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Sandia's perspective on biofuel production
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Sandia's perspective on biofuel production

Biomass Production

Conversion to
Fuel Products

What can we grow?

High performance fuel
products can strengthen the
value proposition of biofuels

1
Co-optimization of
Fuels and Engines

What is the best fuel?
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Our goal: a robust, feedstock agnostic
bioconversion process to utilize this biomass
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Development of E. coli strains for protein
conversion and carbohydrate conversion to,

6 fusel alcohols in co-culture system
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Fusel alcohols production from DGS
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Inoculation ratio of BLF2 and AY3
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- The co-culture with an inoculation ratio of 1:1.5 of E. coli BLF2 and AY3 achieved the
highest total fuel titer of up to 10.3 g/L from DGS hydrolysates.
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Fusel alcohols production from DGS

3.4%

25.3%
T 27.3% 2%26

*31.3%   

16.3%

DGS BLF2 1:0.5 1:1 1:1.5 1:2 AY3
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- Up to 31.3% of the initial 17.5 g/L proteins in the DGS hydrolysates were converted by
the co-culture with an inoculation ratio of 1:1.5
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Fusel alcohols production from
Nannochloropsis sp. algae hydrolysates
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- The composition of the fusel alcohols products from algae hydrolysates included
isobutanol (40.3% (w/w)) and mixed isopentanols (2-methyl-1-butanol and 3-methyl-1-
butanol (37.3% (w/w)), indicating significant enrichment of the C5 alcohols compared to
the product spectrum produced from DGS, where isobutanol was the major product
(63.1% (w/w))
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Fusel alcohols production from
Nannochloropsis sp. algae hydrolysates
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- Up to 32.4% of the initial 38.7 g/L proteins in the algae hydrolysates were converted by
the co-culture with an inoculation ratio of 1:4
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Growth dynamics of individual populations in
the co-culture
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In both of the hydrolysates, the cell number of the two strains continuously increased until
reaching plateau, which indicated that despite the growth rate difference between the two
strains, the co-culturing didn't adversely affect the growth of each strain.

The final cell numbers of AY3 in the co-cultures at proper inoculation ratios of BLF2/AY3
were no less than the cell number of AY3 monoculture in the hydrolysates.



livA Fusel Alcohols as a platform for a
diverse suite of high performance fuels
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Our goal: a robust, feedstock agnostic
bioconversion process to utilize this biomass
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C)

Understanding what makes a biofuel good

Evaluating a fuel is about more than just combustion
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FAFEs as high performance compression
ignition fuels

•

•

FAFE 50/25/25 having a 4.8 higher DCN than FAME, while FAFE

75/12.5/12.5 was not significantly different than FAME.

FAFE 50/25/25 and FAFE 75/12.5/12.5 demonstrating a 4 °C and

6 °C lower no-flow point respectively when compared to FAME.
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Is the loop closed and what biomass is going
where?
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Bioprocessing of biomass-derived diverse
carbon substrates into D-lactate by a
substrate promiscuous bacterium
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Bioprocessing of biomass-derived diverse
carbon substrates into D-lactate by a
substrate promiscuous bacterium
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Bioprocessing of biomass-derived diverse
carbon substrates into D-lactate by a
substrate promiscuous bacterium

Batch and Fed batch studies on D- lactate production
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D-lactic acid production from DMR hydrolysate
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The Lactate and Fusel Alcohol Platform
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II The Lactate and Fusel Alcohols platform for a
diverse suite of high performance fuels
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The Lactate and Fusel Alcohols platform for a
diverse suite of high performance fuels
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Conclusions

• A key bottleneck for large-scale biofuel feasibility is sustainable growth of high
productivity biomass, which often means high protein and carbohydrate fractions.

• We have developed a proof of concept "one-pot bioconversion" with engineered
E. coli and C. glutamicum for efficient production of mixed fusel alcohols and D-
lactate from a wide variety of biomass sources, respectively.

• These fusel alcohols show promise as drop in fuels or as blending agents with
gasoline for SI engines with properties comparable or better than ethanol.

• Fusel alcohols and lactate can further be upgraded to other high performance
fuel compounds or reacted with residual lipids to utilize all major biochemical
components of the biomass and "close the loop" allow for tunablity to different
engine architectures.

• Fusel alcohols and lactic acid represent one example of this, but
the co-optima effort has identified a variety of biofuel molecules
that each have slightly unique value propositions as industrial
fuels. CI Sandia National bboratories



Acknowledgments

• Ryan W. Davis (Sandia)
• Anthe George (Sandia)
• Eric Monroe (Sandia)
• Joseph Carlson (Sandia)
• Robert McCormick (NREL)
• Fang Liu (Sandia)
• Alexander Landera (Sandia)
• Amit Jha (Sandia)
• Mysha Sarwar (Sandia)

• John Gladden (Sandia, JBEI)
• Mary Tran (Sandia)

Co-Optimization of

Fuels & Engines

This research was conducted as part of the Co-Optimization of Fuels & Engines (Co-Optima) project
sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable
Energy (EERE), Bioenergy Technologies and Vehicle Technologies Offices. Sandia National
Laboratories is a multi-mission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for
the U.S. Department of Energy's National Nuclear Security Administration under contract DE-
NA0003525.

U.S. DEPARTMENT OF Energy Efficiency &
ENERGY Renewable Energy

AB PDU
ADVANCED BIOFUELS
PROCESS DEMONSTRATION UNIT

0 Sandia National bboratories



Exceptional service in the national
interest


