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2 Early results of a Sandia-based 1D model for probing defect and
radiation response physics in GaN power diodes will be shown

Introduction - Why defect physics modeling?

Modeling approach and baselining

Comparison of model to experimental data
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3 GaN shows potential for high power applications but is known to be
susceptible to displacement damage
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[King et al., IEEE TNS, 2015]
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1014 GaN defects not as well understood
What defects most influence charge
carrier behaviors?

Degradation of vertical GaN PiN diodes breakdown
voltage with increasing proton or neutron fluence
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4 What do we gain from modeling defect physics?
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Sandia-developed exploratory physics development (XPD)
program solves 1D carrier transport equations

Defect-carrier interactions not addressed as well by commercial
TCAD

Previously applied to Si BJTs [Myers, JAP, 2008]
and GaAs HBTs [Myers, JAP, 2016; Wampler, JAP 2015]

Strategic objectives:
Create defect evolution model to better predict GaN device
response over time in combined environments

Inform significant GaN defect physics for more sophisticated
models

Near-term goals (this work):

Compare model baseline response with as-grown GaN
power diodes
Validate diode photocurrent response (no displacement
damage)
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5 1 D model of a Sandia vertical GaN power p-n diode

[A. Colon, CAARI, 2018]
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6 Charge carrier transport deterministic model

Numerically solves coupled 1D ODE's for charge carrier transport:
an -1, —= v .
at

(—piniF — l'q iiiVni) -- generation -f recombination (Drift-Diffusion)

V
(n—p+ND—NA+Qd).-72c. =   (Poisson's Equation)

Es

•

XPD models aereus ln more detail than TCAD

User-defined material parameters tailored to device design
Material constants from literature or Sandia measurements
Impact ionization
Partial ionization of acceptor dopants (Mg for this work)
Multi-phonon emission model for carrier capture/emission

User-defined radiation fields and defect concentrations
Uniform defects as-grown for this work
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7 Defect treatment distinguishes this work from TCAD

Implements single generic defect at defined energy level in band gap
(assumed mid-band for this work)

Defects can be:
As-grown (this work) or from displacement damage
Uniform (this work), or user-defined spatial profile

3 charge states: D-, D°, D±, transitions occur between charge states
e-

Conduction Band

(+1-4) capture) AE 1 AE (0—>-1 capture)

D+ le- Defect level

h+
  Valence Band

Carrier-defect reaction rate equations —> generation, recombination terms

Track concentrations of e, h, D-, D°, D± vs depth and time
Which interactions contribute most to current?
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8 I Inclusion of defects was significant in establishing a matching
baseline comparison
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9 I Field-enhanced carrier emission by band-trap tunneling (BTT)
significant for modeling diode leakage current
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Electron beam-induced current used to generate photocurrent
benchmark data

Electron Beam

[Experimental data following Pickrell, HEART, 2018]
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11 Two photocurrent response regimes observed when exposed to
ionizing radiation
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Impact ionization alone seemingly does not adequately explain multiplication
Are these disagreements due to missing geometry, inaccurate parameters, or missing physics?
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12 Model and measured data demonstrate decrease in breakdown
voltage with increasing dose rate

Experiment
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Measured data show more dramatic shift in breakdown voltage.
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13 What could we be missing?

2D or 3D geometries/ field structures

Non-uniform defect density profile

Multiple defects levels

Space-charge limited conduction breakdown mechanisms

Where are we going next?

Defects from heavy ion or neutron displacement damage

Combined environment models and experiments evolving over time

2D TCAD simulations to probe higher-dimension effects
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14 Summary

An exploratory physics code examining defect evolution in GaN is being

developed

Successes:

Baseline agreement for forward-biased GaN power diodes

Band-trap tunneling significant for modeling leakage current in reverse bias

Agreement with experiment for photocurrent response to radiation at

lower biases —> Good predictive quality

Long-Term Objective: Predictive capability for GaN device performance that

specifically addresses defects and defect evolution in radiation environments

not available in commercial software
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