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NON-CONFORMING MESH REFINEMENT FOR HIGH-ORDER
FINITE ELEMENTS∗

JAKUB ČERVENÝ† , VESELIN DOBREV† , AND TZANIO KOLEV†

Abstract. We propose a general algorithm for non-conforming adaptive mesh refinement (AMR)
of unstructured meshes in high-order finite element codes. Our focus is on h-refinement with a fixed p.
The algorithm handles triangular, quadrilateral, hexahedral and prismatic meshes of arbitrarily high
polynomial order, for any order finite element space in the de Rham sequence. We present a flexible
data structure for meshes with hanging nodes and a general procedure to construct the AMR sys-
tem through variational restriction. Our approach supports complex anisotropic refinement in both
2D and 3D, unlimited refinement levels of adjacent elements, derefinement, static condensation, hy-
bridization, and MPI parallelism with load balancing based on space-filling curve partitioning. We
report numerical experiments verifying the correctness of the algorithms, and perform a parallel
scaling study to show that we can adapt meshes containing billions of elements and run efficiently
on 393,000 parallel tasks. Finally, we illustrate the integration of dynamic AMR into a high-order
Lagrangian hydrodynamics solver.

Key words. adaptive mesh refinement, non-conforming meshes, high-order finite elements,
parallel computations, unstructured grids.
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1. Introduction. High-order finite element methods (FEM) are becoming in-
creasingly important in the field of scientific computing due to their increased ac-
curacy and performance efficiency on modern computer architectures [11]. Many
high-order applications are interested in parallel adaptive mesh refinement (AMR)
on unstructured meshes containing quadrilateral and hexahedral elements. Such el-
ements are attractive for their tensor product structure (enabling efficiency) and for
their refinement flexibility (enabling anisotropic refinement). However, as opposed to
bisection-based methods for local refinement of simplices, hanging nodes that occur
after local refinement of quadrilaterals and hexahedra are not easily avoided by fur-
ther refinement [32]. We are thus interested in handling non-conforming (irregular)
meshes [14, 33, 19], in which adjacent elements need not share a complete face or edge
and where some finite element degrees of freedom (DOFs) have to be constrained to
obtain a conforming solution.

In this paper we present a set of software abstractions and algorithms for handling
large parallel non-conforming meshes that we believe strikes the right balance between
efficiency, ease of implementation and applicability to a wide range of problems. In
particular, with a single general algorithm we handle a large class of 2D and 3D AMR
meshes that consist of quadrilaterals and hexahedra, possibly mixed with triangles and
triangular prisms. Generally, the elements can be refined by bisecting their edges,
and we allow anisotropic refinement of tensor product elements, meaning that e.g.
a hexahedron can be split into 2 or 4 hexahedra only. In addition, the method we
propose is on a general discretization level, independent of the physics simulation,
and supports the whole de Rham sequence of finite element spaces, at arbitrarily
high-order. Our approach can also handle high-order curved meshes, as well as finite
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element techniques such as hybridization and static condensation [15]. While the
algorithms we present can be extended to general hp-refinement, in this paper we
focus exclusively on non-conforming h-refinement with a fixed order p ≥ 1.

The methodology of constraining hanging nodes in non-conforming meshes is
well established in the literature. Most authors opt to construct algebraic constraints
that express constrained degrees of freedom as linear combinations of true degrees of
freedom. The constraints are then applied to either the local element matrices as part
of the global matrix assembly [1, 14, 9, 24, 5], after global assembly to “condense” the
constrained DOFs out of the linear system [4], or, more rarely, at the shape function
level [38] or the linear solver level [35]. Our approach is closest to the second method
of adjusting the linear system, but we cast the elimination of constrained DOFs as
a form of variational restriction. The practical advantage is that the stiffness matrix
assembly stays unchanged and completely independent of the handling of AMR.

A large part of this paper is concerned with an efficient algorithm to construct
a global operator that interpolates the constrained degrees of freedom from the true
degrees of freedom. The algorithm is based on composing local interpolation matrices
into a global one. It is easy to implement, works for a variety of finite element spaces
and element geometries and is unique in being able to handle 3D anisotropic refine-
ments as well as arbitrarily irregular meshes where adjacent elements are not limited
to a 2:1 refinement ratio. The resulting interpolation matrix is also conveniently used
to constrain duplicate nodes in parallel domain decomposition.

A modern finite element solver needs to scale to hundreds of thousands of paral-
lel tasks. To achieve that, the mesh has to be fully distributed, as the global mesh
no longer fits on each processor. Historically, this is not been the case in popular
codes such as libMesh [24]. The deal.II project [4] has switched to the p4est library
to distribute the mesh in 2011. In addition to mesh distribution, an AMR solver at
this level of parallelism requires an extremely efficient partitioning and load balancing
algorithm that can be applied often. High quality spectral type partitioners, such as
ParMETIS [23], may be prohibitively expensive for this purpose. We thus take inspi-
ration from octree-based approaches [17, 7, 21] where only the coarse elements (the
octree roots) are shared by all parallel tasks and where the refinement tree provides
a natural way to enumerate elements. The resulting sequence is equipartitioned and
distributed among processors, which has been shown to be a scalable way to load bal-
ance the mesh [7]. In contrast to octree methods, however, we allow for more general
refinement and support additional types of elements. Our partitioning algorithm is
thus closest to the REFTREE method [30].

The rest of the paper is organized as follows: in Section 2, we define the class of
meshes we support. In Section 3 we describe the general procedure to construct the
AMR system through variational restriction. Section 4 is devoted to the algorithm for
constructing the AMR interpolation operator, in serial. The internal data structures
for element-based AMR in the context of high-order finite elements are presented in
Section 5. Extending these methods to parallel settings is the subject of Section 6.
Finally, Section 7 presents numerical experiments that illustrate the performance of
our algorithms in practice.

2. Non-conforming meshes. For the purposes of this paper, and following
the definitions in [29], an element K is a (closed) triangle, quadrilateral, triangular
prism or hexahedron. An element contains vertices, edges, with the usual definitions,
and three dimensional elements contain faces. A mesh {Ki}Mi=1 is the union of M
elements, not necessarily all of the same type, such that Ω = ∪iKi is a connected,
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Fig. 2.1. Examples of non-conforming meshes handled by our algorithm: a mixed mesh con-
taining triangles and quadrilaterals (left), a prismatic mesh obtained by refining 12 curved triangular
prisms (middle), a hexahedral mesh after anisotropic refinement (right).

bounded region in R2 or R3. Let 〈K〉 and ∂K denote the interior and boundary of
element K. We assume that the element interiors do not intersect, i.e. 〈Ki〉∩〈Kj〉 = ∅,
for i 6= j. A mesh is said to be conforming if the set ∂Ki ∩ ∂Kj , i 6= j, is a common
vertex, common edge, common face or an empty set. A vertex of an element is called
a hanging node, if it lies in the interior of an edge or face of another element. A mesh
that contains at least one hanging node is called non-conforming or irregular.

To refine an element Ki means to replace it with at least two smaller elements Kik

of the same type, such that Ki = ∪kKik. We call the elements Kik child elements and
Ki the parent element. The parent element is removed from the mesh after refinement,
but it is stored along with links to the child elements in a refinement tree. In an inverse
process called derefinement, the parent element can later be reintroduced to the mesh,
once its child elements are removed.

When refining an element, we require that new vertices be placed in the center of
edges or faces of the parent element. We thus only support bisection of edges during
refinement. In this way a triangle can be split into 4 children, a quadrilateral into 2 or
4 children, and a prism or hexahedron into 2, 4 or 8 children. We refer to refinements
that split all edges of the parent element as isotropic refinement, and the remaining
refinement options as anisotropic. Some examples of the types of non-conforming
meshes we support (obtained by refining initially conforming meshes) are shown in
Figure 2.1.

A non-conforming mesh is said to be consistent if lower dimensional mesh entities
(i.e., vertices, edges, faces) that intersect are either identical, or one is a proper
subset of the other (see Figure 5.3 for an example of an inconsistent mesh). We refer
to the smaller entity as a slave and the larger containing entity as a master. Lower
dimensional entities of a consistent mesh that are neither masters nor slaves are called
conforming entities.

Note that a slave face has exactly one master face, but a 3D edge can have multiple
master edges. In that case we always take the smallest master edge, which in turn
may be a slave to its smallest master. This hierarchy will end with a maximal master
edge that is a not a slave itself. Note that any master edge can be shared by several
elements in a “conforming” manner. We call the interface between slave faces and
their master, or slave edges and their maximal master the coarse-fine interface.

3. Non-conforming AMR by variational restriction. In the continuous
Galerkin method [13], one starts with a weak variational problem: Find u ∈ V , such
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Fig. 3.1. Illustration of conformity constraints for lowest order elements in 2D. Left: nodal
elements (H1 subspace), constraint c = (a + b)/2. Right: Nedelec elements (H(curl) subspace),
constraints e = f = d/2. In both cases, slave degrees of freedom are linearly interpolated from the
degrees of freedom on the master side.

that

a(u, v) = l(v) ∀v ∈ V , (3.1)

where a(·, ·) and f(·) are bilinear and linear forms, respectively, on the inner-product
space V , typically a Sobolev space on the domain Ω with imposed essential boundary
conditions. The problem (3.1) is discretized by constructing an approximate finite
dimensional subspace Vh ⊂ V , dim(Vh) = N , on the mesh {Ki}Mi=1 and by assembling
the stiffness matrix A and load vector f , so that

vThAuh = vTh f ∀vh ∈ RN . (3.2)

This is equivalent to the linear system Auh = f , which yields the approximate solution
vector uh.

When constructing the space Vh, care must be taken to ensure that conformity
requirements of the space V are met, so that Vh is a subspace of V . For example, if V
is the Sobolev space H1, the functions in Vh must be kept continuous across element
boundaries. If V is an H(curl) space, the tangential component of the finite element
vector fields in Vh needs to be continuous across element faces, etc. In high-order
FEM this is achieved by matching suitable shape functions at degrees of freedom
associated with the mesh vertices, edges and faces, which together with DOFs in the
element interiors form the N basis functions of Vh [37].

When the mesh is non-conforming, the shape functions cannot be matched di-
rectly at the coarse-fine interfaces. If we assign degrees of freedom in the usual way
on the conforming entities (including vertices, and maximal master edges in 3D) and
disregard any conformity in the interior coarse-fine interfaces, we obtain a larger space
V̂h ⊃ Vh that is “broken” along these interfaces, i.e., slave entities have DOFs that
are independent of their master DOFs. We call V̂h the partially conforming space,
with dim(V̂h) = N̂ > N .

To restore conformity at the coarse-fine interfaces, the degrees of freedom on slave
entities (slave DOFs) must be constrained so that the slave entities interpolate the
finite element functions of their masters. Since the masters and slaves have matching
function spaces (all elements have the same order p), the slave DOFs can simply
be expressed as linear combinations of the master DOFs. Examples of such local
constraints for low-order elements are shown in Figure 3.1.

Note that in general non-conforming meshes, some DOFs on the boundaries of
master entities may themselves be constrained by another master entity, or a chain
of them. In this paper we are concerned with solvable non-conforming meshes, where
each such dependency chain ends with unconstrained degrees of freedom. The final
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set of unconstrained DOFs is called true DOFs, denoted uh. A solution vector ûh in
the partially conforming space V̂h can thus be written as

ûh =

(
uh
wh

)
uh ∈ RN , wh ∈ R(N̂−N), (3.3)

where wh represents all slave DOFs and can be evaluated at any time by a linear
interpolation wh = Wuh for some interpolation matrix W . We can also write

ûh = Puh, where P =

(
I
W

)
. (3.4)

P will be called the conforming prolongation matrix. The N columns of P define
the conforming basis functions of Vh, expressed as vectors in V̂h. We also use P to
variationally restrict the solution ûh to the conforming subspace Vh.

Since we want to upgrade an existing finite element code to support non-conforming
meshes with as few modifications as possible, we let the code assemble the stiffness
matrix Â and load vector b̂ in the space V̂h, as if there were no hanging nodes in the
mesh. Of course, when computed in V̂h, the discrete problem (3.2) and the corre-

sponding linear system Â ûh = f̂ result in a non-conforming solution where the slave
DOFs are not constrained. However, taking ûh = Puh and v̂h = Pvh, the variational
formulation on Vh becomes

vTh P
TÂPuh = vTh P

T f̂ ∀vh ∈ RN , (3.5)

so we can solve the smaller system

PTÂPuh = PT f̂ , (3.6)

where the slave DOFs are eliminated. We then prolongate uh to obtain a conforming
solution ûh ∈ V̂h.

An important point regarding essential boundary conditions in Vh is that they
have to be applied in the system (3.6) after the variational transformation, i.e., based

on the matrix PTÂP and right hand side PT f̂ . This is in contrast to many non-AMR
finite element settings, where one can eliminate the essential boundary conditions on
element level. Indeed, it is straightforward to verify that for a general sub-matrix W ,
the elimination based on Â and f̂ followed by variational restriction is different than
performing variational restriction and then elimination. In our experience, ensuring
that the essential boundary conditions are eliminated at the very end is the main
change needed in applications adopting the proposed AMR approach.

Another algebraic transformation that is commonly used in practice is static con-
densation, see e.g. [39]. Since static condensation manipulates DOFs in the interior of
the element, and such DOFs are always true, AMR and static condensation commute,
i.e., static condensation followed by AMR variational restriction is the same as AMR
reduction followed by static condensation. The variational restriction approach can
also be used to couple AMR with hybridization, see [15].

4. Constructing serial P . We now describe the algorithm to calculate the
conforming prolongation matrix in a single-processor setting. As indicated in the
previous section, factoring P out of the coupled AMR matrix makes it easier to
incorporate AMR in applications. The explicit availability of P can also facilitate the
development of AMR-specific linear solvers and preconditioners. Many codes apply
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Fig. 4.1. Example of local constraining relations for quadratic hexahedral elements. The slave
degrees of freedom, s, interpolate the master degrees of freedom, m. We can write s = Qm, where
Q is a local interpolation matrix (in this case Q ∈ R9×9).

P without assembling it, but in our case it is more convenient to build it explicitly
due to the complex dependencies that can arise in arbitrarily irregular 3D meshes.

The P matrix is constructed for a concrete instance of a partially conforming
finite element space V̂h. The procedure described below constructs both the true
DOF identity I and the slave interpolation W submatrices of P . The first step is to
determine the master-slave relations of non-conforming edges and faces. Recursive
algorithms for that are described later, in Section 5.6. Here we will assume that we
are given lists of master edges and faces and their associated slaves that are produced
by these algorithms.

For each slave entity sk, the position of its vertices within the reference domain of
its master edge/face is known. For example, the vertices of the slave face in Figure 4.1
could have coordinates {(0.5, 0), (1, 0), (1, 0.5), (0.5, 0.5)} in the reference domain of
the master face. From these we can calculate the local interpolation matrix Qk which
expresses the slave DOFs (including DOFs on the boundary of the slave face) as linear
combinations of the DOFs of the master face (including its boundary DOFs). In the
case of nodal elements, the rows of Qk contain just the shape functions of the master
face finite element evaluated in the nodal positions of the slave face, i.e. the slave
face performs nodal interpolation of the master face finite element function. Since the
polynomial degrees of the two faces match, the interpolation is exact. Although we
primarily use nodal elements, the local interpolation matrix is not limited to nodal
elements and can be computed for any kind of finite element.

Note that sometimes a row of Qk will be of the trivial form Qk
i = (0, ..., 0, 1, 0,

..., 0), which means that the slave DOF is identical to the master DOF and may not
be constrained at all. This is the case, for example, for the node marked with “×”
in Figure 4.1. Since the matrices Qk include the boundary DOFs of the slave face,
certain dependencies will be computed multiple times — this is done to simplify the
implementation at a relatively small computational cost.

As we iterate through the local interpolation matrices Qk of all slave edges/faces,

we continuously update a global dependency matrix Dij , 1 ≤ i, j ≤ N̂ . The matrix D,

corresponding to the DOFs in V̂h, is represented as a sparse matrix and is initialized
to identity. For each Qk, we assign the local interpolation weights to Dij for each
slave DOF i that depends on a master DOF j. This allows us to identify three kinds
of rows in the dependency matrix at the end of this phase:

1. Identity rows: Di = (0, ..., 0, 1, 0, ..., 0). These represent unconstrained, true
degrees of freedom.
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Fig. 4.2. Example of indirect constraints:
e = (c + d)/2 depends on c = (a + b)/2.

Fig. 4.3. Unsolvable mesh with cyclic de-
pendencies between nodal degrees of freedom.

2. Direct slave rows: non-identity Di = (dij) with nonzero entries dij corre-
sponding only to unconstrained degrees of freedom j. These are slave degrees
of freedom directly dependent on true DOFs.

3. Indirect slave rows: the remaining non-identity rows represent slave degrees of
freedom dependent on true and/or other slave DOFs. These rows appear be-
cause we do not restrict the mesh regularity, see Figure 4.2 and the discussion
below.

Let N be the number of identity rows of the D matrix. This is the number of
true degrees of freedom and the dimension of the conforming finite element space Vh.
We initialize P as an N̂ ×N sparse matrix with identity in the N rows corresponding
to the true DOFs. To fill in the remaining rows, we introduce a Boolean vector r of
size N̂ , which keeps track of which rows in P have been resolved. If i is a true DOF,
we initialize ri = 1, otherwise we set ri = 0. We loop over the rows of D, scanning
for rows where ri = 0 and rj 6= 0 for all nonzero Dij . These rows correspond to
unresolved constrained DOFs that depend on already resolved DOFs. When such Di

is found, the (sparse) row Pi is set to

Pi =
∑
j

DijPj , (4.1)

and the resolution is marked by setting ri to one.
This procedure is iterated until all unresolved Pi are assigned a linear combination

of already known Pj . In the first sweep, all direct dependencies are resolved (e.g. the
dependence of c on a and b in Figure 4.2), which unlocks indirectly dependent slave
DOFs that are resolved in subsequent sweeps (e.g. the dependence of e on c in Figure
4.2). The number of sweeps needed is based on the longest indirect dependency in the
non-conforming mesh known as irregularity [2, 14, 10]: 1-irregular meshes have only
one level of dependency, while n-irregular meshes will require n sweeps to resolve all
rows of P . In practice, we typically have at most 3-irregular meshes, so only a few
sweeps are needed for all rows of P to be resolved.

The algorithm is only guaranteed to finish if there are no cyclic dependencies,
i.e., if the mesh is solvable. In the serial algorithm we include an explicit check: if
there are still unresolved rows i but none of them has rj 6= 0 for all nonzero Dij , we
print an error message. This never happens if the AMR process starts on an initially
conforming (regular) mesh. However, it is possible to construct a non-conforming
mesh with cyclic dependencies. Figure 4.3 shows a mesh (inspired by [10]) that is
representable by our data structure but leads to an infinite loop in the unchecked P
matrix algorithm. Note that in this case, a single level of additional refinement breaks
the cycle and makes the mesh solvable.
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5. Serial data structures. In this section we describe how we represent non-
conforming meshes and how we determine master-slave relations needed for the con-
struction of P . A high-order FEM code needs to be able to track vertices, edges and
faces and their relations to incident elements. Octree-based algorithms can derive
this connectivity from the structure of the tree itself, though on octree boundaries
the algorithms get complex (see interoctree connectivity in [7]). Since our meshes are
more general than octrees, we take a more traditional approach with explicit links
between mesh entities. A comprehensive and mathematically elegant approach is the
Sieve representation [25], storing a graph with edges connecting entities whose dimen-
sion d differs by one. However, this cell-complex representation does not generalize
naturally to non-conforming meshes [22] and stores more information than we need.

As an alternative, we merely connect each d > 0 dimensional entity to its vertices
and store the inverse mappings (from vertices back to edges and faces) as hash tables.
This simple data structure provides the mesh connectivity we need and allows us to
traverse the non-conforming interfaces. More specifically,

• edges and hanging vertices are identified by pairs of vertex indices,
• faces are identified by four vertex indices, and contain two element references,
• elements contain indices of up to 8 vertices, or indices of children if refined.

For a uniform hexahedral mesh, this representation requires about 290 bytes per
element, counting the vertices, edges, faces and their 32-bit indices, and including
the hash tables and the refinement trees. For a high-order code we believe this to be
acceptable, as a high-order mesh typically contains at least 8 times fewer elements
than a comparable low-order mesh.

5.1. Refinement trees. Since we aim for dynamic AMR capable of derefine-
ment, we need to store the refinement history. When the elements of the initial mesh
get refined, they are removed from the list of active elements and serve as roots of
refinement trees. A refined element points to its children instead of its vertices, as
shown in pseudocode in Figure 5.1. To save memory, we use 32-bit integers to identify
entities instead of pointers. An element can have fewer than 8 children if it is refined
anisotropically. We store a computed list of all leaf nodes of all refinement trees. This
list represents the current state of the mesh.

5.2. Hash maps. The mapping from vertices to other entities is done by hash ta-
bles. We illustrate this on an example shown in Figure 5.2. Assume (v1, v2, v3, v4) is a
3D face. Across this face there are three neighboring elements with faces (v1, v5, v8, v7),
(v5, v2, v3, v6) and (v7, v8, v6, v4). To access edges and faces from the incident elements,
we can call

e1 ← GetEdge(v1, v5)
e2 ← GetEdge(v5, v2)
f1 ← GetFace(v1, v5, v8, v7)
f2 ← GetFace(v5, v2, v3, v6)
...

A similar hash map exists for hanging vertices and is used to traverse non-
conforming interfaces in Section 5.6:

v5 ← GetVertex(v1, v2)
v6 ← GetVertex(v4, v3)
v7 ← GetVertex(v1, v4)
v8 ← GetVertex(v5, v6)

Each Get function searches the respective hash table and returns a 32-bit entity in-
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struct Element
bool refined
union

int vertex[8]
int child[8]

end union
int parent
int rank . see Section 6

end struct

Fig. 5.1. Data structure for both refined
and leaf elements (pseudocode).

Fig. 5.2. Example of a hexahedron face
(v1, v2, v3, v4), adjacent to three neighboring
hexahedra in a non-conforming mesh.

dex. The order of arguments is not relevant, i.e., GetVertex(v1, v2) = GetVertex(v2, v1).
We use the convention that the Get functions create the requested entity if it does not
exist. To query its existence, each GetX function has a FindX counterpart taking the
same arguments and returning nil (encoded as −1) if the entity does not exist, instead
of creating it. We make sure the hash tables are properly sized to get amortized O(1)
complexity of each query.

5.3. Refinement. To refine e.g. a hexahedron, we first create new mid-edge
vertices (or get already existing ones) by calling GetVertex(·, ·) for all 12 edges. Six
mid-face vertices are accessed through opposite mid-edge vertices; the two options
per face must be checked first with FindVertex(·, ·) to prevent creating a duplicate
mid-face vertex, in case it already exists. The mid-element vertex is accessed from
any two opposite mid-face vertices. New elements are created with indices of the new
vertices. The old element is marked as refined and its vertex indices are replaced with
indices of the child elements.

Reference counting is used to keep track of the number of elements pointing to
each vertex, edge and face. If the reference count drops to zero, the entity is deleted.

5.4. Anisotropic refinement. Our data structure allows for anisotropic refine-
ment. The challenge is maintaining consistency of the mesh when refining anisotrop-
ically. It is easy to refine adjacent elements in such a way that their faces are not
subsets or supersets of each other, so there is no way to determine a master-slave re-
lationship. This is illustrated in Figure 5.3. To resolve such a situation, the neighbor
of the element being refined has to be refined as well. Such forced refinements may
propagate, until a globally consistent mesh is obtained. We defer the treatment of
this ripple effect to a follow-up publication.

5.5. Derefinement. When derefining an element, the indices of its original ver-
tices are first retrieved from the children (since the refinement pattern is known). All
of the children need to be leaves, otherwise they are recursively derefined first. In an
inverse process to refinement, the child elements are destroyed and associated vertex,
edge and face reference counts are decremented. The coarse element is reactivated,
and the appropriate reference counts are incremented.

5.6. Calculating master-slave relations. We loop over all leaf elements and
their faces. Each face, triangular or quadrilateral, is checked if it is a master face by
invoking the function TraverseTriFace (Algorithm 1) or TraverseQuadFace (Algorithm
2). These functions attempt to recursively descend an implicit face refinement “tree”
and return a list of slave faces, if they can be reached, or an empty list if the starting
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Fig. 5.3. Anisotropic refinements may lead to an inconsistent mesh (left). Additional refine-
ments are needed to restore valid master-slave relations between faces (right).

face is conforming. The function FindVertex is used here to obtain vertices that were
created at the center of edges of previously refined elements. During descent, the
position within the master face’s reference domain is tracked by the points pi, which
are initialized to the reference domain corners (at depth = 0).

In the case of quadrilateral faces, the face refinement “tree” is traversed as a
binary tree, i.e., isotropically refined faces are treated as if refined anisotropically
twice (horizontally and then vertically relative to their reference domain, or vice
versa). The function FaceSplitType (Algorithm 3) determines which way a face is
split, again using FindVertex to look up mid-edge and mid-face vertices (refer to
Figure 5.2 for a quadrilateral face example).

Algorithm 1 List slave faces of a potential triangular master face.

1: function TraverseTriFace(v1, v2, v3, p1, p2, p3, depth)
2: v12 ← FindVertex(v1, v2), p12 ← (p1 + p2)/2
3: v23 ← FindVertex(v2, v3), p23 ← (p2 + p3)/2
4: v31 ← FindVertex(v3, v1), p31 ← (p3 + p1)/2
5: list← [ ]
6: if (v12 not nil) and (v23 not nil) and (v31 not nil) then
7: list← TraverseTriFace(v1, v12, v31, p1, p12, p31, depth+ 1) +
8: TraverseTriFace(v12, v2, v23, p12, p2, p23, depth+ 1) +
9: TraverseTriFace(v31, v23, v3, p31, p23, p3, depth+ 1) +

10: TraverseTriFace(v12, v23, v31, p12, p23, p31, depth+ 1)
11: else if depth > 0 then
12: slave← FindFace(v1, v2, v3, nil)
13: if slave not nil then
14: list← [{slave, p1, p2, p3}]
15: end if
16: end if
17: return list
18: end function

An analogous function, TraverseEdge, is employed to construct the list of master-
slave relations for edges. Edges of each leaf element are checked for slave edges by
traversing the local vertex hierarchy in a similar recursive manner.

The 2D case is treated with the same code as a degenerate case: triangular and
quadrilateral elements merely have a different number of vertices/edges in internal
geometry tables and they have zero faces, so creation and traversal of faces is skipped.

We make no assumptions regarding the level of refinement of adjacent elements.
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Algorithm 2 List slave faces of a potential quadrilateral master face.

1: function TraverseQuadFace(v1, v2, v3, v4, p1, p2, p3, p4, depth)
2: split← FaceSplitType(v1, v2, v3, v4)
3: list← [ ]
4: if split = Vertical then
5: v12 ← FindVertex(v1, v2), p12 ← (p1 + p2)/2
6: v34 ← FindVertex(v3, v4), p34 ← (p3 + p4)/2
7: list← TraverseQuadFace(v1, v12, v34, v4, p1, p12, p34, p4, depth+ 1) +
8: TraverseQuadFace(v12, v2, v3, v34, p12, p2, p3, p34, depth+ 1)
9: else if split = Horizontal then

10: v23 ← FindVertex(v2, v3), p23 ← (p2 + p3)/2
11: v41 ← FindVertex(v4, v1), p41 ← (p4 + p1)/2
12: list← TraverseQuadFace(v1, v2, v23, v41, p1, p2, p23, p41, depth+ 1) +
13: TraverseQuadFace(v41, v23, v3, v4, p41, p23, p3, p4, depth+ 1)
14: else if depth > 0 then
15: slave← FindFace(v1, v2, v3, v4)
16: list← [{slave, p1, p2, p3, p4}]
17: end if
18: return list
19: end function

Algorithm 3 Determine whether a face is split horizontally, vertically or not split.

1: function FaceSplitType(v1, v2, v3, v4)
2: v12 ← FindVertex(v1, v2)
3: v23 ← FindVertex(v2, v3)
4: v34 ← FindVertex(v3, v4)
5: v41 ← FindVertex(v4, v1)
6: midf1 ← (v12 not nil and v34 not nil) ? FindVertex(v12, v34) : nil
7: midf2 ← (v23 not nil and v41 not nil) ? FindVertex(v23, v41) : nil
8: if midf1 is nil and midf2 is nil then
9: return NotSplit

10: else
11: return (midf1 not nil) ? Vertical : Horizontal
12: end if
13: end function

The simple algorithms above work for general non-conforming 3D meshes, including
meshes with anisotropic refinements.

5.7. Element neighbors. The parallel algorithms in Section 6 require the abil-
ity to determine element neighbors. We define two elements to be neighbors if their
closed sets have a non-empty intersection, even if the intersection is just a single vertex
(i.e. we consider all of the vertex-, edge- and face-neighbors). Although algorithms
exist to determine such neighbors from the structure of the refinement tree itself, the
handling of multiple trees may become complex [7].

Instead, we employ an approach based on a Boolean matrix of element-vertex
connectivity. Let B be a Boolean matrix containing one row per element and one
column per mesh vertex. For each element, its row marks vertices that belong to
the element, including possible mid-edge and mid-face vertices of neighboring refined



12

Fig. 6.1. Parallel classes inherit from, and partially override, serial classes.

elements. The incident vertices are collected for each element by a procedure similar
to Algorithms 1 and 2. Then, if e is a Boolean vector representing the set of elements
whose neighbors we need to find, the vector e′ = BBT e will represent the original set
of elements plus all its neighbors. The BBT product is not stored, only its action is
computed on demand. To save even more memory, the obvious corner vertices of each
element are also not explicitly stored in B. The matrix is thus empty if the mesh is
conforming.

6. Parallelization. In this section we discuss parallelization of the serial AMR
algorithms and data structures described in Sections 4 and 5. Motivated by the
implementation in the MFEM finite element library [28], we propose an approach
that handles MPI parallelism as an additional layer that reuses as much of the serial
code as possible. In terms of object-oriented design, this is done by sub-classing
the serial classes to augment them with parallel logic (see Figure 6.1), occasionally
overriding small parts of the code using virtual functions.

We split the mesh into K disjoint regions (see next section), where K is the
number of MPI tasks. The partitioning is element based, i.e., each element is assigned
to one of the tasks k. The vertices, edges and faces on the boundary of each task’s
region are duplicated, so that each region can be treated as an isolated mesh and
passed to the serial part of the code. Repeating the approach from Section 3, we
assemble the stiffness matrices Âk and load vectors f̂k locally on each MPI task k, as
if the mesh was conforming and serial on each task.

Globally, we have a new, parallel finite element space Ṽh ⊃ V̂h, with Ñ = dim Ṽh >
dim V̂h = N̂ . The parallel stiffness matrix Ã consists of diagonal blocks Âk and the
parallel load vector f̃ contains the blocks f̂k. Again, the solution of the parallel system
Ãũh = f̃ would be disconnected along the interfaces of the K regions, but we can
use the same variational restriction approach to obtain a globally conforming parallel
solution. The parallel conforming prolongation matrix, still denoted P , is now of
the size Ñ ×N and conveniently handles both conforming interpolation and parallel
decomposition, by mapping from the space Vh directly to Ṽh.

In the current version of MFEM, we explicitly form the parallel triple matrix
product PTÃP using the RAP triple-matrix-product kernel from the hypre library
[20]. This kernel is highly optimized in hypre as it is used internally for the coarse-
grid operator construction in its algebraic multigrid solvers. In its next release, MFEM
will also support the direct evaluation of the action of PTÃP , without assembly, which
is more efficient for higher order elements.

6.1. Tree-based partitioning. Similarly to [18, 8, 36, 30, 7, 6], we partition
the mesh by splitting the space-filling curve (SFC) obtained by enumerating depth-
first all leaf elements of all refinement trees. We assume that the elements of the
coarse mesh are ordered as a sequence of face-neighbors, so that a globally continuous
SFC can be obtained. For ordering the coarse mesh (i.e., the refinement tree roots)
we use the Gecko library [27]. Once the coarse mesh is ordered we invoke depth-first
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state child order child state

0 (0, 1, 2, 3) (1, 0, 0, 5)
1 (0, 3, 2, 1) (0, 1, 1, 4)
2 (1, 2, 3, 0) (3, 2, 2, 7)
3 (1, 0, 3, 2) (2, 3, 3, 6)
4 (2, 3, 0, 1) (5, 4, 4, 1)
5 (2, 1, 0, 3) (4, 5, 5, 0)
6 (3, 0, 1, 2) (7, 6, 6, 3)
7 (3, 2, 1, 0) (6, 7, 7, 2)

Fig. 6.2. Ordering of subtrees to obtain
the Hilbert curve in 2D.

Fig. 6.3. Example of Z-curve (left) vs.
Hilbert curve partitioning.

traversal for the ordered and oriented roots. Orienting a root element means assigning
an initial traversal state (see below) so that SFCs of successive trees are connected.

In the case of quadrilaterals and hexahedra, the simplest traversal with a fixed
order of children at each tree node leads to the well-known Z-curve, as shown in Figure
6.3 (left). However, it turns out that simply by changing the order of visiting subtrees
at each level, the Hilbert curve can be obtained at no additional cost. The Hilbert
curve produces continuous partitions and leads to better interprocess connectivity [8]
than the Z-curve. In the simpler 2D case, each tree node can be in 8 states (4 rotations
times 2 inversions). Given a state of the root node, we descend to subtrees in the
appropriate order, passing a new state to each, according to Table 6.2. Example of
a Hilbert curve partitioning is shown in Figure 6.3 (right). The method is analogous
for hexahedra, where a tree node has 24 states. The corresponding ordering table can
be found in [8] or in our implementation [28].

Generating a continuous SFC is more difficult for triangles, prisms and in the
presence of anisotropic refinements. The Sierpinski curve is optimal for triangles
[30], but we would have to switch to triangle bisection. Prisms admit a continuous
SFC analogous to hexahedra, but not all elements can be face neighbors (only edge
neighbors). The most serious difficulty is with anisotropic refinement, which probably
prevents a continuous SFC, and generating a good leaf sequence is an open problem.

At the beginning of the computation, we assume that the mesh is small enough
to fit completely in the memory of each MPI task. Each task uses a copy of the
serial mesh and traverses its trees as described. The list of leaf elements is split into
equal sized parts and each part is assigned to one MPI task by setting the members
Element::rank. Each task thus owns a region of the mesh formed by elements of the
corresponding rank. The region may not have a minimal surface, but it should be
continuous and relatively compact due to the SFC locality.

6.2. Ghost layer. Although the serial code sees a non-overlapping decomposi-
tion of the mesh, in the spirit of [7], we internally hold the (pruned) refinement trees
on all MPI tasks. For the purpose of constructing P , we also track ghost elements
for each MPI task. A ghost element is one that is a vertex-, edge-, or face-neighbor
to an element owned by an MPI task, but is itself owned by another task. The set of
all ghost elements forms a minimal layer of elements enclosing a task’s region. This
layer needs to be kept synchronized with neighboring tasks.

On each task, elements beyond the ghost layer may not correspond to real ele-
ments, and we prune the refinements in this area immediately after partitioning the
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Fig. 6.4. A 2D mesh partitioned by the Hilbert curve between two MPI tasks. Light-gray
elements are ghost elements. White areas have been pruned and do not represent real elements.

serial mesh and identifying the ghost elements. Pruning the refinement tree means
removing (derefining) all subtrees that contain only leaves not owned by the current
task nor belonging to the ghost layer [3]. After this step, the mesh becomes fully
distributed as no single task sees all of the actual leaf elements. This is illustrated in
Figure 6.4 for two tasks in 2D.

The last type of elements we identify are parallel boundary elements. This layer
is a subset of the region owned by each MPI task formed by elements which are
vertex-, edge-, or face-neighbors to the ghost layer. The boundary elements constitute
ghost elements of one or more neighboring tasks and any change in them needs to
be communicated to the neighbors to keep all the ghost layers synchronized. For
example, if a refinement occurs in one task’s boundary layer, a message needs to
be sent to all neighboring tasks that share the elements, so they can duplicate the
refinement in their ghost layer.

6.3. Load balancing. Balancing the mesh so that each MPI task has the same
number of elements (±1 if the total number of elements is not divisible by the number
of tasks) is relatively straightforward in the context of SFC based partitioning. A par-
allel partial sum (MPI Scan) is done to determine new beginnings of the partitions in
the global sequence of leaf elements. New assignments of Element::rank within each
parallel region can then be computed. Next, the new assignments within the ghost
layers must be communicated between neighboring tasks (this is the most expensive
part). This facilitates the final step, in which elements no longer assigned to the
current task are sent to the new owners, together with a layer of ghost elements, to
ensure a valid new state of the distributed mesh. The exchange of elements ends when
each task obtains the right number of elements, which is known beforehand. After
the load balancing procedure, a pruning step is done on each task to remove branches
of the refinement tree that no longer need to be represented, i.e., subtrees that only
contain leafs beyond the ghost layer are removed.

6.4. Message encoding. The prime advantage of storing the coarse mesh (i.e.,
all refinement tree roots) on all MPI tasks is the ability to refer to any element of the
global mesh by the index of a root element and the refinement path to the element in
question. However, rather than identify elements in this way individually, we develop
an algorithm to encode a subtree of the global refinement hierarchy, since our messages
usually carry information for multiple elements at once.

Given a set of leaf elements in a local mesh, we use the member Element::parent

recursively to identify the set of trees participating in the element set and store their
indices. In each tree, we then descend along the same paths back to the leaves. At
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each node, we output an 8-bit mask indicating which subtrees contain elements from
the set. We output a zero mask to terminate the descent at leaves.

The functionality of encoding element sets is used for load balancing, but also
as a basis for encoding sets of vertices, edges, faces and their degrees of freedom,
as required in Section 6.5. A vertex, edge or face can be identified by the index of
an element in an element set, followed by the local number of the vertex/edge/face
within that element. A DOF is identified by its index within its mesh entity.

We use variable length MPI BYTE messages and try to collect as much data as
possible for communication between each pair of tasks in order to minimize the total
number of messages.

6.5. Constructing parallel P . The algorithm to build the P matrix in parallel
is more complex, but conceptually similar to the serial algorithm. We still express
slave DOF rows of P as linear combinations of other rows; however, some of them
may be located on other MPI tasks and must be communicated first.

The ghost layer allows us to determine, without communication, which vertices,
edges and faces are shared by more than one task. As we traverse the local mesh
and its ghost layer using the serial algorithms of Section 5.6, we build a list of groups
of MPI ranks, which we call communication groups. Each vertex, edge and face is
assigned a communication group index, and an owner rank. In a group, the task
with the lowest rank is defined to be the owner. We store the owner explicitly for
each mesh object, because as the next step, we modify the communication groups so
that master and slave faces and edges are grouped together. This is to ensure that
information will flow from the owners and masters to non-owners and slaves.

Next, for a concrete finite element space, we assign N̂k local degrees of freedom
on each MPI task k. These are the DOFs of all elements of the task’s region, whether
slave, master or conforming. Globally,

∑
N̂k = Ñ . Each local DOF has a unique

owner, inherited from its underlying vertex, edge or face. DOFs with a remote owner
are expected to later receive a row of the P matrix that will make them identical to
a remote true DOF.

In addition to local DOFs, we also assign Ĝk virtual DOFs within the ghost
layer (if not already marked as local), all with indices greater than N̂k. We define

vectors o, g, r of size N̂k + Ĝk, where for each DOF i: oi is the owner rank, gi is the
communication group index and ri is the resolution flag, as in Section 4.

On each task we define a local dependency matrix Dij , this time 1 ≤ i ≤ N̂k and

1 ≤ j ≤ N̂k + Ĝk, initialized to identity on the N̂k block. Reusing much of the serial
code, we again collect the slave interpolation weights Dij for each slave DOF i that

depends on master DOFs j. Note that j may now be a ghost DOF, j > N̂k. Still
without any communication, we can identify the following types of rows Di:

1. Identity rows, with oi = k. These are true DOFs that we own.

2. Identity rows, with oi 6= k. Here i is a true DOF owned by another rank.

3. Local slave rows, non-identity Di with j ≤ N̂k for all nonzero Dij . These are
slave DOFs dependent only on local DOFs.

4. Remote slave rows, non-identity Di with at least one nonzero Dij for j > N̂k.
To resolve these slave DOFs, one or more remote P rows need to be received
first.

Let Nk be the number of rows of type 1 on task k. We perform a parallel partial
sum (MPI Scan) on Nk to determine the global index N0,k of the first true DOF for
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Algorithm 4 Construct parallel P matrix.

1: function ConstructParallelP(mesh, space)

2: assign N̂k + Ĝk local DOFs
3: calculate local dependency matrix Dij and vectors oi, gi
4: Nk ← number of true DOFs owned
5: N0,k ← MPI Scan on Nk . first column of our P partition
6: ri ← 0 for all i
7: for all Nk owned true DOFs i do
8: Pi ← identity, 1 at global column N0,k + j, 0 ≤ j < Nk

9: ri ← 1
10: add Pi to outgoing messages to ranks r 6= k of group gi
11: end for
12: repeat . main outer loop
13: MPI Isend all nonempty outgoing messages
14: while MPI Iprobe for some rank r do
15: decode message from r, in particular the DOF numbers i
16: for all decoded DOFs i do
17: Pi ← row from message
18: ri ← 1
19: add Pi to outgoing messages to other ranks if needed (see text)
20: end for
21: end while
22: while exists i s.t. ri = 0 and rj 6= 0 for nonzero Dij do . inner loop
23: Pi ←

∑
j DijPj

24: ri ← 1
25: add Pi to outgoing messages to ranks r 6= k of group gi
26: end while
27: until ri = 1 for all i
28: return P
29: end function

each rank, i.e. the column partitioning of P . We then run a version of the iterative
algorithm of Section 4, wrapped in one more outer loop. The outer loop communicates
remote rows of P when there is nothing more to be done by the serial (local) inner
loop. In the first outer iteration, the inner loop resolves all DOFs that do not depend
on remote DOFs. Then we send the rows of all DOFs that have just been resolved to
neighboring tasks. The group gi of a DOF determines which ranks need to be sent its
P row. We collect the rows and send a single message per neighbor. The messages are
decoded by the recipients and the received rows, containing global column numbers,
are assigned to appropriate ghost DOFs. This unlocks (by setting the ghost DOF ri)
in the next outer iteration more DOFs that have been waiting for remote data. The
complete procedure is summarized in Algorithm 4.

Situations may occur in which a ghost layer in an MPI task does not provide
complete information on the ranks that depend on a particular master DOF. One such
setup is shown in Figure 6.5, where DOF a is owned by rank 0, and the corresponding
row Pa is needed by both rank 1 and rank 2 (e.g., to constrain DOF b owned by
rank 2). The group ga should therefore be {0, 1, 2}, but rank 0 does not see rank 2
elements—these are beyond its ghost layer. Since rank 0 sees the group {0, 1}, the
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Fig. 6.5. Message from rank 0 to rank 1 needs to be forwarded to rank 2.

message is only sent to rank 1. However, rank 1 sees the correct group, and so it
forwards the message to rank 2. This is accomplished by line 19 of Algorithm 4,
which compares the sender’s version of the group (encoded in the message) with
the recipient’s own view, and the message is sent to the missing ranks. To prevent
infinite loops, a message is only allowed to be forwarded once. Testing shows that the
number of rows that need forwarding is rarely more than 1%, typically in cases where
the number of elements per task is small.

7. Numerical results. In this section we present numerical experiments that
illustrate the performance of our unstructured AMR algorithms in practice. The
results were obtained with the open-source implementation of the proposed methods
in the MFEM finite element library [28].

7.1. Model problems. As a first test, we solve a standard AMR benchmark
problem with a known exact solution, described in [31]. The goal is to reveal potential
errors in the prolongation matrix algorithm by checking the behavior of the conver-
gence curves. We also examine the benefit of AMR compared to uniform refinement.

The problem is the Poisson’s equation −∆u = f on the unit square Ω = (0, 1)2

with a Dirichlet boundary condition. The right hand side f is chosen so that the
exact solution is

u(x, y) = arctan
(
α
(√

(x− xc)2 + (y − yc)2 − r
))

. (7.1)

The solution has a sharp circular wave front of radius r centered at (xc, yc), as shown in
Figure 7.1 (left). The parameters are α = 200, (xc, yc) = (−0.05,−0.05) and r = 0.7.
We start with a mesh consisting of 4 × 4 squares and use nodal finite elements of
degree p = 1, 2, 4, 8 (a subspace of H1) to discretize the problem. We then perform
an adaptation loop consisting of the following steps:

1. Solve the problem on the current mesh to get an approximate solution uh.
2. For each element Ki, integrate the energy norm of the exact error,

ei = ||uh − u||E,Ki
. (7.2)

3. Record the total error e = (
∑

i e
2
i )1/2 and the current number of DOFs.

4. Refine elements for which ej > 0.7 maxi{ei}.

The errors must be calculated with a sufficiently high order integration rule (we
used a rule accurate for order 30), especially in the first few iterations. Figure 7.1
(center) shows the mesh after 11 iterations. The convergence curves are graphed for
p = 1, 2, 4, 8 in Figure 7.2 (left; solid lines). We observe that the convergence histories
exhibit the expected behavior.

For comparison with a previous (non-AMR) version of our code, we also plot
convergence curves for the case of uniform refinement, meaning we refine all elements
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Fig. 7.1. 2D benchmark problem for finite element order p=2: solution (left), isotropic AMR
mesh at 2197 DOFs (center), anisotropic AMR mesh at 1317 DOFs (right).
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Fig. 7.2. Convergence history for the 2D benchmark: isotropic refinement (left) and anisotropic
refinement (right). The horizontal axis shows the square root of the number of DOFs, to make it
proportional to 1/h of the mesh.

in Step 4 above in order to avoid hanging nodes. As expected, the benefit of local
refinement is substantial. Moreover, the benefit appears greater for higher order
discretization. For completeness, we also include the best available result for the
problem (according to [31], strategy REFSOLN ELEM), obtained with hp-FEM, a
method that adapts both the element size h and the element order p (the exact
method used is described in [12]).

Anisotropic Refinement. Since our discretization supports anisotropic refinement,
we test the same problem again and enable splitting quadrilaterals along one axis only,
depending on the shape of the error. Assuming element Ki is selected for refinement
in Step 4 based on its error ei, we project and scale the error gradient along each
transformed reference space axis of the element, and integrate the following anisotropic
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error indicators:

aj =

∫
Ki

(
J (j) · ∇(uh − u)

)2
dx, (7.3)

where J (j) denotes the j-th column of the element transformation Jacobian. We
then define the threshold τa = 0.6/dim

∑
aj , and mark Ki for refinement in its j-th

reference axis if aj > τa. Figure 7.1 (right) shows the anisotropically refined mesh
after 12 iterations, and the convergence is compared to both isotropic and uniform
refinement in Figure 7.2 (right). Even though the wave front in the solution is not
really aligned with the mesh, many elements could still be refined in one direction
only, which saved up to 48% DOFs in this problem.

3D Benchmark. Since our focus is 3D AMR, we present a straightforward gener-
alization of the benchmark problem into 3D. This time, the right hand side is designed
for the exact solution (shown in Figure 7.3, left) to be

u(x, y, z) = arctan
(
α
(√

(x− xc)2 + (y − yc)2 + (z − zc)2 − r
))

, (7.4)

with similar parameters, α = 200, (xc, yc, zc) = (−0.05,−0.05,−0.05) and r = 0.7.
We start with a mesh of 4× 4× 4 hexahedra of degree p and execute the same AMR
loop as in 2D, for both isotropic and anisotropic refinement.

Figure 7.3 shows the isotropic and anisotropic meshes after 12 and 14 iterations,
respectively. Figure 7.4 plots the convergence histories of uniform refinement, isotropic
AMR and anisotropic AMR. We obtain very similar behavior as in the 2D case. The
convergence curves are smooth and do not reveal any irregularities. The 3D version
of the problem benefits even more from anisotropic refinement: more than 80% DOFs
are saved for p=4. Even a slight anisotropy in the solution means that elements with
edge length ratios of 1:2, 1:4, or more, can be used.

Curved Meshes. One of our target applications is high-order Lagrangian hydro-
dynamics, where it is routine to use high-order (curvilinear) meshes. In MFEM, the
mesh curvature is handled simply by maintaining a vector-valued finite element func-
tion that represents the physical position of all nodes and, in turn, of any point within
the mesh. The associated finite element space is a subspace of (H1)dim, has its own
conforming prolongation matrix to keep the curvature continuous, and does not need
to coincide with the solution space. When the mesh is refined, the curvature function
is interpolated from the original space to the finer space. We use a version of the
anisotropic 3D benchmark problem to test this functionality on a spherical domain,
as illustrated in Figure 7.5.

7.2. Parallel scalability. To demonstrate the parallel scalability of our algo-
rithms, we designed a test to put as much stress on the AMR infrastructure as possible.
We choose the simple Poisson problem again and fix the element order to p = 2. This
is the lowest order that has both edge and face DOFs and where the stiffness matrix
is still cheap to assemble. We also omit the linear solver and instead only perform
nodal interpolation of the exact solution. This exposes the following components of
the AMR iteration:

• constructing the P matrix,
• assembling the parallel AMR system (using hypre’s RAP function),
• refining elements and synchronizing ghost layers,
• load balancing the whole mesh at the end of the iteration.
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Fig. 7.3. 3D benchmark problem for order p=1: solution (left), isotropic AMR mesh at 12303
DOFs, error 5.142 (center), anisotropic AMR mesh at 5091 DOFs, error 4.999 (right).

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  50  100  150  200  250  300

A
pp

ro
xi

m
at

io
n 

er
ro

r 
(H

1 
se

m
in

or
m

)

Cube root of the number of unknowns

Isotropic AMR vs. uniform refinement

order 1 uniform
order 2 uniform
order 4 uniform

order 1 AMR
order 2 AMR
order 4 AMR

 0  50  100  150  200  250  300
 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

Cube root of the number of unknowns

Anisotropic AMR vs. uniform refinement

order 1 uniform
order 2 uniform
order 4 uniform

order 1 AMR
order 2 AMR
order 4 AMR

Fig. 7.4. Convergence history for the 3D benchmark: isotropic refinement (left) and anisotropic
refinement (right). The horizontal axis is again normalized to correspond to average 1/h of the mesh.

For the exact solution, we reuse the 3D “wave front” function from the previous
section. To make the problem larger, we sum two of the functions with radii 0.2 and
0.4, and center both at (xc, yc, zc) = (0.5, 0.5, 0.5). The gradient is also steeper with
α = 400. We initialize the mesh to 323 hexahedra and repeat the following steps,
measuring their wall clock times (averaged over all MPI ranks):

1. Construct the finite element space for the current mesh (create the P matrix).
2. Assemble locally the stiffness matrix A and right hand side b.
3. Form the products PTAP , PT b.
4. Eliminate Dirichlet boundary conditions from the parallel system.
5. Project the exact solution u to uh by nodal interpolation.
6. Integrate the exact error ei = ||uh − u||E,Ki

on each element.
7. Refine elements with ej > 0.9 max{ei}. Synchronize ghost layers.
8. Load balance so each process has the same number of elements (±1): redis-

tribute elements and synchronize ghost layers again.
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Fig. 7.5. AMR test on a spherical domain
approximated by a degree 4 curvature function.

Fig. 7.6. One octant of the parallel scaling
test mesh. Partitioning by the Hilbert curve is
illustrated (2048 domains shown).

Figure 7.6 shows 1/8 of the mesh after several iterations of this AMR loop on
16384 MPI tasks. The colors represent MPI rank assignment.

Out of the approximately 100 iterations of the AMR loop, we select 8 iterations
that have approximately 0.5, 1, 2, 4, 8, 16, 32 and 64 million elements in the mesh at
the beginning of the iteration and plot their times as if they were 8 independent prob-
lems. This is possible because the sequence of meshes is always the same, regardless
of the number of CPU cores used. We run from 64 to 393216 (384K) cores on LLNL’s
Vulcan BG/Q machine. Starting with 65536 cores, there are fewer elements in the
initial mesh than parallel tasks, but this is not a problem in our implementation.

Figure 7.7 shows the total times for the selected iterations. The solid lines show
strong scaling, i.e. we follow the same AMR iteration and its total time as the number
of cores doubles. The dashed lines skip to a twice larger problem when doubling the
number of cores, showing weak scaling, which should ideally be horizontal.

Figure 7.8 is a partial break-down of the total iteration time, showing individual
scaling of dominant components of the iteration: P matrix construction, local as-
sembly, RAP triple product, element refinement and load balancing. Local assembly
scales perfectly because it contains no communication and the mesh is always per-
fectly balanced. The remaining steps do communicate, and so scale with different
degrees of success, the worst being refinement and load balancing. Fortunately, these
steps take relatively little time compared to the total iteration time, even in this syn-
thetic benchmark containing no physics and solvers. Moreover, the load balancing
time should be well worth the perfect scaling of the no-communication parts.

The last graph in Figure 7.8 shows the weak scaling of two memory measurements.
The first is the maximum RSS (resident set size) obtained for each MPI process with
getrusage(). This is the high watermark of the RAM allocated for the process by
the operating system. The second measurement is the total memory (in MB) used by
the non-conforming mesh data structure only. This is the more difficult of the two
tests, as this particular data structure stores the ghost elements and other support
data that the rest of the code does not see and that could potentially scale badly. For
both measurements, the maximum over all MPI ranks is shown. The four curves in
each set correspond to the top four weak scaling curves in Figure 7.7. The remaining
weak scaling curves, as well as the strong scaling curves, are not shown here.

Finally, to test support for more than 232 DOFs, we let the problem run on 128K
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Fig. 7.7. Overall parallel scaling for selected iterations of the AMR loop.

cores with no limit on the number of iterations, until the available RAM was exhausted
(1GB per process in this case). Execution stopped after 131 iterations when the mesh
contained 1.94 · 109 elements, corresponding to 14.8 · 109 unknowns.

7.3. Dynamic AMR in Lagrangian hydrodynamics code. In this section
we show that variational restriction-based AMR can be remarkably unintrusive when
it comes to integration in a real finite element application code. For a demonstra-
tion, we chose the open-source high-order hydrodynamics solver Laghos [26], which
simulates the time-dependent Euler equations of compressible gas dynamics in a La-
grangian frame, using high-order finite element spatial discretization and explicit high-
order time-stepping. The full numerical method for Laghos is described in [16]. Here
we only briefly mention that the simulation state consists of material position x(t),
velocity field v(t) and internal energy e(t) defined over the initial domain Ω(t0). Kine-
matic quantities (position, velocity) are discretized by order p continuous elements,
and thermodynamic quantities (energy) are discretized by order (p−1) discontinuous
elements. The discretized material position x(t) corresponds directly to the mesh
curvature function, i.e., the mesh moves and deforms together with the material. The
gas density ρ(t) can be calculated at any time from the deformation x(t) and is not
part of the simulation state.

To obtain the change in velocity at each time step, Laghos solves the linear system

M
dv

dt
= f, (7.5)

where M is the kinematic mass matrix and f contains forces that depend on x(t), e(t)
and the equation of state. To handle domain decomposition in a parallel computation,
the system solved is really

PTMPy = PT f,
dv

dt
= Py, (7.6)

where the prolongation matrix P assembles contributions from shared degrees of
freedom on parallel task boundaries (note that the product PTMP may never get
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Fig. 7.8. Scaling of individual AMR loop steps, and memory weak scaling. Top row: P matrix
construction, local assembly. Middle row: RAP triple product step, element refinement. Bottom
row: load balancing step, memory weak scaling.

evaluated explicitly in the actual implementation). Since Laghos is already using
variational restriction for domain decomposition, running the simulation on a parallel
non-conforming mesh amounts to switching the P matrix to the one constructed in
Section 6.5. The only minor issue is the order of elimination of essential boundary
conditions, as discussed at the end of Section 3.

Our first experiment is running the 2D multi-material shock triple-point test
problem (also described in [16]) on a static non-conforming mesh, meaning the initial
mesh is already refined and does not change during the simulation. Based on a
previous run on a coarse mesh, we anisotropically refine elements in the three material
subdomains of the initial mesh in an attempt to counter the deformations the elements
will undergo, thus improving the size of the CFL-limited time step. The initial and
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Fig. 7.9. Static refinement in the triple-point problem. Initial mesh at t = 0 (background)
refined anisotropically in order to obtain more regular element shapes at target time (foreground).

target meshes are shown in Figure 7.9. We observe that some element deformations
(diagonal compression) cannot be countered in this way, but we conclude that the
code is capable of running on an arbitrarily refined non-conforming mesh practically
out-of-the-box.

For the second experiment, we modified the Laghos code to allow for dynamic
AMR that changes the mesh during the simulation, both via refinement and derefine-
ment. Changing the mesh entails interpolating the state functions on the new mesh
and reassembling both the kinematic and thermodynamic mass matrices (which are
normally constant). After each mesh change we also load balance the mesh immedi-
ately (see Section 6.3). The state vectors are migrated together with the mesh using
a parallel Boolean matrix constructed for each finite element space as part of the load
balancing operation.

Since devising a general AMR strategy for Lagrangian shock hydrodynamics is
beyond the scope of this paper, for the purpose of this demonstration we employ simple
refinement and derefinement rules tailored specifically for the well known Sedov blast
problem [16, 34]. Specifically, we look at the artificial viscosity coefficient to detect
the presence of shock discontinuity and trigger refinement to a predefined maximum
level in the undisturbed region of the mesh (v = 0) in front of the shock. In the
post-shock region (nonzero v) we derefine a group of eight elements whenever their
maximum densities are below a threshold defined as τ = 0.7 max{ρ(x, t)}, x ∈ Ω. The
initial mesh is the unit cube refined 5 times towards the origin, i.e., the corner where
all internal energy is deposited at time t = 0. This corner is never derefined. For
better stability, we also enforce 1-irregularity of the mesh at all times.

With these rules we obtain a dynamic AMR computation where the maximum
refinement follows the shock, but the remaining areas are resolved with larger elements
(see Figure 7.10). This AMR-enabled version of Laghos is publicly available in [26]
and contains about 550 new lines of code. In contrast, obtaining these types of AMR
results in similar codes has required multiple man-years of software development in
the past.

8. Conclusions and future work. In this paper we presented a highly scalable
approach to unstructured non-conforming adaptive mesh refinement that is easy to
integrate in applications. The variational restriction approach clearly separates the
finite element assembly from the influence of the non-conforming space. The conform-
ing interpolation algorithm handles a large class of triangular, quadrilateral, prismatic
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Fig. 7.10. Dynamic refinement/derefinement in the 3D Sedov blast problem. Mesh and density
shown at t = 0.0072 (left), t = 0.092 (center) and t = 0.48 (right). Q3Q2 elements (p = 3 kinematic,
p = 2 thermodynamic quantities).

and hexahedral meshes and can be used to construct arbitrary high order finite ele-
ment discretizations in H1, H(curl) and H(div), as demonstrated in examples in this
paper and in the freely available implementation in the MFEM library [28].

Uniquely, our approach allows anisotropic refinement and supports arbitrarily ir-
regular meshes, which to the best of our knowledge has not been done previously
for continuous Galerkin hexahedral elements. Compared to purely octree-based algo-
rithms, we sacrifice some memory and runtime efficiency for generality (e.g., octrees
only admit isotropic refinement). In the future, we plan to extend the method to 4D
hypercubes and perform independent space and time adaptation, for which anisotropic
refinement is crucial. We see this work as a first step towards that goal.

Reproducibility. Implementation of the described methods is available as open
source software [28]. The model problems in Sections 7.1 and 7.2 are similar to
Example 6p in MFEM. The dynamic refinement Sedov blast problem is available
verbatim in the amr subdirectory of the Laghos miniapp [26].
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