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; | Mathematical Models

(d We use numerical solutions of mathematical models to inform high-consequence decisions.
(d When is a mathematical model any good?

L Model Validation
O “Am | solving the right problem?”
O Is the model sufficient for the application?
O Is model quantitatively predictive?
O Is model predictive outside of its calibration range?
d Model Verification «All models are wrong,
 “Am | solving the problem right?” but some are useful.”
 Are the equations solved correctly? - George Box
0 Can model produce known analytical solutions?

(J We are trained from an early age to use (local) PDE-based models to describe physical phenomena.

O Today, I'll discuss physical phenomena for which classical models appear inadequate, and for which another
mathematical approach may be required.
 Let’s start with a discussion on local and nonlocal models, length scales, and multiscale models.



. | Local and Nonlocal Models

(J Local models depend upon function values and derivatives at a point
Q f,(x) = u,(x), f,(x) = a u,(x) + b u,,,,(x)

(J Nonlocal models depend upon values of a function at many points

0 £(x) = [(ulx+y) - u(x))dy

O Some models possess length scales. How can we identify and control them? At a fundamental level,
multiscale modeling is about
O Scale invariant (self-similar): f,(x) = u,(x) identification of length scales
Q If x is rescaled, there exists a rescaling of u that preserves equation and control of model behavior
at those length scales

O Asingle length scale: f,(x) =a u,(x) + b u,,,,(x)
L Length scale is sqrt(b/a) (from dimensional analysis)
O Rescaling x can make first term dominant or second term dominant

)
[ An infinite number of length scales: f,(x) = I(u(x +y) - u(x))dy
-3

3 5 7
U Consider a series expansion: f,(x) = S—Uxx (x) + B—Uxxxx (x) +

u X)+ -
2520 XXXXXX( )



s | Local and Nonlocal Models

(J We use PDE-based (local) models to describe most physical phenomena.
L Solid mechanics, fluid mechanics, electricity and magnetism, etc.

O Classical PDE-based physics is descriptive of most (?) phenomena...
O ... except when it isn’t.

[ Classical models may cease to be descriptive if they cannot represent length scales of all dominant physical
processes they are attempting to capture.
Q This includes most multiscale phenomena (example: fracture, failure, etc.)

1 When our PDE-based models cease to be descriptive, our typical first response is to modify them (or modify
their discretization) to make them to elicit desired behavior.

1 The critical issue at hand is representation and control of behavior at multiple length scales.
1 In practice, nonlocal models do this fairly naturally.

O A first-principles matching of length scales in nonlocal models to length scales in observed physical
phenomena remains an open question for many applications.



¢ | Nonlocal Models & Length Scale Effects

O Length scale effects arise in many applications

Specimen before test Onset of strain localization into shear band for F-75 Ottawa sand*

J Example: Size of shear band (strain localization)

O A shear band is a narrow zone of intense shearing that developing during severe deformation of ductile
materials.

O Finite element models of shear bands show size of band decrease as mesh is refined, meaning mesh length
scale is controlling shear band size (nonphysical)!

O Higher gradient models introduced to control this behavior. Introduces additional length scales (ad-hoc).

O Nonlocal models can preserve size of shear band under mesh refinement.

* http://web.utk.edu/~alshibli/research/MGM/F75-Ottawa.php



; | Nonlocal Models & Length Scale Effects

d Length scale effects arise in many applications
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1 Heterogeneous media*
1 Comparison of stress along the midplane in an open hole tension test on a fabric-reinforced composite.
L Local theory over-predicts the stress concentration, as compared with optically measured data.
1 Peridynamic model has better agreement, apparently due to nonlocality.

*S.A. Silling, Origin and Effect of Nonlocality in a Composite, Sandia Technical Report SAND2013-8140, 2013.



| Nonlocal Models & Length Scale Effects

d Length scale effects arise in many applications
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O Fracture and Failure*

O Classical theory predicts infinite stress (1/sqgrt(r) singularity) at crack tip.

[ Classical theory (based on PDEs) not defined on crack surfaces

L Common numerical approaches (XFEM, etc.) enrich solution space with (for example) heaviside functions to
allow admission of discontinuous solutions

1 Nonlocal models avoid infinities and are defined everywhere (on and off cracks).

“B. Boyce, et al, The Sandia Fracture Challenge: Blind Round Robin Predictions of Ductile Tearing, Int J Fract. 186:5-68, 2014.



s | Nonlocal Models

L Nonlocality and nonlocal models are not a new concept.

O There are a large number of nonlocal models used in computational science
[ Particle models: DPD, SPH, MPM, MD, ...
O Nonlocal continuum models: Eringen, Bazant, Kunin, Kromer, ...

O Peridynamics, a nonlocal extension of classical continuum mechanics, has been demonstrated to be a superset
of some prior nonlocal models:
1 SPH [G.C. Ganzenmiiller, S. Hiermaier, M. May, 2015]
 MD [Seleson, P, Gunzburger, Lehoucq, 2009]
[ Theories of Kunin [Kunin, 1982]
L Theories of Rogula [Rogula, 1982]



Peridynamics Overview




1 | What is Peridynamics?

U Peridynamics is a nonlocal extension of classical solid mechanics

[ Peridynamic equation of motion (integral, nonlocal)

pii(x, t) = [(u(x') - u(x), x"-x)dV" + b(x, t) Q
I-Ix
(J Replace PDEs with integral equations Point x interacts
O Utilize same equation everywhere; nothing “special” about cracks directly with all
d No assumption of differentiable fields (admits fracture) points x’ within H
(J No obstacle to integrating nonsmooth functions
Q f(-, -) is “force” function; contains constitutive model é “T+ can be said that all\
1 f =0 for points x,x’ more than 6 apart (like cutoff radius in MD!) physical phenomena are
O Peridynamics is “continuum form of molecular dynamics” nonloc;al. .Locali‘ry is a
O Impact fiction invented by

idealists.”
O Nonlocality N'ea's 2 4
( Larger solution space (fracture)

d Account for material behavior at small & large length scales d
(multiscale material model)

1 Ancestors
1 Kroner, Eringen, Edelen, Kunin, Rogula, etc. A. Cemal Eringen



2 | Peridynamics: The Basics

M Horizon and family
1 Point x interacts directly with all points with distance 6 (horizon)
L Material within distance 6 of x is denoted H, (family of x)

Q
1 Bonds and bond forces
O Vector between x and any point in its family is called a bond: § = x’ — x
J Each bond has pairwise force density vector applied at both points: f(x’, x, t)
[ This vector is determined jointly by collective deformation of H, and
collective deformation of H,,
(J Bond forces are antisymmetric: f(x’, x, t) = - f(x, ¥/, t)
J Bond degrade and fail, admitting damage, failure, and fracture
O Deformation state Y(&)=y(x")-y(x)
O Deformation state operator Y maps each bond § into its deformed imag - Deformation y

Undeformed'family of x Deformed family of x



i3 | Peridynamics: The Basics

[ Bonds and states
O f(x’, x) has contributions from material models at both x and x’

f(x',x) = T[x,t](x' - x) - T[x',t]}(x - x’)

 T[x] is the force state — it maps bonds onto bond force densities
O T[x] is determined by the constitutive model T = T(Y), where T maps deformation state to force state

O Peridynamics vs. standard equations

Relation

Peridynamic theory

Standard theory

Kinematics

Y (x'-x)=y(x")-y(x)

Fx) = 2 ()

Linear momentum
balance

pli(x) = j (TIx)(x' - x)- T[x'](x - x"))dV,, +b(x)

pY(x,t) = V- 5(x) + b(x)

Constitutive
model

T=T(Y)

o = 5(F)

Angular momentum
balance

_[Y<x'—x>><'[<x’—x>dvx, =0

T
=0

Elasticity

T =W, (Frechet derivative)

o = W, (tensor gradient)

First law of
thermodynamics

g=TeY+h+r

g=c-F+h+r




1« | Peridynamics: The Basics

J Mechanical Properties of Peridynamics
L Conserves energy (in absence of fracture, plastic deformation, etc.)
d Conserves linear & angular momentum (always)
(J Obeys the laws of thermodynamics (restrictions on constitutive models)

L Example: Conservation of Momentum

(J Rate of change of momentum of material within ® equals force of body outside ® acting upon ® plus
external body force upon o:

% [pulx,tiaV, = [ [ (TIx,t1(x' —x)-TIX,t]{x - x'))dV,dV, + [b(x,t)dV,

o Qlo

(J No self-interaction

[ [(TIx,t1(x" - x) - T[x',t]{(x - x') ) dV, dV, =0



s | Peridynamics: The Basics

U Energy Balance
O Tis work conjugate to Y:
1 This leads to energy balance (first law of thermodynamics)

e=TeY+q+r
where
O ¢ =internal energy density Peridynamic equivalent
1 q = rate of heat transport of stress power ¢ -F

O r = energy source rate

[ Thermodynamic Admissibility for Constitutive Models
O Second law of thermodynamics (Clausius-Duhem inequality):
on=>q+r
where
d O = absolute temperature
U n = entropy density
L Combining with first law gives thermodynamic admissibility condition for constitutive models:
TeY-6n—y=>0
where
U v =¢-0n is free energy density



s | Nonlocal Boundary Conditions

 For local models (for example, PDE-based
models), we apply boundary conditions on the
boundary of the domain (hence the name)

O A Peridynamic “boundary” becomes a
volumetric region, sometimes called a

n «u

“nonlocal boundary”, “collar”, etc.

[ Boundary conditions for these models are
called “nonlocal boundary conditions”,
“volume constraints”, etc.




Example Computations




18 COdeS

(J PDLAMMPS (Peridynamics-in-LAMMPS) (Open source, C++) I
1 Developers: Parks, Seleson, Plimpton, Silling, Lehoucq
O Particular discretization of PD has computational structure of molecular dynamics (MD)
 LAMMPS: Sandia’s open-source massively parallel MD code (lammps.sandia.gov)
L More info & user guide: www.sandia.gov/~mlparks

 Peridigm (Open Source, C++)
QO http://peridigm.sandia.gov; http://github.com/peridigm/peridigm
d Developers: Parks, Littlewood, Mitchell, Silling
1 Intended as Sandia’s primary open-source PD code
1 Built upon Sandia’s Trilinos Project (trilinos.sandia.gov)
O Massively parallel
O Explicit, implicit time integration
(] State-based linear elastic, elastic-plasticity, viscoelastic models
 DAKOTA interface for UQ/optimization/calibration, etc. (dakota.sandia.gov)




s | Two Interacting Cracks

 Offset notches thin rectangular elastic plate
1 Uniaxial strain applied from sides
L Approaching cracks produce “en passant” crack pattern

Pre-notch
v

/

Peridynamics Physical Experiment”

Pre-notch

* M. Fender, F. Lechenault, and K. Daniels, Universal Shapes Formed by Two Interacting Cracks, Phys. Rev. Lett. 105, 125505 (2010) .

|

Simulation performed

with PDLAMMPS I



» | Fracture in Glass Plate |

O Dynamic brittle fracture in glass Simulation performed
O Joint with Florin Bobaru, Youn-Doh Ha, & Stewart Silling with PDLAMMPS
 Soda-lime glass plate (microscope slide) O Discretization (finest)
 Dimensions: 3” x 1” x 0.05” O Mesh spacing: 35 microns
O Density: 2.44 g/cm3 O Approx. 82 million particles
 Elastic Modulus: 79.0 Gpa 1 Time: 50 microseconds (20k timesteps)
Setup
 Glass microscope slide
1 Dimensions: 3” x 1” x 0.05”
1 Notch at top, pull on ends
Results
L
Peridynamics Physical Experiment’ Strain Energy Density

S F. Bowden, J. Brunton, J. Field, and A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 42, pp.38-42, 1967.



21 | Fracture in Glass Plate

1 Dawn (LLNL): IBM BG/P System
U 500 teraflops; 147,456 cores

(1 Part of Sequoia procurement

O 20 petaflops; 1.6 million cores

(] Discretization (finest)

O Mesh spacing: 35 microns

O Approx. 82 million particles

U Time: 50 microseconds (20k timesteps)

[ 6 hours on 65k cores

U Largest peridynamic simulations in history

Weak Scaling Results

Dawn at LLNL

# Cores # Particles Particles/Core Runtime (sec) T(P)/T(P=512)
512 262,144 4096 14.417 1.000
4,096 2,097,152 4096 14.708 0.980
32,768 16,777,216 4096 15.275 0.963

Simulation performed
with PDLAMMPS




» | Explosively Compressed Cylinder™

J Motived by experiments of Vogler & Lappo*

(d Commonly used for consolidation of powders

O Copper cylinders filled with granular material and wrapped with Detasheet explosive
1 Polyurethane foam plugs used to keep granular sample in tube.

J Geometry and Material Properties
1 Copper tubes 305 mm long, ID 50.8 mm, wall thickness of 1.52 mm

(1 PETN based Detasheet with thicknesses of 1, 2, 4, or 6 mm were used, and a
J Detonation traveled down length of tube, compressing both tube and sand fill

Detasheet copper

1mm 2mm tube foam
sand

plug
detonator

Poe™

Cylinder schematic Cylinder after compression

*T.J. Vogler and K.M. Lappo, Cylindrical Compaction of Granular Ceramics: Experiments and Simulations, The 12th Hypervelocity Impact Symposium. 2012.



Simulation performed

O Peridigm computational results (with C. Hoffarth, D. Littlewood)

O Color indicates damage (blue

23 | Explosively Compressed Cylinder

with Peridigm

damaged)

undamaged, red =

After

Before




24 | Expanding Tube Simulation™** |

J Experimental Setup Simulation performed with
1 Tube expansion via collision of Lexan projectile and | Sierra/SolidMechanics
plug within AerMet tube VISAR Probes

cbha
1 Accurate recording of velocity and displacement on ‘

tube surface

EEESEEEEEESE
= - 5§

1 Modeling Approach

1 AerMet tube modeled with peridynamics, elastic-
plastic material model with linear hardening

U Lexan plugs modeled with classical FEM, equation-of- Experimental setup*
state Johnson-Cook material model

L Interaction via contact algorithm

Sample Tube

Projectile

Model discretization

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. International Journal of
Impact Engineering, 29:735-746, 2003.

** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition,
British Columbia, Canada.



25 | Expanding Tube Simulation™*

AerMet Tube

O Peridynamics
O Elastic-plastic constitutive model

d 73,676 sphere elements

O Horizon set to five times element radius

Parameter
Density

Young’ s Modulus
Poisson’ s Ratio
Yield Stress
Hardening Modulus
Critical Stretch

Value
7.87 g/cm3
194.4 GPa
0.3

1.72 GPa
1.94 GPa
0.02

Lexan Projectile/Plug

O Classical FEM
O Johnson-Cook constitutive model
d 53,214 hexahedron elements

Parameter
Density

Young’ s Modulus
Poisson’ s Ratio
Yield Stress

Hardening Constant B

Rate Constant C

Hardening Exponent N
Thermal Exponent M

Reference Temperature

Melting Temperature

Value
1.19 g/cm3
2.54 GPa
0.344
75.8 MPa
68.9 MPa
0.0

1.0

1.85
700° F
500.0° F

Simulation performed with

Sierra/SolidMechanics

** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, British Columbia, Canada.



26 | Expanding Tube Simulation™** [

Simulation performed with

Sierra/SolidMechanics |

Simulation at 15.4 microseconds**

Experimental image at 23.4 microseconds* Simulation at 23.4 microseconds**

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. International Journal of
Impact Engineering, 29:735-746, 2003.

** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition,
British Columbia, Canada.



27 | Expanding Tube Simulation™**

Displacement and velocity
on tube surface
at probe position A

VISAR Probes
cbha

Sample Tube

Displacement (mm)

Velocity (m/sec)

2.5

1.5

0.5

250

200

150

100

50

Experimental Data [Vogler et al.] ——
Simulation

2 4 6 8 10 12 14

Time (microseconds)

16

Experimental Data [Vogler et al.] ——

Simulation

2 4 6 8 10 12 14

Time (microseconds)

16

Simulation performed with
Sierra/SolidMechanics

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. International Journal of

Impact Engineering, 29:735-746, 2003.

** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition,

British Columbia, Canada.



Material Models and Fracture Models




29 | Peridynamic Material Models

O Quick survey of some material classes

O Linear Isotropic Elastic Materials
O Hooke’s law

J Returns to reference configuration when released
L Example: spring

O Elastic-Plastic Materials
O Elastic for small deformations (< 1% strain)

 Deforms plastically for larger deformations
L Example: spring (when stretched too far)

O Viscoelastic Materials
1 Exhibit viscous and elastic properties under deformation

L Hysteresis in stress/strain curves
O Example: skin (pinch it and let it recover)*

e
Linear Elastic
O 4 O 4

g Vel

Elastic Perfectly Plastic Elastic-Plastic
(Strain Hardening)

G i

e
Elastic Perfectly Plastic

L Can wrap classical material models (existing material libraries) in peridynamic “skin”
(J PD codes (Peridigm, PDLAMMPS) allow users to define their own material models

* The longer it is pinched, the longer it takes to recover. Skin is also an aging material — young skin recovers more rapidly than old skin.



w | Peridynamic Material Modeling

 Linear Peridynamic Solid (LPS)*
O Nonlocal analog to linear isotropic elastic solid

U k is bulk modulus, u is shear modulus

pui(x, t) = [(T[x,t](x - x) - T[x,t](x - X)) dV, +b(x,t)

3ko 15 dj X' —Xx
m m

T[x,t](x'—x =(—@)_(+—@e :
A xx

*S.A. Silling, M. Epton, O. Weckner, J. Xu, & E. Askari, Peridynamic States and Constitutive Modeling, J. Elasticity, 88, pp. 151-184, 2007.



s | Peridynamic Material Models

 Elastic-Plastic Model*
(J Nonlocal analogue to perfect plasticity model

] Relevant for ductile materials and ductile failure

J Rate equations and constraints
L Additive decomposition of extension state: ed = ede + edp

[ Elastic force state relations:

T[x,t](x'—x) = (@ X + oc@(ed —e® )jg
m ly*-yl

[ Elastic force state domain defined by yield surface/function that depends upon deviatoric force state:
O f(ty) = y(t9) - y, <0, where y(td) = % || td || 2

O Flow rule describing rate of plastic deformation: @ = AV¥

U Loading/un-loading conditions (Kuhn-Tucker constraints):
ad A>0, f(td) <0, _
Q Consistency condition: Af(t%)=0

* J. Mitchell, A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics, SAND2011-3166, 2011.



2 | Peridynamic Material Models

[ Viscoelastic Model*
(J Nonlocal analog to standard linear solid

O Applicable where rate effects important

(d Adds viscous terms to deviatoric portion of extension state; bulk response
remains elastic

U Logical intermediate step between fluid and solid

[ viscous fluid: little or no elastic resistance to shear (fluids flow) but resists
compressive volumetric deformations

[ elastic solid: elastic resistance to both shear and volumetric deformations

[ Viscoelastic Model*
(d Nonlocal analog to standard linear solid

O Scalar deviatoric force: t9 = niédb

_ ai(ed _ edb)
. : : 1

O Evolution equation: e% = —b(e"I — edb)
T

*J. Mitchell, A Non-local, Ordinary-State-Based Viscoelasticity Model for Peridynamics, SAND2011-8064, 2011.

e?: step input

¢?: back extension response

Memory Foam

Y

I D e



;3 | Peridynamic Fracture Modeling

] Fracture
[ Break bond if bond stretch s exceeds critical stretch s*

O If work to break bond & is wy(E), then energy release rate
found by summing this work per unit crack area

)

G= [ wy(e)dV.ds

0

L Can then get the critical strain s* for bond breakage in terms
of G (strain energy release rate), an experimentally
measurable quantity

O Fracture
O (a) Brittle
1 (b) Ductile

7

bond strain

/

;=




34 | Peridynamic Fracture Modeling (Brittle)

O Brittle Fracture ?:rf;‘;
L No plastic deformation takes place before failure
L Typically involves catastrophic failure
1 Bond responds elastically until failure at critical stretch compression

failure

tension

v

T bond stretch

critical stretch

O Example: Impact in Layered Glass
1 No plastic deformation takes place before failure

. 0.95
rigid projectile with = 07
z velocity 1,120 m/s ks
o 045
x‘i’ Y - B 025
0.15
20 cM 30 om @ 0.05
-~
@ Glass laver 1 _0.635 cm
Glass layer2 1.270 cm /
Glass layer 3 1.270 cm @
w Glass layerd 1.270 cm V
Glass layer 5 1.270 cm /@
@ Glass layer 6 1.270 cm V
——— P
_.-/
I Plycarbonate layer 1.270cm
- 36 cm -

F. Bobaru, YD. Ha, and W. Hu, “Damage progression from impact in layered glass modeled with peridynamics”, Open Engineering, 2(4): 551-561 (2012).



35 | Peridynamic Fracture Modeling (Ductile)

] Ductile fracture b6
1 Plastic deformation before failure force

O Can typically sustain large strain before failure

compression

A

elastic

plastic  failure

tension

d Example: Electromagnetically loaded ring

d 1100-0 aluminum ring (ductile)
O Motivated by ring fragmentation experiments of Grady & Benson*
0 Used peridynamic elastic/plastic model**

—1 mm—{ 1 mm—
e FRACTURE ® ARRESTED NECK

EXPANDING RING SPECIMEN ( 1100-0 ALUMINUM )

Fracture and arrested neck region
: : 2 _ _
from dynamic expansion of ring necking + failure

* D. Grady, D. Benson, Fragmentation of metal rings by electromagnetic loading, Experimental Mechanics, 23(4), pp. 393-400, 1983
** J. Mitchell, A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics, SAND2011-3166, 2011.

bond
stretch

critical stretch

n
>

Simulation performed
with Peridigm

5



Discretizations and Numerical Methods




7 | Discretizing Peridynamics

L Peridynamics is a continuum model — You choose the discretization scheme

L Temporal discretization
 Explicit time integration (Velocity-Verlet)

O Implicit time integration (Newmark-beta method)

O Spatial discretization (weak form)
J Nonlocal Galerkin finite elements

J Nonlocal discontinuous Galerkin finite elements

. . . . Primary discretization
(1 Spatial discretization (strong form) <« used in production codes.

1 Midpoint quadrature
 Gauss quadrature*

1 Solvers
(d Nonlocal domain decomposition methods

1 Nonlocal multigrid
U Nonlinear (Newton/Krylov, nonlinear CG)
U Linear (preconditioned Krylov subspace methods)

“E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



Nonlocal Weak Form
 Prototype operator

C(x,x’) =C(x, x)
L {u}(x)= -iC(x,x') [u(x')-u(x)]dx’

C(x,x)=0if ||x-x]||> &5

(d Need nonlocal weak form* — Multiply by test function and “integrate by parts”

”Cxx [u(x’) - u(x)] v(x)dx'dx

{O

1

- C(x,X) [u(x')-u(x)][v(x) - v(x)]dx'dx

1O | Sy
1O || Sy

L Compare with local Poisson operator
O Hooke’s law

—Vu(x) € > %jVu-Vvdx

"E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



Nonlocal Quadrature

1 Local Quadrature (Review)
1 One integral required

(J Compute products of gradients of shape functions and apply Gauss quadrature
1 Gradient drops polynomial order (lower order quadrature scheme required)

[ Nonlocal Quadrature
O Two integrals required

L Compute products of differences of shape functions and integrate

L No gradient — higher polynomial order (higher order quadrature needed)
O Nonlocality generates substantially more work over each element

J Discontinuous integrands a challenge for quadrature routines (more later...)

a(u,v =-HC X, X') [u(x’) -u(x)] v(x)dx'dx

Qll
ol

II'-—-.

__[ (X, X) [u(x) - u(x)][ v(X') - v(x)]dx'dx

1 Integration by parts is standard in local (classical) FEM.
1 Unclear if there is any computational value in nonlocal setting

a(u,v)

jVu Vv dx



o | Nonlocal Weak Form — 2D
O Let Q=(0,1)%(0,1); u=0 on BQ | I

L Weak form requires quadruple integral \
U Expensive! ) g
O Matrix bandwidth controlled by 6/h
O &~ | Q2] gives dense matrix (intractable at large scales)
[ Classical FEM has (roughly) constant nnz per row

O Integrand discontinuous!
U Gauss quadrature not accurate

J Adaptive quadrature (expensive)
d Use 1-norm, not 2-norm distance? (blue circle becomes blue square)

O Break up integral into many separate integrals where integrand
continuous over each subregion

 Exact analytic for approach for quadrature?
O Intractable (so far)

L More practical approach: approximate blue region by simpler geometric
shape and then performing quadrature

7000

Stiffness Matrix Sparsity Pattern
(10,000 unknowns, 3.4M nnz)



« | Strong Form Discretization

(J Spatial Discretization
O Approximate integral with sum*

O Midpoint quadrature
J Piecewise constant approximation (could go higher)

Continuum

[ f(u(x’,t) - u(x,t),x’ - x)dV"

'S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.



2 | Strong Form Discretization

(J Spatial Discretization
O Approximate integral with sum*
O Midpoint quadrature
 Piecewise constant approximation (could go higher)

AV,
Discrete /

y {4
y dEN

A H
N y

D f(u(x,,t)—u(x;,t),x, —x;)AV,

'S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.



Strong Form Discretization

[ Spatial Discretization U Temporal Discretization
O Approximate integral with sum* O Explicit central difference in time
O Midpoint quadrature
iecewi imati : H_2u” +uM!
 Piecewise constant approximation (could go higher) U(X t) ~U" = i i
D AV, T A
iscrete /
> - - >< O Velocity-Verlet
I%
/ \ Vn+112 _ Vn A
i =V T| 5
o 2m
X nt1 _ _.n n+112
- u' =u; +(At)
H
At
g _// Vin+1 _ Vin+112 fn+1
2m

D f(u(x,,t)—u(x;,t),x, —x;)AV,

'S.A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.



Asymptotically Compatible
Discretizations




Model Convergence (0 Convergence)

d We are interested in nonlocal models that reduce to their local counterpart as the
nonlocal parameter goes to zero.
die., limLu, =L,
6—0

O Example:

x+d 6 8
0 L= [ o y)(uly)- ubady, Loy =— ki)

O In general, this must be proven for each specific model or class of models (diffusion,
elasticity, plasticity, etc.)

O A simple observation:

3 Let Cloyd = : (k(x)+k(v))

2
[ Assume we can series expand u(y), k(y) about x. Then,
( 3 0°kd’u 1 0k du

0 ou
L.u = —k(x)— + &2 + N
0 (x) 20 0*x 0°x 10 Ox O°x

OX OX

U Leading order terms are the local model; all others vanish with 5.
(J Nonlocal models naturally encapsulate many length scales. 45




Solution Convergence

L We also desire mesh-convergent solutions.
. . h
Qdie., limug =u;
h—0

U Thus, it should follow naturally that hliémo ul =u,.
,0—>

O It was shown by Q. Du & X. Tian™ ™ that this is not always the case!
U The interplay between the length scales h, 5 is important!

O Du & Tian define a general framework for these convergence results™

. . h 6 — 0 h
Nonlocal Discrete Solution U; > U, Local Discrete Solution

h—>01 Jrh—>0

Nonlocal Continuum Solution U; U, Local Continuum Solution

6—->0
O Practical (non-intuitive?) result:

1 Piecewise constant discretization converges only if h—0 faster than 6 —0.
1 PWC is most common PD discretization; 6 = kh a common assumption!
O PWL is asymptotically compatible (i.e., convergent for any sequence h, 8 — 0)

*X. Tian and Q. Du, Analyis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations, SIAM J. Numer.
Anal., v51(6), pp. 3458—-3482, 2013. 46
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s | Nonlocal Boundaries

 For local models (for example, PDE-based
models), we apply boundary conditions on the
boundary of the domain (hence the name)

O A Peridynamic “boundary” becomes a
volumetric region, sometimes called a

n «u

“nonlocal boundary”, “collar”, etc.

[ Boundary conditions for these models are
called “nonlocal boundary conditions”,
“volume constraints”, etc.




» | Nonlocal Operators*

(J Nonlocal Point Divergence

Given a vector two-point function v(x,y): R® X R"— RK and a symmetric vector-valued function
a(x,y): R® x R"— RK, the nonlocal point divergence operator is a mapping &,:V — A.[V], where X [V]:
R™ — R is given by

DIVI®=[  (vx.y)-a(xy)-V(y.0) a(y.x)dy forxeO

] Nonlocal Two-Point Gradient

Given a function u(x): R" — R, the formal adjoint of A, is the nonlocal two-point gradient operator(,: u —
Oo[ul, whereO,[u]: R® x R"— RK is given by

G, [ul(x,y) = (u(y) —u(x))a(x,y) for (x,y)ell"x["
(J Nonlocal Normal
Given a vector two-point function v(x,y): R® X R"— RK and a symmetric vector-valued function

a(x,y): R® x R"— RK, the nonlocal normal is a mapping .- :V = .- 4[v] where .-",[v]: R® — R is given by

N, [ul(0):= ] (VY- a(x,y) - V(1) a(y, )y forxel

*There is also a nonlocal curl; | won’t talk about it today.



Familiar Relationships

L Nonlocal Gauss Theorem
Given a vector two-point function v(x,y): R” x R"— RK, we have

jg D, [v](x)dx = LN [vI(x)dx

(J Nonlocal Integration by Parts
Given a function u(x): R® - R, v(x,y): R" x R"— RK, and a symmetric vector-valued function

a(x,y): R® x R"— RK, we have

JQ u(x)D, [v](x)dx - _[

QuI JQuI

G [u](x, Y (x, y)dydx =[ u(N,[v](x)dx

(J Nonlocal Green’s First Identity

Given the function u(x), v(x): R™ - R, and a symmetric vector-valued function a(x, y): R® x R"— RK, we
have

j u(x)D, [G [V J(x)dx j

Qur JQur

G,[u](6 V)G, [VI(x,y)dydx =[ u(0N [G,[v]](x)dx



s1 | Nonlocal Laplacian

We can compose nonlocal operators in familiar ways.
J Nonlocal Laplacian

Given a function u(x): R® - Rand n(x,y) = a(x,y) - a(x,y) where a(x,y): R* x R"— R is a symmetric
vector-valued function, the nonlocal Laplace operator is defined as

L [u](®) =D, [Gu]]®)=2[ (uy) -u@)u(xy)dy for xeQ
(J Nonlocal Poisson Equation (Dirichlet Boundary Conditions)

L [u]l(x)=b(x) for xeQ
u(x)=g(x) for xel



Conditioning Results




Background: Condition Number
We denote the condition number of A as k(A): = ||A]|[|A™Y]].

We can demonstrate its usefulness via perturbation analysis. Let Ax=b and consider the perturbed system:
c (A+cE)x(e) =b+ce

Let §(¢) = x(¢) — x. Then,
* (A+€E)6(e) =b+¢ee— (b—c¢€E)
* (A+€E)6(e) = g(e — Ex)
e §(e) =e(A+€E)"! (e — Ex)

We observe that the function x(g) is differentiable at £=0:

. _ x(0+€)—x(0) _ A-1 _
x'(0) = 1:_)0 - A~ (e — Ex) |
Perturbing the pair (A,b) by the small amount (¢E,ce) will cause the solution to change by ex'(0). Thus,
* |Ix(e) — x|l = €]|A7" (e — Ex)||
* |Ix(e) — x|l < ellA~HI{lell + EIXID + O0(g*) I
Further simplification and use of the relationship ||b]| < [|A]|||x]| gives the relative variation in the solution to
the relative sizes of the perturbation

. IIX(S)—XII —1 llell , IEIl )
Il B4 I|||AI|(IbII IIAII)+0( )



Background: Condition Number

What does this mean physically?
» For Ill-conditioned systems, small perturbation in input can result in a
large change in solution

What does this mean for linear solvers?

» Condition number dictates accuracy

« Using relationships Ax=b, e=A"lr, can show that :: :: < [|A[[IA7]] Illlll;llll

« Small relative residual does not imply small relative error!

« Condition number dictates convergence rate

. . . A
- Convergence rate of conjugate gradients: [|e®|| 4 S 2 (ﬁ) e (0)||

Free end \

Cantilevered
beam

....................

Iterations

Convergence curves for
optimal Krylov methods



s | Conditioning of Peridynamic Operators

 Why is conditioning important?
1 Condition number dictate convergence rates of linear solvers
1 Condition numbers dictate the accuracy of computed solution
 Rule of thumb:
If k(A) = 10164, then computed solution has d digits of accuracy (double precision)
If K(A) = 106, expect zero digits of accuracy!
L Old saying: “You get the answer you deserve...”

Point x interacts
directly with all
points x’ within H

1 New component in nonlocal modeling is peridynamic horizon 6
O How does & affect the conditioning?
O Develop preconditioners/solvers optimized for nonlocal models at extreme scales

O To explore the effects of conditioning, let’s consider a FEM discretization of peridynamics

*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



s | Spectral Equivalence

O For simplicity, assume

Ny _ n_ 1 if|x-x| <o “Canonical”
Cxx) = 7,(x =) = {O otherwise Kernel Function
O Main Theorem®*
— + a(u, u — —
(@52 <2 < 5 Q)5 el ()

B HUHLZ(E)

O Let K be a finite element discretization of a(u,u). Then, in h << 5 limit,
k(K) ~ F5(5°2)

O Dominant length scale in nonlocal model set by &.
O Contrast with local model, where length scaled introduced by h
O Mesh-independent condition number bound!

"B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.



57 | Conditioning Results — ID

Q LetQ=(0,1), &Q=[-8,0]U[1, 8]. I
U u=0on &Q

1 if|x-x| <6
0 otherwise

Q Let C(x,X) = {

J Weak form becomes

x+0

a(u,v)= _1[ _[ [u(x') -u(x)] v(x)dx " dx

x=0

O Numerical Study

d PW constant and PW linear SFs
0 Hold & fixed, vary h Integration Domain in (x,x’)

3 Hold h fixed, vary & (grey = outside Q)

"B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.

v



58 | Conditioning Results — ID

O Observations: k(K)~0(52), only weak h-dependence

(a) Constant 9, vary h.

Piecewise Constant Shape Functions Piecewise Linear Shape Functions
1/h 1/6 A Asiiaz Condition # Ntz Nsiias Condition #
2000 20 1.94E-07 | 6.07E-05 3.13E402 1.94E-07 | 6.07E-05 3.13E402
4000 20 9.69E-08 | 3.04E-05 3.13E+402 9.69E-08 | 3.04E-05 3.14E+402
8000 20 4.84E-08 | 1.52E-05 3.14E+02 4.84E-08 | 1.52E-05 3.14E+02
(b) Constant h, vary §.
Piecewise Constant Shape Functions Piecewise Linear Shape Functions
1/h 1/6 Xsnin Ainax Condition # Nmin b — Condition #
8000 20 4.84E-08 | 1.52E-05 3.15E+02 4.84E-08 | 1.52E-05 3.14E+4-02
8000 40 6.24E-09 | 7.61E-06 1.22E+03 6.24E-09 | 7.60E-06 1.22E+03
8000 80 7.92E-10 | 3.80E-06 4.80E+03 7.91E-10 | 3.80E-06 4.80E+03
4 T 4 T T T T B B
I -—
= - ~ ik — 1
2} 1 1
0_
of —a—log(h,,) 1 —A— loglky;y)
—e— log(lmaX) -2 —— IoQ(Amax)
-2 —H— |og(Condition #) | —— |og(Condition #)
-4_
>
=l - ] o - e
_f_‘i_A\"v' -4 1 - .
-6t 1 e S 4 ‘*”‘“—\u\
1 g e
A 3 TS T
A —— -
3?.2 313 3!4 3!5 316 317 3i8 319 4 _1‘?.2 1I.3 1i4 1i5 1I,6 1I,7 1].8 1{9

"B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.

log(1/h)

(a) Constant &, vary h.

log(1/8)

(b) Constant h, vary 9.



59 | Conditioning Results — 2D

O Do exact quadrature (no quadrature error)
O Observations: k(K)~0(52), weak h-dependence

(a) Constant §, vary h.

(b) Constant h, vary 4.

"B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.

(a) Constant ¢, vary h.

1/h 1/6 At p — Condition # 1/h 1/6 p P — Condition #
50 10 2.95E-07 1.40E-05 4.77TE+01 200 10 1.75E-08 8.86E-07 5.05E+01
100 10 7.11E-08 3.54E-06 4.97E+01 200 20 1.17E-09 2.22E-07 1.90E+02
200 10 1.75E-08 8.86E-07 5.05E+01 200 40 7.63E-11 5.50E-08 7.21E+402
£ = = a 4 '
. m
1+ . ol e -
e e — ]2
i —h— IoQ()’mm) i ot o 1
~1 —&—log(A;,;,) . —A— log(A ;)
—— log(Condition #) -2 o log(h_ )
il i 4 —®— |og(Condition #)
-3 b . 1
-4 — ) 4 -6 P— \“EK“'~-~~\-_\J 2
— 1 ———
-5 [ — . N _a A
e | s
L — [T
=7 e e—— - i T
e -1 1
1 1 1 1 1 1 RN* 1 1 L 1 1 1 1
16 4 1.8 1.9 2 2.1 22 23 24 0.9 1 1.1 1.2 13 14 15 1.6
log(1/h) log(1/3)

(b) Constant h, vary ¢.



o | More General Results

O Consider a more general kernel ...

_1-s I (uly) —u(x))®

‘d+25

dydx, ucH(Q), sc(0,1)

 Can capture h-, 6 -, and s-quantification of conditioning (Aksoylu & Unlu, 2015, Zhou & Du, 2010)
K(A) < cmin {h 6@ h? |

(J Note interplay of §, h



Summary




2 | Summary: Survey of Computational Peridynamics

1 Local Models, Nonlocal Models, and Length Scales
O Peridynamics overview
L Example computations
J Material models and fracture models
 Linear isotropic elastic
 Elastic-plastic
L Viscoelastic
 Brittle and ductile failure
1 Discretizations and numerical methods
( Weak form discretization
O Strong form discretization
0 Asymptotically Compatible Discretizations
(J Nonlocal Calculus
d Condition Number Analysis



63 I Kalthoff-Winkler Experiment

[ Dynamic fracture in steel (Kalthoff & Winkler, 1988) Simulation performed
 Mode-Il loading at notch tips results in mode-I cracks at 700 angle with EMU
1 Peridynamic model reproduces the crack angle observed experimentally*

y OBSERVATION
TRANSPARENT REAL MAGE PLANE
FASPECIMEN  IN TRANSMISSION . DITRRIRE
X7

F\\\" . i L jvwnuu.

, | P .~ IMAGE PLANE
VIRTUAL IMAGE PLANE _~ _IN REFLECTION
IN TRANSMISSION = 2 [ned
~/ \ i
/ & \.,.
N- \
, |
CIDENT . ¥ °
e \ ~~ REAL
Je T LIGHT -~ MAGE PLANE
" b .~ IN REFLECTION
- BEAM | STEEL
A y SPECIMEN
OBSERVATION

IN REFLECTION

T
Experimental .

Results

*S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and Solid Mechanics 2003, K.J. Bathe, ed

. Peridynamic Model

., Elsevier, pp. 641-644.



64 | Taylor Bar Test

O Taylor impact test of 6061-T6 aluminum* Simulation performed
with EMU

( ) '-—-r%
L

Experiment

Peridynamic Model*

* J. Foster, S.A. Silling, W.W. Chen, Viscoplasticity Using Peridynamics, Sandia National Laboratories Technical Report SAND2008-7835, 2008.



65 | Failure in Fiber-Reinforced Composites

O Splitting and fracture mode changes in fiber-reinforced composites* Simulation performed
 Fiber orientation between plies strongly influences crack growth with EMU

Typical crack growth in notched laminate
(photo courtesy Boeing)

Peridynamic Model

* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O.Weckner, Peridynamics for multiscale materials modeling, in SciDAC 2008, Seattle, Washington, vol. 125 of Journal of Physics: Conference Series, (012078) 2008.



« | Mesh-Independent Crack Growth

[ Discrete peridynamic model exhibits mesh-independent crack growth
 Plate with a pre-existing defect is subjected to prescribed boundary velocities
O Crack growth direction depends continuously on loading direction

Original grid direction

Damage

\ é 30deg

Rotated grid direction

(J Nonlocal network of bonds in many directions allows cracks to grow in any direction.

Simulation performed
with EMU



67 | Shockwave Ejecta

1 Motivated by experiments by Ogorodnikov et al.* Simulation performed
O Utilize Peridynamic Eulerian model with Mie-Griineisen EOS with EMU
1 Impact aluminum flyer plate on aluminum target plate at 3 km/s, pressure 30 Gpa

40

Flier plate

l 3 km/s

25

50

Target plate

Velocity (m/s)

Initial geometry. Peridynamic simulation results.
Dimensions in mm. Six different simulation times are shown.

d Computed shock velocity is 7.140 km/s; Expected value is 7.230 km/s.
d Computed jet tip velocity is 4.0 km/s; Experimentally measured value is 3.7 km/s.

*V. A. Ogorodnikov, A. L. Mikhailov, A. V. Romanov, A. A. Sadovoi, S. S. Sokolov, and O. A. Gorbenko, Modeling jet flows caused by the incidence of a shock wave on a profiled free surface, Journal of Applied Mechanics
and Technical Physics, 48 (2007), pp. 11-16.



68 | Maximum Interaction Distance
(d Recall the linear peridynamic solid (LPS) model

pui(x, t) = [ (T[x,t](x - x) - T[x',t](x - X)) dV, +b(x,t)

Thx,t](x ) {%@y%@gdj—”j:’;u

O The dilatation is defined as O = i oxedV

mH_ -

] Movement at x”’ influences dilatation at x’.
(] Dilatation at X’ influences force state at x.

1 In the state-based theory, the effective interaction distance is 25!
1 Affects communication patterns

L Affects stiffness matrix bandwidth (~ 26/h, not 6/h)




