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4 I Organic Materials

Organic materials are increasingly being used as structural materials, replacing metals and other heavy
materials

° Lightweight, easy to shape

> Reduced corrosion and fatigue

° Versatile applications

But may decompose at lower temperatures

° Pose fire and smoke risk (deflagration or smoldering)

° Structural integrity issues

Boeing 787 Dreamliner airframe is
50% Carbon fiber epoxy composites




5 | Thermogravimetric Analysis (TGA)

Goal is to analyze the safety limits and potential accident scenarios involving exposure of organic
materials to high temperatures

Can explore decomposition rates of materials at different temperatures using TGA
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Pyrolysis Models

Chemistry can be very complex in pyrolysis

Common choice: fit reduced-order mechanisms to independent components, use Arrhenius rate law
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Alternate form of Arrhenius: define characteristic temperature T such that log A =

b
RT,

Reduces parameter correlations and model non-identifiability
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s I Carbon Fiber Epoxy Composite: TGA Data and Model
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9 I Carbon Fiber Epoxy Composite: TGA Data and Model

O2
T

Choose to fit 3 major, separately identifiable reactions

One reaction 1s pyrolysis without oxygen, two reactions require oxygen

Epoxy is a proprietary component; no knowledge of major chemical decomposition mechanisms

Carbon fiber is known to oxidize mostly to completion at very high temperature, off-gas as CO/CO,
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Carbon Fiber Epoxy Composite

This gives us 12 parameters to calibrate:

° 3 activation energies
° 3 characteristic temperatures (related to log-Arrhenius factor)
° 3 reaction orders

o 2 mass fractions + 1 stoichiometric coefficient

Main approaches in literature:
o Use optimizer to target close fit between model data and TGA data
> Choose various objectives: mass, mass-derivative, combination, least-squares, least-deviations, etc...
> Choose various optimizers: Newton, quasi-Newton, genetic algorithms...

> Return best fit parameters

Challenges:
> Models of this kind are generally too simplistic to be fully trusted

> Optimization alone cannot give uncertainty estimates for each parameter from limited data/model form
error
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Embedded Error Formulation

Bayesian inference

> Given prior knowledge of parameter ranges and data set, return posterior distribution for credible parameter
values

> Considered state-of-the-art in many disciplines for statistical inference with uncertainty

Additive error formulation used in “normal” calibration:

mrGgA = mmodel(e) + €

o Parameters are random variables
o BExperimental observations are equal to model plus some experiment noise

> Given a lot of data, will eventually converge to “true” parameter values, even if noise in experiments is large

Embedded error formulation (Sargsyan et al, 2019):
MTGA — Mmodel (6)(’5)) T €

o Parameters are random distributions
o BExperimental observations are equal to random model evaluations plus some experiment noise

> Given a lot of data, will eventually converge to a distribution of parameter values, cover experimental
variation



Embedded Error Formulation

In equation:
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Assume each variable is independently Gaussian distributed with uncertain mean and uncertain

variance

Algorithm:

o Sample values for mean and variance for each parameter

> Draw many samples of realizations of the parameters from those means and variances using quasi-Monte

Carlo sampling scheme

° Hvaluate the model at each set of parameters for each set of experiments

° Evaluate mean and variance of the mass from the model over all samples

> Compute log-likelihood using above equation, comparing against all experimental data




14 1 Maximum A Posteriori Inference

Bayesian inference

p(&lmrca) ~ p(mrgal§)p(§)

Due to expense of evaluating likelihood, use MAP inference for now

" = arg mgXp(mTaA\ﬁ)p(é“)

Flat prior for the uncertain means over wide interval, Jeffreys prior for the variances

Optimize parameters using differential evolution in SciPy, initial MCMC to fine-tune values



Overall algorithm
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17 | TGA: Nitrogen
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18 | TGA: Air
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Calibrated Parameters (MAP)
Noise std dev: 2.99 x 104

m Standard Deviation | Coefficient of Variation

1.24 0.200%
E/R (x 10-3) (K) 24.7 6.25 25.2%
n 4.15 0.174 3.99%
IC 0.255 0.00806 3.16%
m
2.62 0.184%
E/R (x 103) 35.3 0.0196 0.0590%
n 1.41 ~0 ~0
IC 0.0291 5.33 x 104 1.65%
m Coefficient of Variation
T, 3870 ~0
E/R (x 10-3) 12.3 0.150
n 0.0111 0.00309

Stoich. Coeff. 0.0349 ~0 ~0



20 I Conclusions and Next Steps

Conclusions:
> Developed an embedded-error framework for calibrating general physical models with arbitrary outputs
> Demonstrated application to TGA calibration of organic composite with uncertainty in parameters

> Good coverage of experimental data despite inconsistency in experiments, crude model form

Next steps:
° Fully Bayesian treatment of parameters (in progress)
> Accelerate the optimization process (require very fine precision in parameters)
° Finite sample sensitivity of likelthood function (sampling variance of model outputs)

> Choice of data-form to calibrate against (mass vs. mass-derivative vs. combination)




