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2 Motivation

Sandia's applications span the plasma regime from
rarefied to HEDP plasma physics.

Multi-fluid plasma models simulate each species
independently and couple the species together
through collisional and electromagnetic operators.

Primarily designed for systems with fast time scales
where electron inertial effects and charge separation are
resolved.

Main drawback: Model is computational expensive
due to the necessity of resolving fast plasma scales
associated with electron dynamics and Maxwell's
equations.

Objective: Explore efficient treatments of the
multi-fluid plasma model using implicit-explicit
(IMEX) time integration and mixed discontinuous
and continuous finite element methods.
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3 EMPIRE:A hierarchy of capabilities

EMPIRE: A high-performance, multi-scale plasma physics modeling code
developed at Sandia National Laboratories for accurately simulating systems across a
wide parameter regime on next-generation exascale computing platforms.

Goal: Expand the capability for modeling electromagnetic pulse and Z-power flow
applications with high confidence and fidelity.

Features include:
• Relativistic particle-in-cell (PIC).

• Fluid-based neutral/plasma models (Euler, MHD, multi-fluid, relativistic, etc).

• Hybrid capabilities (multi-species and delta-f).

• DSMC based collision/reaction models.
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I4 Multi-fluid plasma model

Continuity Equation:

= srat

Momentum Equation:

ratta) + (Patta ® P a)

Energy Equation:

(EaI + P.) + qa)

Ampere's Law:

aCn+:aP41
a

Faraday's Law:

o

Each species a is represented by a separate density p,
momentum pu, and isotropic energy E.

—a 
Pa + uama

qa
— paua • E +
ma

Fluid

Electromagnetic

Inter-fluid

Spatial operators are discretized using a discontinuous
Galerkin finite element method.
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5  Cacophony of plasma time scales

Multi-fluid plasma models are littered with multi-scale physics.
• Strongly dependent on species mass, density, and temperature.

• Speed of light, plasma and cyclotron frequency are often stiff!

• Can be grouped into frequency, velocity, and diffusion scales:

II

Plasma frequen

2gana
Wpa =

Mae()

Cyclotron frequency

qaB
wca =

ma

Collision frequency

1 + 
M
a

1113 17113
Vaß ̂ - 3 3

l'AilaTZ (1 + Ma T42

771.fl Ta)

Flow velocity

ua

Speed of sound

vsa =
YPa

Pa

Speed of light

C >> ua, vsa

Momentum diffusivity
v = iia
a Pa

Thermal diffusivity

ka
Ka ^- —

Pa



6 IMEX time integration

IMEX gives a framework for splitting the model up into implicit and explicit terms:

• Explicit for slow, non-stiff terms

• Implicit for fast, stiff terms

atu = f (u, t) + g (u,t)

j<i

u(i) = un + At Ai; f (u(j) , tn + '46,0 + At 11 Aijg(u(1),tn + cpot)

j=o j=o

un+1 
= un + At

i<s

Ibif(u(i), tn + eiAt) + At
i=o

3 Stage IMEX-RK Algorithm

implicit Solves ExplIolt Solves

.f 003. +10101

i<s

i=0

big(u(i),tn + ciAt)

Implicit tableau

A
bt

Explicit tableau

A\
bt

Objective: Take advantage of

expensive implicit solver to overstep

fast scales, and cheap explicit solver

to resolve slow scales.



7 Breaking up plasma model for IMEX

Each operator is associated with one or more plasma scales.

• Here we group them by color representing their explicit stability limits:

atPa • (Pa

at(paita) +

atEa

Equations Approx. Explicit Stability Limits

11- (Palla + Pa)

V • (u a • (E a + Pa))

t E -IL x B = 1 qa

E0
= 1 

ma 
Paua

a

in+
qa—Patta • E
ma

atB +111 = 0

q
—
a 
paua X Li

ma
Ra UaSa

1
Qa Ua • Ra —

2
145a

iva + lysa <

vaAt < 1

copaAt < 1

cocaAt < 1

Ax
c < —

At

Move operators between explicit/implicit treatment depending on their "stiffness".



8  Discontinuous Galerkin (DG) has a local stencil

I:1

DG breaks discretization into "locar interior and "non-locar interface operations.

• Interior operations: Internal flux, source terms

• Interface operations: Numerical flux

For IMEX-DG this means:

• Explicit flux: Take advantage of nearest-neighbor communication stencil.

• Fast to compute, and scales as well as any explicit code.

• Limited by explicit CFL.

• Implicit source: Block-diagonal Jacobian only couples degrees of freedom within a cell.

• Much faster than a globally connected solve and supports perfect scaling.

• No preconditioning required for small dense matrices on diagonal.



9 I Early Success: Example two-fluid, unmagnetized plasma shock

Goal: Test shock capturing techniques for DG in the
presence of strong implicit source terms.

• The electrostatic shock is based on the Sod-Shock problem for
neutral Euler model.

• Stiffness is dominated by the plasma frequency.

• Converges to neutral/MHD shock in the limit of large plasma
frequency and mass ratio.

Plasma parameters

mi = 1

me = 10-3

qi = 1

(le = —1

Y = 5

'FPInitial conditions

ni, = 1 nR = 0.125

uf, = ttiL = 0 /4 = uiR = 0

Pie, = PI, = 0.5 Pi = PA = 0.05

EL = BL = 0 ER = BR = 0

Result: Able to step over plasma frequency by arbitrary

amount, and capture shock physics.

Problem: EMPIRE's PIC feature does not like a DG-based

Maxwell solve.

Plasma Scales

Electrons lons

E0 = 1074 027,4t 0.095 0.003

co = 1078 at„At 9.5 0.3

E0 .icr" wpAt 95000 3000

At
Vs, ,677c 0.22 0.007

1=n,

al 02 0.3 04 0.5 as 0.7 0.8 0.9
Position

1=r:1 

01 02 03 0.4 0.5 0.6 0.7 0.8 0.9

Position



io DG-multi-fluid with exact-sequence-Maxwell's equations

EMPIRE uses PIC for kinetic physics, which requires Gauss' Laws to be satisfied.

• No magnetic mono-poles: V • B = O.

• Charge conservation: E0V • E = pc.

These involutions can be satisfied by using the proper discretization.

• Continuous FEM support exact-sequence formulations that preserve these properties1:

Discretization:
Fields continuous by
construction (CG)

[PaPau al

Ea
E Vvh E C VL A B E

(111111111111.1 Edge space

space 11
ILI
LI.

1.;

s.
u

Face space
h

Cell space

vh

This approach has been shown to work for multi-fluid plasma models in a
continuous setting (in the Drekar code2), however the extension to discontinuous
systems is challenging.

1 P. Bochev, H.C. Edwards, R.C. Kirby, K. Peterson, D. Ridzal. Solving PDEs with intrepid. S cienhfic Programming (2012).
2 S.T. Miller, E.C. Cyr, J.N. Shadid, et-al., IMEX and exact sequence discretization of the multi-fluid plasma model. JCP (2019).



ii Divergence involutions when mixing exact-sequence and DG

A compatible finite element discretization is used to enforce the divergence
constraints for the electric and magnetic fields.
• Fluids are represented by an HGrad (node) basis p E Vv.

• The electric field is represented by an HCurl (edge) vector basis E E Vvx.

• The magnetic field is represented by an HDiv (face) vector basis B E Vv..

• Compatibility is defined by the discrete preservation of the De Rham Complex:

V(PV E vvx V X (fivx E 1717.- V • Iv. E VLz

For Faraday's law, we choose a basis for the electric field such that its curl is in the
null space of the divergence operator.

atB -=E =
imr
V • B =

Since the curl of the electric field is supported by the exact-sequence property, it's
divergence must be zero in the strong form:

0
V•(ÖtB+VxE)= at(v • B)+V•VxE= at(v • ) +1E. V x 44x = at(v • B)

ti
Result): The magnetic field remains divergence free after applying V X E flux.

• Charge conservation, where DG plays a role, is still under development.



12 Examining the exact-sequence-DG IMEX scheme

Fluid solve is block-diagonal.

• Small dense solves for each block, with no off-process communication.

Maxwell solver is efficient (and should remain unperturbed).
• Handles speed of light coupling.

• Comprised of many linear operators that can be computed once and reused.

• Algebraic-multigrid preconditioning is only updated on time step size changes.

Challenge: Coupling is characterized by plasma/cyclotron frequencies.
• Usually handled by preconditioning.

• These are local (ODE-like) coupling terms.

Goal: Attempt to construct a scheme that...
• Takes advantage of the local coupling in fluid operators.

• Handle plasma/cyclotron frequency coupling efficiently.

• Minimizes the number of re-computations required per nonlinear step.



13 Nonlinear system (broad strokes)

For IMEX we solve a nonlinear system:

. Nonlinear terms: Fluid Jacobian, Lorentz force

. Linear terms: Maxwell's equations, Current operator

The nonlinear system can be formulated from the linearized fluid model:

Newton Iteration

I kAX.k= -f()Ck)
Xk+1 = Xk + AXk

atPa+ —qa ApaEk
ma

— —
qa 

Apa X B k — — 
qa 
Pa
k
AE — — 

qa 
Pa
k x AB = 0

ma ma ma

I kAXk =

z

•

FAE
Iii

atE ± ••• — c2V x 6,13 + 
1 qa1 
— —Apa =
E0 maa

o atB ± ••• ± V x AE = 0



14 Nonlinear system simplification

Instead of solving a full system we break it into sub-blocks:

Instead of Full-Newton, we try Quasi-Newton iteration.

Jk =
[A Bi 

—
BD-11 .[A — BD-1C 01

I_C Di 0 I iL C Di

Jk

C i

Looking at the operators, we can approximate the effect of the Shur complement term:

q
at(paua)= m

a
— PaE
a

atE = — 
1 (la 

paua
E0 Ia? (P dila) + 4a(10 alta) 0

•

We apply the local Schur complement approximation to represent the plasma frequency:

a? (Paua) + 4a(Paua) =

palla

At

Palia +  qa  AtI tlQ
At maEo mfl

pfluß

A A — BD-1C

( Unlike the "analysis" above, we
use the full current in the Schur

complement correction



15 Striking a balance with Newton method

Quasi-Newton method will converge slower than Full-Newton method.

• Lower triangular block solve:

Block Lower Triangular

[ AC- OD] • 1/7/1 = [ bb fml

Local Fluid Solve Global Maxwell Solve

if • f = bf y D • m = bm — C • f

Maxwell solve uses AMG-preconditioned solve using Trilinos::Belos.

• Step over speed of light by arbitrary factor.

• Preconditioner is generated using Trilinos::MueLu (refMaxwell) whenever time step changes.

• Constant time step —> only precondition once (useful optimization for PIC).

Fluid solve uses dense LU solve using Kokkos::Kernels.

• Step over collision/reaction time scales by arbitrary factor.

• Plasma/cyclotron frequency supported by Schur complement approximation.

• No preconditioning needed!

Result: More iterations than a Newton method, but faster iterations.

•



I 6 Building a fast electromagnetic solve

The electromagnetic solve also has a trick to it.
• Here we are solving another block LU factorized system:

ME
D =[

MB 1 CB

CE _ [I CE1 .[ME CEMB1CB
I RiT-1 r

I" L•B

ol

• Running through the triangular solves leaves us with a two-stage process:

r ME

I-MB1CB I

CE] [AEI _[bEl
LAB] l_bBi

(ME + CEMB1CB) • AE = bE CE

AB = bB — MiT1CB • AE

• Note that the exact-sequence discretization has a couple of interesting consequences:

• Mgt CB is sparse, making ME + CENIVCB and Mgt CB objects we can assemble and store (linear).
• Curl operator CE = Cic, making ME + CENIVC,3 symmetric —> CG solve!

• Finally, we use algebraic multigrid1 to precondition the solve for the electric field.

• For small speed-of-light CFLs we can get away with Jacobi-preconditioning as an alternative.

• bB

1Bochev, Hu, Siefert, and Tuminaro. An Algebraic Multigrid Approach Based on a Compatible Gauge Reformulation of Maxwell's Equations. SIAM (2008).



17 Impact of Schur complement approximation

Test the Schur complement approximation using a linear plasma wave test.

• Still has strong growth in iteration count with increasing time steps

• Cost/benefit tradeoff study against Newton-Krylov with similar preconditioner required.
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Example: 0-wave

Residual Convergence

= 1.

Ltai =

Atf.dp = 0.8

—A— With SC

—A— Without SC

Atccip= 3.1

Atoop = 6.3

A cop = 1.6

Atflop = 3.1

2 4 6

Iterations
8 10

Result: Schur complement

approximation is seen to improve
nonlinear convergence by
appreciable factor when stepping

over plasma frequency.



18 One more trick:Anderson acceleration

Anderson Acceleration though Trilinos::NOX.

• Attempts to improve convergence by combining multiple nonlinear steps.

• Similar computation footprint to Quasi-Newton method.

• Fixed point around x = g (x) .

• Typically less complex to implement than a full Newton method.

• Walker and Ni, SINUM (2011): "Essentially equivalent" to GMRES

Algorithm AA: Anderson Acceleration

GIVEN xo AND m > 1.
SET x1 = g(xo).
FOR k = 1, 2, . (UNTIL CONVERGED) DO:

SET mk = k} .

DETERMINE 7(k) = (7e), ,7171,_1)T THAT SOLVES

min-i(k)=("fijk) • • • 51mk - 1Yr fk -Fk112-

SET xk+1 = g(xk) giCY(k)•

= g(xj) —

Fk = (Afk-mk • • • Afk-1) with Afi = f (zi-F1) - f (Z i).

gk = (Agk-mk, . 0gk-1) with Agi = g(si+l)-g(zi).

Anderson, ACM (1965)



19 Impact of Anderson acceleration:Two-fluid plasma vortex

Two fluid plasma vortex in MHD limit.

• Plasma vortex supported by combination of
magnetic field (z-pinch) and pressure gradient.

• Using Schur complement approximation.

Convergence study:

•Nx xNy xNz =[8x8x8,16x16x16,32x
32x 32]

• k = [10,20,40]

• Speed of light. ,6,Atx = 8

Nonlinear iteration study on 8 X 8 X 8 grid:

2 30

10

Quasi-Newton Anderson

- staont= 30.15

- staoet= 15.08

- tom& = 7 54

- sa,adt= 3.77

- 6.1,,,lt= 1.88

0.00 0.02 0.04 0.06 0.68 0.10

1 0

- stpadt= 30.15

— sae& = 15.08

— owe( = 7.54

- sa,adt = 3.77

- wpapt= 1.88

0.00 0.02 0.04 0.06 0.08

Time Time
0.10

1 0

1 0

—a— Error ion_px

Error electron_px

— 2nd order

--- lst order

Ll error

Alx
2 x

Result: Anderson acceleration

shows improvement over

Quasi-Newton method for

iteration count (and runtime).
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20 Two-fluid plasma wave convergence
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2 I I Summary

We have given a brief overview of how the EMPIRE code approaches the multi-
fluid plasma model:

• Fluid components discretized by Discontinuous-Galerkin method.

• Maxwell components discretized by exact-sequence discretization.

• Model is grouped into explicit and implicit components based on time scales.

Showed how we approach the nonlinear solver components:

• Nonlinear system is represented by Quasi-Newton method.

• Fluid solve is block-diagonal and local.

• Maxwell solve is a global, two-stage CG solve with AMG-based preconditioning.

• Schur complement approximation added to the fluid solve to represent plasma oscillations.

• Anderson acceleration is used to reduce the number of nonlinear iterations.

Improvement in nonlinear solver convergence was shown using Schur complement
and Anderson acceleration.

Convergence for linear waves and two-fluid plasma vortex was shown when stepping
over various time scales.


