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Sandia’s perspective on biofuel production

Spark Ignition Fuels

F
c Compression
fBiochemica? Ignition Fuels
Conversion
s

Nutrient

Recycling
\. Y,

Corn DDGS
e R

Waste Cooking Oil

84|
Q
Z
/
—
Q
)]
9
M

SANDIA

ories



Sandia’s perspective on biofuel production

(High performance fuel A

products can strengthen the
\value proposition of biofuels)

Biomass Production

Conversion to
Fuel Products

A
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Our goal: a robust, feedstock agnostic
bioconversion process to utilize this biomass

Corn DDGS Waste Cooking Oil

Lignocellulosic Biomass Algae ~
q ~ T “ 4~ ]
Mixed fusel . . .
/ E. coli BLF2 \ Algae or alcohols High Quality Oils
central keto acid ) Comn DDGS T — 0O~ cn,
carbohydrate —» _ metabolism, _pathways | _ |, C4 & C5 Hydrolysates e~~~
P DAP TP | alcohols l’ ot
‘ ) + ’
fe S (=3
rtra saE T:YZeloacid ‘p LOW Quality oilS
protein —-»f deamination, —_pathways . ‘__) C4 &C5 =
| DT> (I~UZ ‘ alcohols 2 2
/ OH
SN VL 4 . . !
Mixed Fusel Alcohols Mixed Oils
= CH>—-OOC-R, Sl R;—COO-R CH>—OH
Q I Lipase
< Z CH-OOC-R> + 3ROH T > R,—COO-R + CH-OH
—
Q 8 CH>—OOC—R3 R3—-COO-R CH>—OH
N Mixed Oils Mixed Fusel Fatty Acid Glycerol
Z @) Alcohols Fusel Esters -
< =




SANDIA

84|
Q
Z
/
—
Q
)]
9
M

Our goal: a robust, feedstock agnostic
bioconversion process to utilize this biomass

Corn DDGS Waste Cooking Oil
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ri
Development of E. coli strains for protein

conversion and carbohydrate conversion to

fusel alcohols in co-culture system
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Fusel alcohols production from DGS
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- The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the
highest total fuel titer of up to 10.3 g/L from DGS hydrolysates.
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Fusel alcohols production from DGS

18 - 3.4%

e

16.3%

25.3% o
27.3% 3139

Protein concentration (g/L)

0 T
DGS BLF2 1:0.5 11 1315 1:2 AY3

hydrolysates
Inoculation ratio of BLF2 and AY3

- Up to 31.3% of the initial 17.5 g/L proteins in the DGS hydrolysates were converted by
the co-culture with an inoculation ratio of 1:1.5
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Fusel alcohols production from
Nannochloropsis sp. algae hydrolysates

| m2-methyl-1-butanal
7 ®3-methyl-1-butanal
| mphenylethanol

= ethanol

4 Wisobutanol
® total fusel alcohols

Concentration (g/L)
(] = 3] (FI) - %] o | o ¥ ]

BLF2  1:05 1:1 1:1.5 1:2 1:4 1:6 1:8 1:10  AY3
Inoculation ratio of BLF2 and AY3

- The composition of the fusel alcohols products from algae hydrolysates included
isobutanol (40.3% (w/w)) and mixed isopentanols (2-methyl-1-butanol and 3-methyl-1-
butanol (37.3% (w/w)), indicating significant enrichment of the C5 alcohols compared to
the product spectrum produced from DGS, where isobutanol was the major product
(63.1% (w/w))
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Fusel alcohols production from
Nannochloropsis sp. algae hydrolysates
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- Upto 32.4% of the initial 38.7 g/L proteins in the algae hydrolysates were converted by
the co-culture with an inoculation ratio of 1:4
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Growth dynamics of individual populations in
the co-culture
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- In both of the hydrolysates, the cell number of the two strains continuously increased until
reaching plateau, which indicated that despite the growth rate difference between the two
strains, the co-culturing didn’t adversely affect the growth of each strain.

- The final cell numbers of AY3 in the co-cultures at proper inoculation ratios of BLF2/AY3
were no less than the cell number of AY3 monoculture in the hydrolysates.




' Fusel Alcohols as a platform for a
diverse suite of high performance fuels
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Our goal: a robust, feedstock agnostic
bioconversion process to utilize this biomass

Corn DDGS Waste Cooking Oil
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Fatty Acid Fusel Esters
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Understanding what makes a biofuel good

| Evaluating a fuel is about more than just combustion |

Cetane >50 46 to 50 40 to 45 <40
LHV (MJ/Kg) >40 31to040 2510 30 <25
Flash Point (-C) >70 61to 70 52 to 50 <52
Melting Point (-C) <-50 -50 to -26 -251t00 >0
Water Solubility <5 5 to 501 500 to 1000 >1000
(mg/L)

YSI <50 50 to 151 150 to 200 >200

INCREASING CETANE NUMBER (CN) AND STABILITY

Canola
Sunflower
Soybean
Peanut
Coconut

Safflower

Cottonseed
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FAFEs as high performance compression
ignition fuels

. FAFE 50/25/25 having a 4.8 higher DCN than FAME, while FAFE
75/12.5/12.5 was not significantly different than FAME.

. FAFE 50/25/25 and FAFE 75/12.5/12.5 demonstrating a 4 °C and
6 °C lower no-flow point respectively when compared to FAME.
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Is the loop closed and what biomass is going
where?

Upgrading

(consolidated EtOAc
extraction)

Algae S — Carbohydrate Protein
biomass Fermentation Fermentation

32.59 protein

39g protein

349 carb 30.69 sugars

8g lipid .

199 other organics Biomass HTL
100g basis (AFDW) solids

199 other organics

8.69g biocrude

High yields from consortium fermentations
Titers > 10 g/L
TEA Modeling underway




Bioprocessing of biomass-derived diverse
carbon substrates into D-lactate by a
substrate promiscuous bacterium

Metabolic Engineering strategy
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Bioprocessing of biomass-derived diverse
carbon substrates into D-lactate by a
substrate promiscuous bacterium
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Bioprocessing of biomass-derived diverse
carbon substrates into D-lactate by a
substrate promiscuous bacterium

Batch and Fed batch studies on D- lactate production
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D-lactic acid production from DMR hydrolysate

D-lactic acid production from Glucose | ‘

14 10
16 10 12 = =
14 + = 2 10 37 ® 8

o 8 8 s @ )
g 1 8 S3 g 2+ 6 =
g 510 [ S B > z
G = 6 = "6 x G
SBg z 'R gt 4 &
[ a P-ap 8 [=]
<26 4 < T o4 S =
] 2 t & s _
P Q < 212 9
© 9, = 82 (C) 9
82 2 3 a
- 2 (U T ¥ T T ? 0
a 0Q A = - - i . 6 0 0 24 48 72 96 120 144 168 192

0 24 48 72 9% 120 144 168 192 216 Time (h)

Time (h) ~— D-lactate (g/L) 9 Acetate (g/L) —e&—Succinate (g/L)
~4—D-lactate (g/L) A Acetate (g/L) —e—Succinate (g/L) —@—Cell Density —o—Glucose (g/L) —e—Xylose (g/L)
~@- Cell Density —o—Glucose (g/L)

Conditions: Anaerobic, batch, pH 7, SSL09, DMR

Conditions: Anaerobic, fed-batch: 40 g/L (0 h) + 30 e

g/L (72 h), pH 7, SSLO2, BTM2

Aromatics utilization ‘

3
- » Demonstrated the conversion of diverse biomass
substrate to D-lactate, a bioplastic precursor of PDLA,
S 80 b in an industrial bacteria C. glutamicum.
E - # Effective utilization of coumaric acid demonstrated by
84 < U-13C  fingerprinting  demonstrates  promising
Q % 40 5 perspectives for hignin utilization
< Z » Prodoction. of Dlichte fron hydwlyste i C
— g ® glutamicum opens the possibility of production of
D B Yo other chemicals.
Z N 0 224 4 T2 9% 120 144 168
< 9 ~o—4-Hydroxybenzoic acid (mg/L) Tlmf’(l\ 3Ianillic acid (mg/L)
m 9 Coumaric acid (mg/L) ~o—Ferulicacid (mg/L)
m —e—Vanillin (mg/L) —e—Benzoicadd (mg/L)




The Lactate and Fusel Alcohol Platform
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~ The Lactate and Fusel Alcohols platform for a
diverse suite of high performance fuels

Spark Ignition Fuels
Jl\ilil Ethers .

Compression Ignition
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' The Lactate and Fusel Alcohols platform for a
diverse suite of high performance fuels

Chemical Structure LHV Flash Pt
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Conclusions

« A key bottleneck for large-scale biofuel feasibility is sustainable growth of high
productivity biomass, which often means high protein and carbohydrate fractions.

« We have developed a proof of concept “one-pot bioconversion” with engineered
E. coliand C. glutamicum for efficient production of mixed fusel alcohols and D-
lactate from a wide variety of biomass sources, respectively.

« These fusel alcohols show promise as drop in fuels or as blending agents with
gasoline for Sl engines with properties comparable or better than ethanol.

« Fusel alcohols and lactate can further be upgraded to other high performance
fuel compounds or reacted with residual lipids to utilize all major biochemical
components of the biomass and “close the loop” allow for tunablity to different
engine architectures.

* Fusel alcohols and lactic acid represent one example of this, but
the co-optima effort has identified a variety of biofuel molecules
that each have slightly unique value propositions as industrial
fuels.
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