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2 Deep Borehole Disposal

Waste is emplaced deep in competent rock

-Hydrologically isolated, with density stratification, and geochemically reducing conditions

Minimal reliance on engineered barriers (waste package, seals)

Overburden

Waste
Package



3 Performance Assessment
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•Coupled heat and fluid flow
•Waste package degradation
•Waste form dissolution•
•Radioactive decay and ingrowth
•Solubility, sorption
•Advection, dispersion, diffusion
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4 Geologic Disposal Safety Assessment (GDSA) Framework
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• WF degradation
• WP degradation
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• Advection, diffusion, dspersion
• Discrete fracture networks
• Sorption, solubility, colloids
• isotope partitioning
• Decay, ingrowth
• Thermal effects
• Chemical reactions
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5 Generic DBD Concept — Two Scenarios
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6 Previous Work: Nominal Scenario

Simulate to 10 My

100 realizations

•30 m above emplacement
zone, essentially no increase
above initial concentration

Max [Cs-135] in the Seal
Zone is sensitive to

Breach Time (Ili)

• Permeability (ii)

• Porosity (il,)

3466 albs

SZ

4466 MI bs

EZ

socio mbs

6004 mbs

DRZ

Ballast

SZ cement plug

- Bentonite seal

Sr waste packages

EZ cement plug

Cs waste packages

Em placement flu id

500x horizontal exaggeration

G. FREEZE, E. STEIN, L. PRICE, R. MACKINNON, and J. TILLMAN (2016).
Deep Borehole Disposal Safety Analysis. SAND2016-10949. Sandia
National Laboratories, Albuquerque, NM.
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7 Inventory and Waste Form
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8 I Engineered Barrier System: Emplacement Zone

• 73 of 74 CsCI waste packages
Diameter = 19.1 cm (7.5 in)

Length = 4.76 m

Breach time = 1-100 y

k = 10-16 m2, (I) = 0.5

No sorption (Kd = 0)
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• Annulus
Diameter = 31.1 cm (12.25 in)

Contains:

Perforated steel casing (not simulated)

Brine (k = 10-14 m2, 0 = 0.99)

Cement plug above 40th waste package
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9 Engineered Barrier System: Seal Zone

• Injected Cement
1900 m long

- k = 10-16 - 10-14 m2

(I) = 0.25

No sorption (Kd = 0)
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Natural Barrier System

• Undifferentiated Sediments
- k = 10-15 m2, (I) = 0.20

• Crystalline Host Rock
- Sparsely fractured

- Bulk k = 10-18 m2, (131= 0.005

• Disturbed Rock Zone (DRZ)
Thickness = borehole radius

Bulk k = 10-18 - 10-15 m2

cm.Lui ZUI
15 m thick

30° dip

Bulk k = 10-17 - 10-14 m2

• Regional Head Gradient
0.0001 m/m

500x horiz.

Cement plug

Stuck waste package

■

Fracture zone

No horizontal exaggeration



11 Sampled Variable Distributions
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I12 [Cs- i 35] at 10 My —Two Deterministic Simulations
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13 I 200 Realizations — [Cs-I35] in Cement Plug
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14 I 200 Realizations — [Cs-I35] in Fracture
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1 5 Scatter Plots - [Cs- I 35] vs. Influential Input Variables
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1 6 Partial and Partial Rank Correlation Coefficients
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17 I Conclusions

Uncertainties affecting radionuclide mobilization and transport are propagated through
200 realizations of a subsurface flow and transport model to quantify uncertainties in
predicted radionuclide concentrations within the borehole and the fracture zone.

•Simulations predict no radionuclide transport in the borehole at distances greater
than 100 m above the stuck waste package.

The assumed lateral pressure gradient of 0.0001 m/m leads to limited advective
transport in the transmissive fracture zone.

None of the simulations predict radionuclide transport to a lateral distance of 200 m from
the stuck waste package at times less than 106 y; fewer than half of the simulations predict
radionuclide transport to this distance by 107 y.

In both the borehole and the fracture, peak concentrations are sensitive to fracture
permeability and sorption coefficient.

These results complement previous results for the nominal scenario and contribute to the
development of a generic safety case for DBD.
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