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Quantifying Cell Fractures in Si PV Modules

Fracture Detection by Imaging Crack Segmentation & Feature Quantification

Electroluminescence (EL) Is the most common
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imaging method for PV modules due to: Type

* Relatively low cost Length

* Ease of measurement Angle

» Detects a variety of defects | ocation
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Photoluminescence (PL) provides an advantage
for crack detection:

e Light-generated carriers enable radiative
recombination where electrically isolated in EL
And resolves defect types when combined with EL

However is more difficult to perform
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EL and PL images exhibit high contrast between
cell fractures and pristine regions in silicon PV
cells and modules, and therefore are ideal for
detecting cell cracks via digital image processing.

Thresholding and kernel operations enable image segmentation of cell fractures.
Fourier transform image filtering is used to distinguish cracks from grain boundaries
iIn multi-crystalline cells.® Linear fits of fracture segments yield features at right.

Fractures can also be

detected in some cases by: : :
. Visible light photograpyhy Image Segmentation by Local Feature Extraction

(“snail trails™) A number of automated local feature detection algorithms exist to locate occurrences of specific patterns in images.
e Ultraviolet fluorescence This approach is sometimes used with a bag of visual words approach for unsupervised clustering of images. Local
(encapsulant fluorophore feature detection can also be used to segment images by these features. Below are examples of local features
formation) detected by various algorithms. Combinations of local features related to cracks can be used for image
But are material-specific segmentation, which is then analyzed with connected component types of analysis as above.
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Applications of Fracture Quantification

Correlation With Electrical Performance
Statistical comparisons of fracture-related features with I-V and other electrical
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parameters will reveal criticalities of different crack geometries and ~ Corr.=0.80

> : combinations for module performance. i -
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Tracking Fractures Through Tmme 77 — e
Features of individual cracks through accelerated exposure or time in the field ~ Plot: Pmp & median (TC)
will aid understanding of how cracks progress, and which types of cracks are 0 250 500 750 1000
likely to cause power loss. This will also reveal vulnerabilities of specific cell Thermal Cycle

Different fracture geometries have different criticalities:?

: LA _ : and module architectures and materials to fractures and related power loss.
» Cracks leading to electrical isolation have a larger influence on
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* Electrical isolation depends on crack orientation, intercepts, and Machine learning classification® of fractures, cells, and modules by their “ T
whether the crack affects the cell metalization? | measured features will build a framework for distinguishing critical and non- ~ Corr.=0.80 \H
» Cracking creates a defective silicon surface, increasing local critical fractures. Together with time-series analysis, this will enable image line type: ol N
recombination® _ , _ detection of faulty and at-risk fielded modules. I B R
e Shunts can occur as a result of debris formation and collection o
inside cell cracks* - o Right: Intensity-based module-level image parameters, median intensity and ~ Plot: Py & Frop {TC)
Quantifying cell fractures Is a first step toward statistical fraction of dark pixels (FDP), with correlation to module maximum power and 0 250 500 750 1000
understanding of the occurrence of these degradation modes. co-plotted through thermal cycling exposure. Thermal Cycle
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Crack Formation and Progression

Cell fractures can be initiated at various points in the life of a
PV module, by either thermal or mechanical stress. The cause
of a fracture influences its geometry and severity.®

Fractures can also progress (lengthen, widen, or increase
electrical impact) as a result of thermal or mechanical stress.

In the laboratory, cell fracture formation and progression have
been demonstrated with mechanical load and thermal testing.®”’
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