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;1 SLS Printing Background

* Fused Deposition Modeling (FDM, FFD)/Direct Ink Write (DIW)

Polymer Extruded through an orifice

Printing is mechanically driven-Limited speed
Support structures needed to print overhangs
Soft thermosets (silicones) and dual-cure resins

> ' Dispenser

Printed material
Nozzle

Platform

» Selective Laser Sintering (SLS)

%Y axis laser beam Powder
surfuce » Polymer powder bed selectively sintered via laser heating
Leveling drum //F;b""ﬂ » Scan speeds are much faster (less moving parts)

i » Support structures not needed to print overhangs
J | » Highly filled (<30 wt% filler) thermoset materials reported
* Requires large amount of material for R&D (>300g)
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Problem: SLS printable materials require a crystallinity, but thermosetting resins are

The Crystallinity Feature/Bug

amorphous.

Thermoplastic Materials:

Sintering window is narrow in semi-crystalline polymers

SLS printing amorphous polymers tends to result in brittle porous parts
» “Good” mechanical properties - high molecular weight - high viscosity = poor sintering

Thermosetting Resins:

Non-gelled resins tend to have low melt viscosity
Mechanical properties are not achieved in the “green” part
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Aexo

SLS Sintering

Window: = Wide Sintering Window

AT=(TM-TC )onset = High melting enthalpy

Metastable area = Narrow melting region

with two phases

Cooling

Heating T. onset

Constant
heating/cooling rate:
10°C/min

Temperature [°C]



.| Rheological Advantage of Reactive Resins

» Traditionally, only semi-crystalline polymers are printed with SLS - Sintering Window

« For non-reactive polymers, high M,, is needed to achieve acceptable mechanical properties

* However, viscosity at any temperature above T, increases with M,,

* Glassy resins can be printed with low M, (low viscosity) and achieve maximal mechanical
properties through post-print cure (gelation)
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Glassy reactive resins are intrinsically more “printable” than amorphous
thermoplastics due to low molecular weight.
However, they must be cured after print!




Post-Printing Hurdle: Thermal Cure = Deformation
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* Problem: Thermoplastics are ready-to-use immediately after printing. Thermosets require a I
thermal cure step to achieve maximal properties.

» Semi-Crystalline Thermoplastics:

» “Physical cross-linking” happens during cooling (recrystallization)

» Thermosetting Resins:
» As-printed parts are brittle
* Post-cure above T, results in deformation (sagging)

Example from Example from
Sandia National Labs NASA Glenn Research Center

As Printed

As Sintered
(200°C Oven)

High-Temp
Exposure

*K.C. Chuang, T.J. Gornet, K. Schneidau, H. Koerner, Laser Sintering of Thermoset Polyimide Composites,
The Composites and Advanced Materials Expo, Anaheim, CA, 2019, p. 10p




7‘ Controlled Conversion via Timed Cure

* Goal: Produce reactive resin that requires little extra chemistry to achieve gelation

» 828/4,4’-DDS formulation chosen due to slow controlled kinetics and high final T,
- Correlation between reaction extent, initial T,, and viscosity increase (gelation)
» Determine “ideal” cure state and drive reaction there
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Initial SLS Print Attempt: Lessons Learned E.I

Resin Formulation: 828/4,4-DDS, 1:1 stoichiometry, Cured @ 120°C for 4.5 h, Onset T,=71°C

“Optlmal” Printing Parameters of Blackened Powder:
Bed Temp.: 65°C
» Laser Power: 2.3 watts (Very low power)
» Layer Thickness: 150 um
« Hatch Distance: 200 um
» Laser Speed: 650 mm/s

Problems and Solutions:
« Laser power insufficient to melt neat powder (@ As-Priinted
» Carbon black was dry-mixed with powder (0.7 wt
« Low adhesion with “optimal” printing parameter

 Slower laser speed resulted in 65°C 24 b,
“curling” of layers due to thermal gradient 75°C 24 b,
* Print bed temperature raised (on 2" attempt) %i:’ﬁ:

Proofs of Concept:

» SLS printing of minimally filled thermosets
is possible (although not perfect) Excessive

» Curing of printed parts can be achieved Phapage

with minimal warpage using a slow ramped cure , Miimimal
Wanpage I

120°C
Exposure
10 mim




Second Printing Attempt: Getting Better

Bed temperature increased to 80°C
» 80°C was decided based on 30 minute temperature exposures. Particle sintering at this
temperature was minimal.
Laser speed reduced to 500 mm/s.

Results:
Minimal layer curling; bed temperature higher than T,

Better part density and mechanical properties (better sintering)
Still high porosity (room for improvement)

Next Steps for This Formulation:

Finer powder and lower layer height (100 um)

Multi-scanning layers (not possible with current printer) ...
Stoichiometry-driven formulations
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First SLS Printing of “Unﬁlled” Thermoset Materlal

Critically Important for DOE Cross-Lab AM Effort - Multi-Lab Collaboration




Theory-Based Solution:
0| Targeted Pre-Reaction via Off-Stoichiometry

Problem: Timing approach requires high precision ovens, repeatable low batch thickness, and
constant temperature monitoring to prevent premature gelation.
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Theory-Based Solution:

2 | Targeted Pre-Reaction via Off-Stoichiometry

« Problem: Timing approach requires high precision ovens, repeatable low batch thickness, and |
constant temperature monitoring to prevent premature gelation.
« Solution: Stoichiometry based approaches would not require timing

* Flory-Stockmayer Equation

f,,fe= amine, epoxy functionality
A= critical gelation conversion
B=Epoxy/Amine Ratio

B i i
Ay gel = \/(fa_l)*(fe_l) when epoxies are in excess (B>1)
1 . .
Ap ger = \/B*(fa—l)*(fe—l) when amines are in excess (B<1)

Predicted Conversion at Gelation

Comparison of Two Epoxy/Amine Formulations
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» Alter stoichiometry to a point where >100% conversion is required to reach gelation
« “Cure” until limited reagent is completely consumed. No gelation occurs!
» Pair amine-rich formulation with an epoxy-rich formulation or a commercial glassy epoxy

Eliminates precision timing and temperature control, but...
Extruding materials which are near their gel point could prove troublesome




13‘ Off-Stoichiometry Formulation and Extrusion E.N
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This approach addresses scale-up challenges, but not printing/curing issues
Could be part of broader molecular design strategy




«l Summary and Impact E.:

e SLS Printing of Thermosets - Current Status

* High T, printable thermosets are produced via exact timing to control cure state
* Printing of pre-reacted resins is possible but requires optimization of printing parameters
« Curing of printed objects can be conducted below evolving T, to achieve gelation

* First example of SLS printing and curing of minimally filled thermosets

» Potential processing issues and solutions to these have been identified

« Future Activities

 Scaling material production

* DMA characterization to optimize initial cure temperature

» Optimization of print parameters to yield materials with lower inherent porosity

* Dry-blend with GMB to produce controllable low-density thermosets

 Investigate reactive polymeric additives to allow higher temperature post-print cure ‘
Development of SLS printable thermosets can yield materials with enhanced |

physical properties (T,>200° C) and minimal printer requirements
Why? - Because post-print cure is decoupled from lower T printing
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