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21 Overview

SLS Printing Background

• Overview of Printing Technique

• SLS printing of thermoplastics

• SLS printing of thermosets

Timing Approach to Cure State Control

• Correlation Between Cure State, T„, and Gelation

• Reactive Resin Printing

• Curing Printed Objects

Stoichiometry Approach to Cure State Control

• Flory-Stockmayer Equation

• Production of Off-Stoichiometry Materials

Summary
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3 SLS Printing Background
• Fused Deposition Modeling (FDM, FFD)/Direct Ink Write (DIW) 

• Polymer Extruded through an orifice
• Printing is mechanically driven-Limited speed
• Support structures needed to print overhangs
• Soft thermosets (silicones) and dual-cure resins

• Selective Laser Sintering (SLS) 
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• Polymer powder bed selectively sintered via laser heating
• Scan speeds are much faster (less moving parts)
• Support structures not needed to print overhangs
• Highly filled (<30 wt% filler) thermoset materials reported
• Requires large amount of material for REtD (>300g)



4 The Crystallinity Feature/Bug 
• Problem: SLS printable materials require a crystallinity, but thermosetting resins are

amorphous.

• Thermoplastic Materials: 
• Sintering window is narrow in semi-crystalline polymers
• SLS printing amorphous polymers tends to result in brittle porous parts
• "Good" mechanical properties 4 high molecular weight 4 high viscosity 4 poor sintering

• Thermosetting Resins: 
• Non-gelled resins tend to have low melt viscosity
• Mechanical properties are not achieved in the "green" part
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5 I Rheological Advantage of Reactive Resins 
• Traditionally, only semi-crystalline polymers are printed with SLS - Sintering Window 
• For non-reactive polymers, high Mw is needed to achieve acceptable mechanical properties
• However, viscosity at any temperature above Tg increases with Mw
• Glassy resins can be printed with low Mw (low viscosity) and achieve maximal mechanical 

properties through post-print cure (gelation) 
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Glassy reactive resins are intrinsically more "printable" than amorphous
thermoplastics due to low molecular weight.
However, they must be cured after print!
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6
Post-Printing Hurdle: Thermal Cure = Deformation 

• Problem: Thermoplastics are ready-to-use immediately after printing. Thermosets require a
thermal cure step to achieve maximal properties.

• Semi-Crystalline Thermoplastics: 
• "Physical cross-linking" happens during cooling (recrystallization)

• Thermosetting Resins: 
• As-printed parts are brittle
• Post-cure above Tg results in deformation (sagging)

Example from

Sandia National Labs

Example from

NASA Glenn Research Center
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*K.C. Chuang, T.J. Gornet, K. Schneidau, H. Koerner, Laser Sintering of Thermoset Polyimide Composites,

The Composites and Advanced Materials Expo, Anaheim, CA, 2019, p. 10p



7
 Controlled Conversion via Timed Cure 

• Goal: Produce reactive resin that requires little extra chemistry to achieve gelation 

• 828/4,4'-DDS formulation chosen due to slow controlled kinetics and high final Tg
• Correlation between reaction extent, initial Tg, and viscosity increase (gelation)
• Determine "ideal" cure state and drive reaction there
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8 
1 Initial SLS Print Attempt: Lessons Learne

Resin Formulation: 828/4,4-DDS, 1:1 stoichiometry, Cured @ 120°C for 4.5 h, Onset Te71°C
"Optimal" Printing Parameters of Blackened Powder: 

• Bed Temp.: 65°C
• Laser Power: 2.3 watts (Very low power)
• Layer Thickness: 150
• Hatch Distance: 200
• Laser Speed: 650 mm/s

Problems and Solutions: 
• Laser power insufficient to melt neat powder (@
• Carbon black was dry-mixed with powder (0.7 wt
• Low adhesion with "optimal" printing parameter
• Slower laser speed resulted in

"curling" of layers due to thermal gradient
• Print bed temperature raised (on 2nd attempt)

72 N

Proofs of Concept: 
• SLS printing of minimally filled thermosets

is possible (although not perfect)
• Curing of printed parts can be achieved

with minimal warpage using a slow ramped cure

As-Printed

nelliunifurnal



9 Second Printing Attempt: Getting Better
• Bed temperature increased to 80°C

• 80°C was decided based on 30 minute temperature exposures. Particle sintering at this
temperature was minimal.

• Laser speed reduced to 500 mm/s.

• Results: 
• Minimal layer curling; bed temperature higher than Tg
• Better part density and mechanical properties (better sintering)
• Still high porosity (room for improvement)
• Next Steps for This Formulation: 
• Finer powder and lower layer height (100 µm)
• Multi-scanning layers (not possible with current printer) Onset Y =23 7827 MW

252 Onset X = 70 74 T

• Stoichiometry-driven formulations
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Theory-Based Solution: 
10 Targeted Pre-Reaction via Off-Stoichiometry Cli

I
• Problem: Timing approach requires high precision ovens, repeatable low batch thickness, and

constant temperature monitoring to prevent premature gelation.
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Theory-Based Solution: 
12  Targeted Pre-Reaction via Off-Stoichiometry

• Problem: Timing approach requires high precision ovens, repeatable low batch thickness, and
constant temperature monitoring to prevent premature gelation.

• Solution: Stoichiometry based approaches would not require timing

• Flory-Stockmayer Equation 
fa,fe= amine, epoxy functionality
Aget= critical gelation conversion
B=Epoxy/Amine Ratio

Aa_gel when epoxies are in excess (B>1)
• \ l(fa-1)*(fe-1)

A, „, 
1 

when amines are in excess (B<1)
B*(fa-1)*(fe-1)
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Comparison of Two Epoxy/Amine Formulations
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Epoxy/Amine Ratio

• Alter stoichiometry to a point where >100% conversion is required to reach gelation
• "Cure" until limited reagent is completely consumed. No gelation occurs!
• Pair amine-rich formulation with an epoxy-rich formulation or a commercial glassy epoxy

Eliminates precision timing and temperature control, but...
Extruding materials which are near their gel point could prove troublesome



13  Off-Stoichiometry Formulation and Extrusion 

1 /°\,„,0

(3.5:1 stoich.)

1.75 H N
9

o

120-150°C

Full Epoxy
NH2 Conversion

Onset Tg=75°C uncured
Tg > 250°C when cured

111111110.

H[N1

H O OH

H

Or

OH 1.33 O

9

(Idealized Polyamine Structure)

L`o

NH2

Stoich. Balance
with Polyamine

\cri

n

(Epon 1031)

This approach addresses scale-up challenges, but not printing/curing issues
Could be part of broader molecular design strategy



14  Summary and lmpact
• SLS Printing of Thermosets - Current Status 

• High Tg printable thermosets are produced via exact timing to control cure state

• Printing of pre-reacted resins is possible but requires optimization of printing parameters

• Curing of printed objects can be conducted below evolving Tg to achieve gelation

• First example of SLS printing and curing of minimally filled thermosets 

• Potential processing issues and solutions to these have been identified

• Future Activities 

• Scaling material production

• DMA characterization to optimize initial cure temperature

• Optimization of print parameters to yield materials with lower inherent porosity

• Dry-blend with GMB to produce controllable low-density thermosets

• Investigate reactive polymeric additives to allow higher temperature post-print cure

Development of SLS printable thermosets can yield materials with enhanced
physical properties (Tg>200° C) and minimal printer requirements
Why? - Because post-print cure is decoupled from lower T printing



15 I Acknowledgements 
• Dominik Astorga - Formulation mixing and cure kinetics

• Estevan Martinez and Nick Giron - Cure kinetics

• Rachel Collino (LANL MST-7) - 3D printer usage

• Leah Appelhans for SNL ACT management and reporting

• Enlightening discussions with other 'ACT' members

• Ongoing financial support by the NNSA ACT administrator, Jay Edgeworth

Sandia
Nat onal
Lab ratories

National Nuclear Security Administration

*Not an Official Logo of Either Los Alamos National Laboratory or Sandia National Laboratories



16


