplotlib.pyplot as plt

# load the data from a json file
with open (’warehouse_data.json’, 'r’) as fd:

data = json.load(fd)

# call function to create model

model = create_wl_model (data, P=2)
model.integer_cuts = pyo.ConstraintList ()
objective_values = list ()

done = False
while not done:
# solve the model
solver = pyo.SolverFactory ('glpk’)

results = solver.solve (model)

term_cond = results.solver.termination_condition
print (')

print (' -—- Solver Status: {0} —---’.format (term_cond))

if pyo.check_optimal_termination (results):
# look at the solution
print (‘Optimal Obj. Value = \
{0}’ .format (pyo.value (model.obj)))
objective_values.append (pyo.value (model.obij))
model.y.pprint ()

# create new integer cut to exclude this solution

WH_True = [i for 1 in model.WH if pyo.value (model.y[i]) > \
0.5]

WH_False = [i for i1 in model.WH if pyo.value (model.y[i]) \
< 0.5]

exprl = sum(model.y[i] for i in WH_True)

expr2 = sum(model.y[i] for i in WH_False)

model.integer_cuts.add(
sum (model.y[i] for i in WH_True) \
- sum(model.y[i] for i in WH_False) \
<= len(WH_True)-1)
else:
done = True

x = range(l, len(objective_values)+1)
plt.bar(x, objective_values, align=’center’)
plt.gca() .set_xticks (x)

plt.xlabel (' Solution Number’)

plt.ylabel ('Optimal Obj. Value’)
plt.savefig (' WarehouseCuts.pdf’)
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This example generates console output that shows each of the solutions encoun-
tered. It also generates Figure 5.1 with the package matplotlib that shows the
value of the optimal objective function for each solution obtained.

Optimal Obj. Value

1 2 3 4 5 6
Solution Number

Fig. 5.1: Optimal objective value for a series of solutions obtained from the warehouse location
problem.

5.4.2 A Sudoku Solver

In this section, we further illustrate the power of scripting in Python with Pyomo.
Specifically, we will solve a feasibility problem and show how to find all the feasible
solutions to the Sudoku puzzle. We will solve the problem once, identify a feasible
solution, then add an integer cut to remove this solution from the list of possible
solutions, and solve the problem again.

A typical Sudoku puzzle is shown in Figure 5.2. In this puzzle, one must fill in the
empty cells with the numbers 1 through 9. Each row must have only one occurrence
of each number. Likewise, each column must only have one occurrence of each
number. Finally, each of the nine sub-squares must also only have one occurrence of
each number. We define the sets ROW S, COLS, and VALUES (all of which contain
the integers 1 through 9. We then define a binary variable y[r, ¢, V] to indicate which
number is in each of the cells. If y[r,c,v] = 1, then this implies that the value v has
been selected for the cell identified by row » and column c.
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5 3 7
6 1 9 5
9 8 6
8 6 3
4 8 3 1
7 2 6
6 2 8
4 1 9 5
8 7 9

Fig. 5.2: An example of a Sudoku puzzle prior to solving.

Using this notation, it is relatively straightforward to define the constraints that
restrict the allowable numbers in each row and column as,

Y, ylnev]=1 ¥YreROWS,veVALUES
ceCOLS

y[r,e,v]=1 Ve eCOLS, ve VALUES
reROWS

The Pyomo code for these constraints is:

# exactly one number in each row
def _RowCon (model, r, Vv):
return sum(model.y[r,c,v] for c in model.COLS) == 1
model.RowCon = pyo.Constraint (model.ROWS, model.VALUES, \
rule=_RowCon)

# exactly one number in each column
def _ColCon (model, c, Vv):
return sum(model.y[r,c,v] for r in model.ROWS) ==
model.ColCon = pyo.Constraint (model.COLS, model.VALUES, \
rule=_ColCon)

Defining the constraint that restricts the number for the sub-squares is a little
more difficult. To make the definition easier, we define a set with an index for each
of the sub-squares. Then, we define a list of tuples that describes the map from
each of the sub-squares to the list of corresponding indices. This list, along with
the corresponding sub-squares constraint, is defined in the complete code listing for
this example at the end of this section. The desired constraint for the sub-squares is
given by,
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y[re,v]=1 VYie SUBSQUARES.

(r,c)Essmapli]

The Pyomo code for this constraint is:

# exactly one number in each subsquare
def _SqgCon (model, s, Vv):
return sum(model.y[r,c,v] for (r,c) in \
subsg _to_row_col[s]) ==
model.SqgCon = pyo.Constraint (model.SUBSQUARES, model.VALUES, \
rule=_SqgCon)

The last key constraint for the Sudoku problem is to make sure that there is only
one value allowed per cell. The constraint is given by,

y[re,v]=1 Vr € ROWS, ¢ € COLS.
VEVALUES

The Pyomo code for this constraint is:

# exactly one number in each cell
def _ValueCon (model, r, c):
return sum(model.y[r,c,v] for v in model.VALUES) ==
model.ValueCon = pyo.Constraint (model.ROWS, model.COLS, \
rule=_ValueCon)

When designing Sudoku puzzles, two features may change frequently: the initial
board layout and the number of integer cuts to remove previously seen solutions.
One way to handle this variety of potential inputs is to define a function to create
the model from a starting puzzle as well as a list of integer cuts. However, such a
function would be inefficient for our purposes since we would be creating an entirely
new model each time we wanted to add a single new integer cut after each solve.
Thus, we will define two separate functions: one that creates the initial model given
a Sudoku board, and another that adds a new integer cut to the given model based
on the current value of its variables.

We define an integer cut using two sets. The first set Sy consists of indices for
those variables whose current solution is 0, and the second set Sy consists of indices
for those variables whose current solution is 1. Given these two sets, an integer cut
constraint that would prevent such a solution from appearing again is defined by,

Z ylre, v+ Z (1=y[r,c,v]) > 1.

(re,v)€Sp (re,v)ES)

The following Python code defines three functions. The first,
create_sudoku_model creates the Pyomo model for the Sudoku problem. The
second, add_integer_cut creates an integer cut corresponding to the current
solution and adds it to the ConstraintList called IntegerCuts. The third,
print_solution prints the current solution in the form of a Sudoku board.




84 5 Scripting Custom Workflows

import pyomo.environ as pyo

# create a standard python dict for mapping subsquares
# the list (row,col) entries
subsg_to_row_col = dict ()

subsg_to_row_col[l] = [
subsg_to_row_col[2] = [
subsqg_to_row_col[3] = [

(i, j) for i in range(1l,4) for j
(i,3j) for i in range(l,4) for j
(i,j) for i in range(1l,4) for j

subsg_to_row_col[4] [(1,3) for i in range(4,7) for j
subsg_to_row_col[5] = [(i,]J) for i in range(4,7) for j
[ (1

to

in
in
in

in

range (1,4)]
range (4,7) 1]
range (7,10) ]

range (1,4)]

in range (4,7)]
subsg_to_row_col[6] (i,3) for i in range(4,7) for j in range(7,10)
subsqg_to_row_col[7] = [(i,]J) for i in range(7,10) for j in range(l,4)]
subsg_to_row_col[8] = [(i,]J) for i in range(7,10) for j in range (4,7)
subsg_to_row_col[9] = [(i,]) for i in range(7,10) for j in range(7,10)

# creates the sudoku model for a 10x10 board, where the

# input board is a list of fixed numbers specified in
# (row, col, val) tuples.
def create_sudoku_model (board) :

model = pyo.ConcreteModel ()

# store the starting board for the model
model .board = board

# create sets for rows columns and squares
model .ROWS = pyo.RangeSet (1,9)

model.COLS = pyo.RangeSet (1,9)
model.SUBSQUARES = pyo.RangeSet (1,9)
model.VALUES = pyo.RangeSet (1,9)

# create the binary variables to define the values

model.y = pyo.Var (model.ROWS, model.COLS, model.VALUES,

# fix variables based on the current board
for (r,c,v) in board:
model.y[r,c,v].fix (1)

# create the objective - this is a feasibility problem

# so we just make it a constant
model.obj = pyo.Objective (expr= 1.0)

# exactly one number in each row
def _RowCon (model, r, v):

return sum(model.y[r,c,v] for c in model.COLS) ==
model.RowCon = pyo.Constraint (model.ROWS, model.VALUES,

# exactly one number in each column
def _ColCon(model, c, v):

return sum(model.y[r,c,v] for r in model.ROWS) ==
model.ColCon = pyo.Constraint (model.COLS, model.VALUES,

# exactly one number in each subsquare
def _SgCon (model, s, Vv):

within=pyo.Binary)

rule=_RowCon)

rule=_ColCon)

return sum(model.y[r,c,v] for (r,c) in subsqg to_row_col[s]) == 1
model.SgCon = pyo.Constraint (model.SUBSQUARES, model.VALUES, rule=_SqgCon)

# exactly one number in each cell
def _ValueCon (model, r, c):
return sum(model.y[r,c,v] for v in model.VALUES)

model.ValueCon = pyo.Constraint (model.ROWS, model.COLS,

return model

1
rule=_ValueCon)




5.4 Examples of Common Scripting Tasks 85

# use this function to add a new integer cut to the model.
def add_integer_cut (model) :
# add the ConstraintList to store the IntegerCuts if
# it does not already exist
if not hasattr (model, "IntegerCuts"):
model.IntegerCuts = pyo.ConstraintList ()

# add the integer cut corresponding to the current
# solution in the model
cut_expr = 0.0
for r in model.ROWS:
for ¢ in model.COLS:
for v in model.VALUES:
if not model.yl[r,c,v].fixed:
# check if the binary variable is on or off
# note, it may not be exactly 1
if pyo.value(model.y[r,c,v]) >= 0.5:
cut_expr += (1.0 - model.y[r,c,Vv])
else:
cut_expr += model.y[r,c,Vv]
model.IntegerCuts.add (cut_expr >= 1)

# prints the current solution stored in the model
def print_solution (model) :
for r in model.ROWS:
print (* ’.join(str(v) for c in model.COLS
for v in model.VALUES
if pyo.value (model.y[r,c,v]) >= 0.5))

The following code shows a script that drives the optimization process based on
these three functions. This script defines the candidate board, and iteratively solves
the Sudoku problems by adding integer cuts until the problem is no longer feasible.
Infeasibility is assumed when the solver termination condition is no longer reported
as optimal.

from pyomo.opt import (SolverFactory,
TerminationCondition)
from sudoku import (create_sudoku_model,
print_solution,
add_integer_cut)

# define the board

board = [(1,1,5),(1,2,3),(1,5,7), \
(2,1,6),(2,4,1),(2,5,9),(2,6,5), \
(3,2,9),(3,3,8),(3,8,6), \
(4,1,8),(4,5,6),(4,9,3), \
(5,1,4),(5,4,8),(5,6,3),(5,9,1), \
(6,1,7),(6,5,2),(6,9,6), \
(7,2,6),(7,7,2),(7,8,8), \
(8,4,4),(8,5,1),(8,6,9),(8,9,5), \
(9,5,8),(9,8,7),(9,9,9)1

model = create_sudoku_model (board)

solution_count = 0

while 1:

with SolverFactory ("glpk") as opt:
results = opt.solve (model)
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if results.solver.termination_condition != \
TerminationCondition.optimal:
print ("All board solutions have been found")
break

solution_count += 1
add_integer_cut (model)

o

print ("Solution #%d" % (solution_count))
print_solution (model)

Running this script provides all possible solutions as the output. In this example,
there is only one solution to the candidate Sudoku puzzle, as shown in Figure 5.3.

Fig. 5.3: Solved Sudoku puzzle.




Chapter 6
Interacting with Solvers

Abstract This chapter describes how to interface with solvers in Pyomo. Basic func-
tionality supported by all interfaces includes translation of a Pyomo instance into
the format required by a solver, solver options processing, solver invocation, solve
status checking, and solution loading.

6.1 Introduction

Figure 6.1 shows a high-level view of the relationship between Pyomo and opti-
mization software that we will refer to as a solver. Pyomo is a modeling tool and
does not, itself, include solvers. Rather Pyomo has several interfaces to solvers. As
shown in the figure, Pyomo translates the model into a format used by a solver. The
results of the solver are used to populate the Var objects in the Pyomo model and
a Results object is also returned that can be queried to obtain more information
about solver execution. Additional information can be sent to the solver (e.g., op-
tions) and received from the solver (e.g. dual values) but these are not shown in the
figure.

Pyomo models can be analyzed with a wide variety of optimization solvers, and
there are several types of solver interfaces in Pyomo:

o A shell solver is launched as a separate sub-process by running an executable
found on the user’s PATH environment. Pyomo interfaces with these solvers
through files. Pyomo generates a file description of the problem, launches the
solver, and then loads the results from log files and standard output files. This
is a common form of solver.

e A direct solver is executed as a subroutine. Pyomo interfaces with these solvers
through libraries installed and exposed in the form of Python packages. This is a
less common form of solver, since it relies on the existence of Python interfaces
to solver libraries.

o A persistent solver is related to a direct solver, but includes additional capabil-
ities to allow for incremental modification and re-solve of a model. Persistent

87



88 6 Interacting with Solvers

Translate
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ConcreteModel
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Fig. 6.1: Stylized representation of typical interactions between Pyomo, which processes the model
and a solver, which computes solutions.

solvers are typically used to improve performance in situations where model
construction time is significant or known solutions to a related family of mod-
els can be used to reduce solve times. Persistent solvers are discussed further in
Section 9.

The rest of this chapter discusses how to call a solver, send solver-specific op-
tions, and obtain solver execution information and results.

6.2 Using Solvers

As seen in Section 5.1 the SolverFactory function is used to construct a solver
interface object. The argument passed to the solver factory specifies the name of the
solver being used. In most cases, this is the name of the executable that will be used
to solve the problem; however, Pyomo supports shorter names for some solvers. For
example, the GLPK solver can be specified with

solver = pyo.SolverFactory ('glpk’)

Once a solver object has been constructed, the solver can be invoked by call-
ing the solve () method. The solve () method accepts a number of keyword
arguments, a few of which are shown here, more or less in order of importance.

e options: A dictionary of options to be passed to the underlying solver.

e tee: If this argument is True, then the solver output is printed both to the
standard output as well as saved to the log file. If False (the default), then the
solver output is only saved to log file if the solver creates one.

e load_solutions: If this argument is True (the default), then solution
values are automically transfered to Var objects on the model. If False,
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then the results object keeps a raw representation of the solutions and it is
not transferred to the model. It can be transfered to the model using the
model.solutions.load_from () method.

e logfile: The filename used to store output for shell solvers.

e solnfile: The filename used to store the solution for shell solvers.

e timelimit: The number of seconds that a shell solver is run before it is ter-
minated. (default is None)

e report_timing: If this argument is True, then timing information is re-
ported by the solver (defaultis False)

e solver_io: Used to specify an alternative interface for a solver, e.g. solver_io="'nl"*.

e suffixes: A list of suffixes that are exported to the solver.

The options attribute can be used to send solver specific options to the un-
derlying solver. In the following example, we pass the tee=True keyword argu-
ment to tell Pyomo to print the solver’s execution trace to the terminal. We pass
two solver-specific options to GLPK (sending log output to warehouse. log and
turning off scaling). Notice that some solver-specific options do not take values (e.g.
noscale), but are simply flags to turn on or off particular behavior. For these types
of options, set the option value in the dictionary to None. Note that options can also
be sent directly to the solve function as a dictionary. Options that are passed to
the solve function do not persist.

import json
import pyomo.environ as pyo
from warehouse_model import create_wl_model

# load the data from a json file
with open (’warehouse_data.json’, 'r’) as fd:
data = json.load(fd)

# call function to create model
model = create_wl_model (data, P=2)

# create the solver
solver = pyo.SolverFactory ('glpk’)

# options can be set directly on the solver
solver.options[’noscale’] = None
solver.options[’log’] = ’"warehouse.log’
solver.solve (model, tee=True)
model.y.pprint ()

# options can also be passed via the solve command

myoptions = dict ()
myoptions|[’noscale’] = None
myoptions([’log’] = "warehouse.log’

solver.solve (model, options=myoptions, tee=True)
model.y.pprint ()
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6.3 Investigating the Solution

After a model is solved, there are two aspects of the solution to be investigated. The
first is the solution status returned from the solver, and the second is the value of the
variables and objective function. The solution status can usually be viewed in the
console by passing tee=True into the solve command, but there are many times
when one would like to read this status in code. This section will discuss the results
object, and show how to retrieve values from variables after the solve.

6.3.1 Solver Results

The solve () method returns a results object that contains status information from
the solver. If the solve completes successfully, the solution values are loaded directly
into the model. This consists of three steps: (1) storing solutions in the solutions
attribute of the model, (2) load the values of variables from a selected solution,
and (3) remove solutions from the results object. Afterwards, the results object
only contains meta-data about the model and the optimization process. For memory
efficiency, it no longer contains the solution itself by default.

NOTE: By default, when the solver completes, the solution is automatically
loaded into the model object and removed from the results object. Due to this,
the results object will indicate it has O solutions.

Typically, a solver only returns a single solution; however, there are cases where
a solver might return multiple solutions (a pool of solutions). Due to this, the results
object supports an interface that looks like a dictionary of lists containing more than
one solution. However, for the most common case of a single solution, the results
object supports a simple attribute-like interface. The results object returned from
the solve () method contains a problem attribute and a solver attribute that
contain information about the problem statistics and the solver status.

The results.solver attribute contains a SolverInformation object.
Key attributes of this object are shown in the Table 6.1.

As noted in Section 2.5, the simplest thing to do with the results object is
to pass it to the function assert_optimal_termination , which halts the
script and outputs a message if the solver does not report that it found an opti-
mal solution. In situations where the script should not halt if the solution is opti-
mal, but a test for optimality is needed, the results object can be passed to the
check_optimal_termination function that returns True if the solver report
optimality and False if not.

In some scripts, it makes sense to defer moving the solution from the results
object to the model until after optimality has been checked. This might be needed
for efficieny or to avoid having Var values that are not optimal loaded into the
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Table 6.1: Key attributes of the SolverInformation object

Attribute

status Returns the solver status as a member of the SolverStatus
enum that can be: ok, warning, error, aborted, or
unknown.

termination_condition Returns the specific termination condition as reported by the
solver. This is an enum called TerminationCondition
that can have different values, including optimal,
infeasible, or unbounded. There are many different
solver outcomes, and depending on the solver, other outcomes
may be seen.

termination_message String message returned by the solver summarizing the termina-
tion status.

model. To avoid automatic loading of the solution from the results object to the
model, use the load_solutions=False argument to the call to solve ().
To move the solution values from the results object to the Var values in
the model, use model.solutions.load_from(results), which uses the
solutions object that is automatically attached to the model object when it is
passed to the solve method. A short example of these steps is shown:

from pyomo.opt import SolverStatus, TerminationCondition
# Wait to load the solution into the model until
# after the solver status is checked
results = solver.solve (model, load_solutions=False)
if (results.solver.status == SolverStatus.ok) and \
(results.solver.termination_condition ==
TerminationCondition.optimal) :
# Manually load the solution into the model
model.solutions.load_from(results)
else:
print ("Solve failed.")
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Chapter 7
Nonlinear Programming with Pyomo

Abstract This chapter describes the nonlinear programming capabilities of Pyomo.
It presents the nonlinear expressions and functions supported, and it provides some
tips for formulating and solving nonlinear programming problems. This chapter also
provides several real-world examples to illustrate formulating and solving nonlinear
programming problems. Finally, it provides a brief discussion of supported solvers
for nonlinear problems.

7.1 Introduction

It is not possible to adequately represent many applications without modeling non-
linear relationships. Fortunately, Pyomo has the ability to represent general nonlin-
ear programming (NLP) problems in a straightforward manner. However, the solu-
tion of this class of problems presents several challenges that do not exist for linear
problems. For example, most modern, efficient NLP solvers require derivatives of
the constraints and the objective function. Since the functions are nonlinear, this re-
quires accurate numerical evaluation of these derivatives. Additionally, in the case
of non-convex problems, multiple local minima may exist due to the shape of the
objective function or the constraints, and specifying a suitable starting point may be
critical.

In Section 7.2, we describe the nonlinear expressions supported in Pyomo and
then illustrate how to build a nonlinear problem formulation within Pyomo. In Sec-
tion 7.3, we briefly discuss the solvers supported by Pyomo, and we provide a
few tips to help effectively formulate nonlinear programming problems. Finally, we
close this chapter with a number of small, but real-world nonlinear programming
examples.
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7.2 Nonlinear Progamming Problems in Pyomo

Pyomo supports the following general nonlinear programming formulation:

The allowable form of the objective function f(x), the vector of equality constraints
¢(x), and the vector of inequality constraints d(x) depends entirely on the solver
selected to provide a solution. However, Pyomo is tested extensively with local and
global solvers that typically assume that these functions are continuous and smooth,
with continuous first (and possibly second) derivatives. The development of nonlin-
ear extensions for Pyomo has focused on this broad problem class.

7.2.1 Nonlinear Expressions

Formulating nonlinear optimization problems in Pyomo is no different from for-
mulating linear or mixed-integer problems. All the Pyomo modeling components
described throughout the book are used in the same way (e.g., Objective,
Constraint) except they may include nonlinear expressions.

Table 7.1 lists the operators currently supported to formulate expressions, with
examples where x and y are Pyomo Var objects. In addition to these operators,
Pyomo supports a number of nonlinear functions as described in Table 7.2. Note
that these are Pyomo-specific functions Pyomo expects, and that nonlinear functions
from other Python libraries are not supported within Pyomo expressions.

NOTE: Passing Pyomo components (e.g., Var, Param) to nonlinear functions
from other Python packages (e.g., math, or numpy) when creating a Pyomo
expression will cause an exception to be raised which may be difficult to de-
bug. This mistake can be avoided by always using named imports and by being
explicit about where a nonlinear function is coming from.

import pyomo.environ as pyo # Use pyo.sin in Pyomo
import math as mt # expressions not mt.sin
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Table 7.1: Python operators that have been redefined to generate Pyomo expressions.

Operation Operator Example

multiplication * expr = model.x * model.y
division / expr = model.x / model.y
exponentiation *k expr = (model.x+2.0)x*model.y
in-place multiplication' *= expr %= model.x

in-place division? /= expr /= model.x

in-place exponentiation’ * %= expr **= model.x

! This example for in-place multiplication is equivalent to expr = expr * model.x.
2 This example for in-place division is equivalent to expr = expr / model.x.
3 This example for in-place exponentiation is equivalent to expr = expr *+ model.x.

Table 7.2: Functions supported by Pyomo for the definition of nonlinear expressions. This table
assumes that Pyomo has been imported with import pyomo.environ as pyo.

Operation Function Example

arccosine acos expr = pyo.acos (model.x)
hyperbolic arccosine acosh expr = pyo.acosh (model.x)
arcsine asin expr = pyo.asin(model.x)
hyperbolic arcsine asinh expr = pyo.asinh (model.x)
arctangent atan expr = pyo.atan (model.x)
hyperbolic arctangent atanh expr = pyo.atanh (model.x)
cosine cos expr = pyo.cos (model.x)
hyperbolic cosine cosh expr = pyo.cosh (model.x)
exponential exp expr = pyo.exp (model.x)
natural log log expr = pyo.log(model.x)
log base 10 loglO expr = pyo.loglO (model.x)
sine sin expr = pyo.sin(model.x)
square root sgrt expr = pyo.sqgrt (model.x)
hyperbolic sine sinh expr = pyo.sinh (model.x)
tangent tan expr = pyo.tan (model.x)
hyperbolic tangent tanh expr = pyo.tanh (model.x)

7.2.2 The Rosenbrock Problem

In this section we present a short example to illustrate the formulation and solution
of a nonlinear Pyomo model. We consider the unconstrained minimization of the
two-variable Rosenbrock function, which is a classic problem frequently used as
an example for discussion of unconstrained nonlinear optimization algorithms (e.g.,
see [45]). This problem is defined as

min f(r.y) = (1-x)" 4100 (y )",
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and the solution is in the bottom of the banana shaped valley at the point x=1 and
y=1 (See Figure 7.1).
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Fig. 7.1: Surface plot of the Rosenbrock function f(x,y)=(1—x)*+ 100 (- xz)z. The minimum
is in the bottom of a banana shaped valley at the point x=1, y=1.

Consider the following Pyomo model for this problem:

# rosenbrock.py
# A Pyomo model for the Rosenbrock problem
import pyomo.environ as pyo

model = pyo.ConcreteModel ()
model.x = pyo.Var(initialize=1.5)
model.y = pyo.Var (initialize=1.5)

def rosenbrock (model) :
return (1.0 - model.x)**2 \
+ 100.0% (model.y — model.x#*%2) %2
model.obj = pyo.Objective (rule=rosenbrock, sense=pyo.minimize)

status = pyo.SolverFactory (’ipopt’) .solve (model)
pyo.assert_optimal_termination (status)
model.pprint ()

This example illustrates that defining a nonlinear model is really no different from
defining a linear model. The model creates two variables x and y and initializes each
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of them to a value of 1.5. Notice that there is no need to provide any indication the
variables will later appear in a nonlinear expression; this will be deduced by Pyomo
before solving the problem. The construction rule for the objective function simply
returns a nonlinear expression. The nonlinear solver IPOPT is then used to solve the
problem, followed by a check of the solver status and printing of the solution.

NOTE: Pyomo should work with any AMPL-based or GAMS-based solver.
Thus a number of competitive, commercial and open-source packages can be
used to solve Pyomo models. For the examples in this chapter, IPOPT [34], an
open-source nonlinear optimization package, is used.

The Rosenbrock example can be executed with the command:

python rosenbrock.py

This produces output similar to the following:

2 Var Declarations

x : Size=1, Index=None

Key : Lower : Value : Upper : Fixed :
Stale : Domain

None : None : 1.0000000000008233 : None : False
False : Reals
y : Size=1l, Index=None

Key : Lower : Value : Upper : Fixed :
Stale : Domain

None : ©None : 1.0000000000016314 : None : False
False : Reals

1 Objective Declarations

obj : Size=1, Index=None, Active=True
Key : Active : Sense : Expression
None : True : minimize : (1.0 - x)#*%2 + 100.0x(y -

Xk *2) **2

3 Declarations: x y obj

In this output, we see that the problem is correctly solved to a value of x=y=1.0,
with an objective value of essentially zero. While this example has only a single
nonlinear objective and two scalar variables, the modeling components discussed in
earlier chapters may also be used.

7.3 Solving Nonlinear Programming Formulations

In most cases, an appropriate nonlinear solver must be installed before Pyomo can
be used to optimize a nonlinear programming model. Pyomo’s capabilities are fo-
cused on modeling optimization applications, and there are a limited number of
solvers directly integrated with Pyomo.
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7.3.1 Nonlinear Solvers

Nonlinear programming solvers require the modeling framework to evaluate the ob-
jective function and constraints at candidate points in x. As well, many nonlinear
solvers also require evaluation of first, and often second, derivatives at candidate
points. However, a Pyomo user does not have to implement these computations.
Instead, automatic differentiation (AD) tools are used to provide accurate and ef-
ficient numerical evaluation of the first and second derivatives without any user
involvement.

Pyomo provides interfaces for nonlinear solvers compiled for either AMPL or
GAMS, and it utilizes the model evaluation and automatic differentiation (AD) ca-
pabilities provided by these tools to support efficient computation of derivatives. By
supporting these interfaces, a wide array of solvers are immediately available for
use with Pyomo without the need to develop individual interfaces for each solver.

In the case of AMPL solvers, the solver code itself is compiled with the AMPL
Solver Library (ASL) interface [23], which is in the public domain. Therefore, there
are a number of open-source solvers available to Pyomo through this interface. The
Pyomo-GAMS interface performs a translation of the Pyomo model into a GAMS
model, and consequently a user will need to install GAMS to use GAMS-specific
solvers.

7.3.2 Additional Tips for Nonlinear Programming

Effective formulation and solution of nonlinear programming problems can be sig-
nificantly more challenging than linear programming problems. In this section, we
provide a few basic tips to help with the formulation and solution of nonlinear pro-
gramming problems.

Variable Initialization

Solvers for nonlinear programming problems often require the initialization of prob-
lem variables. If initial values are not specified, then Pyomo assumes that the initial
values are zero. However, these default values cannot be relied on in many applica-
tions.

For the general nonconvex case, nonlinear programming problems can, and of-
ten do, have multiple local solutions. While significant advances have been made
in global optimization (i.e., rigorous methods that provide a guarantee of global
optimality), general large-scale problems are often still intractable, even with state-
of-the-art global solvers. Consequently, one is often forced to employ a solver that
only provides a guarantee of local optimality. And, it is often critical to initialize the
problem effectively to ensure convergence to a desirable local solution.
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Sometimes, the undesired local solutions are not physically meaningful, and a
sensible initialization with reasonable variable bounds is sufficient to ensure reli-
able progress to the desired solution. Other times, there may be several physically
reasonable local solutions. The development of good nonlinear problem formula-
tions often includes significant effort to provide a reasonable initialization strategy.

Undefined Evaluations

Several nonlinear functions are only well defined over a specific domain (e.g., log(x)
is only valid for x > 0). Therefore, the modeler must take care to ensure the problem
formulation restricts the variable values to be within a valid domain. This is usually
accomplished by setting reasonable bounds and initial values on the variables.

It is also important to note that many nonlinear solvers use first (and sometimes
second) derivative information for the objective function and the constraints. There-
fore, one may need to also restrict the variables to be within a valid domain for the
derivatives of the nonlinear expressions. For example, when sqgrt (x) is included
in an expression, then specifying the bounds x > 0 may not be sufficient. While /x
is valid at x=0, its derivative, 1/y/x is not. This should be considered when setting
reasonable variable bounds.

Finally, note that some nonlinear interior-point solvers (e.g., [IPOPT) may relax
the variable bounds slightly before solving the problem. While this has proven to
be an effective strategy in many applications, this can sometimes cause a domain
violation even if the modeler has specified reasonable variable bounds. One may
need to disable this behavior in the solver or apply more conservative bounds.

Model Singularities and Problem Scaling

Many nonlinear programming solvers have restrictions on the constraints (called
constraint qualifications) that must be satisfied to guarantee convergence. In partic-
ular, it is often a good idea to ensure the constraints are independent everywhere
within the solution domain (i.e., the set of active constraint gradients are linearly
independent). Nocedal and Wright [45] discuss this issue further (see Chapter 12).

Unfortunately, a model satisfying these restrictions in exact math may still ex-
hibit problems when solved numerically. If the model is ill-conditioned, then many
solvers can have difficulty converging or finding a solution efficiently. It is important
to scale the model to provide a well-conditioned Jacobian and Hessian. This can be
as simple as linearly scaling the variables and the constraints. In difficult cases, the
model may need to be reformulated.
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7.4 Nonlinear Programming Examples

In this section we present several examples that illustrate the capabilities of Pyomo
with nonlinear problems.

7.4.1 Variable Initialization for a Multimodal Function

The following example illustrates the importance of effective variable initialization.
Consider the minimization of the following multimodal function:

f(x) = (2= cos (mx) —cos (my)) 4%y?,

which has multiple local minima. The following Pyomo model for this problem
initializes the variables at x=y=0.25.

# multimodal_initl.py
import pyomo.environ as pyo
from math import pi

model = pyo.ConcreteModel ()
model.x = pyo.Var(initialize = 0.25, bounds=(0,4))
model.y = pyo.Var (initialize = 0.25, bounds=(0,4))

def multimodal (m) :

return (2-pyo.cos (pi*m.x)-pyo.cos(pi*m.y)) * (m.xXx*x2) % \
(m.y**2)
model.obj = pyo.Objective (rule=multimodal, sense=pyo.minimize)
status = pyo.SolverFactory (’ipopt’) .solve (model)

pyo.assert_optimal_termination (status)
print (pyo.value (model.x), pyo.value (model.y))

This problem can be solved with the command:

python multimodel_initl.py

IpoPT finds the solution close to our initial point
x=y=0.0178. However, if we change the problem and initialize the variables at
x=y=2.1,

model.x = pyo.Var(initialize = 2.1, bounds=(0,4))
model.y = pyo.Var (initialize = 2.1, bounds=(0,4))

then IPOPT finds a different local solution at x=y=2.0.
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7.4.2 Optimal Quotas for Sustainable Harvesting of Deer

Maintaining a healthy deer population relies on both the management of effective
habitats and a sustainable harvesting policy. Among most hunters there is high de-
mand for tags that allow them to take bucks. However, harvesting too many bucks
within a population can limit future population growth. We consider a nonlinear
programming formulation that determines an optimal policy for deer harvesting by
maximizing the value of the harvest while maintaining a strong and sustainable deer
population.

Consider a model adapted from Bailey [5] describing the dynamics of the deer
population. The deer population in a given area can be divided into three sub-
populations: bucks, does, and fawns. Additionally, each year is divided into four
periods: winter, breeding season, summer, and harvest. The model describing the
population dynamics is based on the following assumptions:

e It is assumed the sub-populations can be represented by continuous variables
(i.e., population numbers are large enough to make this a good approximation).

e Each season, there is a reduction in the number of bucks, does, and fawns. This
reduction is assumed to be due to natural causes and is proportional to the size
of the sub-populations. This reduction is captured by specifying a fractional
survival rate depending on the period (winter, breeding, summer, harvest) and
the sub-population in question (bucks, does, fawns).

e New fawns are born each year during the breeding season. Fawns are born
from does and older fawns according to a birth rate depending on the available
amount of food. Half of them are assumed to be male and half are assumed to
be female. After surviving one year, half of the remaining fawns become bucks
and half become does.

e The total yearly food supply is constant and represents a constraint based on
habitat management.

e All harvesting is based on hunting. Hunting quotas can be set for each sub-
population, and these quotas are assumed to be completely filled (i.e., all hunters
are successful).

The complete derivation of the sub-population model is given in [5], resulting in the
following set of difference equations,

P2 -
Foor = pibry (1—013,+p3d_y> — i (7.1)
dyi1 = pady+ 52 f,— h (7.2)
bysr = poby+ 5L f,— ] (13)
bry=1.1 +0.8? (7.4)
5

¢y = p7by + psdy + pofy (7.5)
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where the value for parameters p; through pg are calculated from the various sur-
vival rates and food consumption rates. These values are given in Table 7.3. The
variables fy, dy, and by, represent the number of fawns, does, and bucks in year y,

respectively. Likewise, h; , h;’, and hf, are the unknown numbers of fawns, does, and
bucks harvested in year y, respectively. The birth rate br, for does is described by
a nonlinear relationship where c, is the amount of food consumed by the deer (in
pounds) and pjy is the total available supply of food (again in pounds).

[parameter| value |parameter| value |
2 1088 7 [27000

P 0.82 ps 23000
3 0.92 po | 5400

P4 0.84 wr 1.0
Ps 0.73 wq 1.0
Pe 0.87 wp 10.0
Ds 700000

Table 7.3: Parameter values used by the deer harvesting problem.

In the original reference, this set of difference equations was optimized in the
formulation over a period of 20 years so that a sustainable steady-state policy could
be deduced from the values at later years. Here, instead include only one year and
add the constraint that the number of fawns, does, and bucks at year y+1 is equal to
those at y. This provides the same steady-state solution with a significantly smaller
formulation.

The objective is to maximize the value of the harvest, giving the following non-
linear programming formulation,

max wbhf +th}f, +wdh;{ (7.6)
fy = pibry (L2 4 pady ) — .7)
dy = pady+ 22 f,— i (7.8)
by = peby+ 22y — I, (7.9)
bry=1.1+082 "% (7.10)
Ps
¢y = p1by+ psdy + pofy (7.11)
¢y < s (7.12)
1
by > < (0:4f,+d,) (7.13)

where wy, wy and wy, represent the value of harvesting a fawn, doe, and buck, re-
spectively. As can be seen in Table 7.3, it is assumed that the value of a buck tag
is 10 times the value of a doe or fawn tag. Equation (7.12) ensures that the amount
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of consumed food cannot be more than the available supply, thereby restricting the
overall size of the population. Equation (7.13) ensures that the number of bucks is
large enough for effective, sustainable breeding.

The following Pyomo model represents the optimal deer harvesting problem:

# DeerProblem.py
import pyomo.environ as pyo

model = pyo.AbstractModel ()

model.pl = pyo.Param()
model.p2 = pyo.Param()
model.p3 = pyo.Param()
model.pd4 = pyo.Param()
model.pb5 = pyo.Param()
model.p6 = pyo.Param();
model.p7 = pyo.Param()
model.p8 = pyo.Param()
model.p9 = pyo.Param()
model.ps = pyo.Param()

model.f = pyo.Var(initialize = 20, within=pyo.PositiveReals)
model.d = pyo.Var(initialize = 20, within=pyo.PositiveReals)
model.b = pyo.Var(initialize = 20, within=pyo.PositiveReals)
model.hf = pyo.Var(initialize = 20, within=pyo.PositiveReals)
model.hd = pyo.Var(initialize = 20, within=pyo.PositiveReals)
model.hb = pyo.Var(initialize = 20, within=pyo.PositiveReals)

model.br = pyo.Var(initialize=1.5, within=pyo.PositiveReals)

model.c = pyo.Var(initialize=500000, within=pyo.PositiveReals)

def obj_rule(m):
return 10xm.hb + m.hd + m.hf
model.obj = pyo.Objective (rule=obj_rule, sense=pyo.maximize)

def f_bal_rule(m):
return m.f == m.pl*m.br* (m.p2/10.0*m.f + m.p3*m.d) - m.hf
model.f_bal = pyo.Constraint (rule=f_bal_rule)

def d_bal_rule (m):
return m.d == m.p4*m.d + m.p5/2.0+m.f - m.hd
model.d_bal = pyo.Constraint (rule=d_bal_rule)

def b_bal_rule (m):
return m.b == m.p6*m.b + m.p5/2.0+m.f - m.hb
model.b_bal = pyo.Constraint (rule=b_bal_rule)

def food_cons_rule (m) :
return m.c == m.p7+m.b + m.p8xm.d + m.p9%+m.f
model.food_cons = pyo.Constraint (rule=food_cons_rule)
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def supply_rule (m):
return m.c <= m.ps
model.supply = pyo.Constraint (rule=supply_rule)

def birth_rule (m):
return m.br == 1.1 + 0.8+ (m.ps — m.c)/m.ps
model.birth = pyo.Constraint (rule=birth_rule)

def minbuck_rule (m) :
return m.b >= 1.0/5.0%(0.4*m.f + m.d)
model.minbuck = pyo.Constraint (rule=minbuck_rule)

# create the ConcreteModel

instance = model.create_instance (’DeerProblem.dat’)
status = pyo.SolverFactory (’ipopt’) .solve (instance)
pyo.assert_optimal_termination (status)

instance.pprint ()

The following data file represents the parameters in Table 7.3:

# DeerProblem.dat

param pl := 0.88;
param p2 := 0.82;
param p3 := 0.92;
param p4 := 0.84;
param p5 := 0.73;
param p6 := 0.87;
param p7 := 2700;
param p8 := 2300;
param p9 := 540;
param ps := 700000;

This problem can be optimized with the command:

python DeerProblem.py

The optimal solution is to harvest 62 bucks, 37 does, and no fawns. This solution
favors harvesting of bucks, but harvesting too many bucks would affect population
growth. The residual for the minbuck constraint is essentially zero, which means
that this inequality constraint is binding at the solution. Therefore, this constraint is
restricting the number of bucks that can be harvested.

Obviously, this solution is a function of the parameter values that determine the
value of fawns, does, and bucks in the objective function, as well as the parameters
in model for the population dynamics. Because Pyomo is built with Python, it is
straightforward to develop a script to determine the optimal solution as a function of
different parameter values, enabling more advanced analysis of the system. Chapter
5 gives more discussion of this functionality.
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7.4.3 Estimation of Infectious Disease Models

Effective widespread vaccination programs have significantly minimized the impact
of many childhood diseases. However, childhood infectious diseases continue to be
a concern in developing countries, and outbreaks of new disease strains pose chal-
lenges for public health policy makers. In this example, we simulate the outbreak
of an infectious disease within a small community of 300 individuals (representing,
for example, a small school). We derive a basic model to describe the spread of in-
fection in the population and use a nonlinear programming formulation to estimate
key parameters in this model using the simulated data.

We use a standard discrete time compartment model to represent the system.
Individuals are separated into three compartments based on their status with respect
to the disease: susceptible (S), infected (I), or recovered (R). We assume that once
an individual has contracted the disease and recovered, they are immune from that
point forward (i.e., they do not return to the susceptible pool). The discrete time
model representing this system is given by:

o ﬁlioilsi—l

N
Si=8i1—-1;

I;

These two difference equations describe the propagation of the disease in the pop-
ulation. As a generation-based model, it is assumed that all the individuals infected
at time i have recovered by time i+ 1. I; and S; are the number of infected and sus-
ceptible individuals at time i, respectively. The population size is given by N, and 8
and o are model parameters.

NOTE: Typically, we refer to parameters as fixed data in our optimization
problem. However, in this example, the parameters in our infectious disease
model are not yet known, and we want to estimate them from existing data.
As a result, model parameters § and @ become Pyomo variables in the model
(since they are to be estimated with the optimization).

In this example, we use least-squares to estimate the parameters from simulated
data. Let SI be the set of indices for the serial intervals. In our example, we are
estimating over one year, comprising 26 two-week serial intervals. The reported
cases (known input) are given by C;, and the variable &/ is the residual between the
measured and calculated cases. The full problem formulation is given by,
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The following listing shows an abstract model for this nonlinear least-squares
estimation problem:

# disease_estimation.py
import pyomo.environ as pyo

model = pyo.AbstractModel ()
model.S_SI = pyo.Set (ordered=True)

model.P_REP_CASES = pyo.Param(model.S_STI)
model.P_POP = pyo.Param()

model.I = pyo.Var (model.S_SI, bounds=(0,model.P_POP), \
initialize=1)

model.S = pyo.Var (model.S_SI, bounds=(0,model.P_POP), \
initialize=300)

model.beta = pyo.Var (bounds=(0.05, 70))

model.alpha = pyo.Var (bounds=(0.5, 1.5))

model.eps_I = pyo.Var (model.S_SI, initialize=0.0)

def _objective (model) :
return sum((model.eps_I[i])+**2 for i in model.S_ST)
model.objective = pyo.Objective (rule=_objective, \
sense=pyo.minimize)

def _InfDynamics (model, 1i):
if 1 != 1:
return model.I[i] == (model.beta * model.S[i-1] = \
model.I[i-1]**model.alpha)/model.P_POP
return pyo.Constraint.Skip

model.InfDynamics = pyo.Constraint (model.S_SI, rule=_InfDynamics)

def _SusDynamics (model, 1i):
if 1 != 1:
return model.S[i] == model.S[i-1] - model.I[i]
return pyo.Constraint.Skip
model.SusDynamics = pyo.Constraint (model.S_SI, rule=_SusDynamics)

def _Data (model, 1i):
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return model.P_REP_CASES[i] == model.I[i]+model.eps_TI[1i]
model.Data = pyo.Constraint (model.S_SI, rule=_Data)

# create the ConcreteModel

instance = model.create_instance (’disease_estimation.dat’)
status = pyo.SolverFactory (’ipopt’) .solve (instance)
pyo.assert_optimal_termination (status)

print (! xxx’)
print (/ *xx% Optimal beta Value: %.2f’ % pyo.value (instance.beta))
print (! **+ Optimal alpha Value: $%$.2f’ % \
pyo.value (instance.alpha))
print (7 xxx’)

The Pyomo data file containing the data for an instance of this model is given by:

# disease_estimation.dat

set S_SI :=12 3456 78 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 ;

param P_POP := 300.000000;

param P_REP_CASES default 0.0 :=
1 1.000000

2 2.000000

3 4.000000

4 8.000000

5 15.000000
6 27.000000
7 44.000000
8 58.000000
9 55.000000
10 32.000000
11 12.000000
12 3.000000
13 1.000000

;

We can solve the estimation problem with the command:

python disease_estimation.py

and it will produce output similar to the following:

* kK
*x% Optimal beta Value: 1.99
*x% Optimal alpha Value: 1.00

* kK

We generated the data with f=2 and a=1, so these results look quite reasonable.
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7.4.4 Reactor Design

Chemical reactors are often the most important unit operations in a chemical plant.
Reactors come in many forms, however two of the most common idealizations are
the continuously stirred tank reactor (CSTR) and the plug flow reactor. The CSTR
is often used in modeling studies, and it can be effectively modeled as a lumped
parameter system. In this example, we will consider the following reaction scheme
known as the Van de Vusse reaction:

k k
ASB3C
k

243D
A diagram of the system is shown in Figure 7.2, where F is the volumetric flowrate.
The reactor is assumed to be filled to a constant volume, and the mixture is as-
sumed to have constant density, so the volumetric flowrate into the reactor is equal
to the volumetric flowrate out of the reactor. Since the reactor is assumed to be well-

mixed, the concentrations in the reactor are equivalent to the concentrations of each
component flowing out of the reactor, given by c4, cp, c¢c, and cp.

Continuously

Stirred
Tank Reactor

Fig. 7.2: Continuously stirred tank reactor system producing desired product B, and undesired
products C and D from reactant A.
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Consider the following reactor problem adapted from Bequette [7]. The goal is
to produce product B from a feed containing reactant A. If we design a reactor
that is too small, we will obtain insufficient conversion of A to the desired product
B. However, given the reaction scheme, if the reactor is too large (e.g., too much
reaction is allowed to occur), a significant amount of the desired product B will
be further reacted to form the undesired product C. As a result, the goal in this
exercise will be to solve for the optimal reactor volume producing the maximum
outlet concentration for product B.

The steady-state mole balances for each of the four components are given by,

F F
0= V Af — VCA —kch —2](36124

F
0= —VCB—F]C]CA —kycp

F
0=—-—= k;
v cc+kacp
F
0=——cp+ksc}
v Cp +K3Cy
The known parameters for the system are,

1 m?

]
£70 k=2 min~! k=2 min~! k=

= 10000 _m
car m 6 3 6000 gmol min

Since the volumetric flowrate F' always appears as the numerator over the reactor
volume V, it is common to consider this ratio as a single variable, called the space-
velocity (sv). Our optimization formulation will seek to find the space-velocity that
maximizes the outlet concentration of the desired product B.
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The following file includes a function that builds the concrete model for the re-
actor design problem as well as code that will solve the problem if the Python file is
executed directly:

import pyomo.environ
import pyomo.environ as pyo

def create_model (k1l, k2, k3, caf):

if

# create the concrete model
model = pyo.ConcreteModel ()

# create the variables

model.sv = pyo.Var(initialize=1.0, within=pyo.PositiveReals)
model.ca = pyo.Var(initialize=5000.0, within=pyo.PositiveReals)
model.cb = pyo.Var(initialize=2000.0, within=pyo.PositiveReals)
model.cc = pyo.Var(initialize=2000.0, within=pyo.PositiveReals)
model.cd = pyo.Var(initialize=1000.0, within=pyo.PositiveReals)

# create the objective
model.obj = pyo.Objective (expr = model.cb, sense=pyo.maximize)

# create the constraints

model.ca_bal = pyo.Constraint (expr = (0 == model.sv x caf \
— model.sv * model.ca — k1l * model.ca \
- 2.0 x k3 * model.ca *+ 2.0))

model.cb_bal = pyo.Constraint (expr=(0 == -model.sv * model.cb \
+ k1 x model.ca - k2 » model.cb))

model.cc_bal = pyo.Constraint (expr=(0 == -model.sv * model.cc \
+ k2 * model.cb))

model.cd_bal = pyo.Constraint (expr=(0 == -model.sv * model.cd \
+ k3 * model.ca % 2.0))

return model
__name_  =='_ _main_ ’:

# solve a single instance of the problem
kl = 5.0/6.0 # min~-1

k2 = 5.0/3.0 # min~-1

k3 = 1.0/6000.0 # m~3/(gmol min)

caf = 10000.0 # gmol/m"3

m = create_model (k1l, k2, k3, caf)

status = pyo.SolverFactory (’ipopt’) .solve (m)
pyo.assert_optimal_termination (status)
m.pprint ()

The problem can be solved with command:

python ReactorDesign.py

The optimal space-velocity is 1.34, giving an outlet concentration for B of 1072.

It is easy to construct the model and execute a script using the model. For ex-
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ample, if we wanted to solve this design problem for different values of the feed
concentration, we could use the following code:

import pyomo.environ as pyo
from ReactorDesign import create_model

# set the data (native Python data)
kl = 5.0/6.0 # min"-1

k2 = 5.0/3.0 # min"-1

k3 = 1.0/6000.0 # m"3/(gmol min)

# solve the model for different values of caf and report results
print (/ {:>10s}\t{:>10s}\t{:>10s}’ .format (' CAE’, ’"SV’, ’'CB’))
for cafi in range(1,11):

caf = cafix1000.0 # gmol/m"3

create the model with the new data

note, we could do this more efficiently with
mutable parameters

= create_model (k1, k2, k3, caf)

3 % %% %%

# solve the problem
status = pyo.SolverFactory (’ipopt’) .solve (m)
print ("{:10g}\t{:10g}\t{:10g}".\
format (caf, pyo.value(m.sv), pyo.value(m.cb)))

This script can be executed using the python command, producing the following
results:

CAf SV CB
1000 1.21294 157.564
2000 1.23903 294.346
3000 1.25993 416.943
4000 1.27729 529.051
5000 1.29209 632.993
6000 1.30495 730.339
7000 1.31629 822.212
8000 1.32641 909.447
9000 1.33553 992.687

10000 1.34381 1072.44

This example illustrates the scripting capabilities of Pyomo. See Chapter 5 for ad-
ditional scripting examples and further description of these capabilities.







Chapter 8
Structured Modeling with Blocks

Abstract This chapter documents how to express hierarchically-structured models
using Pyomo’s Block component. Many models contain significant hierarchical
structure; that is, they are composed of repeated groups of conceptually related
modeling components. Pyomo allows the modeler to define fundamental building
blocks, and then construct the overall problem by connecting these building blocks
together in an object-oriented manner. In this chapter, we describe the fundamen-
tal Block component along with common examples of its use, including repeated
components and managing model scope.

8.1 Introduction

Optimization solvers typically rely on getting a model in a standardized form. For
example, linear solvers accept models built on a standard form similar to:

min ¢! x

s.t. Ax<b .
x>0

Here, the variables are lumped together into a single vector x, and constraints are
represented in simplified matrix form. While this form is convenient for algorithms
directly manipulating these matrices, it is not an easy form for a modeler to gener-
ate, manipulate, or debug. Algebraic Modeling Languages (AMLs) directly address
this challenge by allowing modelers to provide distinguishing names to modeling
components (e.g., variables or constraints) and to define the model over index sets.
Since models are often composed of repeated mathematical expressions, this allows
the expression of large models with relatively few lines of code, which are also
easier to document, understand, modify, and debug.

As models become larger and more complex, we often want to carry this con-
cept further using the principle of composition from objet-oriented programming.

115
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In this approach, we group - or compose - variables and constraints that are con-
ceptually related into a single object. This modeling approach, does not emphasize
that the constraints are connected by a common expression generator, but rather the
variables and constraints describe a certain (often physical) concept. For example,
the group of variables and constraints could represent the operating behavior of an
electric generator (ramp-up limits, ramp-down limits, cost curves) or chemical pro-
cess equipment like a distillation column (the mass, equilibrium, and energy balance
equations). Other examples include multi-period optimization problems where the
same fundamental model is repeated over many time periods, or stochastic program-
ming problems where the same basic model is repeated over different scenarios with
different parameters. In Pyomo, we use the B1ock component to support general
composition of modeling components like those described.

The Block component is a container for organizing groups of variables and
constraints, and it can contain any number of named Pyomo components in exactly
the same way models do. In fact, ConcreteModel and AbstractModel are
themselves special implementations of the B1ock component. B1ock components
can be added to a model or another block, allowing modelers to construct hierar-
chical model structures based on fundamental building blocks in an object-oriented
manner.

This concept is illustrated in Figure 8.1, which shows one possible block-oriented
representation of a an electrical grid model. In this example, individual blocks define

Multi-period electrical grid planning problem

Electrical grid

T
: Electrical grid Electrical grid
: : model (Block)

model (Block) : model (Block)

1 1
Bus model : I Transmission line 1 H Bus model :
(Block) I I model (Block) | | (Block) H

I I

(Block)

1
Generator model :

I

I
tee———e—————-"1 Electrical grid model

Fig. 8.1: The electrical grid model can be composed from individual blocks representing the
generators, buses, and transmission lines. Furthermore, a multi-period model can be constructed in
a hierarchical manner treating the electrical grid model as its fundamental building blocks.
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the necessary variables and equations describing a single piece of equipment, be
it a generator, bus, or transmission line. Then, blocks are connected together to
form the entire (single time period) electrical grid power flow model. This model
could be solved on its own. However, it can also be used as a building block for a
higher-level model, like the multi-period planning problem illustrated in this figure.
In this manner, Pyomo can represent very complex models built using smaller, less
complex, reusable pieces.
Blocks provide both modelers and alorithm developers several useful benefits:

composition Modelers can build - and test - small models or model components and
then assemble them into larger, more complex system models.

annotation The model can explicitly annotate model structure and provide “hints”
to both algorithms (e.g., decomposition algorithms like Benders decomposition
or progressive hedging) and transformations (e.g., generalized disjunctive pro-
gramming) for how to manipulate the model.

sandboxing Because each Block is its own container, it enables both model (com-
ponent) developers and algorithm developers to build and manipulate modeling
components in their own “private” sandboxes, without worrying about naming
collisions or other interference from other developers.

8.2 Block structures

The Pyomo Block component can be treated in much the same way as a model:
components are added directly to the block as attributes. Since B1ock components
may contain any other Pyomo modeling components, including other blocks, it is
possible to construct arbitrarily nested hierarchical structures.

The following code snippet shows a basic block hierarchy:

model = pyo.ConcreteModel ()

model.x = pyo.Var()

model.P = pyo.Param(initialize=5)
model.S = pyo.RangeSet (model.P)
model.b = pyo.Block()

model.b.I = pyo.RangeSet (model.P)
model.b.x = pyo.Var (model.b.I)
model.b.y = pyo.Var (model.S)
model.b.b = pyo.Block([1,2])
model.b.b[l].x = pyo.Var ()
model.b.b[2].x = pyo.Var ()

Here, model contains a variable (model . x), a parameter (model .P), and a set
(model.S). It also contains a Block given by model . b. This block itself con-
tains a set, two variables, and another indexed block. Notice components in a block
can reference components in other blocks or in the parent model. For example, the
variable model .b. x uses a set from its parent block, and the variable model .b.y
references a set from the parent of the parent block (in this case, the model). Com-
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ponents and expressions can reference components from anywhere within the hier-
archy.

NOTE: Within one block, Pyomo supports references to components from any
other block. However, it is generally good object-oriented practice to only ref-
erence components from the current or lower levels in the hierarchy. This pro-
motes resusability of your blocks within other models without strong assump-
tions about the structure of the owning or parent blocks.

Note in the code snippet each block defines its own component namespace; while
component names must be unique within a single block, they do not need to be
globally unique. This allows blocks to be constructed safely without concerns about
definitions in one block colliding or interfering with definitions in other blocks. This
leads to all components having two forms of a name: the local name, which may be
repeated elsewhere in the model, and a globally-unique fully qualified name that
includes the names of the parent block(s) separated by periods:

print (model.x.local_name) # x

print (model.x.name) # x

print (model.b.x.local_name) # x

print (model.b.x.name) # b.x
print (model.b.b[l].x.local_name) # x

print (model.b.b[1l].x.name) # b.b[1].x

When discussing the block hierarchy, we adopt terminology from tree structures
and refer to the block one level up the hierarchy (toward the top-level model) as the
parent block, and all components contained within a block as its children. The root
of the block hierarchy is always the current model. Pyomo components all provide
a set of standard methods for moving around the component hierarchy:

parent_component () Each modeling object in a Pyomo model is owned by
a single component. Calling parent_component () on a modeling object
returns the component that holding (or owning) the modeling object. For mem-
bers of an indexed component, parent_component () returns the indexed
component object containing the component. For scalar components, the parent
component is the scalar component itself.

parent_block () Each modeling component is attached to a single block. Call-
ing parent_block () on a Pyomo modeling object returns the block that
owns the object’s parent _component ().

model () Callingmodel () onamodeling object walks up the parent block ()
calls to return the top-level (root) block.

__getitem__ As with models, child components can be accessed programmati-
cally by attribute lookup on the block.

component () Child components can also be retrieved by name using the Blocks
component () method.
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The following illustrates how to move around the component hierarchy:

model.b.b[1l] .x.parent_component () # is model.b.b[1].x
model.b.b[1l].x.parent_block () # 1s model.b.b[1]
model.b.b[1l].x.model () # is model
model.b.b[1l].component ('x") # is model.b.b[l].x
model.b.x[1] .parent_component () # is model.b.x
model.b.x[1] .parent_block () # 1is model.b
model.b.x[1].model () # is model

model .b.component (' x’) # is model.b.x

Block components can also be created and populated, and then later added to a
model. The code below shows creation of a block that is later added to a model. It
also illustrates how a parent model can make use of sets and parameters contained
in a child block.

new_b = pyo.Block ()

new_b.x = pyo.Var ()

new_b.P = pyo.Param(initialize=5)
new_b.I = pyo.RangeSet (10)

model = pyo.ConcreteModel ()
model.b = new_b
model.x = pyo.Var (model.b.I)

NOTE: In this example, the Block object new_b is not initialized when it is
declared. In this manner, it is abstract until it is added to the ConcreteModel
object. At this point, it is immediately initialized. Similarly, when a Block
object is added to an AbstractModel, it is not initialized until the owning
abstract model object is initialized.

8.3 Blocks as Indexed Components

As with other Pyomo components, Block components may also be indexed and
initialized using a construction rule. However, block construction rules follow a
slightly different convention: the first argument to a block rule is the block to be
populated rather than the owning block. This block has already been attached to the
model so methods like model () and parent_block () will work as expected.
Within a rule, one can either directly populate the block by assigning components
to it, or create a new block and return it from the rule.
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The following example illustrates the use of construction rules for blocks:

model = pyo.ConcreteModel ()
model.P = pyo.Param(initialize=3)
model.T = pyo.RangeSet (model.P)

def xyb_rule(b, t):

b.x = pyo.Var ()

b.I = pyo.RangeSet (t)

b.y = pyo.Var(b.I)

b.c = pyo.Constraint (expr=b.x == 1 - sum(b.y[i] for i in b.I))

model.xyb = pyo.Block(model.T, rule=xyb_rule)

Here, an indexed B1ock component containing one block for each element of the
set model . T is defined. In the construction rule, we create two variables and a
set. These construction rules are just as flexible as those for other components. The
set b. I created in this example is different for each block, and consequently the
variable b . v is also a different length for each block. This illustrates another feature
of blocks. Often, different blocks contain exactly the same model structure, just with
different data. It is also possible to construct blocks with a different structure based
on data available in the construction rule.

This example can be extended to print the constraint body c for each of the
blocks:

for t in model.T:
print (model.xyb[t].c.body)

The constraints expand appropriately and they contain fully qualified names of vari-
ables in each of the subblocks:

-1.0 + xyb[1l].x + xyb[1].y[1]
-1.0 + xyb[2].x + xyb[2].y[1] + xyb[2].yI[2]
-1.0 + xyb[3].x + xyb[3]1.yI[1] + xyb[3]1.v[2] + xyb[3].yI[3]

8.4 Construction Rules within Blocks

Like model objects, blocks can contain other modeling components, including Set
and Param objects. Additionally, blocks can be initialized with modeling compo-
nents that are themselves constructed using rules. However, doing this exposes a
subtelty of Pyomo component construction rules.

Up to this point we have frequently referred to the first argument of a compo-
nent rule as the “model”, but this is not completely correct. The first argument to
component rules is actually the owning block of the component being constructed.
For “flat” models (models without any sub-blocks), the owning block is indeed the
model, but this will not be the case for hierarchically-structured models. If needed,
the model object can be obtained from the owning block using the aforementioned
model () method.
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For example, consider the following alternative declaration of the xyb block
from the previous example:

def xyb_rule(b, t):
b.x = pyo.Var ()
b.I = pyo.RangeSet (t)
b.y = pyo.Var(b.I, initialize=1.0)
def _b_c_rule(_b):
return _b.x == 1.0 - sum(_b.y[i] for i in _b.I)
b.c = pyo.Constraint (rule=_b_c_rule)
model.xyb = pyo.Block (model.T, rule=xyb_rule)

In this example, the xyb block includes a constraint that is defined with the rule
b_c_rule. The owning block _b passed to this rule is the same as b. However,
the _b variable is defined locally. This allows the rule to be used even if the owning
block is constructed in a different manner.

Since the owning block (or model) is NOT passed into a block construction
rule, the modeler may need another mechanism to access components on the par-
ent or other blocks in the hierarchy. The component methods parent block and
model facilitate moving up the block hierarchy. The parent _block () of any
component or component data object is the block that the component is attached
to. The model () method on any component or component data object returns the
block object at the root of the tree.

8.5 Extracting values from hierarchical models

While blocks support a convenient mechanism for expressing composite concepts
(e.g., a time-period, a scenario), this results in some data becoming more spread out
across your model. However, we can access the components by explicitly iterating
over blocks and their associated variables:

for t in model.xyb:
for i in model.xyb[t].y:
print ("%$s $f" % (model.xyb[t].y[il, \
pyo.value (model.xyb[t].y[i])))

Additionally, Pyomo’s slice notation can be used to dynamically extract a subset of
the blocks or variable values:

for y in model.xyb[:].y[:]:

°

print ("%$s Sf" % (y, pyo.value(y)))

8.6 Blocks Example: Optimal Multi-Period Lot-Sizing

We now demonstrate a complete model based on blocks using a well-known multi-
period optimization problem for optimal lot-sizing [31]. Our goal in the lot-sizing
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problem is to determine the optimal production X; in each time period t € T given
known demands d;,. We let y, be a binary variable indicating whether or not there
is any production in time period ¢, and assume that there is a fixed cost ¢, if we
decide to produce in time period ¢. The inventory I, at the end of each time period is
a function of the previous inventory, production, and sales,

It :Itfl +Xt —d[.

If we allow the inventory to be negative (meaning we did not meet demands and we

have a backlog of orders), we can represent the inventory as I,=I," —I, where we

restrict both ;" and I, to be non-negative. Here, I;" represents inventory that we are

holding, and I;~ represents a backlog of orders. We can assign an inventory holding

cost and a shortage cost (cost of keeping a backlog) as h;” and h,”, respectively.
With this description, the optimization problem can be formulated as,

min Y ¢y + LT+ 1 (LS.1)
teT

st. =L_1+X,—d VieT (LS.2)

L=I"—1" VieT (LS.3)

X; < Py, VieT (LS.4)

X, I', 7 >0 VteT (LS.5)

yi € {0,1} VieT (LS.6)

where Equation (LS.4) is a constraint that only allows production in time period ¢ if
the indicator variable y,=1. The data for our problem is provided in Table 8.1.

Table 8.1: Data for Lot-Sizing Problem

Parameter Description Value
c fixed cost of production 4.6
Iy initial value of positive inventory 5.0
Iy initial value of backlogged orders 0.0
h™ cost (per unit) of holding inventory 0.7
h~ shortage cost (per unit) 1.2
P maximum production amount (big-M value) 5

d demand [5,7,6.2,3.1,1.7]
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8.6.1 A Formulation Without Blocks

We can formulate the lot-sizing problem without blocks using the Pyomo code
shown below.

import pyomo.environ as pyo

model = pyo.ConcreteModel ()
model.T = pyo.RangeSet (5) # time periods

i0 = 5.0 # initial inventory

c = 4.6 # setup cost

h_pos = 0.7 # inventory holding cost
h_neg = 1.2 # shortage cost

P = 5.0 # maximum production amount

# demand during period t
d={l: 5.0, 2:7.0, 3:6.2, 4:3.1, 5:1.7}

# define the variables

model.y = pyo.Var (model.T, domain=pyo.Binary)

model.x = pyo.Var (model.T, domain=pyo.NonNegativeReals)
model.i = pyo.Var (model.T)

model.i_pos = pyo.Var (model.T, domain=pyo.NonNegativeReals)
model.i_neg = pyo.Var (model.T, domain=pyo.NonNegativeReals)

# define the inventory relationships
def inventory_rule(m, t):

if t == m.T.first():
return m.i[t] == i0 + m.x[t] - d[t]
return m.i[t] == m.i[t-1] + m.x[t] - d[t]

model.inventory = pyo.Constraint (model.T, rule=inventory_rule)

def pos_neg_rule(m, t):
return m.i[t] == m.i_pos[t] - m.i_neg[t]
model.pos_neg = pyo.Constraint (model.T, rule=pos_neg_rule)

# create the big-M constraint for the production indicator variable
def prod_indicator_rule(m,t):
return m.x[t] <= Pxm.y[t]
model.prod_indicator = pyo.Constraint (model.T, rule=prod_indicator_rule)

# define the cost function
def obj_rule(m):

return sum(cxm.y[t] + h_pos*m.i_pos[t] + h_negxm.i_neg[t] for t in m.T)
model.obj = pyo.Objective (rule=obj_rule)

# solve the problem
solver = pyo.SolverFactory (’glpk’)
solver.solve (model)

# print the results
for t in model.T:
print (' Period: {0}, Prod. Amount: {1}’ .format (t, pyo.value(model.x[t])))

This example uses standard Pyomo syntax as discussed in early chapters of the
book. If we were considering the lot-sizing problem over a single time period only,
our variable declarations would have looked like,
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# define the variables

model.y = pyo.Var (domain=pyo.Binary)

model.x = pyo.Var (domain=pyo.NonNegativeReals)
model.i = pyo.Var()

model.i_pos = pyo.Var (domain=pyo.NonNegativeReals)
model.i_neg = pyo.Var (domain=pyo.NonNegativeReals)

In the multi-period case, we have the same fundamental variables and constraints
defined over each time period. Here, the variable declarations looked like,

# define the variables

model.y = pyo.Var (model.T, domain=pyo.Binary)

model.x = pyo.Var (model.T, domain=pyo.NonNegativeReals)
model.i = pyo.Var (model.T)

model.i_pos = pyo.Var (model.T, domain=pyo.NonNegativeReals)
model.i_neg = pyo.Var (model.T, domain=pyo.NonNegativeReals)

If we were considering a multi-period and multi-scenario problem (e.g., a stochastic
programming formulation for lot-sizing under uncertainty), the variable declarations
would have looked like,

# define the variables

model.y = pyo.Var (model.T, model.S, domain=pyo.Binary)

model.x = pyo.Var (model.T, model.S, domain=pyo.NonNegativeReals)

model.i = pyo.Var (model.T, model.S,)

model.i_pos = pyo.Var (model.T, model.S, \
domain=pyo.NonNegativeReals)

model.i_neg = pyo.Var (model.T, model.S, \
domain=pyo.NonNegativeReals)

In each of these examples, when we add new complexity, or an additional layer
onto the model, we add a new index to the variables and constraints. This approach
is very common in the field of operations research. Unfortunately, it requires com-
pletely redefining the model with each new layer, and it does not readily support
construction of hierarchical models with reusable code. Blocks provide another ap-
proach to easily support model reuse in an object-oriented fashion.

8.6.2 A Formulation With Blocks

We now show how blocks can be used to write this problem. Most of the constraints
in the multi-period lot-sizing problem are defined over ¢ € T, and they can be log-
ically grouped together by time. Pyomo allows us to define blocks, each with the
variables and constraints for a single time period only, and then link them together
to form the overall model.

Considering the lot-sizing problem again, the variables and constraints within a
rule can be defined to provide a block for a single period of the lot-sizing problem:
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# create a block for a single time period

def lotsizing block_rule(b, t):

define the variables

.y = pyo.Var (domain=pyo.Binary)

.x = pyo.Var (domain=pyo.NonNegativeReals)

.1 = pyo.Var (

.i0 = pyo.Var ()

.1_pos = pyo.Var (domain=pyo.NonNegativeReals)
.1i_neg = pyo.Var (domain=pyo.NonNegativeReals)

O 0 0 00 0 %

# define the constraints

b.inventory = pyo.Constraint (expr=b.i == b.i0 + b.x - d[t])
b.pos_neg = pyo.Constraint (expr=b.i == b.i_pos - b.i_neq)

b

.prod_indicator = pyo.Constraint (expr=b.x <= P x Db.y)
model.lsb = pyo.Block (model.T, rule=lotsizing_block_rule)

Here, the variables and constraints for a single time period ¢ are defined within
the rule. The Block component is then indexed over the set model. T, and the
declaration constructs a lot-sizing block for each entry in model.T. The model
object now contains a block for each time period 7. The final action is to provide con-
straints linking the blocks together (setting the initial inventory of one block equal
to the final inventory of the previous block), and to define the objective function
over all the blocks. The full code listing for the block version of the multi-period
lot-sizing problem is shown below.
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import pyomo.environ as pyo

model = pyo.ConcreteModel ()
model.T = pyo.RangeSet (5) # time periods

i0 = 5.0 # initial inventory

c = 4.6 # setup cost

h_pos = 0.7 # inventory holding cost
h_neg = 1.2 # shortage cost

P = 5.0 # maximum production amount

# demand during period t
d= {l: 5.0, 2:7.0, 3:6.2, 4:3.1, 5:1.7}

# create a block for a single time period

def lotsizing block_rule(b, t):

define the variables

.y = pyo.Var (domain=pyo.Binary)

.x = pyo.Var (domain=pyo.NonNegativeReals)

.1 = pyo.Var(

.i0 = pyo.Var ()

.i_pos = pyo.Var (domain=pyo.NonNegativeReals)
.i_neg = pyo.Var (domain=pyo.NonNegativeReals)

O 0 00 0 0 %

define the constraints

.inventory = pyo.Constraint (expr=b.i == b.i0 + b.x - d[t])
.pos_neg = pyo.Constraint (expr=b.i == b.i_pos - b.i_neq)
.prod_indicator = pyo.Constraint (expr=b.x <= P *x b.y)
model.lsb = pyo.Block (model.T, rule=lotsizing_block_rule)

O O O %

# link the inventory variables between blocks
def i_linking_rule(m, t):

if t == m.T.first():
return m.lsb[t].i0 == i0
return m.lsb[t].10 == m.lsb[t-1].1

model.i_linking = pyo.Constraint (model.T, rule=i_linking_rule)

# construct the objective function over all the blocks
def obj_rule(m):
return sum(c*m.lsb[t].y + h_posxm.lsb[t].i_pos + \
h_neg*m.lsb[t].i_neg for t in m.T)
model.obj = pyo.Objective (rule=obj_rule)

### solve the problem
solver = pyo.SolverFactory (’glpk’)
solver.solve (model)

# print the results
for t in model.T:
print (' Period: {0}, Prod. Amount: {1}’.format (t, \
pyo.value (model.lsb[t].x)))

This formulation is small, so it can be difficult to see the benefit of blocks. How-
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ever, as models grow in size and complexity, this object-oriented modeling concept
allows us to define small pieces of the model in self-contained chunks of code, and
then build the large model by pulling these pieces together. This example was se-
lected in part because it is a heavily studied, classic multi-stage inventory model.
One can easily imagine extensions to the model to include additional constraints
and costs. In fact, many such models have appeared in the academic literature and
in practical application. In large models, it is common to write methods or classes
to define individual blocks and reuse code within several different, high-level opti-
mization formulations.






Chapter 9

Performance: Model Construction and Solver
Interfaces

Abstract This chapter documents tools for profiling model construction and im-
proving the performance of both model construction and interaction with solvers.
We begin by discussing various profiling tools which can be used to help identify
performance bottlenecks. Pyomo has built-in profiling capabilities, but there are also
Python packages, such as cProfile and 1ine_profiler, dedicated to perfor-
mance profiling. Section 9.2 discusses the LinearExpression class, which can be
used to drastically improve model construction time for some applications. Section
9.3 describes how persistent solver interfaces can be used to repeatedly solve mod-
els with small changes very efficiently. Finally, Section 9.4 discusses sparse index
sets.

9.1 Profiling to Identify Performance Bottlenecks

When performance is an issue, it is necessary to identify the performance bottle-
necks before improvements can be made. This section describes various profiling
tools which can be used to identify performance bottlenecks.

Throughout this section, we will be revisiting the warehouse location problem as
an example. The warehouse location problem was first introduced in Section 3.2.
Here, we will work with a continuous relaxation of the problem for illustration. We
rewrite the warehouse location problem so the model is built in a function and the
maximum number of warehouses is a mutable parameter.

129
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import pyomo.environ as pyo # Import pyomo environment
import cProfile

import pstats

import io

from pyomo.common.timing import TicTocTimer, report_timing
from pyomo.opt.results import assert_optimal_termination
from pyomo.core.expr.numeric_expr import LinearExpression
import matplotlib.pyplot as plt

import numpy as np

np.random.seed (0)

def create_warehouse_model (num_locations=50, num_customers=50) :

N = list (range (num_locations)) # warehouse locations
M = list (range (num_customers)) # customers
d = dict () # distances from warehouse locations to customers

for n in N:
for m in M:
d[n, m] = np.random.randint (low=1, high=100)
maxX_num_warehouses = 2

model = pyo.ConcreteModel (name=" (WL)")
model.P = pyo.Param(initialize=max_num_warehouses,
mutable=True)

model.x = pyo.Var (N, M, bounds=(0, 1))
model.y = pyo.Var (N, bounds=(0, 1))

def obj_rule(mdl) :
return sum(d[n,m]+ mdl.x[n,m] for n in N for m in M)
model.obj = pyo.Objective (rule=obj_rule)

def demand_rule (mdl, m):
return sum(mdl.x[n,m] for n in N) == 1
model.demand = pyo.Constraint (M, rule=demand_rule)

def warehouse_active_rule(mdl, n, m):
return mdl.x[n,m] <= mdl.y[n]

model .warehouse_active = pyo.Constraint (N, M, \
rule=warehouse_active_rule)

def num_warehouses_rule (mdl) :

return sum(mdl.y[n] for n in N) <= model.P
model .num_warehouses = \

pyo.Constraint (rule=num_warehouses_rule)

return model
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9.1.1 Report Timing

Pyomo has a very useful function, report_t iming, for profiling model construc-
tion. The following illustrates how to use report _t iming to profile the construc-
tion of the warehouse location problem.

report_timing ()

print (' Building model’)

print (' ————————————- ")

m = create_warehouse_model (num_locations=200, num_customers=200)

The output of the code is shown next.

Building model
seconds to construct Block ConcreteModel; 1 index total
seconds to construct Set Any; 1 index total
seconds to construct Param P; 1 index total

seconds to construct Set OrderedSimpleSet; 1 index total
seconds to construct Set SetProduct_OrderedSet; 1 index total
seconds to construct Set SetProduct_OrderedSet; 1 index total

.09 seconds to construct Var x; 40000 indicies total

0 seconds to construct Set OrderedSimpleSet; 1 index total

0 seconds to construct Var y; 200 indicies total

.19 seconds to construct Objective obj; 1 index total

0 seconds to construct Set OrderedSimpleSet; 1 index total

0
0
0
0 seconds to construct Set OrderedSimpleSet; 1 index total
0
0
0

o

o

IS}

.11 seconds to construct Constraint demand; 200 indicies total

0 seconds to construct Set OrderedSimpleSet; 1 index total

0 seconds to construct Set OrderedSimpleSet; 1 index total

0 seconds to construct Set SetProduct_OrderedSet; 1 index total

0 seconds to construct Set SetProduct_OrderedSet; 1 index total

.62 seconds to construct Constraint warehouse_active; 40000 indicies total
0 seconds to construct Constraint num_warehouses; 1 index total

o

Calling the report_timing function causes Pyomo to print the time required to
build each component. In the second to last line in the output, we can see build-
ing the warehouse_active constraint accounts for the majority of the model
construction time. Note that any data processing done inside the constraint rules is
included, so not all of the time is necessarily spent in Pyomo. In this example, there
is not any data processesing within the rule, so we know building the expressions
for the warehouse_act ive constraint is the bottleneck.
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9.1.2 TicTocTimer

Pyomo also provides a TicTocTimer for convenient timing. In the following ex-
ample, we compare the time required to build the model and the time to write an LP
file and solve the problem with Gurobi.

def solve_warehouse_location (m) :
opt = pyo.SolverFactory (’/gurobi’)
res = opt.solve (m)
assert_optimal_termination(res)

timer = TicTocTimer ()

timer.tic(’start’)

m = create_warehouse_model (num_locations=200, num_customers=200)
timer.toc ('Built model’)

solve_warehouse_location (m)

timer.toc (' Wrote LP file and solved’)

The output of the code is shown next.

[ 0.00] start
[+ 1.22] Built model
[+ 4.05] Wrote LP file and solved

The output states it took 1.22 seconds to build the Pyomo model and a total of 4.05
seconds to write the LP file and solve the problem. By utilizing the TicTocTimer,
we found that writing the LP file and solving the problem took significantly longer
than constructing the model. However, it is not yet clear what fraction of the 4.05
seconds is spent writing the LP file, which is where cProfile is useful.
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9.1.3 Profilers

Many Python packages dedicated to performance profiling exist. Two examples of
such packages are cProfile (https://docs.python.org/3/library/
profile.html)and line profiler (https://github.com/pyutils/
line\_profiler).The cProfile package reports the time spent in each func-
tion and the 1ine profiler package reports the time spent on each line of a
function.

Let’s revisit the warehouse location problem as an example. First, we write a
function to perform a parametric sweep, repeatedly solving the warehouse location
problem while varying the maximum number of warehouses, m. P.

def solve_parametric():
m = create_warehouse_model (num_locations=50, num_customers=50)
opt = pyo.SolverFactory ('gurobi’)
p_values = list (range(l, 31))
obj_values = list()
for p in p_values:
m.P.value = p
res = opt.solve (m)
assert_optimal_termination (res)
obj_values.append(res.problem.lower_bound)

We first call the solve_parametric function and report the time required to
perform the parameter sweep.

solve_parametric ()
timer.toc ('Finished parameter sweep’)

The output of the code is shown next.

[+ 7.28] finished parameter sweep

The TicTocTimer reports that it took 7.28 seconds to complete the parameter
sweep. Next, we write a function to help print the output from cProfile.

def print_c_profiler(pr, lines_to_print=15):
s = 10.StringIO()
stats = pstats.Stats(pr, stream=s).sort_stats (’cumulative’)
stats.print_stats(lines_to_print)
print (s.getvalue())
s = 10.StringIO()
stats = pstats.Stats(pr, stream=s).sort_stats(’tottime’)
stats.print_stats(lines_to_print)
print (s.getvalue())

We use the pstats package to sort the output from cProfile and print the
specified number of lines. We print the statistics sorted by both cumulative time and
total time. As described in the cProfile documentation, the cumulative time is the
time spent in the corresponding function, including all functions called within the
function. The total time is the time spent in the corresponding function, excluding
all calls to functions within the specified function.

We can use the cProfile package as follows.
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pr = cProfile.Profile()
pr.enable ()
solve_parametric ()
pr.disable ()
print_c_profiler (pr)

The output is shown next.

14897207 function calls (14894602 primitive calls) in 10.229 seconds

Ordered by: cumulative time
List reduced from 559 to 15 due to restriction <15>

ncalls tottime percall cumtime percall filename:lineno (function)
1 0.001 0.001 10.229 10.229 wl.py:112(solve_parametric)

30 0.006 0.000 10.107 0.337 /.../pyomo/pyomo/opt/base/solvers.py:513(solve)

30 0.000 0.000 5.758 0.192 /.../pyomo/pyomo/solvers/plugins/solvers/GUROBI.py:189 (_presolve)
30 0.001 0.000 5.758 0.192 /.../pyomo/pyomo/opt/solver/shellcmd.py:189 (_presolve)

30 0.001 0.000 5.726 0.191 /.../pyomo/pyomo/opt/base/solvers.py:653 (_presolve)

30 0.000 0.000 5.725 0.191 /.../pyomo/pyomo/opt/base/solvers.py:721(_convert_problem)

30 0.002 0.000 5.724 0.191 /.../pyomo/pyomo/opt/base/convert.py:31 (convert_problem)

30 0.001 0.000 5.692 0.190 /.../pyomo/pyomo/solvers/plugins/converter/model.py:43 (apply)

30 0.001 0.000 5.675 0.189 /.../pyomo/pyomo/core/base/block.py:1736 (write)

30 0.016 0.001 5.673 0.189 /.../pyomo/pyomo/repn/plugins/cpxlp.py:84 (__call__)

30 0.804 0.027 5.650 0.188 /.../pyomo/pyomo/repn/plugins/cpxlp.py:380 (_print_model LP)

30 0.003 0.000 3.528 0.118 /.../pyomo/pyomo/opt/solver/shellcmd.py:224 (_apply_solver)

30 0.002 0.000 3.524 0.117 /.../pyomo/pyomo/opt/solver/shellcmd.py:290 (_execute_command)

30 0.008 0.000 3.522 0.117 /.../pyutilib/pyutilib/subprocess/processmngr.py:433 (run_command)
30 0.001 0.000 3.292 0.110 /.../pyutilib/pyutilib/subprocess/processmngr.py:829 (wait)

14897207 function calls (14894602 primitive calls) in 10.229 seconds

Ordered by: internal time
List reduced from 559 to 15 due to restriction <15>

ncalls tottime percall cumtime percall filename:lineno (function)
30 3.285 0.110 3.285 0.110 {built-in method posix.waitpid}
30 0.804 0.027 5.650 0.188 /.../pyomo/pyomo/repn/plugins/cpxlp.py:380 (_print_model_LP)
76560 0.423 0.000 0.534 0.000 /.../pyomo/pyomo/repn/standard_repn.py:433(_collect_sum)
76560 0.419 0.000 0.700 0.000 /.../pyomo/pyomo/repn/plugins/cpxlp.py:181 (_print_expr_canonical)
76560 0.339 0.000 1.049 0.000 /.../pyomo/pyomo/repn/standard_repn.py:982 (_generate_standard_repn)
306000 0.338 0.000 0.586 0.000 /.../pyomo/pyomo/core/base/set.py:581 (bounds)
30 0.252 0.008 0.375 0.013 /.../pyomo/pyomo/solvers/plugins/solvers/GUROBI.py:363 (process_soln_file)

76560 0.197 0.000 1.411 0.000 /.../pyomo/pyomo/repn/standard_repn.py:254 (generate_standard_repn)
76560 0.159 0.000 1.812 0.000 /.../pyomo/pyomo/repn/plugins/cpxlp.py:572 (constraint_generator)
225090 0.157 0.000 0.206 0.000 /.../pyomo/pyomo/core/base/constraint.py:206 (has_ub)

153060 0.148 0.000 0.256 0.000 /.../pyomo/pyomo/core/expr/symbol_map.py:82 (createSymbol)

77220 0.124 0.000 0.272 0.000 {built-in method builtins.sorted}

153000 0.123 0.000 0.454 0.000 /.../pyomo/pyomo/core/base/var.py:407 (ub)

153000 0.122 0.000 0.457 0.000 /.../pyomo/pyomo/core/base/var.py:394 (1b)

229530 0.116 0.000 0.222 0.000 /.../pyomo/pyomo/repn/plugins/cpxlp.py:41l(_get_bound)

The first line of output shows the total number of function calls and the total time
required to run the profiled code. Note the 10.229 seconds reported by cProfile
is significantly longer than the 7.28 seconds reported by the TicTocTimer. Us-
ing cProfile does add some overhead to the code being profiled. Therefore,
cProfile should be used to identify bottlenecks (rather than comparing two al-
gorithms, for example). The first block of output is sorted by cumulative time. Each
row shows the cumulative time spent in the function on the far right of the row. As
expected, the entire 10.229 seconds is spent within the solve_parametric func-
tion. Of the total 10.229 seconds, 10.107 seconds are spent within the Pyomo call
to solve. We can already conclude very little time is spent constructing the model,
changing the value of m.P, and checking the termination condition of the solver.
Additionally, we see the call to write (which is where the LP file is written) takes
5.675 seconds of the 10.107 seconds spent in solve. Only 3.528 seconds are spent
in apply_solver, which is where the subprocess command that calls Gurobi is
executed. These results are an indication a persistent solver interface would be use-
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ful for this application. The persistent solver interfaces will be discussed in section
9.3.

9.2 Improving Model Construction Performance with
LinearExpression

In this section, we discuss using the LinearExpression class directly in order
to improve model construction time. Although operator overloading is a very con-
venient way to construct expressions, it can be computationally expensive. Alterna-
tively, Pyomo supports creating linear expressions using native Python lists, which
can be significantly faster than the operator overloading approach. The constructor
of the LinearExpression class takes three keyword arguments:

e constant: aconstant term
e linear_vars:a list of Pyomo variables appearing in the linear expression
e linear_coefs:alist of coefficients for each of the variablesin 1inear_vars

The following example compares creating a linear expression using operator over-
loading and the LinearExpression constructor. In order to compare timing, we
create the expression 100,000 times.

import pyomo.environ as pyo
from pyomo.common.timing import TicTocTimer
from pyomo.core.expr.numeric_expr import LinearExpression

N1 = 10
N2 = 100000

m pyo.ConcreteModel ()
m.x = pyo.Var (list (range (N1)))

timer = TicTocTimer ()
timer.tic()

for i in range(N2):
e = sum(i*m.x[1] for i in range(N1l))

timer.toc (' created expression with sum function’)

for i in range(N2):

coefs = [i1 for 1 in range (N1) ]
lin_vars = [m.x[1] for i in range (N1)]
e = LinearExpression (constant=0, linear_coefs=coefs, \

linear_vars=lin_vars)
timer.toc ('’ created expression with LinearExpression constructor’)

The output is shown next.

[ 0.00] Resetting the tic/toc delta timer
[+ 3.52] created expression with sum function
[+ 0.52] created expression with LinearExpression constructor
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Although using the LinearExpression is less clear and less concise, it is over
6 times faster in this example. Note the performance improvement depends heavily
on the number of terms in the expression.

9.3 Repeated Solves with Persistent Solvers

Each time a Pyomo model is solved using the standard solver interfaces, the gener-
alized modeling components defining the model must be translated into some input
form recognized by the solver in use. For cases where the solver finishes relatively
quickly, this model translation may introduce significant timing overhead. Persis-
tent solver interfaces provide a mechanism for reducing overall translation time for
models that are solved repeatedly with incremental changes. This is made possible
by exposing functionality allowing users to efficiently notify the solver of these in-
cremental changes to the Pyomo model, after an initial step where the full model is
translated.

When a persistent interface is used, additional care must be taken so that the Py-
omo model and its translated solver representation are kept in sync. This is a manual
process that must be done by the user. However, with this tradeoff, significant per-
formance improvements are possible for many common optimization approaches.

In Section 9.3.1, we briefly discuss when persistent solvers are most useful. In
Sections 9.3.2 — 9.3.4, we describe how to use a persistent solver interface. In Sec-
tion 9.3.5, we re-implement the parametric sweep example from Section 9.1.3 using
a persistent solver interface.

9.3.1 When to Use a Persistent Solver

Persistent solver interfaces are designed to be used when repeatedly solving the
same model with minor changes. They are most useful when the solver time is not
significantly longer than the time needed for Pyomo to translate the model to the
solver’s input format. Of course, persistent solvers can be used no matter how long
it takes to solve the problem. However, if the time spent solving the problem is
significantly longer than the time needed for translation, then little speedup will be
observed, but the complexity of the code may have increased. Linear programs are
excellent candidates for use with persistent solver interfaces because most linear
programs can be solved very efficiently. On the other hand, many mixed-integer
programs are difficult to solve and are poor candidates for the persistent solver in-
terfaces. Ultimately, it is necessary to use the profilers discussed in Section 9.1 to
determine how beneficial a persistent solver interface will be for any particular ap-
plication.
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9.3.2 Basic Usage

The first step in using a persistent solver is to create a Pyomo model as usual.

import pyomo.environ as pyo
m = pyo.ConcreteModel (

m.x = pyo.Var ()
m.y = pyo.vVar ()
m.obj = pyo.Objective (expr=m.x**2 + m.y*x2)
m.c = pyo.Constraint (expr=m.y >= -2xm.x + 5)

You can create an instance of a persistent solver through the SolverFactory.

opt = pyo.SolverFactory (’gurobi_persistent’) ‘

This returns an instance of the GurobiPersistent class. Now we need to tell
the solver about our model.

‘opt.set_instance(m)

This will create a gurobipy Model object and include the appropriate variables and
constraints. We can now solve the model.

‘results = opt.solve() ‘

Note that the model should not be passed into the solve method, as is done with
most solver interfaces. We can also add or remove variables, constraints, or blocks
and set objectives. For example,

m.c2 = pyo.Constraint (expr=m.y >= m.x)
opt.add_constraint (m.c2)

This tells the solver to add one new constraint but otherwise leave the model un-
changed. We can now resolve the model.

results = opt.solve()

To remove a component, simply call the corresponding remove method.

opt.remove_constraint (m.c2)
del m.c2
results = opt.solve()
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If a Pyomo component is replaced with another component with the same name,
the first component must be removed from the solver. Otherwise, the solver will
have multiple components. For example, the following code will run without error,
but the solver will have an extra constraint. The solver will have both y > —2xx+5
and y < x, which is not what was intended!

pyo.ConcreteModel ()

= pyo.Var ()

= pyo.Var()

pyo.Constraint (expr=m.y >= -2+m.x + 5)
opt = pyo.SolverFactory (’gurobi_persistent’)
opt.set_instance (m)

# WRONG:

del m.c

m.c = pyo.Constraint (expr=m.y <= m.Xx)
opt.add_constraint (m.c)

3 3 3 3
Q=X

The correct way to do this is:

pyo.ConcreteModel (

= pyo.Var()

= pyo.Var()

= pyo.Constraint (expr=m.y >= -2%m.x + 5)
opt = pyo.SolverFactory (’gurobi_persistent’)
opt.set_instance (m)

# Correct:

opt.remove_constraint (m.c)

del m.c

m.c = pyo.Constraint (expr=m.y <= m.x)
opt.add_constraint (m.c)

3 3 3 3
QKoX

In most cases, the only way to modify a component is to remove it from the
solver instance, modify it with Pyomo, and then add it back to the solver instance.
The only exception is with variables. Variables may be modified and then updated
with the solver:

m = pyo.ConcreteModel ()

m.x = pyo.vVar ()

m.y = pyo.Var ()

m.obj = pyo.Objective (expr=m.x**2 + m.y*x2)
m.c = pyo.Constraint (expr=m.y >= -2xm.x + 5)
opt = pyo.SolverFactory (' gurobi_persistent’)
opt.set_instance (m)

m.x.setlb(1.0)

opt.update_var (m.x)

In short, any time the Pyomo model is changed, the persistent solver interface
must be notified and kept in sync. Table 9.1 presents the appropriate methods to
use for various Pyomo model modifications. Note that when mutable parameters or
named Expressions are modified, all constraints utilizing the modified parame-
ters/expressions must be updated (removed and re-added).
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Table 9.1: Persistent Solver Interface Methods

Add constraint opt.add_constraint ()

Add variable opt.add.var ()

Add block opt.add-block ()

Set objective opt.set_objective ()

Remove constraint opt.remove_constraint ()

Remove variable opt .remove_var ()

Remove block opt.remove block ()

Modify variable opt .update_var ()

Modify mutable parameter opt .remove_constraint ()
m.param.value = val
opt.add_constraint ()

Modify Expression opt.remove_constraint ()
m.expr += val
opt.add_constraint ()

9.3.3 Working with Indexed Variables and Constraints

The examples in section 9.3.2 all used scalar variables and constraints; in order to
use indexed variables and/or constraints, the code must be slightly adapted:

m.v = pyo.Var ([0, 1, 2]

m.c2 = pyo.Constraint ([0, 1, 2])

for i in range(3):
m.c2[i] = m.v[1] == i

for v in m.v.values () :
opt.add_var (v)

for ¢ in m.c2.values():
opt.add_constraint (c)

This must be done when removing indexed variables and constraints, too. Note that
the is_indexed method can be used to automate the process.
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9.3.4 Additional Performance

In order to get the best performance out of the persistent solvers, use the
save_results argument:

m = pyo.ConcreteModel ()

m.x = pyo.Var ()

m.y = pyo.Var ()

m.obj = pyo.Objective (expr=m.x**2 + m.y*x2)
m.c = pyo.Constraint (expr=m.y >= -2xm.x + 5)
opt = pyo.SolverFactory (’gurobi_persistent’)

opt.set_instance (m)
results = opt.solve(save_results=False)

Note that if the save_results flag is set to False, then the following is not
supported.

results = opt.solve(save_results=False, load_solutions=False)
if results.solver.termination_condition ==
pyo.TerminationCondition.optimal:
try:
m.solutions.load_from(results)
except AttributeError:
print (' AttributeError was raised’)

AttributeError was raised

However, the following will work:

results = opt.solve (save_results=False, load_solutions=False)
if results.solver.termination_condition ==
pyo.TerminationCondition.optimal:
opt.load_vars()

Additionally, a subset of variable values may be loaded back into the model:

results = opt.solve(save_results=False, load_solutions=False)
if results.solver.termination_condition ==\
pyo.TerminationCondition.optimal:
opt.load_vars([m.x])
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9.3.5 Example

In this section, we re-implement the parameter sweep example from Section 9.1.3
using a persistent solver interface. The following is a function which performs the
parameter sweep with a persistent solver interface.

def solve_parametric_persistent () :

m = create_warehouse_model (num_locations=50, num_customers=50)
opt = pyo.SolverFactory (’gurobi_persistent’)
opt.set_instance (m)
p_values = list (range(l, 31))
obj_values = list ()
for p in p_values:

m.P.value = p

opt.remove_constraint (m.num_warehouses)
opt.add_constraint (m.num_warehouses)

res = opt.solve(save_results=False)
assert_optimal_termination (res)
obj_values.append(res.problem.lower_bound)

There are a few additional lines of code compared to the function from Section 9.1.3.
Specifically, we have added calls to the set _instance, remove_constraint,
and add_constraint methods on the solver interface.

The following code block calls the above function and reports the execution time.

timer.tic()
solve_parametric_persistent ()
timer.toc ('Finished parameter sweep with persistent interface’)

The output is here.

[ 22.79] Resetting the tic/toc delta timer
[+ 0.91] finished parameter sweep with persistent interface

Note this function was approximately 8 times faster than the non-persistent coun-
terpart (0.91 seconds vs 7.28 seconds). Recall that the performance depends heavily
on the application as discussed in Section 9.3.1.
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9.4 Sparse Index Sets

Often, a model makes use of only a portion of the cross product of multiple index
sets. In particular, sometimes the members in one dimension depend on the value in
another, leading to the slang “jagged sets.”

For example, a modeler may want to have a constraint to hold for

ie S ke X, vel.

There are many ways to accomplish this, but one good way is to create a set of
tuples composed of all of valid “model.k, model.V[k]” pairs. This is illustrated in
the following example where the jagged set KV is used.

import pyomo.environ as pyo
model = pyo.AbstractModel ()
model.I = pyo.Set()

model.K pyo.Set ()
model.V = pyo.Set (model.K)

def kv_init (m):
return ((k,v) for k in m.K for v in m.V[k])
model.KV = pyo.Set (dimen=2, initialize=kv_init)

model.a = pyo.Param(model.I, model.K)

model.y = pyo.Var (model.TI)
model.x pyo.Var (model.I, model.KV)

# include a constraint that looks like this:
# x[1,k,v] <= a[i,k]+y[i], for i in I, k in K, v in V[k]

def clRule(m,i,k,v):
return m.x[i,k,v] <= m.ali,k]l*m.y[i]
model.cl = pyo.Constraint (model.I, model.KV, rule=clRule)

An alternative strategy would be to declare the constraint to be indexed by sets
I, K, and V and then use pyo.Constraint.Skip () to pass over the indices
that are not present. However, in higher dimension, or with large sets this can cause
significant performance degradation.




Chapter 10
Abstract Models and Their Solution

Abstract This chapter describes how to declare and use an AbstractModel and
data command files to initilize abstract models. Finally, this chapter describes the
pyomo command, which makes it particularly easy to solve an abstract model using
data command files. Although concrete and abstract models provide similar func-
tionality, abstract models make a strong seperation of model formulation and model
data, which is conceptually nice and practically useful in some contexts.

10.1 Overview

In many of the examples in this book, we use a function that takes in data and
returns a ConcreteModel. This facilitates separating the concepts of model and
data. The AbstractModel class in Pyomo provides this separation by populating
the model with data only after the abstract model object has been created.

10.1.1 Abstract and Concrete Models

Pyomo supports two strategies for model declaration: concrete models, which im-
mediately construct model components, and abstract models, which defer compo-
nent construction. Abstract models reflect the structure of many mathematical op-
timization formulations. For example, the formulation of the warehouse location
problem (WL) on page 28 is written in a general manner describing a class of opti-
mization problems. However, we cannot solve this problem because the actual data
for the problem (N, M, d, and P) have not been specified. A solver must be given a
specific instance of a problem (with the data specified).

In Pyomo, an abstract model is declared first, and component construction is de-
layed until the data is loaded and Pyomo creates the model instance. This modeling
approach is illustrated in the top pane of Figure 10.1. An AbstractModel object
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is created, and then the data for a particular problem is given to Pyomo, and then
Pyomo performs the construction process in order to create an instance of the model
with all the variables, constraint expressions, and objective expressions that can be
sent to a solver. This requires a two-pass approach where the model is declared in
the first pass, and subsequently the model is constructed using data values speci-
fied separately. To support delayed construction, the model must be defined using
construction rules.

By contrast, concrete models support a programmatic style where the model in-
stance is created immediately; model components are constructed and initialized on
the first pass as Python executes the model script. This modeling approach is illus-
trated in the bottom pane of Figure 10.1. A ConcreteModel object is created, and
the data needs to be present before each component is declared. As Python executes
your model script, the particular model instance and its components are created
immediately as Python encounters the component declaration. Once the execution
through the Python file is completed the model is ready to be sent to the solver (i.e.,
a single pass). At this point, the ConcreteModel is the specific instance.

NOTE: Construction rules can be still be used with concrete models (the rules
are immediately fired as they are encountered in the model’s Python file).

AbstractModel construction process

AbstractModel ~——  construction —— instance EEEEY 2 solver

T

data

ConcreteModel construction process

data ConcreteModel IS solver

(instance)

Fig. 10.1: This figure describes the construction process for both abstract and concrete models.
The top pane describes the declarative style used for abstract models. The AbstractModel is
first created. Then, given a particular realization of the data, Pyomo performs the construction
process in order to create an instance of the model that can be sent to the solver. The bottom pane
describes the programmatic style used for concrete models. As Python executes the model script,
the component objects are constructed immediately using data previously declared. The particular
model instance is ready to be sent to the solver once the first pass is complete.
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The choice of which model object to use (AbstractModel or
ConcreteModel) is largely a matter of taste and preference. The biggest dif-
ference between the use of AbstractModel or ConcreteModel relates to the
specification of data. When using an AbstractModel, the names and structure
of the data used in a model are declared prior to construction (but not the values
themselves). This means Pyomo is aware of the existence of the sets and parameters
that will be encountered when constructing the instance. More importantly, Pyomo
knows the associated names and types of these quantities and something about the
relationships among them (e.g., the variable y is indexed by set N). This allows the
user to specify the data using any number of Pyomo supported data formats while
referring to these quantities by name. Pyomo includes many options for supplying
data to an abstract model, including a data command file to specify values for set
and parameter data. The syntax of Pyomo’s data command files is very similar to
the data command syntax supported by AMPL [2].

Concrete models facilitate more straightforward use of native Python data types
when creating a model instance. Therefore, if you are more comfortable building
models in a procedural programming environment (like Python or MATLAB), or
if your application requires a more extensive workflow than that supported by the
pyomo command, then a ConcreteModel is more appropriate. This is especially
true if your data can be easily loaded into Python through other Python packages
(e.g., pandas).

NOTE: In general, an Abst ractModel is more straightforward for users that
are unfamiliar with Python or prefer to work in some more traditional AML
environments. A ConcreteModel often requires Python coding on the part
of the user to load the data (e.g., using an existing Python package for the
raw data format) and apply it to the model, but offers transparent control over
execution order.

10.1.2 An Abstract Formulation of Model (H)

Consider model (H) (see page 19), which is reproduced here for convenience:

max Z h,’ . (x,' — (x,'/d,')z) (H)
Y e
S.t. Z cixi <b
icd
0<x;<u, I € o

Since model (H) is an abstract model, a natural way of expressing this model in
Pyomo is with Pyomo’s AbstractModel class.
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Consider the following Pyomo model for this problem:

# AbstractH.py — Implement model (H)
import pyomo.environ as pyo

model = pyo.AbstractModel (name=" (H)")

model.A = pyo.Set ()

model.h = pyo.Param(model.A)
model.d = pyo.Param(model.A)
model.c = pyo.Param(model.A)
model.b = pyo.Param()
model.u = pyo.Param(model.A)

def xbounds_rule (model, 1):
return (0, model.ul[il])
model.x = pyo.Var (model.A, bounds=xbounds_rule)

def obj_rule(model) :
return sum(model.h[i] =* \
(model.x[i] - (model.x[i]/model.d[i])**2) \
for i in model.A)
model.z = pyo.Objective (rule=obj_rule, sense=pyo.maximize)

def budget_rule (model) :
return sum(model.c[i]*model.x[i] for i in model.A) <= model.Db
model .budgetconstr = pyo.Constraint (rule=budget_rule)

Given particular data for the parameters in this model, then one might be inter-
ested in finding an optimal assignment of values to model . x. There are a variety
of ways to provide data to Pyomo for an abstract model. Here is data (saved in
AbstractH.dat) defining a suitable happiness objective for one of the authors
of this book:

# Pyomo data file for AbstractH.py

set A := I_C_Scoops Peanuts ;
param h := I_C_Scoops 1 Peanuts 0.1 ;
param d :=

I_C_Scoops 5
Peanuts 27 ;

param c := I_C_Scoops 3.14 Peanuts 0.2718 ;
param b := 12 ;
param u := I_C_Scoops 100 Peanuts 40.6 ;

This is a Pyomo data file, which includes set and param commands closely re-
sembling AMPL data commands. Description of these data commands is given in
Section 10.3.

The following lines can be used to optimize an abstract model, by adding them
to the Python file defining the model:




10.1 Overview 147

opt = pyo.SolverFactory (’'glpk’)

instance = model.create_instance ("AbstractH.dat")
results = opt.solve(instance) # solves and updates instance

instance.display ()

Alternatively, we can also solve the model using the pyomo command as described
in Section 10.2

10.1.3 An Abstract Model for the Warehouse Location Problem

The warehouse location problem (see Section 3.2) can be represented as an abstract
model as follows:

1 # wl_abstract.py: AbstractModel version of warehouse \
location determination problem

2 import pyomo.environ as pyo

3

4 model = pyo.AbstractModel (name=" (WL)")

5 model.N = pyo.Set ()

6 model.M = pyo.Set ()

7 model.d = pyo.Param(model.N,model.M)

8 model.P = pyo.Param()

9 model.x = pyo.Var (model.N, model.M, bounds=(0,1))
10 model.y = pyo.Var (model.N, within=pyo.Binary)

12 def obj_rule (model) :

13 return sum(model.d[n,m]*model.x[n,m] for n in \
model.N for m in model.M)

14 model.obj = pyo.Objective (rule=obj_rule)

15
16 def one_per_cust_rule (model, m):
17 return sum(model.x[n,m] for n in model.N) == 1

18 model.one_per_cust = pyo.Constraint (model.M, \
rule=one_per_cust_rule)

19
20 def warehouse_active_rule (model, n, m):
21 return model.x[n,m] <= model.y[n]

22 model.warehouse_active = pyo.Constraint (model.N, \
model .M, rule=warehouse_active_rule)

23

24 def num_warehouses_rule (model) :

25 return sum(model.y[n] for n in model.N) <= model.P
26 model.num_warehouses = \

pyo.Constraint (rule=num_warehouses_rule)

The sets are declared as Pyomo Set components and the parameter data is de-
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clared as Pyomo Param components with no indication as to how the data will be
supplied. Pyomo is informed the Param and Var components will be indexed by
sets, but the contents of those sets have not been declared.

The objective construction rule is defined on as the Python function obj_rule
and then model.ob7j is declared to be Pyomo Objective component. Since
this is an abstract model, the objective rule obj_rule is not yet called. At this
point, Pyomo knows what rule to call to construct the objective component, but it
has not called the constructor because this is an abstract model. Constraint rules and
constraint components are declared in a similar manner.

Data can be expressed in several different formats. For example, the following
Pyomo data file can be used:

# wl_data.dat: Pyomo format data file for the warehouse \
location problem

set N := Harlingen Memphis Ashland ;
set M := NYC LA Chicago Houston;
param d :=

Harlingen NYC 1956
Harlingen LA 1606
Harlingen Chicago 1410
Harlingen Houston 330
Memphis NYC 1096
Memphis LA 1792
Memphis Chicago 531
Memphis Houston 567
Ashland NYC 485
Ashland LA 2322
Ashland Chicago 324
Ashland Houston 1236

’

param P := 2 ;

The script can be executed with the python command, but this action would
not actually do anything. This script declares the model, but it does not define the
model data or create the problem instance for the solver. The action of applying a
data file to this abstract model can be scripted explicitly in Python code, or it can be
done using the pyomo command. For example:

pyomo solve —--solver=glpk wl_abstract.py wl_data.dat

The ——summary flag can be used to provide more detailed output about the solu-
tion.

When pyomo runs, it executes wl_abstract.py to create an
AbstractModel with the name model. This model object contains the Pyomo
modeling components that have been declared. Then pyomo reads the data file
wl_data.dat and applies this data to the Set and Param components in the
same order that the components were declared in the model. Next, the pyomo com-
mand constructs all of the remaining components in declaration order: the variables,
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the objective, and the constraints. After the model is constructed, pyomo calls the
solver to find the solution.

Abstract models can be used in scripts, but a concrete instance must be created
from the AbstractModel object using the create_instance method. The
following example takes an Abst ractModel, constructs the instance using a data
file called wl_data.dat, solves the instance, and prints some results:

instance = model.create_instance ('wl_data.dat’)
solver = pyo.SolverFactory ('glpk’)

solver.solve (instance)

instance.y.pprint ()

If you don’t want to write your own script, but instead want to use the pyomo
command, then you should not add these lines.

10.2 The pyomo Command

The Pyomo software distribution includes a pre-defined execution script, the pyomo
command, that includes a variety of subcommands supporting use of Pyomo. The
following subcommands are supported in Pyomo 6.0:

check
This subcommand checks a model for errors. This is particularly useful for eval-
uating the logic of rules in abstract models.

convert
This subcommand is used to convert a Pyomo model into another format, such
as an 1p or nl file.

help
Print information about the configuration and installation of Pyomo. For ex-
ample, the —s option provides information about available solvers:

‘pyomo help -s

run
Execute a command from the Pyomo bin (or Scripts) directory. For example,
this provides a handy mechanism for launching Python with Pyomo installed:

‘pyomo run python

solve
Construct and optimize a model.
test—-solvers
Execute a variety of tests to verify solver capabilities.

The following sections illustrate the use of the check, convert, help and
solve subcommands, which can be customized with a variety of options.
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10.2.1 The help Subcommand

The help subcommand prints information about Pyomo’s capabilities, including
information about installed plugins as well as available solvers. The —h option prints
information about the different information available, including:

——checkers
This prints the model checkers that are installed with Pyomo.
——commands, —C
This prints the commands installed with Pyomo. Although much of Pyomo’s
functionality can be accessed through the pyomo command, some functional-
ity is developed separately.
——components
This prints the modeling components and virtual sets available in Pyomo.
——data-managers, —-d
This prints the data interfaces supported by the DataPortal class. Data can
also be imported through these interfaces using Pyomo data files.
——info, -1
This prints information about the user’s PATH environment and Python instal-
lation. This command helps diagnose issues with the execution of Pyomo.
-—-solvers, —s
This prints information about solvers and solver managers that can be used
the optimize Pyomo models. Note that information about NEOS solvers will
be included if Pyomo can connect to the NEOS server.
——transformations, -t
This prints the model transformations supported by Pyomo.
-—writers, —w
This prints the model writers supported by Pyomo. Specifically, this summa-
rizes the different file formats a Pyomo model can be converted to.

So, for example, to see a list of available transformations, use the command:

pyomo help —--transformations

10.2.2 The solve Subcommand

The pyomo solve subcommand automatically executes a Pyomo model as fol-
lows:

Construct a model.

Read the instance data (if applicable).

Generate a model instance (if the model is abstract).

Apply simple preprocessors to the model instance.

M e

Apply a solver to the model instance.



10.2 The pyomo Command 151

6. Load the results into the model instance.
7. Display the solver results.
For example, the following command solves the warehouse location problem de-

fined in wl_abstract.py using the LP solver glpk using data from the file
wl_ data.dat:

pyomo solve —--solver=glpk wl_abstract.py wl_data.dat

The model construction step requires a Pyomo A Pyomo model file, which is
a Python file defining a Pyomo model object. Thus, the solve subcommand can
be viewed as a generic script for analyzing a model defined by a Pyomo model
file. The solve subcommand has a variety of optional command-line arguments to
customize the optimization process; documentation of the various available options
is available by specifying the ——help option.

However, the solve subcommand can also be executed with a YAML or JSON
configuration file', which eliminates the need to specify command-line options.
Consider the following configuration file:

# concretel.yaml
model:

filename: concretel.py
solvers:

- solver name: glpk

This configuration file can be used to configure the executions of the pyomo sub-
command as follows:

pyomo solve concretel.yaml

This configuration file defines the same logic as the first command in the previous
paragraph, and the following configuration file defines the same logic as the second
command:

# abstract5.yaml

model:
filename: abstract5.py
data:
files:
- abstract5.dat
solvers:

— solver name: glpk

No command-line options are required when using a configuration file, because all
command-line options have corresponding elements in a configuration file. Further-
more, there are configuration options that can only be expressed in a configuration
filee. A template configuration file can be generated with the
-—generate—-config-template option.

I YAML and JSON are data serialization standards. JSON is supported natively in Python, and
information about JSON is available at www . json.org. YAML configuration files are supported
if the Py YAML package is installed, and information about YAML is available at www . yaml .org.
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Option Description

-c, —--catch-errors Trigger failures for exceptions and print the program stack.
——json Store results in JSON format.

-k, —-keepfiles Keep temporary files.

-1, --log Print the solver logfile after performing optimization.

—-logfile FILE
--logging LEVEL

—--model-name NAME

—-—-path PATH
——report-timing
——results—format FORMAT
——save-results FILE
——show-results

—--solver SOLVER
—-—-solver—-executable FILE
—-—-solver—-io FORMAT

—--stream-output

—-—-solver-options STRING
——-solver-suffix SUFFIXES

——summary

——-symbolic-solver-labels

——tempdir TEMPDIR

Redirect output to the specified file.

Specify the logging level: quiet, warning, info, verbose, de-
bug.

The name of the model object created in the specified Py-
omo module.

Give a path used to find Pyomo Python files.

Report various timing statistics during model construction.
Specify the results format: json or yaml.

The filename to which the results are saved.

Print the results object after optimization.

Specify the solver name.

The executable used by the solver interface.

The type of IO used to execute the solver. Different solvers
support different types of 10, but the following are com-
mon options: Ip - generate LP files, nl - generate NL files,
python - direct Python interface.

Stream the solver output to provide information about the
solver’s progress.

String describing solver options.

Solution suffixes that will be extracted by the solver (e.g.,
rc, dual, or slack).

Summarize the final solution after performing optimiza-
tion.

When interfacing with the solver, use symbol
names derived from the model. For example,
“my_special_variable[1.2_3]” instead of ”v1”. When
using the ASL solvers, this option generates correspond-
ing .row (constraints) and .col (variables) files.

Specify the directory where temporary files are generated.

Table 10.1: Commonly used options for the pyomo solve subcommand.

The ——helpand ——generate-config-template options for the solve
subcommand require the ——solver option. These two options provide solver-
specific summaries respectively for command-line options and configuration files.
For example, you could execute the following command to get command-line op-
tions suitable for the glpk solver:

pyomo solve —--solver=glpk —--help

Table 10.1 summarizes key options for the solve subcommand that are com-

monly used.
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10.2.2.1 Specifying the Model Object

A model file can execute an arbitrary Python script, but the expectation of the
pyomo solve command is that it generates an object that contains the Pyomo
model. Within the solve subcommand, a model file is executed with a Python
import command, and thus it is interpreted like any other Python file.

In the simplest case, a Pyomo model file contains Python commands to create
a model object stored in the model variable. For example, consider the following
simple LP:

# abstract5.py
import pyomo.environ as pyo

model = pyo.AbstractModel ()

model.N = pyo.Set ()

model.M = pyo.Set ()

model.c = pyo.Param(model.N)

model.a = pyo.Param(model.N, model.M)
model.b = pyo.Param(model.M)

model.x = pyo.Var (model.N, within=pyo.NonNegativeReals)

def obj_rule(model):
return sum(model.c[i]*model.x[i] for i in model.N)
model.obj = pyo.Objective (rule=obj_rule)

def con_rule (model, m):
return sum(model.a[i,m]+model.x[1i] for i in model.N) \
>= model.b[m]
model.con = pyo.Constraint (model.M, rule=con_rule)

This is an abstract Pyomo model stored in the mode1 variable.

If a user defines their model with a different variable name, then the
—--model-name option can be used to direct Pyomo to select the specified name.
For example, we can adapt the previous example to store the model in Mode1:

# abstracté6.py
import pyomo.environ as pyo

Model = pyo.AbstractModel ()

Model.N = pyo.Set ()

Model.M = pyo.Set ()

Model.c = pyo.Param(Model.N)

Model.a = pyo.Param(Model.N, Model.M)
Model.b = pyo.Param(Model.M)

Model.x = pyo.Var (Model.N, within=pyo.NonNegativeReals)

def obj_rule (Model) :
return sum(Model.c[i]*Model.x[1] for i in Model.N)
Model.obj = pyo.Objective (rule=obj_rule)
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def con_rule (Model, m):
return sum(Model.a[i,m]*Model.x[i] for i in Model.N) \
>= Model.b[m]
Model.con = pyo.Constraint (Model.M, rule=con_rule)

This model can be optimized with the following command:

pyomo solve —--solver=glpk —--model-name=Model \
abstract6.py abstracté6.dat

Aside from supporting greater flexibility for the user, this option allows users to
define multiple models in a Pyomo model file and then select the model to be opti-
mized when the solve subcommand is executed.

10.2.2.2 Selecting Data with Namespaces

Section 10.3.4 introduces the namespace command in Pyomo data files. This
command is used to define blocks of data commands that are integrated option-
ally into a model. The solve subcommand provides the ——namespace option to
specify one or more namespaces used to construct an instance of an abstract model;
the ——ns is a shorter alias for this option. For example, the command

pyomo solve --solver=glpk --namespace=datal abstract5.py \
abstract5-nsl.dat

creates and optimizes the abstract model in abstract5.py using the following
data commands:

namespace datal {
set N =1 2 ;

set M =1 2 ;

namespace data2 {
set N := 3 4 ;

set M := 5 6 ;
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param c
310
4 20 ;

aram a

S WD W

r
5
5
6
6

anN s W

’

param b
51
6 2 ;

}

This command specifies the datal namespace, which has an optimal solution of
0.8. Similarly, the command

pyomo solve —--solver=glpk —--namespace=data2 abstract5.py \
abstract5-nsl.dat

creates and optimizes the same model using the data?2 namespace, which has an
optimal solution of 8. A different index set is used in the data?2 data, as well as
different objective coefficients.

The previous example illustrates how namespaces allow the user to specify dif-
ferent data sets within a single data command file. Note that a model can be con-
structed from data commands using multiple namespaces, including data not in a
namespace. Consider the following data commands:

set N := 1 2;

namespace cl
param c
11
2 2 ;

—_~

namespace c2
param c
110
2 20 ;

—~

namespace datal {
set M =1 2 ;

param a

N PN
NN
g N

param b :=
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N =
N -
~e

}

namespace data2 {
set M := 5 6 ;

}

This includes four namespaces and data commands outside of a namespace. The
command

pyomo solve —--solver=glpk —--namespace=cl —-—-namespace=data2 \
abstract5.py abstract5-ns2.dat

creates and optimizes the abstract modeling in abstract5.py using data com-
mands from the c1 and data2 namespaces, as well as the data command for N,
which is outside of any namespace. Note that if multiple namespaces contain data
commands for the same component, then the component is initialized with the data
from first namespace containing the corresponding data command. If there is not
a namespace containing a corresponding data command, then the data commands
outside of namespaces are used to initialize the component.

10.2.2.3 Customizing Pyomo’s Workflow

The different steps that are executed by the so1ve subcommand represent a generic
workflow for model construction and optimization. This workflow can be cus-
tomized using a variety of callback functions that are defined within a Pyomo model
file. These callback functions allow the user to define additional analysis steps, as
well as replace some of the default steps in the workflow.
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Function

Description

pyomo_preprocess
pyomo_create_model
pyomo_create_modeldata
pyomo_print_model
pyomo_modify_instance
pyomo_print_instance
pyomo_save_instance
pyomo_print_results
pyomo_save_results
pyomo_postprocess

Perform a preprocessing step before model construction
Construct and return a model object

Construct and return a DataPortal object

Output model object information

Modify the model instance

Output model instance information

Save the model instance

Print the optimization results

Save the optimization results

Perform a postprocessing step after optimization

Table 10.2: Callback functions that can be used in a Pyomo model file to customize the workflow
in the pyomo solve subcommand.

Table 10.2 summarizes the pyomo command callback functions and the func-
tionality that they support. Each callback function takes one or more keyword argu-
ments in the form keyword=value. For example, the pyomo print_results
callback function takes three arguments: options, instance, and results.

def pyomo_print_results (options=None,

instance=None,

results=None) :

print (results)

There are several standard arguments for the callback functions described in

Table 10.2. The options argument is an enhanced Python dictionary contain-
ing the command-line options sent to the solve subcommand. The model ar-
gument is the Pyomo model object, and the instance argument is the model
instance constructed from this model. In the case where the user defines a model
using ConcreteModel, then the model and instance arguments are the same
object. Other arguments are described with their associated callback functions.

pyomo_preprocess
This callback function is executed before model construction to perform preprocess-

ing steps. This function has one argument: opt ions. For example, the following
callback function simply prints the command-line options:

def pyomo_preprocess (options=None) :
print ("Here are the options that were provided:")
if options is not None:
options.display ()
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pyomo_create_model

This callback function is used to construct a model. This function has two argu-
ments: opt ions and model_options. The latter argument contains the options
for constructing the model, which are specified with the ——model-options
command-line option. The return value of this function must be the model object
created, which may be either an abstract or concrete model. For example, the fol-
lowing callback function creates a model by importing the abstract6.py file
and then returning the Mode 1l object:

def pyomo_create_model (options=None, model_options=None) :
sys.path.append (abspath (dirname (__file_ )))
abstract6 = __import__ (’abstract6’)
sys.path.remove (abspath (dirname (__file_ )))
return abstract6.Model

pyomo_create_modeldata

This callback function creates a model data object used to create a model instance.
Model data objects are useful in contexts where a set of different data sources
need to be specified for model constructions. This function has two arguments:
options and model. The return value must be a DataPortal object. For ex-
ample, the following callback function creates a DataPortal object from the file
abstract6.dat:

def pyomo_create_dataportal (options=None, model=None) :
data = pyo.DataPortal (model=model)
data.load (filename="abstract6.dat’)
return data

pyomo_print_model

This callback function prints an abstract model before a model instance is created.
This function has two arguments: opt ions and model. The following example
calls the pprint method to print detailed information about an abstract model:

def pyomo_print_model (options=None, model=None) :
if options[’runtime’][’logging’]:
model.pprint ()

pyomo_modify_instance

This callback function modifies the model instance after it has been constructed.
This function has three arguments: options, model, and instance. The fol-
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lowing callback fixes a variable after the model is constructed:

def pyomo_modify_instance (options=None, model=None,
instance=None) :
instance.x[1].value = 0.0
instance.x[1l].fixed = True

pyomo_print_instance

This callback function prints the Pyomo model instance. This function is used to
print the concrete model instance rather than the abstract model. This function
has two arguments: options and instance. The following example calls the
pprint method to print detailed information about a model instance:

def pyomo_print_instance (options=None, instance=None) :
if options[’runtime’][’logging’]:
instance.pprint ()

pyomo,save,instance

This callback function saves the Pyomo model instance. This function has two ar-
guments: options and instance. Note that Pyomo does not specify how the
model is saved. However, a convenient mechanism would be to use Python’s pickle
mechanism:

def pyomo_save_instance (options=None, instance=None) :
OUTPUT = open(’abstract7.pyomo’,’'w’)
OUTPUT.write (str(pickle.dumps (instance)))
OUTPUT.close ()

pyomo_print_results

This callback function prints the results generated from optimization. This function
has three arguments: options, instance,and results. The results object
supports a generic summary of optimization solutions, solver statistics, etc. in both
the JSON or YAML formats. Thus, this callback function can simply print this data:

def pyomo_print_results (options=None, instance=None,
results=None) :
print (results)

However, the solve subcommand includes the ——print-results option,
which performs this operation. More generally, this callback function is included
to allow users to provide problem-specific summaries of their optimization results.
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pyomo_save_results

This callback function is used to save the results generated from optimization. This
function has three arguments: options, instance, and results. This call-
back function can simply print the results to a file:

def pyomo_save_results (options=None, instance=None,
results=None) :
OUTPUT = open(’'abstract7.results’,’'w’)
OUTPUT.write (str(results))
OUTPUT.close ()

The solve subcommand includes the —~—save-results option, which performs
this operation. More generally, this callback function is included to allow users to
save problem-specific summary of their optimization results.

pyomo_postprocess

This callback function is executed after optimization to perform postprocessing
steps. This function has three arguments: options, instance, and results.
For example, the following function prints a simple summary of the optimization
results:

def pyomo_postprocess (options=None, instance=None,
results=None) :
instance.solutions.load_from(results, \
allow_consistent_values_for_fixed_vars=True)
print ("Solution value "+str (pyo.value (instance.obj)))

10.2.2.4 Customizing Solver Behavior

The generic workflow supported by the so1ve subcommand includes the execution
of a solver to optimize (or otherwise analyze) a model. A variety of command-line
options are used to control solver behavior. The -—solver option is used to specify
the name of the solver constructed. This option can specify two classes of solvers:
the names of command-line executables on the user’s path, and predefined solver in-
terfaces.

Command-line executables are assumed to perform I/O using NL files. Thus,
command-line executables can be optimized with any solver executable built with
the AMPL solver library.

Solver options can be specified in a generic manner using the
-—solver-options option. This specifies a string interpreted as one or more
option-value pairs. For example, the following option passes the mipgap option to
the glpk solver:

pyomo solve —--solver=glpk —--solver—options='mipgap=0.01" \
concretel.py
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Additionally, the ——timelimit option can be used to specify the maximum run-
time of the solver. This is typically passed to the solver, and thus this timelimit is
enforced in a solver-dependent manner.

Solver results are generated from solution information provided by the solver,
and optionally a logfile of output from the solver. By default, Pyomo captures infor-
mation about the variable values selected by the solver. However, there is often addi-
tional information a user may wish to collect, such as dual values for constraints in a
linear program. For performance reasons, this data is not automatically collected by
the solve subcommand, but the ——solver-suffixes option is used to specify
the names of the data desired. A suffix is simply data for a constraint or variable that
results from the application of a solver. Suffixes can be specified by name, or with a
regular expression. For example, the following command specifies that all suffixes
generated by the solver are requested:

pyomo solve —--solver=glpk --solver-suffix=’.x’ concrete2.py

The following suffixes are currently supported within Pyomo:

e dual - constraint dual values
e rc - reduced costs

e slack - constraint slack values

Note that a given solver may provide only a subset of these suffixes.

The ——tempdir and ——keepfiles options can be used to archive the tem-
porary files that Pyomo uses. By default, Pyomo uses temporary files automatically
generated in system temporary directories. The ——tempdi r option is used to spec-
ify the directory that these files are created in. By default, temporary files are deleted
after optimization is completed. The ——keepfiles options disables this deletion,
which allows the user to see the data Pyomo sends to the optimizer.

10.2.2.5 Analyze Solver Results

The ——postprocess option can be used to specify a Python module that is ex-
ecuted after the solver has executed. A typical use of this option is to specify post-
processing steps to interpret the solver results in a problem-dependent manner.

Post-processing steps can be defined by declaring in the Python modules a
pyomo_postprocess function to be used in post processing. Figure 10.2 pro-
vides an example of a post-processing function that writes the final solutions to a
file in the CSV format.

10.2.2.6 Managing Diagnostic Output

The solve subcommand includes a variety of options to control the generation of
diagnostic output and other information useful for learning more about the executed
workflow.
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import csv

def pyomo_postprocess (options=None, instance=None,
results=None) :

#

# Collect the data
#

vars = set ()

data = {}

£f={}
for i in range(len(results.solution)):
datal[i] = {}
for var in results.solution[i].variable:
vars.add (var)
datal[i] [var] = \
results.solution[i] .variable[var] [’/Value’]
for obj in results.solution[i].objective:
f[i] = results.solution[i].objectivel[obj][’Value’]
break

Write a CSV file, with one row per solution.
The first column is the function value, the remaining
columns are the values of nonzero variables.

M W R W

rows = []
vars = list (vars)
vars.sort ()
rows.append ([’ obj’ ]+vars)
for i in range(len(results.solution)):
row = [f[i]]
for var in vars:
row.append( datal[i].get (var,None) )
rows.append (row)
print ("Creating results file results.csv")
OUTPUT = open(’'results.csv’, 'w’)
writer = csv.writer (OUTPUT)
writer.writerows (rows)
OUTPUT.close ()

Fig. 10.2: A post-processing plugin that writes final solutions in a CSV file.

The default output of the solve subcommand is a terse summary of the ma-
jor steps that are executed. The ——1og and —-stream—output options are
used to print the solver output. The ——1og option is used to print the solver
output after the solver has terminated, and the ——stream-output option is
used to print the solver output as it is generated. Similarly, the ——summary and
——show-results options print different summaries of the optimization results.
The ——summary command prints a summary of the Pyomo model, after the results
are loaded.

The ——show-results prints the final results. If the PyYAML package is in-
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stalled, then the default results format is YAML and the final results are stored in
the file results.yml. Otherwise, the default results format is JSON and the fi-
nal results are stored in the file results. json. The ——json option can be used
to specify the JSON results format when the PyYAML package is installed. The
-—save-results option can be used to specify an alternative results file.

Pyomo uses a standard Python logging system to manage the printing of log-
ging messages for the underlying software in Pyomo. By default, logging messages
representing Pyomo errors and warnings are always printed. The ——quiet option
suppresses all log messages except for those referring to errors. The ——warning
option enables warning messages for Pyomo. The ——info option enables informa-
tive, warning and error log messages for Pyomo.

The ——verbose option enables debugging log messages for Pyomo. This op-
tion can be specified multiple times to enable logging messages for different parts
of Pyomo: (1) debugging for just Pyomo and (2) debugging for all Pyomo pack-
ages. The ——debug option enables debugging logging, and it allows exceptions to
trigger a failure in which the program stack is printed.

10.2.3 The convert Subcommand

Many optimizers supported by Pyomo read a a temporary file Pyomo generates in
a standard problem format. For example, the NL format is recognized by solvers
used with the AMPL modeling tool, and the LP file format is used by a variety of
commercial and open source integer programming solvers.

It is often useful to generate these problem files directly, both to diagnose issues
with a model as well as to directly manage the execution of a solver. The convert
subcommand can be used to convert a Pyomo model into a standard file format. For
example, consider the command:

pyomo convert —--format=lp concretel.py

This command converts the model in concretel.py into an LP file format,
which is stored in the file unknown . 1p:

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions
[ 0.00] Creating model

Model written to file ’‘unknown.lp’

[ 0.05] Pyomo Finished
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The ——output option can also be used to specify a filename, for which the
filename suffix specifies the file format. For example, the command

‘ pyomo convert -—--output=concretel.lp concretel.py ‘

creates the file concretel.lp, which represents the model from
concretel.py in the LP file format.
The command

‘pyomo help -w ‘

summarizes the file formats supported by Pyomo.

10.3 Data Commands for AbstractModel

The Set and Param components of a Pyomo model are used to define data values
used to construct constraints and objectives. Previous chapters have illustrated that
these components are not necessary to develop complex models. However, the Set
and Param components can be used to define abstract data declarations, where no
data values are specified. For example:

model.A = Set (within=Reals)
model.p = Param(model.A, within=Integers)

Data command files can be used to initialize data declarations in Pyomo models,
and in particular they are useful for initializing AbstractModel data declara-
tions. However, note that complex mappings are often accomplished in Pyomo via
scripting rather than using data command files.

Pyomo’s data command files employ a domain-specific language whose syntax
closely resembles the syntax of AMPL’s data commands [2]. A data command file
consists of a sequence of commands specifing set and parameter data, or specifing
where such data is to be obtained from external sources. The following commands
can be used to declare data:

e The set command declares set data.

e The paramcommand declares a table of parameter data, which can also include
the declaration of the set data used to index the parameter data.

e The 1oad command loads data from an external resources, like a spreadsheet
or database.

e The table command declares a two-dimensional table of parameter data.

The following commands can also be used in data command files:

e The include command specifies a data command file that is processed im-
mediately.

e The data and end commands do not perform any actions, but they provide
compatibility with AMPL scripts that define data commands.

Finally, the namespace declaration allows data commands to be organized into
named groups allowing each to be enabled or disabled during model construction.
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Note that Pyomo’s data commands do not exactly correspond to AMPL data
commands. The set and param commands are designed to closely match AMPL’s
syntax and semantics. However, these commands only support a subset of the corre-
sponding declarations in AMPL. However, it is not possible to support other AMPL
commands because Pyomo treats data commands as data declarations while AMPL
treats data commands as part of its scripting language.

The following subsections describe the syntax Pyomo’s data file commands ex-
cept for the 1oad and table commands, which are documented via Pyomo’s
online documentation. The syntax of data commands can be quite varied, and we
provide detailed examples to illustrate these commands. Note that all Pyomo data
commands are terminated with a semicolon, and the syntax of data commands does
not depend on whitespace. Thus, data commands can be broken across multiple lines
— newlines and tab characters are ignored — and data commands can be formatted
with whitespace with few restrictions.

10.3.1 The set Command

10.3.1.1 Simple Sets

The set data command explicitly specifies the members of either a single set or an
array of sets, i.e., an indexed set. A single set is specified with a list of data values
that are included in this set. The formal syntax for the set data command is:

set <setname> := [<value>] ... ;

The data values in a set consist of either numeric values, simple strings or quoted
strings:

e Numeric values are any string that can be evaluated by Python as a numeric
value, e.g., integer, float, scientific notation, or boolean.

e Simple strings are sequences of alpha-numeric characters.

e Quoted strings are simple strings that are included in a pair of single or double
quotes. A quoted string can include quotes within the quoted string.

There is no restriction on the values in a set declaration. A set may be empty, and it
may contain any combination of numeric and non-numeric string values. Validation
of set data is performed when constructing a Pyomo model, not while parsing a data
command file. For example, the following are valid set commands:

# An empty set
set A := ;

# A set of numbers
set A =1 2 35

# A set of strings
set B := north south east west;
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# A set of mixed types
set C :=

0

-1.0e+10

" foo bar’

infinity

"100"

’

Note that numeric values are automatically converted to Python integer or floating
point values when the set data specification is parsed. A quoted string can be used
to define a string value containing a numeric value. However, if the string strictly
specifies a numeric value, it will be converted by Python to a numeric type. For ex-
ample, the string “100” is included in set C, but this value is converted to a numeric
value.

10.3.1.2 Sets of Tuple Data

The set data command can also specify tuple data with the standard notation for
tuples. For example, suppose set A contains 3-tuples:

model.A = pyo.Set (dimen=3) ‘

The following set data command then specifies that A is the set containing the
tuples (1,2,3) and (4,5,6):

‘set A := (1,2,3) (4,5,6) ;

Alternatively, set data can simply be listed in the order that the tuple is represented:

‘Set A :=123456¢6;

Obviously, the number of data elements specified using this syntax should be a
multiple of the set dimension.

Sets with 2-tuple data can also be specified in a matrix denoting set membership.
For example, the following set data command declares 2-tuples in A using + to
denote valid tuples and - to denote invalid tuples:

set A : Al A2 A3 A4 :=

1 + - -+
2 + - + -
3 - + - -

This data command declares the following five 2-tuples: CA1°,1), CA1°,2), CA2’,3),
(CA3’2), CA4’,1).

Finally, a set of tuple data can be concisely represented with tuple templates that
represent a slice of tuple data. For example, suppose the set A contains 4-tuples:

model.A = pyo.Set (dimen=4)

The following set data command declares groups of tuples defined by a template
and data to complete this template:
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A tuple template consists of a tuple containing one or more » symbols instead of a
value. These represent indices where the tuple value is replaced by the values from
the list of values following the tuple template. In this example, the following tuples
are in set A:

(1, 2, '"a’, 4)
(1, 2, 'B", 4)
("ar, 2, 'B", 4)
(rcr, 2, 'D", 4)

10.3.1.3 Set Arrays

The set data command can also be used to declare data for a set array. Each set in
a set array must be declared with a separate set data command with the following
syntax:

set <set—-name>[<index>] := [<value>] ... ;

Set arrays can be indexed by an arbitrary set and the index value may be a numeric
value, a non-numeric string value, or a comma-separated list of string values.
Suppose set A is used to index a set B as follows:

model.A = pyo.Set ()
model.B = pyo.Set (model.A)

Then set B is indexed using the values declared for set A:

set A := 1 aaa 'a b’;
set B[1l] := 0 1 2;
set Blaaa] = aa bb cc;

set B[’a b’] := "aa bb cc’;

10.3.2 The param Command

Simple or non-indexed parameters are declared in an obvious way, as shown by
these examples:

param A := 1.4;
param B := 1;
param C := abc;
param D := true;
param E := 1.0e+04;
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Parameters can be defined with numeric and string data. Numeric data is defined
with a string evaluated by Python as a numeric value, which includes integer, float-
ing point, scientific notation, and boolean. Boolean values can be specified with a
variety of strings: TRUE, true, True, FALSE, false, and False. Note that pa-
rameters cannot be defined without data, so there is no analog to the specification of
an empty set.

Most parameter data is indexed over one or more sets, and there are a number of
ways the param data command can be used to specify indexed parameter data.

10.3.2.1 One-dimensional Parameter Data

One-dimensional parameter data is indexed over a single set. Suppose parameter B
is indexed by the set A:

model.A = pyo.Set ()
model.B = pyo.Param(model.A)

A param data command can specify values for B with a list of index-value pairs:

set A := a c e;

param B := a 10 ¢ 30 e 50;

Because whitespace is ignored, this example data command file can be reorganized
to specify the same data in a tabular format:

set A := a c ey

param B :=
a 10
c 30
e 50

’

Multiple parameters can be defined using a single param data command. For ex-
ample, suppose parameters B, C, and D are one-dimensional parameters all indexed
by the set A:

model.A = pyo.Set ()

model.B = pyo.Param(model.A)
model.C = pyo.Param(model.A)
model.D = pyo.Param(model.A)

Values for these parameters can be specified using a single param data command
declaring these parameter names followed by a list of index and parameter values:

set A := a c ey
param : B C D :=
a 10 -1 1.1

c 30 -3 3.3

e 50 -5 5.5
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The values in the param data command are interpreted as a list of sublists, where
each sublist consists of an index followed by the corresponding numeric value.

Note that parameter values do not need to be defined for all indices. For example,
the following data command file is valid:

set A := a c e g;
param : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5

The index g is omitted from the param command, and consequently this index is
not valid for the model instance using this data. More complex patterns of missing
data can be specified using the “.” character to indicate a missing value. This syntax
is useful when specifying multiple parameters that do not necessarily have the same

index values:

set A := a c ey
param : B C D :=
a . -1 1.1

c 30 3.3

e 50 -5

’

This example provides a concise representation of parameters that share a common
index set while using different index values.

Note that this data file specifies the data for set A twice: (1) when A is defined and
(2) implicitly when the parameters are defined. An alternate syntax for param al-
lows the user to concisely specify the definition of an index set along with associated
parameters:

param : A : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5

’

Finally, we note that default values for missing data can also be specified using
the default keyword:

set A := a c e;

param B default 0.0 :=
c 30
e 50

’

Note that default values can only be specified in param commands defining values
for a single parameter.
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10.3.2.2 Multi-Dimensional Parameter Data

Multi-dimensional parameter data is indexed over either multiple sets or multi-
dimensional sets. Suppose parameter B is indexed by set A with dimension 2:

model.A = pyo.Set (dimen=2)
model.B = pyo.Param(model.A)

The syntax of the param data command remains essentially the same when speci-
fying values for B with a list of index and parameter values:

set A :=alc 2 e 3;

param B :=
al 10
c 2 30
e 3 50;

Missing and default values are also handled in the same way with multi-dimensional
index sets:

set A :=alc 2 e 3;

param B default 0 :=
al 10

c 2

e 3 50;

Similarly, multiple parameters can defined with a single param data command.
Suppose that parameters B, C, and D are parameters indexed over set A with dimen-
sion 2:

model.A = pyo.Set (dimen=2)

model.B = pyo.Param(model.A)
model.C = pyo.Param(model.A)
model.D = pyo.Param(model.A)

These parameters can be defined with a single param command that declares the
parameter names followed by a list of index and parameter values:

set A :=alc 2 e 3;

param : B C
al 10 -1 1.
c 2 30 -3 3.
e 3 50 -5 5.5

’

D
1
3

Similarly, the following param data command defines the index set along with the
parameters:

param : A : B C D :=
al1l0 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5

;
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The param command also supports a matrix syntax for specifying the values in
a parameter with a 2-dimensional index. Suppose parameter B is indexed over set A
with dimension 2:

model.A = pyo.Set (dimen=2)
model.B = pyo.Param(model.A)

The following param command defines a matrix of parameter values:

set A :=1alcle2a22c2e3a3c3e;

ace =

o o N B
o oW W

W NPT
RGN

’

Additionally, the following syntax can be used to specify a transposed matrix of
parameter values:

set A ;=1 alcle2a?2c2e3a3c3e;
param B (tr) : 1 2 3 :=

al 47

c 258

e 369

’

This functionality facilitates the presentation of parameter data in a natural format.
In particular, the transpose syntax may allow the specification of tables for which
the rows comfortably fit within a single line. However, a matrix may be divided
column-wise into shorter rows since the line breaks are not significant in Pyomo’s
data commands.

For parameters with three or more indices, the parameter data values must be
specified as a series of slices. Each slice is defined by a template followed by a list
of index and parameter values. Suppose that parameter B is indexed over set A that
has dimension 4:

model.A = pyo.Set (dimen=4)
model.B = pyo.Param(model.A)

The following param command defines a matrix of parameter values with mul-
tiple templates:

set A := (a,1,a,1) (a,2,a,2) (b,1,b,1) (b,2,b,2);
param B :=
[ 1] a a 10 b b 20

*,11*’
[*x,2,%,2] a a 30 b b 40

;

The B parameter consists of four values: B[a,1,a,1]=10,B[b,1,b,1]1=20,
Bla,2,a,2]1=30,and B[b, 2,b, 2]=40.
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10.3.3 The include Command

The include command allows a data command file to execute data commands
from another file. For example, the following command file executes data commands
from ex1.dat and then ex2.dat:

include ex1.dat;
include ex2.dat;

Pyomo is sensitive to the order of execution of data commands, since data com-
mands can redefine set and parameter values. The include command respects
this data ordering; all data commands in the included file are executed before the
remaining data commands in the current file are executed.

10.3.4 Data Namespaces

The namespace keyword is not a data command, but instead it is used to structure
the specification of Pyomo’s data commands. Specifically, a namespace declaration
is used to group data commands and to provide a group label. Consider the following
data command file:

set C :=1 2 3 ;

namespace nsl
{

set C := 4 5 6 ;
}

namespace ns2
{

set C :=7 8 9 ;
}

This data file defines two namespaces: ns1 and ns2 that initialize a set C. By
default, data commands contained within a namespace are ignored during model
construction; when no namespaces are specified, the set C has values 1, 2, 3. When
namespace nsl is specified, then set C values are overridden with the set 4, 5, 6.
See Section 10.2.2.2 for an example of how namespaces are selected with the
pyomo command.

10.4 Build Components

In a function constructing a ConcreteModel one can insert Python code any-
where in the process. One can, for example, fix a particular combination of vari-
ables, print the value of a parameter, or throw an exception if a particular com-
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bination of parameter values is not valid. To provide this functionality for an
AbstractModel, Pyomo supports a set of components enabling execution of
Python code during the build process.

The BuildAction component can be defined in the model to inject actions
(defined through Python code) into the model construction process. Similarly, the
BuildCheck component is used to perform a user-defined test (again, through
Python code) during the model construction process and halt construction if the
test fails. These components are added to a model in the same manner as other
components, but their role is to allow a user to insert scripting-like code into the
model construction process.

Consider the following abstract model (defined in buildactions.py) illus-
trating the use of BuildAction and BuildCheck components to define error
checks and diagnostic output based on our warehouse location example defined in
Sections 3.2 and 10.1.3.

# buildactions.py: Warehouse location problem showing build \
actions
import pyomo.environ as pyo

model = pyo.AbstractModel ()

model.N = pyo.Set () # Set of warehouses

model.M = pyo.Set () # Set of customers

model.d = pyo.Param(model.N,model.M)

model.P = pyo.Param()

model.x = pyo.Var (model.N, model.M, bounds=(0,1))

model.y = pyo.Var (model.N, within=pyo.Binary)

def checkPN_rule (model) :
return model.P <= len (model.N)
model.checkPN = pyo.BuildCheck (rule=checkPN_rule)

def obj_rule(model) :
return sum(model.d[n,m]*model.x[n,m] for n in model.N for m \
in model.M)
model.obj = pyo.Objective (rule=obj_rule)

def one_per_cust_rule (model, m):
return sum(model.x[n,m] for n in model.N) ==
model.one_per_cust = pyo.Constraint (model.M, \
rule=one_per_cust_rule)

def warehouse_active_rule (model, n, m):
return model.x[n,m] <= model.y[n]

model .warehouse_active = pyo.Constraint (model.N, model.M, \
rule=warehouse_active_rule)

def num_warehouses_rule (model) :
return sum(model.y[n] for n in model.N) <= model.P
model.num_warehouses = pyo.Constraint (rule=num_warehouses_rule)
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def printM_rule (model) :
model . .M.pprint ()
model.printM = pyo.BuildAction(rule=printM_rule)

In this example, we have added a BuildCheck component with the rule
CheckPN_rule. This rule will check to make sure the total number of warehouses
we can place is not more than the number of available warehouse locations. We have
also added a BuildAction component with the rule printM_rule to print the
set of customer locations.

We created a . dat file where the parameter P is larger than the available number
of warehouse locations (so it would fail the CheckPN_rule build check:

# buildactions_fails.dat: Pyomo format data file for the \
warehouse location problem
# Note: parameter P is larger than the number of warehouse \

locations
set N := Harlingen Memphis Ashland ;
set M := NYC LA Chicago Houston;
param d :=

Harlingen NYC 1956
Harlingen LA 1606
Harlingen Chicago 1410
Harlingen Houston 330
Memphis NYC 1096
Memphis LA 1792
Memphis Chicago 531
Memphis Houston 567
Ashland NYC 485
Ashland LA 2322
Ashland Chicago 324
Ashland Houston 1236

param P := 4 ;

Solving this with the pyomo command:

pyomo solve —--solver=glpk buildactions.py buildactions_fails.dat

gives us output similar to the following:

[ 0.00] Setting up Pyomo environment

[ 0.00] Applying Pyomo preprocessing actions

[ 0.00] Creating model

ERROR: Constructing component ’checkPN’ from data=None failed:
ValueError: BuildCheck ’checkPN’ identified error

[ 0.01] Pyomo Finished

ERROR: Unexpected exception while running model:
BuildCheck ’checkPN’ identified error

As with other components, the BuildAction and BuildCheck components
can be indexed, which allows actions and checks to be customized based on specific
data.
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Chapter 11
Generalized Disjunctive Programming

Abstract This chapter documents how to express and solve Generalized Disjunctive
Programs (GDPs). GDP models provide a structured approach for describing logical
relationships in optimization models. We show how Pyomo blocks provide a natural
base for representing disjuncts and forming disjunctions, and we how to solve GDP
models through the use of automated problem transformations.

11.1 Introduction

A common feature of many discrete optimization problems is the selection among
two or more discrete choices. These decisions imply additional restrictions on the
feasible problem space. For example, a semi-continuous variable either has value
zero or must be above a given value. This can be expressed algebraically as either
x=0orL<x<U,where L>0andU is allowed to be infinite. When U is finite, this
property can be enforced by defining a binary variable y and defining the following
constraints:

Ly <x
x < Uy
y €{0,1}

When U is infinite, then the second inequality is replaced with a so-called “Big-M”
constraint:

x < My

for a value M chosen to be sufficiently big so as to not limit the space of feasible
solutions (although it does imply a finite U). One can readily see that when y = 1
the inequalities enforce that x lie in the continuous range L <x < U, and when y =0
the inequalities reduce to 0 < x <0, or x = 0.

177
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In this formulation, the binary variable y is not intrinsic to the constraints, but
rather captures a logical condition: indicating whether one set of mututally exclusive
constraints (L < x < U) or another (x = 0) must be enforced. In this way, the variable
is often referred to as an indicator variable. Indeed, it can be argued that the bulk
of binary variables used in math programming are in fact indicator variables used to
capture logic in the model.

This approach to formulating a switching decision can be generalized to switch
between different groups of constraints. For example, consider the Unit Commit-
ment Problem, where the goal of the optimization problem is to determine the min-
imal cost schedule for turning on and off a fleet of generators in order to meet
expected demand. In this case, a generator can exist in one of several states: on, off,
starting up, and shutting down. Selecting a particular state implies additional con-
straints on the generator operation. If a generator is “on”, then the output power is
bounded between the minimum (nonzero) and maximum power levels. In contrast,
when the generator is “off”, the output power must be 0. Further, the output power
in any time period must be within “ramp limits” of output power in the previous
time period.

One implementation of these state selection rules expresses all the constraints
and relaxes them based on binary state (indicator) variables using so-called “Big-
M?” terms:

Powerg; < MaxPower, - GenOng, (11.1)

Powerg,; > MinPower, - GenOng, (11.2)

Powerg, < Powerg 1 + RampU pLimit, + M, - (1 — GenOny, /) (11.3)
Powerg, > Powerg 1 — RampDownLimit, — M, - (1 — GenOng,) (11.4)
Powerg, < Ma)cP0werg (1 —GenOffy:) (11.5)

Powerg;_1 < ShutDownRampLimity + MaxPowerg - (1 — GenOf fo,) (11.6)
Power,; < StartU pRampLimit, + MaxPowerg - (1 — GenStartUpg,) (11.7)
GenOng; + GenOf fo; + GenStartUpg; =1 (11.8)

GenOng; < GenOng, | + GenStartUpg; 1 (11.9)

GenStartUpg; < GenOf fg ;-1 (11.10)

GenOng;,GenOf fq,GenStartU p, ;, GenShutDowng; € {0,1} (11.11)
Powerg; € (0,MaxPower,) (11.12)

This approach to formulating a switching decision has two significant limitations.
First, the relationships between the binary selection variable and the corresponding
constraints that the binary variable selects is somewhat obfuscated. Second, the use
of “Big-M” relaxations is only one of several possible approaches to formulating
the problem. By hard-coding that relaxation into your model, you are effectively
precluding the possibility of exploring alternative approaches (like a hull relaxation)
without incurring significant effort rewriting the model.

Generalized Disjunctive Programming [54] represents an alternative approach to
representing problems with significant logical structure. It generalizes the concepts
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of Disjunctive Programming [6] for integer linear problems to also include nonlin-
ear systems. The canonical GDP model [38] augments the objective, variables, and
constraints of a typical MI(N)LP with Boolean variables, disjunctions, and logical
constraints:

min Y e+ f(x) (11.13)
keK

st r(x) <0 (11.14)

Yie

V |ei(x) <0| Vkek (11.15)
JEJ Cy = ’)/]‘k
Q(Y) = True (11.16)
x>0,¢c, >0,Yj € {True,False} (11.17)

In this framework, the logical decisions are represented as sets of disjunctions
(Eqn. 11.15) and logical constraints (Eqn. 11.16). Each disjunction contains a num-
ber of terms (disjuncts) connected by an “OR” operator. Each disjunct contains a
Boolean indicator variable (Y) and a set of constraints only enforced when Y is True.
Additional constraints enforcing logical relationships among the indicator variables
are imposed through Eqn. 11.16.

Recasting the generator state model as a GDP yields the following disjunction:

Ye.on
MinPower, < Powerg; < MaxPower,
—RampDownLimit, < Powerg; — Powery ;| < RampU pLimit,

Yeors
\/ Powerg; =0

Powerg; 1 < ShutDownRampLimit,

Yg,startup
\/ Power, ; < StartU pRampLimit, (11.18)

This modeling approach directly addresses the two limitations of typical MI(N)LP
models discussed previously: the relationship between the switching variable and
the constraints it implies is now explicit in the model structure, and the model is no
longer locked into any particular relaxation.
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11.2 Modeling GDP in Pyomo

The pyomo.gdp package extends the core modeling environment to represent
GDP models. This package defines two new constructs: the disjunct and the dis-
Jjunction. We implement these constructs as two new components in pyomo . gdp:
Disjunct and Disjunction, respectively. The components are imported from
the GDP package:

from pyomo.gdp import Disjunct, Disjunction

A disjunct is logically a container for the indicator variable and the corresponding
constraints. Here we see the power of the hierarchical modeling approach enabled
by the Block component: the Dis junct component is naturally derived from the
Block class. As with blocks, Disjunct components may be arbitrarily indexed
and initialized through rules. In addition, they may contain any Pyomo modeling
component, including not only Sets, Params, Vars, and Constraints, but also
Blocks, Disjuncts, and Disjunctions. The only thing that the Disjunct
class adds to the normal B1ock implementation is the implicit and automatic defi-
nition of the disjunct’s Boolean indicator variable.

For our generator state example, the requisite three disjuncts are declared as fol-
lows:
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model.NumTimePeriods = pyo.Param()
model .GENERATORS = pyo.Set ()
model.TIME = pyo.RangeSet (model.NumTimePeriods)

model .MaxPower = pyo.Param(model.GENERATORS, \
within=pyo.NonNegativeReals)

model . .MinPower = pyo.Param(model.GENERATORS, \
within=pyo.NonNegativeReals)

model .RampUpLimit = pyo.Param(model.GENERATORS, \
within=pyo.NonNegativeReals)

model .RampDownLimit = pyo.Param(model.GENERATORS, \
within=pyo.NonNegativeReals)

model.StartUpRampLimit = pyo.Param(model.GENERATORS, \
within=pyo.NonNegativeReals)

model.ShutDownRampLimit = pyo.Param(model.GENERATORS, \
within=pyo.NonNegativeReals)

def Power_bound(m,g,t):
return (0, m.MaxPower[g])

model.Power = pyo.Var (model.GENERATORS, model.TIME, \
bounds=Power_bound)

def GenOn(b, g, t):
m = b.model ()
b.power_limit = pyo.Constraint (
expr=pyo.inequality (m.MinPower[g], m.Power[g,t], \
m.MaxPower [g]) )
if t == m.TIME.first():
return
b.ramp_limit = pyo.Constraint (
expr=pyo.inequality (-m.RampDownLimit [g],
m.Power[g,t] - m.Power[g,t-11],
m.RampUpLimit [g])
)
model.GenOn = Disjunct (model.GENERATORS, model.TIME, rule=GenOn)

def GenOff (b, g, t):
m = b.model ()
b.power_limit = pyo.Constraint (

expr=m.Power[g,t] == 0 )
if t == m.TIME.first():
return

b.ramp_limit = pyo.Constraint (
expr=m.Power[g,t-1] <= m.ShutDownRampLimit [g] )
model.GenOff = Disjunct (model.GENERATORS, model.TIME, \
rule=GenOff)

def GenStartUp(b, g, t):
m = b.model ()
b.power_limit = pyo.Constraint (
expr=m.Power[g,t] <= m.StartUpRampLimit[g] )
model.GenStartup = Disjunct (model.GENERATORS, model.TIME, \
rule=GenStartUp)
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Note that while the disjuncts may be completely self-contained, with their own local
variables, parameters, and constraints, they may also reference Pyomo components
outside their immediate scope.

The Disjunction component is used to associate a set of disjuncts. A dis-
junction is similar to a constraint, in that it can be indexed and defined through
rules. However, unlike a Constraint, where the rule returns a relational expres-
sion, the rule for a Disjunction must return a list of Disjuncts. Subsequent
model transformations will convert the Disjunction component and generate
the binding constraint across the disjuncts. While the general form of a GDP relates
the disjuncts using an “OR” operator, the vast majority of models actually expect an
“exactly one” relationship (a generalization of the “exclusive OR” operator). This is
so common that the default behavior of the Disjunction component is to gen-
erate the “exactly one” relationship. Modelers may, however, specify the original
“OR” operator by providing xor=False to the Disjunction declaration.

The disjunction for our generator state example is properly an “exactly one”
relationship, and can be expressed in Pyomo using:

def bind_generators(m, g, t):

return [m.GenOn[g, t], m.GenOff[g, t], m.GenStartuplg, t]]
model.bind_generators = Disjunction(

model .GENERATORS, model.TIME, rule=bind_generators)

11.3 Expressing logical constraints

While Disjunct blocks capture the indicator relationship between the Boolean
indicator_var and the constraints contained on a disjunct, we also wish to ex-
press additional logical constraints among the disjunct indicator variables. To sup-
port this, Pyomo provides a LogicalConstraint component for representing
logical constraints in a model. As is the case with Constraint components,
LogicalConstraint components may be single or indexed, and are initial-
ized using an explit expr keyword argument, or passed a rule function through
the rule keyword. Where they differ is in the type of expression that they take:
whereas Constraint accepts relational expressions that are equality or inequal-
ity expressions, LogicalConstraint accepts a logical expression.

Logical epressions are built using an expression system with Boolean variables
and Boolean constants combined using logical operators. Table 11.1 shows the oper-
ators supported for Logical Expressions. The operations for logical expressions in-
tentionally do not overlap with the operations supported for algebraic expressions,
thereby enforcing a semantic distinction between binary (algebraic) variables and
Boolean (logical) variables.
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Table 11.1: Supported operations for generating logical expressions. In these examples, X, Y, and
Z are declared BooleanVar variables (the model . is omitted due to space limitations).

Operation Function Method Operator
Unary operations

negation pyo.lnot (X) ~X
Binary operations

conjunction X.land (Y)

disjunction X.lor (Y)

exclusive disjunction pyo.xor (X, Y) X.xor (Y)

implication pyo.implies (X, Y) X.implies (Y)
equivalence pyo.equivalent (X, Y) X.equivalent_to (Y)
n-ary operations

conjunction pyo.land (X, Y, Z)

disjunction pyo.lor (X, Y, Z)

counting (atleastm) pyo.atleast(m, X, Y, Z)
counting (at most m) pyo.atmost (m, X, Y, Z)
counting (exactly m) pyo.exactly(m, X, Y, Z)

For our generator state example from the previous section, we will use logical
constraints to capture the state transition rules describing how the generator state
can change between two time periods. We can express the switching rules as:

def onState(m, g, t):
if £t == m.TIME.first () :
return pyo.LogicalConstraint.Skip
return m.GenOn[g, t].indicator_var.implies (pyo.lor(
m.GenOn[g, t-1].indicator_var,
m.GenStartup[g, t-1].indicator_var))
model.onState = pyo.LogicalConstraint (
model.GENERATORS, model.TIME, rule=onState)

def startupState(m, g, t):
if t == m.TIME.first():
return pyo.LogicalConstraint.Skip
return m.GenStartUpl[g, t].indicator_var.implies (
m.GenOff[g, t-1].indicator_var)
model.startupState = pyo.LogicalConstraint (
model .GENERATORS, model.TIME, rule=startupState)

11.4 Solving GDP models

While special-purpose solvers are being developed in Pyomo able to parse and ma-
nipulate generalized disjunctive programming models, Pyomo’s standard solver in-
terfaces cannot express directly either disjunctions or logical constraints. However,
Pyomo includes the capability to transform a disjunctive model into an equivalent
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MI(N)LP model by converting the logical constraints into their equilvaent linear
forms and relaxing the disjunctive constraints. The transformed (relaxed) model
can then be solved by an appropriate solver through the standard solver interfaces.
Pyomo’s GDP package provides two automated relaxations: the first relaxes the
disjunctive constraints by adding so-called “Big-M” terms (recovering the original
model structure from Section 11.1) and the second explicitly generates the hull re-
laxation of the individual disjunctions.

11.4.1 Big-M transformation

The Big-M transformation performs a constraint-by-constraint relaxation of the
original disjunctive model. This preserves the size (number of variables and con-
straints) of the original model at the expense of possibly generating a weak contin-
uous relaxation.

This transformation begins by recasting each disjunct as a normal block, modi-
fying the individual constraints to add the Big-M term. For equality constraints and
2-sided inequality constraints (those with both upper and lower bounds), the trans-
formation duplicates the constraint as two one-sided inequality constraints before
relaxing each. The values of the M parameters can be specified through a BigM
Suffix placed on the Disjunct. When transforming linear constraints over
bounded variables, this value can be estimated automatically by the transformation.

Finally, the Big-M transformation recasts the Di s junct ion components as the
algebraic form of the equivalent logical constraint; that is either

I (dy.indicator_var A —3;(d;.indicator_var Nk £ 1)) (11.19)
for exclusive disjunctions (the default), or
i (dy.indicator_var) (11.20)

for non-exclusive disjunctions. These constraints have the equivalent algebraic
forms of

Y =1 (11.21)
keK

and
Z b >1 (11.22)
keK

where by, is the binary variable associated with the Boolean variable dy.indicator_var.
The transformation name gdp . bigm is used to apply the Big-M transformation.
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11.4.2 Hull transformation

The hull transformation relaxes the original disjunctive model by generating a lifted
representation. The transformation follows the procedure of Balas [6] for linear dis-
junctions and Lee and Grossmann [38] (with modifications from Sawaya and Gross-
mann [55]) for nonlinear disjunctions. In both cases, the variables appearing in each
disjunct are “disaggregated” by defining new variables for each disjunct and con-
straining the original variable to be the sum of the disaggregated variables. This has
the effect of representing the disjunction as the affine combination of the individual
disjuncts. For disjunctions with only convex constraints, the affine combination of
the disaggregated (lifted) disjuncts defines the convex hull of the disjuncts. The log-
ical Disjunction relationship is converted to algebraic form using the same approach
as Big-M (Equations 11.19-11.22).

By constraining the disaggregated variables to be zero when the disjunct’s indica-
tor variable is False, the solution to the discrete relaxed problem will be the solution
to the original disjunctive problem. This increases the overall size of the model (both
the number of variables and constraints), but gives a tighter continuous relaxation
than the Big-M transformation. However, all variables must be bounded to apply the
hull disjunction, and the Disjunctions can only express exclusive relationships (i.e.,
xor=True)

The transformation name gdp . hull is used to apply the Hull transformation.

11.5 A mixing problem with semi-continuous variables

The following model illustrates a simple mixing problem with three semi-continuous
variables (x1, x2, x3) which represent quantities that are mixed to meet a volumetric
constraint. In this simple example, the number of sources is minimized:

# scont.py
import pyomo.environ as pyo
from pyomo.gdp import Disjunct, Disjunction

L =1[1,2,3]
U= 1[2,4,6]
index = [0,1,2]

’

model pyo.ConcreteModel ()
model.x = pyo.Var (index, within=pyo.Reals, bounds=(0,20))
model.x_nonzero = pyo.Var (index, bounds=(0,1))

# FEach disjunction is a semi-continuous variable

# x[k] == 0 or L[k] <= x[k] <= U[k]
def d_0_rule(d, k):
m = d.model ()
d.c = pyo.Constraint (expr=m.x[k] == 0)

model.d_0 = Disjunct (index, rule=d_0_rule)
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def d_nonzero_rule(d, k):
m = d.model ()
d.c = pyo.Constraint (expr=pyo.inequality (L[k], m.x[k], U[k]))
d.count = pyo.Constraint (expr=m.x_nonzerol[k] == 1)
model.d_nonzero = Disjunct (index, rule=d_nonzero_rule)

def D_rule(m, k):
return [m.d_O[k], m.d_nonzerol[k]]
model.D = Disjunction(index, rule=D_rule)

# Minimize the number of x variables that are nonzero
model.o = pyo.Objective
expr=sum (model.x_nonzerol[k] for k in index))

# Satisfy a demand that is met by these variables
model.c = pyo.Constraint (
expr=sum(model.x[k] for k in index) >= 7)

There are three ways to apply either the Big-M or Hull transformation to solve
this model:

1. through the pyomo command line,
2. through a scripting interface, or
3. through a BuildAction.

On the pyomo command line, the ——t ransform command line option is used to
apply a transformation:

pyomo solve scont.py —--transform gdp.bigm --solver=glpk

The equivalent approach when developing custom scripts is to create the trans-
formation before applying it to the model:

xfrm = pyo.TransformationFactory (’'gdp.bigm’)
xfrm.apply_to (model)

solver = pyo.SolverFactory ('glpk’)
status = solver.solve (model)

Finally, there are situations where you will want to inject transformations into
models that are generated and manipulated in environments other than the pyomo
command or custom scripts (e.g., the runph script). In this case, you can trigger
the transformation by adding a Bui1dAction to the model:

def transform_gdp (m) :
xfrm = pyo.TransformationFactory (’gdp.bigm’)
xfrm.apply_to (m)

model.transform_gdp = pyo.BuildAction(rule=transform_gdp)




Chapter 12
Differential Algebraic Equations

Abstract This chapter documents how to formulate and solve optimization prob-
lems with differential and algebraic equations (DAEs). The pyomo . dae package
allows users to incorporate detailed dynamic models within an optimization frame-
work, and it is flexible enough to represent a wide variety of differential equations.
pyomo . dae also includes several automated solution techniques based on a simul-
taneous discretization approach to solve dynamic optimization problems.

12.1 Introduction

In order to develop a better understanding of real-world phenomena, scientists and
engineers often develop dynamic, or differential equation based, models. High fi-
delity simulation of these models is still an active research area in many fields, since
these simulation models can be difficult and computationally expensive But after a
model suitable for simulation has been developed, the next goal is often to optimize
a particular aspect of the dynamic system (e.g., model parameter estimates given
dynamic data, or control of the dynamic system to a desired set point). Consider the
small optimal control problem from [35]:

min X3(l‘f) (12.1)
s.t. X1 =2x2 (12.2)
Xy =—x2+u (12.3)

%3 = X3 +x3 +0.005 - u? (12.4)
x—8-(t—0.5)24+0.5<0 (12.5)

x1(0) = 0,x2(0) = —1, x3(0) = 0,1, = 1 (12.6)

where the objective is to minimize the value of x3 at the final time point by finding
the optimal values for the input variable u. This problem includes three differential
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equations as constraints, and and an inequality constraint restricting the profile of x;
(also known as a path constraint).

While it is easy to write down optimization problems including dynamic mod-
els, solving them is hard. Off-the-shelf optimization solvers cannot handle differen-
tial equations directly. Therefore, optimization problems including differential equa-
tions as constraints, known as dynamic optimization problems, must be reformulated
in order to be solved. Common solution approaches include single or multiple shoot-
ing methods or a full discretization approach. Regardless of the solution strategy,
the implementation of the technique is often entwined with the particular model or
problem being solved, which makes it time-consuming to apply these solution tech-
niques to new dynamic optimization problems or experiment with different solution
strategies on the same model.

The pyomo.dae package addresses several of these challenges. It provides
users the ability to separate the dynamic optimization formulation from the solu-
tion strategy used to solve it. This is done by introducing modeling components
for representing continuous domains and derivative terms directly. pyomo . dae
also includes implementations of the simultaneous discretization solution technique,
which can be applied automatically to a Pyomo model with differential equations.

This chapter provides a brief overview of how to use the pyomo . dae package.
We refer the reader to Nicholson et al. [44] for a more detailed description and
information about the design and novelty of this package. This package is still under
active development and expansion. Please refer to the online Pyomo documentation
for the most up-to-date documentation on new features.

12.2 Pyomo DAE Modeling Components

The pyomo.dae package defines two new components used to represent DAE
models in Pyomo:

e ContinuousSet represents continuous domains over which a derivative can
be taken, and

e DerivativeVar represents the derivative of a Var with respect to a given
ContinuousSet.

The package is explicitly imported to access these modeling components:

import pyomo.environ as pyo
import pyomo.dae as dae

The ContinuousSet component functions similarly to the regular Pyomo
Set. It can be used to index other Pyomo components such as Var, Constraint,
or Expression. A ContinuousSet can be thought of as a bounded, continu-
ous range of real values. It is often used to represent time or spatial domains. In
order to construct a ContinuousSet you must supply numeric values represent-
ing the upper and lower bounds of the continuous domain being represented. For
our optimal control example, the continuous domain 7 is declared as follows.
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m.tf = pyo.Param(initialize=1)
m.t = dae.ContinuousSet (bounds=(0,m.tf))

A separate Cont inuousSet must be declared for each continuous domain in
the model. After declaration, it can be used to index other Pyomo components and
to declare derivatives in conjunction with the DerivativeVar component. A
DerivativeVar must be declared for each derivative appearing in the dynamic
model. Furthermore, you can only take the derivative of a Var with respect to a
ContinuousSet included as an indexing set of the variable. The variables and
derivatives for our optimal control example can be declared using:

m.u = pyo.Var(m.t, initialize=0)

m.x1l = pyo.Var (m.t)

m.x2 = pyo.Var(m.t)

m.x3 = pyo.Var (m.t)

m.dx1l = dae.DerivativeVar (m.x1l, wrt=m.t)
m.dx2 = dae.DerivativeVar (m.x2, wrt=m.t)
m.dx3 = dae.DerivativeVar (m.x3)

Notice that the positional argument supplied to a DerivativeVar component
is the Var being differentiated. The indexing sets for a DerivativeVar are in-
herited from, and identical to, those of the Var being differentiated. If a variable is
indexed by more than one Cont inuousSet then the wrt or withrespectto
keyword argument is used to specify the desired derivative. In addition, high-order
derivatives can also be declared with the DerivativeVar component. For exam-
ple, a second order derivative can be specified with:

m.dx1dt2 = dae.DerivativeVar (m.xl, wrt=(m.t, m.t))

Differential equations can be formulated using standard Pyomo constraints. For
example, the differential equations for our optimal control example are implemented
with:

def _xldot(m, t):
return m.dx1l[t] == m.x2[t]
m.xldotcon = pyo.Constraint (m.t, rule=_xldot)

def _x2dot(m, t):
return m.dx2[t] == -m.x2[t] + m.ult]
m.x2dotcon = pyo.Constraint (m.t, rule=_x2dot)

def _x3dot(m, t):
return m.dx3[t] == m.x1[t]**2 + m.x2[t]**2 + 0.005xm.u[t]*=*2
m.x3dotcon = pyo.Constraint (m.t, rule=_x3dot)

The pyomo .dae package does not impose a particular form or structure on
the differential equations. The differential equations will by default be enforced at
the boundaries of the continuous domain. Depending on the dynamic model, this
might not be desired. You can use the deactivate () method to override the
enforcement of a differential equation at one or more bounds of a continuous domain
as shown here:
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m.xldotcon[m.t.first ()] .deactivate ()
m.x2dotcon[m.t.first ()] .deactivate ()
m.x3dotcon[m.t.first ()] .deactivate ()

The last important aspect of any dynamic optimization problem is the specifi-
cation of initial or boundary conditions. This can be achieved by fixing a Var or
DerivativeVar at one of the bounds of a Cont inuousSet. The bounds of a
ContinuousSet canbe accessed usingthe first () or last () accessor meth-
ods on the ContinuousSet. For example, the initial conditions for the optimal
control example can be implemented as:

m.x1[0].£fix (0)
m.x2[m.t.first()].fix(

,l)
m.x3[m.t.first ()].£fix (0)

Alternatively, constraints can be used to specify more complex conditions such as
cyclic boundary conditions.

The last pieces of our optimal control example, the objective function (12.1) and
the path constraint (12.5) are implemented with:

m.obj = pyo.Objective (expr=m.x3[m.tf])

def _con(m, t):
return m.x2[t] — 8x(t — 0.5)*x2 + 0.5 <=0
m.con = pyo.Constraint (m.t, rule=_con)

12.3 Solving Pyomo Models with DAEs

Having formulated a Pyomo model with differential equations, we now describe
how to solve it. None of the optimization solvers interfaced with Pyomo can cur-
rently handle differential equations directly. The only solution technique currently
included with pyomo . dae is a simultaneous discretization approach, also called
direct transcription. This approach discretizes the continuous domains in the model
and approximates the differential equations using algebraic equations defined at the
discretization points. The result of this discretization transformation is a purely al-
gebraic model that can be solved with a standard nonlinear programming solver.

There are two types of discretization schemes included in pyomo . dae: finite
difference and collocation. The schemes differ in the algebraic equations used to
approximate the derivatives, but they are applied using nearly identical syntax. A
discretization is applied to a particular continuous domain and propagated to each
derivative and constraint over that domain. After you specify the discretization
scheme and the resolution of the discretization (number of discretization points),
pyomo . dae will automatically add the necessary discretization points to the ap-
propriate ContinuousSet and add additional constraints to the Pyomo model
with the discretization equations. This has the effect of transforming the DAE model
into an algebraic model.
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NOTE: Unlike other Pyomo transformations, pyomo.dae discretization
transformations cannot currently be applied from the pyomo command line,
you must create a transformation object and apply a discretization transforma-
tion to your model in a Python script.

12.3.1 Finite Difference Transformation

Finite difference methods approximate the derivative at a particular point using a
difference equation, and they are among the simplest discretization schemes to con-
ceptually understand and implement. Many variations differ in the choice of points
used to approximate the derivative. The backward difference method, also called im-
plicit or backward Euler, is the most common variation. To illustrate the discretiza-
tion equations associated with this method we first define the following derivative
and differential equation (constraint):

(G

,f(x(t),u(t))) =0, t€][0,T]. 12.7)

After applying the backward difference method to the continuous domain ¢, the
resulting derivative and constraint pair is

dx Xpr1 — Xk
= ==L k=0,.,N—1 (12.8)
dt Tkt1 h
dx
g(dt 7f(xk+l7uk+l)> =0, k=0,...N—1 (12.9)
Ty 1

where x;, = x(fy.), fy = kh, and h is the step size between discretization points or
the size of each finite element. When a finite difference transformation is applied
to a Pyomo model, the discretization equations such as (12.8) are automatically
generated and added to the Pyomo model as equality constraints.

The code required to apply the backward finite difference method to our optimal
control example is as follows:

discretizer = pyo.TransformationFactory(’dae.finite_difference’)
discretizer.apply_to(m, nfe=20, wrt=m.t, scheme=’BACKWARD')

The nfe keyword argument stands for “number of finite elements”, and it spec-
ifies the number of discretization points that are used in the discretization. The
scheme keyword specifies which finite difference method to apply. There currently
are three finite difference schemes included in pyomo . dae: backward finite differ-
ence (BACKWARD?), central finite difference CCENTRAL’), and forward finite
difference CFORWARD”).
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12.3.2 Collocation Transformation

The second type of discretization included in pyomo . dae is collocation or more
specifically, orthogonal collocation over finite elements. This approach works by
first breaking a continuous domain into N — 1 segments known as finite elements.
Over each of these segments, the profiles of the differential variables (variables
whose derivatives appear in the model) are approximated using polynomials. The
polynomials are defined using K collocation points appearing as discretization
points within each finite element. Continuity is enforced at the finite element bound-
aries for the differential variables. To provide a formal, mathematical representation
of this approach applied to the derivative and differential equation (12.7) we have:

dx 1 K déj(fk)
= ==Y xi—LX k=1,..K,i=1,....N—1 12.10
d |, hiZ%xf dt ‘ (1210
ij J=
d
Ozg(ij,ﬂmm@),k:lwwKlewwN—l (12.11)
tij
K
xipo= Y Li(xy, i=1,...,N—1 (12.12)
j=0

where #;; = t;_1 + T;h;, x(t;;) = x;;. Further, we note that the solution x(r) is interpo-
lated as follows:

K
x(t) =Y 4j(0)xij, t€ i), TE0,1] (12.13)
=0
K
(T— %)
0i(t) = A7 12.14
J(T) k:I(léj (T] _ Tk) ( )

Collocation methods produce significantly more accurate algebraic approxima-
tions compared to finite difference methods. However, they are much harder to im-
plement manually. Variations of collocation methods differ in the functional repre-
sentation of the differential variable profile over each finite element as well as the
selection of the collocation points. As of this writing, the collocation transforma-
tions in pyomo .dae use Lagrange polynomials to represent differential variable
profiles. Two options are available for the selection of collocation points: shifted
Gauss-Radau roots CLAGRANGE-RADAU’) and shifted Gauss-Legendre roots
CLAGRANGE-LEGENDRE’).



12.4 Additional Features 193

A collocation discretization can be applied to a Pyomo model using:

discretizer = pyo.TransformationFactory (’dae.collocation’)
discretizer.apply_to(m,nfe=7,ncp=6, scheme=" LAGRANGE-RADAU' )

The nfe keyword argument specifies the number of finite elements and the ncp
argument specifies the number of collocation points within each finite element.

12.4 Additional Features

There are several advanced features included pyomo.dae. In this section, we
briefly mention two such features that will be of interest for users interested in PDE
constrained optimization or more advanced optimal control strategies.

12.4.1 Applying Multiple Discretizations

As mentioned previously, a separate discretization transformation can be applied to
each ContinuousSet appearing in the model. This means different finite differ-
ence or collocation schemes or a combination of the two can be applied to a single
Pyomo model. For example, a Pyomo model with two ContinuousSet compo-
nents (m.t1 and m.t2), could be discretized with any of the following combina-
tions of discretization schemes:

# Apply multiple finite difference schemes

discretizer = pyo.TransformationFactory(’dae.finite_difference’)
discretizer.apply_to(m, wrt=m.tl, nfe=10, scheme=’BACKWARD’)
discretizer.apply_to(m, wrt=m.t2, nfe=100, scheme='FORWARD’)

# Apply multiple collocation schemes
discretizer = pyo.TransformationFactory (’dae.collocation’)
discretizer.apply_to(m, wrt=m.tl, nfe=4, ncp=6, \
scheme=’" LAGRANGE-LEGENDRE" )
discretizer.apply_to(m, wrt=m.t2, nfe=10, ncp=3, \
scheme=’" LAGRANGE-RADAU’ )

# Apply a combination of finite difference and
# collocation schemes
discretizerl = pyo.TransformationFactory (’dae.finite_difference’)
discretizer2 = pyo.TransformationFactory (’dae.collocation’)
discretizerl.apply_to(m, wrt=m.tl, nfe=10, scheme='BACKWARD')
discretizer2.apply_to(m, wrt=m.t2, nfe=5, ncp=3, \

scheme=" LAGRANGE-RADAU" )
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12.4.2 Restricting Control Input Profiles

One of the main design considerations for the pyomo . dae package was the exten-
sibility of the package to include general implementations of common operations
applied to dynamic optimization problems. One such common operation in the area
of optimal control is restricting the control input to have a certain profile, typically
piecewise constant or piecewise linear. Often times when a model is discretized us-
ing collocation over finite elements the control variable is restricted to be constant
over each finite element. The pyomo . dae package includes a function for doing
this after a collocation discretization has been applied to a model. It works by re-
ducing the number of free collocation points for a particular variable. For example,
to restrict our control input u to be piecewise constant in our small optimal con-
trol problem you would add the following line right after applying a discretization
transformation:

discretizer.reduce_collocation_points(m, var=m.u, ncp=1, \
contset=m.t)

The ncp keyword argument specifies the number of free collocation points per finite
element for the variable specified by the keyword var. Specifying ncp=1 restricts
u to have a single free collocation point (or degree of freedom) rendering it constant
over each finite element. The function works by adding constraints to the discretized
model which force any extra, undesired collocation points to be interpolated from
the others.

12.4.3 Plotting

After formulating, discretizing, and solving a dynamic optimization problem,
pyomo.dae makes it easy to plot the resulting dynamic profiles. Because a
ContinuousSet is populated with floating point values from a continuous do-
main, the user can directly create Python lists from it for plotting. Any vari-
able indexed by a ContinuousSet will have a value for each point in the
ContinuousSet, after the model has been solved. Therefore, creating a Python
list for the variable values is just as straightforward as for a Cont inuousSet

The Python script shown below puts everything together. Assuming the Pyomo
model has been declared in a separate file, the script shows how to apply a dis-
cretization and solve the model.
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import pyomo.environ as pyo
from pyomo.dae import x
from path_constraint import m

# Discretize model using Orthogonal Collocation

discretizer = pyo.TransformationFactory (’dae.collocation’)

discretizer.apply_to(m,nfe=7,ncp=6, scheme=" LAGRANGE-RADAU' )

discretizer.reduce_collocation_points(m, var=m.u, ncp=1, \
contset=m.t)

solver=pyo.SolverFactory (’ ipopt’)
solver.solve (m, tee=True)

Finally, the code below shows an example implementation of a plotter function using
matplotlib for plotting. The resulting figure is also shown below.

def plotter (subplot, x, *y, #*xkwds):
plt.subplot (subplot)
for i,_y in enumerate(y):
plt.plot (list (x), [value(_yl[t]) for t in x], ’"brgcmk’ [1%6])
if kwds.get ("points’, False):
plt.plot(list (x), [value(_y[t]) for t in x], '0o’)
plt.title(kwds.get ("title’,’ "))
plt.legend(tuple(_y.name for _y in vy))
plt.xlabel (x.name)

import matplotlib.pyplot as plt

plotter (121, m.t, m.xl, m.x2, title='Differential Variables’)
plotter (122, m.t, m.u, title=’Control Variable’, points=True)
plt.show ()
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Fig. 12.1: Plot produced by matplotlib for the optimal control example







Chapter 13

Mathematical Programs with Equilibrium
Constraints

Abstract This chapter documents how to formulate mathematical programs with
equilibrium constraints (MPECs), which naturally arise in a wide range of engi-
neering and economic systems. We describe Pyomo components for complementar-
ity conditions, transformation capabilities that automate the reformulation of MPEC
models, and meta-solvers leveraging these transformations to support global and lo-
cal optimization of MPEC models.

13.1 Introduction

Mathematical Programs with Equilibrium Constraint (MPEC) problems arise in a
large number of applications in engineering and economic systems [15, 40, 48].
An MPEC is an optimization problem that includes equilibrium constraints in the
form of complementarity conditions. Equilibrium constraints naturally arise as the
solution to an optimization subproblem (e.g., for bilevel programs), variational in-
equalities, and complementarity problems [29].

Since MPEC problems frequently arise in practice, many algebraic modeling
languages (AML) have integrated capabilities for expressing complementarity con-
ditions [43], including AMLs like AIMMS [1], AMPL [2, 21], GAMS [22], MAT-
LAB [42] and YALMIP [39]. In this chapter, we describe methods for express-
ing and optimizing MPEC models. MPEC models can be easily expressed with
Pyomo modeling components for complementarity conditions. Further, Pyomo’s
object-oriented design naturally supports the ability to automate the reformulation
of MPEC models into other forms (e.g., disjunctive programs). We describe Pyomo
meta-solvers that transform MPECs as MIP or NLP problems, which are then op-
timized with standard solvers. Further, we describe interfaces to specialized mixed
complementarity problem solvers, which solve MPEC problems expressed without
an optimization objective.
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13.2 Modeling Equilibrium Conditions

13.2.1 Complementarity Conditions

Ferris et al. [16] note that there are a few fundamental forms accounting for a wide
range of complementarity conditions that arise in practice. Consider a variable x and
function g(x). The classical form of complementarity condition can be expressed as

x>0Lg(x) >0,

which expresses the complementarity restriction that at least one of these must hold
with equality. When the variable x is bounded such that x € [/, u], then a mixed
complementarity condition can be expressed as

[<x<ulg),

which expresses the complementarity restriction that at least one of the following
must hold:
x=1 and g(x) >0,
x=u and g(x) <0,
or [ <x<uand g(x) =0.

These forms can be generalized by substituting a function f(x) for the variable
x. Thus, a generalized mixed complementarity condition can be expressed as

I< fx) <ulgx),

which expresses the complementarity restriction that at least one of the following
must hold:
f(x)=1 andg(x) >0,
f(x)=u and g(x) <0, (13.1)
orl < f(x) <uand g(x)=0.

For completeness, note that the complementarity condition
fx) Lglx)=0

is a special case where the function f(x) is unbounded.
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13.2.2 Complementarity Expressions

The design of complementarity conditions in Pyomo relies on the specification of
Pyomo constraint expressions. A Pyomo constraint expression defines an equality,
a simple inequality, or a pair of inequalities. For example:

expry = expr,
expry < expry
consty < exprs < consty

where const; are constant arithmetic expressions that may only contain variables
that are fixed, and expr; are arithmetic expressions containing unfixed variables.
A complementarity condition is defined with a pair of constraint expressions

Iy <expr; <u; L L <expry <up,

where exactly two of the constant bounds /1, u1, [» and u, are finite. The non-finite
bounds values are omitted in practice, so this condition directly describes a classical
or mixed complementarity condition. Additionally, a complementarity condition can
be expressed with a simple inequality, such as:

Iy <expry L expry <expry.

This complementarity condition is implicitly transformed to a form with constant
bounds:
Iy <expry L expr;—expry, <O.

If a simple inequality is used, then the other constraint expression must also be a
simple inequality to ensure the complementarity condition has exactly two finite
bounds.

13.2.3 Modeling Mixed-Complementarity Conditions

Pyomo’s pyomo . mpec package defines the Complementarity component that
is used to declare complementarity conditions.
For example, consider the ralphl problem in MacMPEC [41]:

min 2x —y
0<yly=>x
x,y>0
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The following script defines a Pyomo model for ralphl:

# ralphl.py
import pyomo.environ as pyo
from pyomo.mpec import Complementarity, complements

model = pyo.ConcreteModel ()

model.x = pyo.Var( within=pyo.NonNegativeReals )
model.y = pyo.Var( within=pyo.NonNegativeReals )

model.fl = pyo.Objective ( expr=2+model.x — model.y )
model.compl = Complementarity (

expr=complements (0 <= model.y,
model.y >= model.x) )

The first lines in this script import Pyomo packages. The pyomo . environ pack-
ages initializes Pyomo’s environment, and pyomo .mpec defines modeling com-
ponents for complementarity conditions. The subsequent lines in this script create
a model, declare variables x and y, declare an objective £1, and declare a comple-
mentarity condition compl.

The complementarity condition is declared with the Complementarity com-
ponent. In the simplest case, this Python class takes a keyword argument expr con-
taining the value of the complement s function. This function accepts two Pyomo
constraint expressions used to declare a complementarity condition.

Pyomo also supports indexed components, where a set of components are ini-
tialized over an index set using a construction rule. Thus, the Complementarity
component can be declared with an index set. For example, consider the following
model:

min Y7 i(x; — 1)?
0<x L0<x;1y i=1,....n—1

The following script defines a Pyomo implementation of the model with n = 5:

# exla.py

import pyomo.environ as pyo

from pyomo.mpec import Complementarity, complements
n =25

model = pyo.ConcreteModel ()

model.

b
I

pyo.Var ( range (l,n+1l) )

model.f = pyo.Objective (expr=sum(ix (model.x[1]-1)**2
for i in range(l,n+l)) )

def compl_(model, 1i):
return complements (model.x[i] >= 0, model.x[i+1l] >= 0)
model.compl = Complementarity( range(l,n), rule=compl_ )

The complementarity conditions are defined with a single Complementarity
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component indexed over the set 1,...,n— 1 and initialized with a construction rule
compl_. This rule is a function that accepts a model instance and an index, and
returns the i-th complementarity condition.

The declared set of indexes may be a superset of the indices defining comple-
mentarity conditions. If a construction rule returns Complementarity.Skip,
then the corresponding index is skipped. For example:
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# exld.py

import pyomo.environ as pyo

from pyomo.mpec import Complementarity, complements
n=>5

model = pyo.ConcreteModel ()

model.x = pyo.Var( range(l,n+l) )

model. f

pyo.Objective (expr=sum(ix (model.x[1i]-1)*%2
for i in range(l,n+1l)) )

def compl_ (model, 1i):
if i == n:
return Complementarity.Skip
return complements (model.x[i] >= 0, model.x[i+1l] >= 0)
model.compl = Complementarity( range(l,n+l), rule=compl_ )

This example can also be expressed with the ComplementarityList com-
ponent:

# exlb.py
import pyomo.environ as pyo
from pyomo.mpec import ComplementarityList, complements

n=>5

model = pyo.ConcreteModel ()

model.x = pyo.Var( range(l,n+l) )
model.f = pyo.Objective (expr=sum(ix (model.x[1]-1)**2

for i in range(l,n+l)) )
model.compl = ComplementarityList ()
model.compl.add (complements (model.x[1]>=0, model.x[2]>=0))
model.compl.add (complements (model.x[2]>=0, model.x[3]>=0))
model.compl.add (complements (model.x[3]>=0, model.x[4]>=0))
model.compl.add(complements (model.x[4]>=0, model.x[5]>=0))

This component defines a list of complementarity conditions. The list index can be
used in Pyomo, but this component simplifies the declaration of models for which
the index values are not important. The ComplementarityList component can
also be defined with a rule iteratively yielding complementarity conditions:

# exlc.py
import pyomo.environ as pyo
from pyomo.mpec import ComplementarityList, complements

model = pyo.ConcreteModel ()
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model.x = pyo.Var( range(l,n+l) )

model.f = pyo.Objective (expr=sum(ix (model.x[1]-1)**2
for i in range(l,n+1)) )

def compl_ (model) :

yield complements (model.x[1] >= 0, model.x[2] >= 0)
yield complements (model.x[2] >= 0, model.x[3] >= 0)
yield complements (model.x[3] >= 0, model.x[4] >= 0)
yield complements (model.x[4] >= 0, model.x[5] >= 0)
model.compl = ComplementarityList ( rule=compl_ )

Similarly, the construction rule may be a Python list comprehension that gener-
ates a sequence of complementarity conditions:

# exle.py

import pyomo.environ as pyo

from pyomo.mpec import ComplementarityList, complements
n=>5

model = pyo.ConcreteModel ()

model.x = pyo.Var( range(l,n+l) )

model.f = pyo.Objective (expr=sum(i* (model.x[i]-1) **2
for i in range(l,n+l)) )

model.compl = ComplementarityList (
rule=(complements (model.x[i] >= 0, model.x[i+1] >= 0)
for i in range(l,n)) )

13.3 MPEC Transformations

Pyomo supports the automated transformation of models. Pyomo can iterate through
model components as well as nested model blocks. Thus, model components can
be easily transformed locally, and global data can be collected to support global
transformations. Further, Pyomo components and blocks can be activated and deac-
tivated, which facilitates in place transformations that do not require the creation of
a separate copy of the original model.

Pyomo’s pyomo . mpec package defines several model transformations that can
be easily applied. For example, if model defines an MPEC model (as in our previ-
ous examples), then the following example illustrates how to apply a model trans-
formation:

xfrm = pyo.TransformationFactory ("mpec.simple_nonlinear")
transformed = xfrm.create_using(model)

In this case, the mpec.simple_nonlinear transformation is applied. The fol-
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lowing sections describe the transformations currently supported in pyomo . mpec.

13.3.1 Standard Form

In Pyomo, a complementarity condition is expressed a pair of constraint expressions
Iy <expry <uy L b <expry<u,

where exactly two of the constant bounds [, uy, I, and u; are finite. The non-finite
bounds are typically omitted, but the value None can be used to express infinite
bounds. Additionally, each constraint expression can be expressed with a simple
inequality of the form

expry < expry.

The mpec. standard_form transformation reformulates each complementar-
ity condition in a model into a standard form:

L <expr<u; L I <var<uy,

where exactly two of the constant bounds /;, u;, [» and u, are finite, and either /; is
zero or both [, or uy are finite.

Note that this transformation creates new variables and constraints as part of this
transformation. For example, the complementarity condition

1<x+y L 1<2x—y,

is transformed to:
I1<x+y L 0Ly,

whereve Randv=2x—y—1.

For each complementary condition object, the new variable and constraints are
added as additional components within the complementarity object. Thus, the over-
all structure of the MPEC model is not changed by this transformation.

13.3.2 Simple Nonlinear

The mpec.simple_nonlinear transformation begins by applying the
mpec.standard_form transformation. Subsequently, a nonlinear constraint is
created that defines the complementarity condition. This is a simple nonlinear trans-
formation adapted from Ferris et al. [17], which can be described by three different
cases:

e If /1 is finite, then the following constraint is defined:
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(expr—11)xv<eg
e If u; is finite, then the following constraint is defined:
(uy —expr)xv<eg
e If /5 and u; are both finite, then the following constraints are defined:

(var— b)) xexpr < €
(var —up) xexpr < &

Each of these cases ensure the complementarity condition is met when € is zero. For
example, in the first case, we know 0 < v and 0 < expr — ;. When € is zero, this
constraint ensures either v is zero or expr — [ is zero.

This transformation uses the parameter mpec_bound, which defines the value
for € for every complementarity condition. This allows for the specification of a
relaxed nonlinear problem, which may be easier to optimize with some nonlinear
programming solvers. The default value of mpec_bound is zero.

13.3.3 Simple Disjunction

The mpec.simple_disjunction transformation expresses a complementarity
condition as a disjunctive program. We are given a complementarity condition de-
fined with a pair of constraint expressions

Iy <expr; <u; L L <expry <uy,

where exactly two of the constant bounds [, u1, I, and u; are finite. Without loss of
generality, we assume that either /; or u; is finite.

This transformation generates the constraints corresponding to the conditions
implied by the complementarity conditions (see Equation (13.1)). There are three
different cases:

o If the first constraint is an equality, then the complementarity condition is triv-
ially replaced by that equality constraint.

o If both bounds on the first constraint are finite but different, then the disjunction
has the form:

h ¢! Y;
ly = expr; \/ expry = uj \/ I <expri <u
expr, >0 expry, <0 expr, =0

Y]YYQ!Y3=TI'M€

Y1,Y2,Y3 € {True,False}
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e Otherwise, each constraint is a simple inequality. The complementarity condi-
tion is reformulated as

0 <expr; L 0<expr,,

and the disjunction has the form:

Y —Y
0 =expr, \/ 0 <expr,
0 <'expr, 0 =expr,

Y € {True,False}

This transformation makes use of modeling components and transformations
from Pyomo’s pyomo . gdp package. The transformation expresses each of the dis-
junctive terms explicitly using Disjunct components and the select exactly one
logical condition using the Disjunction component. The transformation adds
the Disjunct and Disjunction components within the objects representing
the complementarity conditions. It then recasts the modified complementarity com-
ponents into simple B1ock components. This localizes all changes to the model to
the individual complementarity components. Subsequent transformation of the dis-
junctive expressions to algebraic constraints can be effected through either Big-M
(gdp .bigm) or Convex Hull (gdp . chull) transformations.

13.3.4 AMPL Solver Interface

Solvers like PATH [14] have been tailored to work with the AMPL Solver Library
(ASL). AMPL uses nl files to communicate with solvers, which read n1 files
with the ASL. Pyomo can also create n1 files, and the mpec.nl transformation
processes Complementarity components into a canonical form suitable for this
format [16].

13.4 Solver Interfaces and Meta-Solvers

Pyomo supports interfaces to third-party solvers as well as meta-solvers that ap-
ply transformations and third-party solvers, perhaps in an iterative manner. The
pyomo .mpec package includes an interface to the PATH solver, as well as sev-
eral meta-solvers. These are described in this section, and examples are provided
employing the pyomo command-line interface.
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13.4.1 Nonlinear Reformulations

The mpec.simple_nonlinear transformation provides a generic way for trans-
forming an MPEC into a nonlinear program. When the MPEC only has continuous
decision variables, the resulting model can be optimized by a wide range of solvers.

For example, the pyomo command-line interface allows the user to specify a
nonlinear solver and a model transformation applied to a model:

pyomo solve —--solver=ipopt \
——transform=mpec.simple_nonlinear exla.py

This example illustrates the use of the ipopt interior-point solver to solve a
problem generated with the mpec.simple_nonlinear transformation. When
a transformation is used directly like this, the results returned to the user include
decision variables for the transformed model. Pyomo does not have general capa-
bilities for mapping a solution back into the space from the original model. In this
example, the results object includes values for the x variables as well as the vari-
ables v introduced when applying the transformation to the standard form as shown
previously.

Pyomo includes a meta-solver, mpec_nlp that applies the nonlinear transfor-
mation, performs optimization, and then returns results for the original decision
variables. For example, mpec_nlp executes the same logic as the previous pyomo
example:

pyomo solve —-solver=mpec_nlp exla.py

Additionally, this meta-solver can also manipulate the € values in the model, starting
with larger values and iteratively tightening them to generate a more accurate model.

pyomo solve --solver=mpec_nlp \
—--solver-options="epsilon_initial=0.1 \
epsilon_final=le-7" \
exla.py

This approach may be useful when using a nonlinear solver that has difficulty opti-
mizing with equality constraints.

13.4.2 Disjunctive Reformulations

The mpec.simple_disjunction transformation provides a generic way for
transforming an MPEC into a disjunctive program. The mpec_minlp solver ap-
plies this transformation to create a nonlinear disjunctive program, and then further
reformulates the disjunctive model using a “Big-M” transformation provided by
the pyomo . gdp package. The resulting transformation is similar to the reformula-
tion of bilevel models described by Fortuny-Amat and McCarl [20]. If the original
model was nonlinear, then the resulting model is a mixed-integer nonlinear pro-
gram (MINLP). Pyomo includes interfaces to solvers that use the AMPL Solver
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Library (ASL), so mpec_minlp can optimize nonlinear MPECs with a solver like
Couenne [10].

If the original model was a linear MPEC, then the resulting model is a mixed-
integer linear program able to be globally optimized (e.g., see Hu et al. [33], Judice
[36]). For example, the pyomo command can be used to execute the mpec_minlp
solver using a specified MIP solver:

pyomo solve —--solver=mpec_minlp \
—-—-solver-options="solver=glpk" ralphl.py

Note that Pyomo includes interfaces to a variety of MIP solvers, including CPLEX,
Gurobi, CBC, and GLPK.

13.4.3 PATH and the ASL Solver Interface

Pyomo’s solver interface for the AMPL Solver Library (ASL) applies the mpec.nl
transformation, writes an AMPL .n1 file, executes an ASL solver, and then loads
the solution into the original model. Pyomo provides a custom interface to the PATH
solver [14], which simply allows the solver to be specified as path while the solver
executable is named pathamp.

The pyomo command can execute the PATH solver by simply specifying the
path solver name. For example, consider the munsonl problem from MCPLIB:

# munsonl.py
import pyomo.environ as pyo
from pyomo.mpec import Complementarity, complements

model = pyo.ConcreteModel ()

model.x1l = pyo.Var()
model.x2 = pyo.Var()
model.x3 = pyo.Var ()

model.fl = Complementarity (expr=complements (
model.x1 >= 0,
model.x1l + 2+model.x2 + 3x*model.x3 >= 1))

model.f2 = Complementarity (expr=complements (
model.x2 >= 0,
model.x2 - model.x3 >= -1))

model.f3 = Complementarity (expr=complements (
model.x3 >= 0,
model.x1l + model.x2 >= -1))

This problem can be solved with the following command:

pyomo solve —--solver=path munsonl.py
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13.5 Discussion

Pyomo supports the ability to model complementarity conditions in a manner that
is similar to other AMLs. For example, the pyomo-model-1libraries reposi-
tory [52] includes Pyomo formulations for many of the MacMPEC [41] and MC-
PLIB [12] models, which were originally formulated in GAMS and AMPL. How-
ever, Pyomo does not currently support related modeling capabilities for equilibrium
models, variational inequalities and embedded models, which are supported by the
GAMS extended mathematical programming framework [18].






Appendix A
A Brief Python Tutorial

Abstract This chapter provides a short tutorial of the Python programming lan-
guage. This chapter briefly covers basic concepts of Python, including variables,
expressions, control flow, functions, and classes. The goal is to provide a reference
for the Python constructs used in the book. A full introduction to Python is provided
by resources such as those listed at the end of the chapter.

A.1 Overview

Python is a powerful programming language that is easy to learn. Python is an in-
terpreted language, so developing and testing Python software does not require the
compilation and linking required by traditional software languages like FORTRAN
and C. Furthermore, Python includes a command-line interpreter that can be used in-
teractively. This allows the user to work directly with Python data structures, which
is invaluable for learning about data structure capabilities and for diagnosing soft-
ware failures.

Python has an elegant syntax enabling programs to be written in a compact, read-
able style. Programs written in Python are typically much shorter than equivalent
software developed with languages like C, C++, or Java because:

e Python supports many high-level data types that simplify complex operations.

e Python uses indentation to group statements, which enforces a clean coding
style.

e Python uses dynamically typed data, so variable and argument declarations are
not necessary.

Python is a highly structured programming language providing support for large
software applications. Consequently, Python is a much more powerful language than
many scripting tools (e.g., shell languages and Windows batch files). Python also
includes modern programming language features like object-oriented programming,
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as well as a rich set of built-in standard libraries avaibable for use to quickly build
sophisticated software applications.

The goal in this Appendix is to provide a reference for Python constructs used in
the rest of the book. A full introduction to Python is provided by resources such as
those listed at the end of the chapter.

A.2 Installing and Running Python

Python codes are executed using an interpreter. When this interpreter starts, a com-
mand prompt is printed and the interpreter waits for the user to enter Python com-
mands. For example, a standard way to get started with Python is to execute the
interpreter from a shell environment and then print “Hello World™:

% python

Python 3.7.4 (default, Aug 13 2020, 20:35:49)

[GCC 7.3.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or "license" for more \
information.

>>> print ("Hello World")
Hello World
>>>

On Windows the python command can be launched from the DOS shell (or other
shells), and on *nix (which includes Macs) the pyt hon command can be launched
from a bash or csh shell (or terminal). The Python interactive shell is similar to these
shell environments; when a user enters a valid Python statement, it is immediately
evaluated and its corresponding output is immediately printed.

The interactive shell is useful for interrogating the state of complex data types. In
most cases, this will involve single-line statements, like the print function shown
in the previous example. Multi-line statements can also be entered into the interac-
tive shell. Python uses the “...” prompt to indicate that a continuation line is needed
to define a valid multi-line statement. For example, a conditional statement requires
a block of statements defined on continuation lines:

>>> x = True
>>> if x:
print ("x is True")
. else:
print ("x is False")

x is True

NOTE: Proper indentation is required for multi-line statements executed in the
interactive shell.
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NOTE: True is a predefined Python literal so x = True assigns this value
to x in the same way the predefined literal 6 would be assigned by x = 6.

The Python interpreter can also be used to execute Python statements in a file,
which allows the automated execution of complex Python programs. Python source
files are text files, and the convention is to name source files with the .py suffix.
For example, consider the example.py file:

# This is a comment line, which is ignored by Python

print ("Hello World")

The code can be executed in several ways. Perhaps the most common is to exe-
cute the Python interpreter within a shell environment:

)

% python example.py
Hello World

o
]

On Windows, Python programs can be executed by double clicking on a . py file;
this launches a console window in which the Python interpreter is executed. The
console window terminates immediately after the interpreter executes, but this ex-
ample can be easily adapted to wait for user input before terminating:

# A modified example.py program
print ("Hello World")

import sys
sys.stdin.readline ()

A.3 Python Line Format

Python does not make use of begin-end symbols for blocks of code. Instead, a colon
is used to indicate the end of a statement defining the start of a block and then
indentation is used to demarcate the block. For example, consider a file containing
the following Python commands:

# This comment is the first line of LineExample.py
# all characters on a line after the #-character are
# ignored by Python

print ("Hello World, how many people do you have?")
population = 400
if population > 300:

print ("Wow!")

print ("That’s a lot of people")
else:
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print ("That’s fewer than I suspected...")

When passed to Python, this program will cause some text to be output.

Because indentation has meaning, Python requires consistency. The following
program will generate an error message because the indentation within the if-block
is inconsistent:

# This comment is the first line of BadIndent.py,
# which will cause Python to give an error message
# concerning indentation.

print ("Hello World, what’s happening?")
ans = "A lot"

if ans == "A lot":
print ("Very interesting")
print ("But not without risks.")
else:
print ("Take it easy!")

Generally, each line of a Python script or program contains a single statement.
Long statements with long variable names can result in very long lines in a Python
script. Although this is syntactically correct, it is sometimes convenient to split a
statement across two or more lines. The backslash (\) tells Python that text that
is logically part of the current line will be continued on the next line. In a few
situations, a backslash is not needed for line continuation. For Pyomo users, the
most important case where the backslash is not needed is in the argument list of a
function. Arguments to a function are separated by commas, and after a comma the
arguments can be continued on the next line without using a backslash.

Conversely, it is sometimes possible to combine multiple Python statements on
one line. However, we recommend against it as a matter of style and to enhance
maintainability of code.

A.4 Variables and Data Types

Python variables do not need to be explicitly declared. A statement assigning a value
to an undefined symbol implicitly declares the variable. Additionally, a variable’s
type is determined by the data it contains. The statement

‘population=200 ‘

creates a variable called population, and it has the integer type because 200 is
an integer. Python is case sensitive, so the statement

‘Population = "More than yesterday."

creates a variable that is not the same as populat ion. The assignment

‘population = Population ‘
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would cause the variable population to have the same value as Population
and therefore the same type.

A.5 Data Structures

This section summarizes Python data structures helpful in scripting Pyomo appli-
cations. Many Python and Pyomo data structures can be accessed by indexing their
elements. Pyomo typically starts indices and ranges with a one, while Python is zero
based.

A.5.1 Strings

String literals can be enclosed in either single or double quotes, which enables the
other to be easily included in a string. Python supports a wide range of string func-
tions and operations. For example, the addition operator (+) concatenates strings. To
cast another type to string, use the st r function. The Python line:

NameAge = "SPAM was introduced in " + str(1937)

assigns a string to the Python variable called NameAge.

A.5.2 Lists

Python lists correspond roughly to arrays in many other programming languages.
Lists can be accessed element by element, as an entire list, or as a partial list. The
slicing character is a colon (:) and negative indices indicate indexing from the end.
The following Python session illustrates these operations:

>>> a = [3.14, 2.72, 100, 1234]
>>> a

[3.14, 2.72, 100, 1234]

>>> a[0]

3.14

>>> a[-2]

100

>>> g[l:-1]

[2.72, 100]

>>> al:2] + ['bacon’, 2x2]
[3.14, 2.72, ’"bacon’, 4]

The addition operator concatenates lists, and multiplication by an integer replicates
lists.
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NOTE: In Python, lists can have mixed types such as the mixture of floats and
integers just given.

There are many list functions. Perhaps the most common is the append func-
tion, which adds elements to the end of a list:

>>> a = []

>>> a.append(16)
>>> a.append(22.4)
>>> a

[16, 22.4]

A.5.3 Tuples

Tuples are similar to lists, but are intended to describe multi-dimensional objects.
For example, it would be reasonable to have a list of tuples. Tuples differ from lists in
that they use parentheses rather than square brackets for initialization. Additionally,
the members of a list can be changed by assignment while tuples cannot be changed
(i.e., tuples are immutable while lists are mutable). Although parentheses are used
for initialization, square brackets are used to reference individual elements in a tuple
(which is the same as for lists; this allows members of a list of tuples to be accessed
with code that looks like access to an array).

Suppose we have a tuple intended to represent the location of a point in a three-
dimensional space. The origin would be given by the tuple (0, 0, 0) . Consider the
following Python session:

>>> orig = (0,0,0)
>>> pt = (-1.1, 9, 6)
>>> pt[l]

9

>>> pt = orig

>>> pt

(0, 0, 0)

For example, the statement

pt[l] = 4

would generate an error because tuple elements cannot be overwritten. Of course
the entire tuple can be overwritten, since the assignment only impacts the variable
containing the tuple.




A.5 Data Structures 217

A.5.4 Sets

Python sets are extremely similar to Pyomo Set components. Python sets cannot
have duplicate members and are unordered. They are declared using the set func-
tion, which takes a list (perhaps an empty list) as an argument. Once a set has been
created, it has member functions for operations such as add (one new member),
update (with multiple new members), and discard (existing members). The
following Python session illustrates the functionality of set objects:

>>> A = set ([1, 31)
>>> B = set ([2, 4, 6])
>>> A.add(7)

>>> C =A | B

>>> print (C)

set ([1, 2, 3, 4, 6, 71)

NOTE: Lowercase set refers to the built-in Python object. Uppercase Set
refers to the Pyomo component.

A.5.5 Dictionaries

Python dictionaries are somewhat similar to lists; however, they are unordered and
they can be indexed by any immutable type (e.g., strings, numbers, tuples composed
of strings and/or numbers, and more complex objects). The indices are called keys,
and within any particular dictionary the keys must be unique. Dictionaries are cre-
ated using curly brackets, and they can be initialized with a list of key-value pairs
separated by commas. Dictionary members can be added by assignment of a value
to the dictionary key. The values in the dictionary can be any object (even other
dictionaries), but we will restrict our attention to simpler dictionaries. Here is an
example:

>>> D = {’Bob’:’123-1134",}

>>> D[’Alice’] = 7331-9987'

>>> print (D)

{"Bob’: "123-1134’, ’'Alice’: 7331-9987"}
>>> print (D.keys())

["Bob’, ’'Alice’]

>>> print (D[’'Bob’])

123-1134
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A.6 Conditionals

Python supports conditional code execution using structures like:

if CONDITIONALI:
statements
elif CONDITIONALZ2:
statements
else:
statements

The elif and else statements are optional and any number of e1if statements
can be used. Each conditional code block can contain an arbitrary number of state-
ments. The conditionals can be replaced by a logical expression, a call to a boolean
function, or a boolean variable (and it could even be called CONDITIONAL1). The
boolean literals True and False are sometimes used in these expressions. The
following program illustrates some of these ideas:

X = 6
y = False

if x == 5:

print ("x happens to be 5"

print ("for what that is worth")
elif y:

print ("x is not 5, but at least y is True")
else:

print ("This program cannot tell us much.")

A.7 Iterations and Looping

As is typical for modern programming languages, Python offers for and while
looping as modified by cont inue and break statements. When an else state-
ment is given for a for or while loop, the code block controlled by the else
statement is executed when the loop terminates. The cont inue statement causes
the current block of code to terminate and transfers control to the loop statement.
The break command causes an exit from the entire looping construct.

The following example illustrates these constructs:

D = {’/Mary’:231}

D[’Bob’] = 123
D[’Alice’] = 331
D[’Ted’] = 987

for i in sorted(D):

if i == "Alice’:
continue
if i == ’John’:

print ("Loop ends. Cleese alert!")
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break;
print (i+" "+str(D[1]))
else:
print ("Cleese is not in the list.")

In this example, the for-loop iterates over all keys in the dictionary. The in keyword
is particularly useful in Python to facilitate looping over iterable types such as lists
and dictionaries. Note that the order of keys is arbitrary; the sorted () function
can be used to sort them.

This program will print the list of keys and dictionary entries, except for the key
“Alice,” and then it prints “Cleese is not in the list.” If the name “John” was one of
the keys, the loop would terminate whenever it was encountered and in that case,
the else clause would skipped because break causes control to exit the entire
looping structure, including its else.

A.8 Generators and List Comprehensions

Generators and list comprehensions are closely related. List comprehensions are
commonly used in Pyomo models because they create a list “on-the-fly” using a
concise syntax. Generators allow iteration over a list without creating it.

Before discussing list comprehensions and generators, it is helpful to review the
Python range function. It takes up to three integer arguments: start, beyond,
and step. The range function returns a list beginning with start, adds step
to it for each element, and stops without creating beyond. The default value for
start is zero and the default value for step is one. If only one argument is given,
itis beyond. If two arguments are given, then they are start and beyond.

A list comprehension is an expression within square brackets specifying the cre-
ation of a list. The following Python session illustrates the use of a list comprehen-
sion generating the squares of the first five natural numbers:

>>> a = [i*x1 for 1 in range(l,6)]
>>> a
[1, 4, 9, 16, 25]

Generators are used in iteration expressions in a fashion similar to list compre-
hensions, but they do not actually create a list. In some situations, the memory and
time savings resulting from using a generator versus a list comprehension can be
important.

A.9 Functions

Python functions can take objects as arguments and return objects. Because Python
offers built-in types like tuples, lists, and dictionaries, it is easy for a function to
return multiple values in an orderly way. Writers of a function can provide default
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values for unspecified arguments, so it is common to have Python functions that
can be called with a variable number of arguments. In Python, a function is also an
object; consequently, functions can be passed as arguments to other functions.

Function arguments are passed by reference, but many types in Python are im-
mutable so it can be a little confusing for new programmers to determine which
types of arguments can be changed by a function. It is somewhat uncommon for
Python developers to write functions to make changes to the values of any of their
arguments. However, if a function is a member of a class, it is very common for the
function to change data within the object calling it.

User-defined functions are declared with a def statement. The return state-
ment causes the function to end and the specified values to be returned. There is no
requirement that a function return anything; the end of the function’s indent block
can also signal the end of a function. Some of these concepts are illustrated by the
following example:

def Apply(f, a):
r = []
for i in range(len(a)):
r.append(f(alil]))
return r

def Sqgifodd (x):
# 1if x is odd, 2+int(x/2) 1is not x
# due to integer divide of x/2

if 2+int(x/2) == x:
return x
else:

return xx*x

ShortList = range (4)
B = Apply (SgifOdd, ShortList)
print (B)

This program prints [0, 1, 2, 9].The Apply function assumes it has been
passed a function and a list; it builds up a new list by applying the function to the
list and then returns the new list. The Sgi fOdd function returns its argument (x)
unless 2xint (x/2) is not x. If x is an odd integer, then int (x/2) will truncate
x /2 so two times the result will not be equal to x.

A somewhat advanced programming topic is the writing and use of function
wrappers. There are multiple ways to write and use wrappers in Python, but we
will now briefly introduce decorators because they are sometimes used in Pyomo
models and scripts. Although the definition of a decorator can be complicated, the
use of one is simple: an at-sign followed by the name of the decorator is placed on
the line above the declaration of the function to be decorated.

Next is an example of the definition and use of a silly decorator to change ’c’ to
’b’ in the return values of a function.

# An example of a silly decorator to change ’“c’ to ’b’
# in the return value of a function.
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def ctob_decorate (func) :
def func_wrapper (*args, xxkwargs) :
retval = func(*xargs, xxkwargs) .replace(’'c’,’b’)
return retval.replace('C’,’B’)
return func_wrapper

@ctob_decorate
def Last_Words () :

return "Flying Circus"

print (Last_Words()) # prints: Flying Birbus

In the definition of the decorator, whose name is ct ob_decorate, the function
wrapper, whose name is func_wrapper uses a fairly standard Python mechanism
for allowing arbitrary arguments. The function passed in to the formal argument
called func is assumed by the wrapper to return a string (this is not checked by the
wrapper). Once defined, the wrapper can then be used to decorate any number of
functions. In this example, the function Last _Words is decorated, which has the
effect of modifying its return value.

A.10 Objects and Classes

Classes define objects. Put another way: objects instantiate classes. Objects can have
members that are data or functions. In this context, functions are often called meth-
ods. As an aside, we note that in Python both data and functions are technically
objects, so it would be correct to simply say objects can have member objects.

User-defined classes are declared using the class command and everything in
the indent block of a class command is part of the class definition. An overly simple
example of a class is a storage container printing its value:

class IntLocker:
sint = None
def _ init_ (self, 1):
self.set_value (1)
def set_value(self, 1):
if type(i) is not int:

print ("Error: %d is not integer." % i)
else:
self.sint = 1

def pprint (self):
print ("The Int Locker has "+str(self.sint))

= IntLocker (3)
.pprint () # prints: The Int Locker has 3
.set_value (5)

a
a
a
a.pprint () # prints: The Int Locker has 5

The class IntLocker has a member data element called sint and two member
functions. When a member function is called, Python automatically supplies the
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object as the first argument. Thus, it makes sense to list the first argument of a
member function as self, because this is the way a class can refer to itself. The
_-init__method is a special member function automatically called when an object
is created; this function is not required.

New attributes can easily be attached to a Python object. For example, for an
object named a one can attach an attribute called name with the value “spam”
using:

a.name = "spam"

It is also possible to query objects to see what attributes they already have.

A.11 Assignment, copy and deepcopy
A.11.1 References

An assignment statement in Python associates a reference with the variable name
given on the left-hand side of the equals sign. If the value on the right-hand side is
a literal, then Python creates that thing in memory and assigns a reference to it. For
example, consider the following Python session:

>>> x = [1,2,3]
>>> y = x
>>> x[0] = 3

>>> x.append (6)
>>> print (y)

will result in the output

[3,2,3,6]

But a subtle point is y references the same thing x references, not x itself. So to
continue the example:

>>> x = [1,2,3]

>>> y = x

>>> x[0] = 3

>>> x = ‘‘Norwegian Blue’’

>>> print (x, y)

will result in the output

Norwegian Blue [3,2,3]

A few types in Python are immutable, which means their value in memory cannot
be changed; among them are int, float, decimal, bool, string, and tuple. Apart from
tuple, this is not surprising. Consider the following:

>>> x = (
>>> y = x
>>> x[0] = 3

1,2,3)
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This Python session will result in an error because tuples (unlike lists) cannot be
changed once they are created.

A.11.2 Copying

Sometimes assignment of a reference is not what is wanted. For these situations, the
Python copy module allows for transfer of data from one variable to another. It
supports shallow copies via the copy method and deep copies via the deepcopy
method. The difference is only apparent for compound structures (e.g. a dictionary
containing lists). The deepcopy method will attempt to make a new copy of ev-
erything, while copy will only make a new copy of the top level and will try to
create references for everything else. For example,

>>> import copy

>>> x = [1,2,3]
>>> y = copy.deepcopy (x)
>>> x[0] = 3

>>> x.append(6)
>>> print (x,vy)

will result in the output

[3,2,3,6] [1,2,3]

In this particular example copy.copy and copy.deepcopy would have the
same behavior.

A.12 Modules

A module is a file containing Python statements. For example, any file containing a
Python “program” defining classes or functions is a module. Definitions from one
module can be made available in another module (or program file) via the import
command, which can specify which names to import or specify the import of all
names by using an asterisk.

Python is typically installed with many standard modules present, such as t ypes.
The command from types import »* causes the import of all names from the
types module.

Multiple module files in a directory can be organized into a package, and pack-
ages can contain modules and sub-packages. Imports from a package can use a state-
ment giving the package name (i.e., directory name) followed by a dot followed by
a the module name. For example, the command

import pyomo.environ as pyo

imports the environ module from the pyomo package and makes the names
in this module available through the local name pyo. Analogous to the __init__
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method in a Python class, an __init__.py file can be included in a directory and
any code therein is executed when that module is imported.

A.13 Python Resources

e Python Home Page, http://www.python.org.
e stack overflow, https://stackoverflow.com
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