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3 Mathematical Models
❑ We use numerical solutions of mathematical models to inform high-consequence decisions.

❑ When is a mathematical model any good?

❑ Model Validation
CI "Am I solving the right problem?"
❑ Is the model sufficient for the application?
❑ Is model quantitatively predictive?
❑ Is model predictive outside of its calibration range?

❑ Model Verification
CI "Am I solving the problem right?"
❑ Are the equations solved correctly?
❑ Can model produce known analytical solutions?

"All models are wrong,
but some are useful."

- George Box

❑ We are trained from an early age to use (local) PDE-based models to describe physical phenomena.

❑ Today, I'll discuss physical phenomena for which classical models appear inadequate, and for which another
mathematical approach may be required.

❑ Let's start with a discussion on local and nonlocal models, length scales, and multiscale models.



4 Local and Nonlocal Models
CI Local models depend upon function values and derivatives at a point

CI f1(x) = uxx(x), f2(x) = a uxx(x) + b uxxxx(x)

CI Nonlocal models depend upon values of a function at many points

6

CI f3 (x) = f (u(x + y) - u(x))dy
-6

Cl Some models possess length scales. How can we identify and control them?

CI Scale invariant (self-similar): f1(x) = uxx(x)
CI If x is rescaled, there exists a rescaling of u that preserves equation

CI A single length scale: f2(x) = a uxx(x) + b uxxxx(x)
CI Length scale is sqrt(b/a) (from dimensional analysis)
CI Rescaling x can make first term dominant or second term dominant

6

CI An infinite number of length scales: f3 (x) = f (u(x + y) - u(x))dy
-6

65 67 CI Consider a series expansion: f3(x) , 
63 

3 60 
uxx(x) + uxxxx(x) +

2520 
uxxxxxx(x) + • • •

At a fundamental level,
multiscale modeling is about
identification of length scales
and control of model behavior

at those length scales



5 Local and Nonlocal Models
CI We use PDE-based (local) models to describe most physical phenomena.

CI Solid mechanics, fluid mechanics, electricity and magnetism, etc.

CI Classical PDE-based physics is descriptive of most (?) phenomena...
CI ... except when it isn't.

CI Classical models may cease to be descriptive if they cannot represent length scales of all dominant physical
processes they are attempting to capture.
CI This includes most multiscale phenomena (example: fracture, failure, etc.)

CI When our PDE-based models cease to be descriptive, our typical first response is to modify them (or modify
their discretization) to make them to elicit desired behavior.

CI The critical issue at hand is representation and control of behavior at multiple length scales.

1

1
CI In practice, nonlocal models do this fairly naturally.

II

CI A first-principles matching of length scales in nonlocal models to length scales in observed physical
phenomena remains an open question for many applications.



6 Nonlocal Models & Length Scale Effects
CI Length scale effects arise in many applications
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Onset of strain localization into shear band for F-75 Ottawa sand*

CI Example: Size of shear band (strain localization)
❑ A shear band is a narrow zone of intense shearing that developing during severe deformation of ductile

materials.
CI Finite element models of shear bands show size of band decrease as mesh is refined, meaning mesh length

scale is controlling shear band size (nonphysical)!
CI Higher gradient models introduced to control this behavior. Introduces additional length scales (ad-hoc).
❑ Nonlocal models can preserve size of shear band under mesh refinement.

* http://web.utk.edu/—alshibli/research/MGM/F75-Ottawa.php



7 Nonlocal Models & Length Scale Effects
CI Length scale effects arise in many applications
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CI Heterogeneous media*
CI Comparison of stress along the midplane in an open hole tension test on a fabric-reinforced composite.
CI Local theory over-predicts the stress concentration, as compared with optically measured data.
CI Peridynamic model has better agreement, apparently due to nonlocality.

*S.A. Silling, Origin and Effect of Nonlocality in a Composite, Sandia Technical Report SAND2013-8140, 2013.



Nonlocal Models & Length Scale Effects
CI Length scale effects arise in many applications

33.02

33 02

CI Fracture and Failure*
CI Classical theory predicts infinite stress (1/sqrt(r) singularity) at crack tip.
CI Classical theory (based on PDEs) not defined on crack surfaces
CI Common numerical approaches (XFEM, etc.) enrich solution space with (for example) heaviside functions to

allow admission of discontinuous solutions
❑ Nonlocal models avoid infinities and are defined everywhere (on and off cracks).

*B. Boyce, et al, The Sandia Fracture Challenge: Blind Round Robin Predictions of Ductile Tearing, Int J Fract. 186:5-68, 2014.



9 Nonlocal Models
❑ Nonlocality and nonlocal models are not a new concept.

❑ There are a large number of nonlocal models used in computational science

❑ Particle models: DPD, SPH, MPM, MD, ...

❑ Nonlocal continuum models: Eringen, Bazant, Kunin, Kromer, ...

❑ Peridynamics, a nonlocal extension of classical continuum mechanics, has been demonstrated to be a superset

of some prior nonlocal models:

❑ SPH [G.C. Ganzenmüller, S. Hiermaier, M. May, 2015]

❑ MD [Seleson, P, Gunzburger, Lehoucq, 2009]

❑ Theories of Kunin [Kunin, 1982]

❑ Theories of Rogula [Rogula, 1982]



Peridynamics Overview



11 What is Peridynamics?
O Peridynamics is a nonlocal extension of classical solid mechanics

O Peridynamic equation of motion (integral, nonlocal)

pii(x, t) = .1 f(u(x' ) - u(x), x'-x)dV' + b(x, t)
Hx

CI Replace PDEs with integral equations

CI Utilize same equation everywhere; nothing "special" about cracks

CI No assumption of differentiable fields (admits fracture)

CI No obstacle to integrating nonsmooth functions

CI f(., •) is "force" function; contains constitutive model

CI f = 0 for points x,x' more than 6 apart (like cutoff radius in MD!)

CI Peridynamics is "continuum form of molecular dynamics"

O impact
CI Nonlocality

CI Larger solution space (fracture)

CI Account for material behavior at small & large length scales

(multiscale material model)

O Ancestors
CI Kröner, Eringen, Edelen, Kunin, Rogula, etc.

Point x interacts
directly with all
points x' within H

("..It can be said that all
physical phenomena are
nonlocal. Locality is a
fiction invented by

idealists."  }

A. Cemal Eringen

I

1



12 Peridynamics:The Basics
O Horizon and family

CI Point x interacts directly with all points with distance 6 (horizon)

CI Material within distance 6 of x is denoted Hx (family of x)

O Bonds and bond forces
CI Vector between x and any point in its family is called a bond: 4 = xY - x
CI Each bond has pairwise force density vector applied at both points: f(x', x, t)

CI This vector is determined jointly by collective deformation of Hx and
collective deformation of Hx,

CI Bond forces are antisymmetric: f(x', x, t) = - f(x, x', t)

CI Bond degrade and fail, admitting damage, failure, and fracture

O Deformation state
CI Deformation state operator Y maps each bond 4 into its deformed imag-

Y (4) = y(x I) — y(x)

Deformation y

Undeformed family of x Deformed family of x



13 Peridynamics:The Basics
0 Bonds and states

CI VI x) has contributions from material models at both x and x'

f(x ', x) = T[x, t](x' — x) — T[x', t](x — x')

CI T[x] is the force state — it maps bonds onto bond force densities

CI T[x] is determined by the constitutive model T = t(Y), where T maps deformation state to force state

0 Peridynamics vs. standard equations

Relation Peridynamic theory Standard theory

Kinematics sii (x 1- x) = y(x')- y(x)
ay

F(x)= (x)
ax

Linear momentum
balance

pii(x) = f (T[x]Kx' - x) - TExiKx - OdVx, + b(x)
Hx

pY(x,t) = V • a(x) + b(x)

Constitutive
model

T = T(Y) a = 6(F)

Angular momentum
balance

f YKx' - x) x 1-(x' - x)dVx, = 0
Hx

G = GT

Elasticity T = wy (Frechet derivative) a = WF (tensor gradient)

First law of
thermodynamics

=T•if-Fh+r =.a•-Fh+r



14 Peridynamics:The Basics
0 Mechanical Properties of Peridynamics

CI Conserves energy (in absence of fracture, plastic deformation, etc.)

CI Conserves linear & angular momentum (always)

CI Obeys the laws of thermodynamics (restrictions on constitutive models)

0 Example: Conservation of Momentum
CI Rate of change of momentum of material within co equals force of body outside co acting upon co plus

external body force upon co:

d f Mx, t)dV. = f f (11x, t]Kx' - x) - T[x', t]Kx - x'))dVx,dVx + f b(x,t)dVx
dt

co co 0/co

CI No self-interaction

f f (T[x,tEx' - x) - T[x',t](x - x'))dVx,dVx = 0
W W

co



15 Peridynamics:The Basics
0 Energy Balance

CI T is work conjugate to Y:
CI This leads to energy balance (first law of thermodynamics)

=T•Y-pci-pr
where

CI c = internal energy density

CI q = rate of heat transport

CI r = energy source rate

Peridynamic equivalent
of stress power a • F

0 Thermodynamic Admissibility for Constitutive Models
CI Second law of thermodynamics (Clausius-Duhem inequality):

eii q + r
where

CI 0 = absolute temperature

CI ri = entropy density

CI Combining with first law gives thermodynamic admissibility condition for constitutive models:

T•if-61-1—*13
where

CI w = c - Ori is free energy density



16 Nonlocal Boundary Conditions

O For local models (for example, PDE-based
models), we apply boundary conditions on the
boundary of the domain (hence the name)

O A Peridynamic "boundary" becomes a
volumetric region, sometimes called a
"nonlocal boundary", "collar", etc.

O Boundary conditions for these models are
called "nonlocal boundary conditions",
"volume constraints", etc.

Q

al

Q



Example Computations



18 Codes
❑ PDLAMMPS (Peridynamics-in-LAMMPS) (Open source, C++)

CI Developers: Parks, Seleson, Plimpton, Silling, Lehoucq

CI Particular discretization of PD has computational structure of molecular dynamics (MD)

❑ LAMMPS: Sandia's open-source massively parallel MD code (lammps.sandia.gov)

Cl More info & user guide: www.sandia.govt-mlparks 

❑ Peridigm (Open Source, C++)

❑ http://peridigm.sandia.gov; http://github.com/peridigm/peridigm 

Cl Developers: Parks, Littlewood, Mitchell, Silling

Cl Intended as Sandia's primary open-source PD code

CI Built upon Sandia's Trilinos Project (trilinos.sandia.gov)

Cl Massively parallel

CI Explicit, implicit time integration

Cl State-based linear elastic, elastic-plasticity, viscoelastic models

CI DAKOTA interface for UWoptimization/calibration, etc. (dakota.sandia.gov)

picridim



19 Two Interacting Cracks
0 Offset notches thin rectangular elastic plate

CI Uniaxial strain applied from sides

CI Approaching cracks produce "en passant" crack pattern

/ Pre-notch

1 )
Pre-notch /1

Peridynamics Physical Experiment*

Simulation performed

with PDLAMMPS

* M. Fender, F. Lechenault, and K. Daniels, Universal Shapes Formed by Two Interacting Cracks, Phys. Rev. Lett. 105, 125505 (2010) .



20

❑ Discretization (finest)

Cl Mesh spacing: 35 microns
CI Approx. 82 million particles
Cl Time: 50 microseconds (20k timesteps)

Fracture in Glass Plate
CI Dynamic brittle fracture in glass

CI Joint with Florin Bobaru, Youn-Doh Ha, & Stewart Silling

Cl Soda-lime glass plate (microscope slide)
CI Dimensions: 3" x 1" x 0.05"

CI Density: 2.44 g/cm3

CI Elastic Modulus: 79.0 Gpa

Cl Glass microscope slide
CI Dimensions: 3" x 1" x 0.05"
Cl Notch at top, pull on ends

Simulation performed

with PDLAMMPS

*S F. Bowden, J. Brunton, J. Field, and A. Heyes, Controlled fracture of brittle solids and interruption of electrical current, Nature, 216, 42, pp.38-42, 1967.



21 Fracture in Glass Plate
❑ Dawn (LLNL): IBM BG/P System

❑ 500 teraflops; 147,456 cores

❑ Part of Sequoia procurement

❑ 20 petaflops; 1.6 million cores

❑ Discretization (finest)

❑ Mesh spacing: 35 microns

❑ Approx. 82 million particles

❑ Time: 50 microseconds (20k timesteps)

❑ 6 hours on 65k cores

❑ Largest peridynamic simulations in history

Weak Scaling Results

Dawn at LLNL

# Cores # Particles Particles/Core Runtime (sec) T(P)/T(P=512)

512 262,144 4096 14.417 1.000

4,096 2,097,152 4096 14.708 0.980

32,768 16,777,216 4096 15.275 0.963

Simulation performed

with PDLAMMPS



22 Explosively Compressed Cylinder*
❑ Motived by experiments of Vogler & Lappo*
❑ Commonly used for consolidation of powders
❑ Copper cylinders filled with granular material and wrapped with Detasheet explosive
❑ Polyurethane foam plugs used to keep granular sample in tube.

❑ Geometry and Material Properties
❑ Copper tubes 305 mm long, ID 50.8 mm, wall thickness of 1.52 mm

❑ PETN based Detasheet with thicknesses of 1, 2, 4, or 6 mm were used, and a

❑ Detonation traveled down length of tube, compressing both tube and sand fill

detonator

Detasheet
1 mm 2 mm

Cylinder schematic

copper
tube foam

plug

Cylinder after compression

* T.J. Vogler and K.M. Lappo, Cylindrical Compaction of Granular Ceramics: Experiments and Simulations, The 12th Hypervelocity Impact Symposium. 2012.
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24 Expanding Tube Simulation**
0 Experimental Setup

CI Tube expansion via collision of Lexan projectile and
plug within AerMet tube

CI Accurate recording of velocity and displacement on
tube surface

0 Modeling Approach
❑ AerMet tube modeled with peridynamics, elastic-

plastic material model with linear hardening

❑ Lexan plugs modeled with classical FEM, equation-of-
state Johnson-Cook material model

CI Interaction via contact algorithm

VISAR Probes

c b a

Experimental setup*

Model discretization

Simulation performed with

Sierra/SolidMechanics

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. International Journal of
Impact Engineering, 29:735-746, 2003.
** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition,
British Columbia, Canada.



25 Expanding Tube Simulation**

AerMet Tu be 

1:1 Peridynamics
1:1 Elastic-plastic constitutive model
1:1 73,676 sphere elements
1:1 Horizon set to five times element radius

Parameter

Density

Young' s Modulus

Poisson' s Ratio

Yield Stress

Hardening Modulus

Critical Stretch

Value

7.87 g/cm3

194.4 GPa

0.3

1.72 GPa

1.94 GPa

0.02

Lexan Projectile/Plug

1:1 Classical FEM
1:1 Johnson-Cook constitutive model
1:1 53,214 hexahedron elements

Simulation performed with
Sierra/SolidMechanics

Parameter

Density

Young' s Modulus

Poisson' s Ratio

Yield Stress

Hardening Constant B

Rate Constant C

Hardening Exponent N

Thermal Exponent M

[ Reference Temperature

Melting Temperature

Value

1.19 g/cm3

2.54 GPa

0.344

75.8 MPa

68.9 MPa

0.0

1.0

1.85

70.0 ° F

500.0 ° F

** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, British Columbia, Canada.



26 Expanding Tube Simulation**

Experimental image at 15.4 microseconds*

Experimental image at 23.4 microseconds*

Simulation at 15.4 microseconds**

Simulation at 23.4 microseconds**

Simulation performed with
Sierra/SolidMechanics

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. International Journal of
Impact Engineering, 29:735-746, 2003.
** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition,
British Columbia, Canada.



27 Expanding Tube Simulation**

Displacement and velocity
on tube surface

at probe position A

1
VISAR Probes

cba

Sample Tube Proiernie

Di
sp
la
ce
me
nt
 (
m
m
)
 

Ve
lo
ci
ty
 (
m/

se
c)

 

2.5

1.5

0.5

250

200

150

100

50

0

Experimental Data [Vogler et al.]
Sirnulation

0 2 4 6 8 10

Time (microseconds)

12 14 16

Experimental Data [Vogler et al.]
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Simulation performed with
Sierra/SolidMechanics

Vogler, T.J., Thornhill, T.F., Reinhart, W.D., Chhabidas, L.C., Grady, D.E., Wilson, L.T., Hurricane, O.A., and Sunwoo, A. Fragmentation of materials in expanding tube experiments. International Journal of
lmpact Engineering, 29:735-746, 2003.
** D. Littlewood. 2010. Simulation of dynamic fracture using peridynamics, finite element modeling, and contact. Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition,
British Columbia, Canada.



Material Models and Fracture Models



29 Peridynamic Material Models
CI Quick survey of some material classes

CI Linear Isotropic Elastic Materials
CI Hooke's law

CI Returns to reference configuration when released

CI Example: spring

CI Elastic-Plastic Materials
CI Elastic for small deformations (< 1% strain)

CI Deforms plastically for larger deformations

CI Example: spring (when stretched too far)

❑ Viscoelastic Materials
CI Exhibit viscous and elastic properties under deformation

CI Hysteresis in stress/strain curves

CI Example: skin (pinch it and let it recover)*

G

 > 8

Linear Elastic

G

 > 8

Elastic Perfectly Plastic

 > 8

Elastic-Plastic
(Strain Hardening)

E

Elastic Perfectly Plastic

CI Can wrap classical material models (existing material libraries) in peridynamic "skin"
❑ PD codes (Peridigm, PDLAMMPS) allow users to define their own material models

* The longer it is pinched, the longer it takes to recover. Skin is also an aging material — young skin recovers more rapidly than old skin.



30 Peridynamic Material Modeling
CI Linear Peridynamic Solid (LPS)*

LI Nonlocal analog to linear isotropic elastic solid

❑ k is bulk modulus, µ is shear modulus

pii(x,t) = f (1[x, t](x' - - T[x',t](x - xr)dVx, + b(x, t)

T[x, tEx' - x) =
(3k0 15µ x' - x

wx + Wed  

m x' - x

*S.A. Silling, M. Epton, O. Weckner, J. Xu, & E. Askari, Peridynamic States and Constitutive Modeling, J. Elasticity, 88, pp. 151-184, 2007.



31 Peridynamic Material Models
CI Elastic-Plastic Model*

CI Nonlocal analogue to perfect plasticity model

CI Relevant for ductile materials and ductile failure

CI Rate equations and constraints
CI Additive decomposition of extension state: ed = ede + edp

CI Elastic force state relations:

T[x,t](x'—x)=
(31tO

m
cox + aco(e

d edip)
\

I

CI Elastic force state domain defined by yield surface/function that depends upon deviatoric force state:

CI f(td) = w(td) — wo 0, where w(td) = Yz 11 td 11 2

CI Flow rule describing rate of plastic deformation: edP = XVcitlf

CI Loading/un-loading conditions (Kuhn-Tucker constraints):

CI X, > 0, f(td) 0,

CI Consistency condition: Xf(td) = 0

* J. Mitchell, A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics, SAND2011-3166, 2011.



32 Peridynamic Material Models
❑ Viscoelastic Model*
U Nonlocal analog to standard linear solid

CI Applicable where rate effects important

CI Adds viscous terms to deviatoric portion of extension state; bulk response
remains elastic

CI Logical intermediate step between fluid and solid

CI viscous fluid: little or no elastic resistance to shear (fluids flow) but resists
compressive volumetric deformations

CI elastic solid: elastic resistance to both shear and volumetric deformations

❑ Viscoelastic Model*
LI Nonlocal analog to standard linear solid

CI Scalar deviatoric force: td = ,giedb

= ai(ed edb)

edb = ted edb)

k
ti

CI Evolution equation:

d .e . st inEut

edb: back extension response

Memory Foam

*J. Mitchell, A Non-local, Ordinary-State-Based Viscoelasticity Model for Peridynamics, SAND2011-8064, 2011.



33 Peridynamic Fracture Modeling
CI Fracture

CI Break bond if bond stretch s exceeds critical stretch s*

❑ lf work to break bond is wow, then energy release rate
found by summing this work per unit crack area

8
G = w0(4)dlids

0 R,

CI Can then get the critical strain s* for bond breakage in terms
of G (strain energy release rate), an experimentally
measurable quantity

CI Fracture
CI (a) Brittle

❑ (b) Ductile

f

so bond strain

IF



34 Peridynamic Fracture Modeling (Brittle)
CI Brittle Fracture

CI No plastic deformation takes place before failure

CI Typically involves catastrophic failure

CI Bond responds elastically until failure at critical stretch

CI Example: impact in Layered Glass
CI No plastic deformation takes place before failurneo,

rigid projectile with
velocity 1,120 m/s

30 crn

Glass laver 1 0.635 cm

Glass layer 2 1.270 cm

Glass layer 3 1.270 cm

Glass layer 4 1.270 cm

Glass layer 5 1.270 cm

Glass layer 6 1_270 crri

Glass laver 7 4.6;l5 cre

Plycarbonate layer 1.270 cnl

36 crn

0.85
0.75
0.65
0.55
0.45
0.35
0.25
0.15ml 
0.05

bond A
force

compression

elastic

tension

failure

 ►
bond stretch

critical stretch

F. Bobaru, YD. Ha, and W. Hu, "Damage progression from impact in layered glass modeled with peridynamics", Open Engineering, 2(4): 551-561 (2012).



35 Peridynamic Fracture Modeling (Ductile)
CI Ductile fracture

bond A
LI Plastic deformation before failure force

CI Can typically sustain large strain before failure

compression

CI Example: Electromagnetically loaded ring
CI 1100-0 aluminum ring (ductile)

CI Motivated by ring fragmentation experiments of Grady & Benson*

CI Used peridynamic elastic/plastic model**

11
r- I

• F

Fracture and arrested neck region
from dynamic expansion of ring*

Simulation performed

with Peridigm

elastic plastic failure

tension

bond
stretch

►

critical stretch

limumwmajittAIRLL14.

'4'4kAki4

necking + failure

* D. Grady, D. Benson, Fragmentation of metal rings by electromagnetic loading, Experimental Mechanics, 23(4), pp. 393-400, 1983
** J. Mitchell, A Nonlocal, Ordinary, State-Based Plasticity Model for Peridynamics, SAND2011-3166, 2011.



Discretizations and Numerical Methods



37 Discretizing Peridynamics
CI Peridynamics is a continuum model — You choose the discretization scheme

CI Temporal discretization
CI Explicit time integration (Velocity-Verlet)

CI Implicit time integration (Newmark-beta method)

CI Spatial discretization (weak form)
CI Nonlocal Galerkin finite elements

CI Nonlocal discontinuous Galerkin finite elements

CI Spatial discretization (strong form) 4 
CI Midpoint quadrature

CI Gauss quadrature*

CI Solvers
CI Nonlocal domain decomposition methods

CI Nonlocal multigrid

CI Nonlinear (Newton/Krylov, nonlinear CG)

CI Linear (preconditioned Krylov subspace methods)

Primary discretization
used in production codes.

*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



38  Nonlocal Weak Form
U Prototype operator

C(x, x') = C(x', x)
L {u}(x) = -j. C(x, x') [u(x) - u(x)]dx'

n C(x, x') = 0 if Ilx - x'll > 8

LI Need nonlocal weak form* —> Multiply by test function and "integrate by parts"

a(u, v) = - f f C(x, x') [u(x') - u(x)] v(x)dx'dx
f/f)

1 r
= i j j C(x,x) [u(x) - u(x)][v(x) - v(x)]dx'dx

U Compare with local Poisson operator
U Hooke's law

1 r
, > 2 j Vu • Vv dx

*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



39 Nonlocal Quadrature
CI Local Quadrature (Review)

CI One integral required

CI Compute products of gradients of shape functions and apply Gauss quadrature

CI Gradient drops polynomial order (lower order quadrature scheme required)

CI Nonlocal Quadrature
CI Two integrals required

CI Compute products of differences of shape functions and integrate

CI No gradient —> higher polynomial order (higher order quadrature needed)

CI Nonlocality generates substantially more work over each element

CI Discontinuous integrands a challenge for quadrature routines (more later...)

a(u, v) = - ffC(x, x') [u(x) - u(x)] v(x)dxidx
MI

1 r r
= ii i C(X, XI) [LI(X1)- LI(X)][v(X)- v(x)]dx'dx

CI Integration by parts is standard in local (classical) FEM.
CI Unclear if there is any computational value in nonlocal setting

1
a(u, v) = 

2 
—.1 Vu • Vv dx



40 Nonlocal Weak Form 2D
CI Let 0 = (0,1)x(0,1); u=0 on BO

CI Weak form requires quadruple integral
CI Expensive!

CI Matrix bandwidth controlled by 6/h
CI 6 - 101 gives dense matrix (intractable at large scales)

CI Classical FEM has (roughly) constant nnz per row

CI lntegrand discontinuous!
CI Gauss quadrature not accurate

CI Adaptive quadrature (expensive)

CI Use 1-norm, not 2-norm distance? (blue circle becomes blue square)

CI Break up integral into many separate integrals where integrand
continuous over each subregion

CI Exact analytic for approach for quadrature?
CI Intractable (so far)

CI More practical approach: approximate blue region by simpler geometric
shape and then performing quadrature

MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MEMMEMMENEMEMMEMMEMM
MMEMMENEMMEMOMMEMMEM
MMEMMEMMEMMEMMEMMEMM
MEMEMMIMMEMEMMIMMEMEM
MEMMEMMEMMEMMEMMEMEM
MENOMONEE/ANEMONE
MMEMMEMMEMMMEMMEMMEM
MMEMMEMMiiiiiiiIMMEMMEMEM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM
MMEMMEMMEMMEMMEMMEMM

606 0000 $000 6000

nz • 3421525

Stiffness Matrix Sparsity Pattern
(10,000 unknowns, 3.4M nnz)



41 Strong Form Discretization
❑ Spatial Discretization

❑ Approximate integral with sum*

❑ Midpoint quadrature

❑ Piecewise constant approximation (could go higher)

Continuum

ff(u(xr, t) - u(x, t), x' - x)dV'
H

*S.A. Silting and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.



42 Strong Form Discretization
Cl Spatial Discretization

CI Approximate integral with sum*

CI Midpoint quadrature

CI Piecewise constant approximation (could go higher)
AVp

7 
DiscreV

,

X 
o

H

If(u(xp,t)-u(xi,t),xp -xi)AVp
P

*S.A. Silting and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.



43 Strong Form Discretization
Ll Spatial Discretization

Ll Approximate integral with sum*

U Midpoint quadrature

U Piecewise constant approximation (could go higher)

AVp
Discrete

( 
x 
o

H

If(u(xp, t) — u(xot),xp — xi )AVp

P

Ll Temporal Discretization

U Explicit central difference in time

til+1 _ 2uin + un_i

U(x, t) cz Lir = '
At2

U Velocity-Verlet

vn+1/2 = n
Ifi +

r At

2m )

Li;
n+1 

ur + (At) Ifr+112
.. 

vin+1 = vn+112 + r At fn+1
N

2m )

fin

*S.A. Silting and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, 83, pp. 1526-1535, 2005.



Asymptotically Compatible
Discretizations



Model Convergence (6 Convergence)
CI We are interested in nonlocal models that reduce to their local counterpart as the

nonlocal parameter goes to zero.
❑ i•e., lim L5u5 = Lou°

6->0

CI Example: x+6
a aU

❑ L5u = f C(x, y)(u(y) - u(x))dy, Lou = k(x) 
x-6 ax ax

CI In general, this must be proven for each specific model or class of models (diffusion,
elasticity, plasticity, etc.)

CI A simple observation:

CI Let qx, =  
3
3 
( k(x) + k(y) 

6 2 )

CI Assume we can series expand u(y), k(y) about x. Then,

L6u =  
a 

k(x)  
au 
+ 62
( 3 02k 02u 1 ak a3u

 +
ax ax 2() 02x 02x 10 ax 03X

CI Leading order terms are the local model; all others vanish with 6.
❑ Nonlocal models naturally encapsulate many length scales.

Sandia
National
Laboratories

45



Solution Convergence
CI We also desire mesh-convergent solutions.

CI i.e., lim u116 = L.16
h—>0

CI Thus, it should follow naturally that lim ua = un
h,6—>0 *

CI It was shown by Q. Du & X. Tian*, ** that this is not always the case!
CI The interplay between the length scales h, 6 is important!

CI Du & Tian define a general framework for these convergence results**

h 6 —> 0
Nonlocal Discrete Solution u6 > U

h
0 Local Discrete Solution

h —> 0 I h —>0

Nonlocal Continuum Solution u6 s uo Local Continuum Solution

CI Practical (non-intuitive?) result:
❑ Piecewise constant discretization converges only if h—>0 faster than 6 —>0.
❑ PWC is most common PD discretization; 6 = Kh a common assumption!
❑ PWL is asymptotically compatible (i.e., convergent for any sequence h, 6 —> 0)

—> 0

*X. Tian and Q. Du, Analyis and Comparison of Different Approximations to Nonlocal Diffusion and Linear Peridynamic Equations, SIAM J. Numer.

Anal. , v51(6), pp. 3458-3482, 2013. 46

Sandia
National
Laboratories

** X. Tian and Q. Du, Asymptotically Compatible Schemes and Applications to Robust Disctretization of Nonlocal Models, SIAM J. Numer. Anal. ,
vc914.1 nn e41-1AA5 ,(114.
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48 Nonlocal Boundaries

O For local models (for example, PDE-based
models), we apply boundary conditions on the
boundary of the domain (hence the name)

O A Peridynamic "boundary" becomes a
volumetric region, sometimes called a
"nonlocal boundary", "collar", etc.

O Boundary conditions for these models are
called "nonlocal boundary conditions",
"volume constraints", etc.

Q

al

Q



49 I Nonlocal Operators*
U Nonlocal Point Divergence

Given a vector two-point function v (x, y): Rn x 110—) Rk and a symmetric vector-valued function
a(x, y): Rn x Rn—> Rk, the nonlocal point divergence operator is a mapping ka: v 1-> ka[v], where Xa[v]:
110 —) IR is given by

D. [v](x) = LuF (v(x, y) • a(x, y) - v(y, x) • a(y, x))dy for x E a

U Nonlocal Two-Point Gradient
Given a function u(x): Rn —) R, the formal adjoint of Xa is the nonlocal two-point gradient operator
Da [11], where Dju]: 110 x Rn—> Rk is given by

Go, [u](x, y) = (u(y) - u(x))a(x, y) for (x,y)E n n
X

a: u 1->

U Nonlocal Normal

Given a vector two-point function v (x, y): Rn X Rn—> Rk and a symmetric vector-valued function
oc(x, y): Rn X Rn—> Rk, the nonlocal normal is a mapping .••a: v 1-> . • • a [v] where .••a[v]: 110 —) R is given by

N .[u](x) := -LF (v(x, y) • a(x, y) - v(y, x) • a(y, x))dy for x e F

*There is also a nonlocal curl; l won't talk about it today.



50  Familiar Relationships
LI Nonlocal Gauss Theorem

Given a vector two-point function v (x, y): Rn x 110—) Rk, we have

L D. [v](x)dx = fF N a [v](x)dx

U Nonlocal Integration by Parts

Given a function u(x): IV —) IR, v (x, y): Rn x Rn—> Rk, and a symmetric vector-valued function
oc(x, y): Rn x IV—) Rk, we have

L u(x)Da [v](x)dx — LuF LuF c [u](x, y)A/(x, y)dydx =fF u(x)N a [v](x)dx

U Nonlocal Green's First Identity

Given the function u(x), v(x): Rn —) R, and a symmetric vector-valued function a(x, y): Rn x Rn—> Rk, we
have

Lu(x)D. [G. [v]] (x)dx — 
'Qui- Luf 

G. [u](x, y)A [v](x, y)dydx =fF u(x)N a [G. [v]](x)dx

I
1

I

1
I



51 Nonlocal Laplacian
We can compose nonlocal operators in familiar ways.

CI Nonlocal Laplacian

Given a function u(x): IV —) R and µ(x, y) = a(x, y) • oc(x, y) where oc(x, y): IV x WI—) Rk is a symmetric
vector-valued function, the nonlocal Laplace operator is defined as

1_,[t[u](x) := D. [G. [u]] (x) = 2LF (u(y)-u(x)*(x,y)dy for x E f2

CI Nonlocal Poisson Equation (Dirichlet Boundary Conditions)

1_,[t[u](x) = b(x) for x e f2

u(x) = g(x) for x e F



Conditioning Results



53 Background: Condition Number
We denote the condition number of A as K(A): = HAM IIA-1 M.

We can demonstrate its usefulness via perturbation analysis. Let Ax=b and consider the perturbed system:
• (A + EE)x(E) = b + Ee

Let 6(E) = x(E) — x. Then,
• (A + EE)6(E) = b + Ee — (b — EE)
• (A + EE)6(E) = E(e — Ex)
• 6(0 = E(A + EE)-1 (e — Ex)

We observe that the function x(E) is differentiable at 8=0:
• xf w = lim x0+0-x(o)

) = A-1 (e — Ex)E c) E 

Perturbing the pair (A,b) by the small amount (8E,8e) will cause the solution to change by EX' (0). Thus,

• Ilx(E) — xll = EllA-1 (e — Ex)II
• Ilx(E) — xll ElIA-111(11ell + IIEIIIIx11) + o(E2)

Further simplification and use of the relationship llbll llAll llxll gives the relative variation in the solution to
the relative sizes of the perturbation

11x(E)-x11 •   EMA-11111A11 M + —
11E11) + 0(E2)

11x11 llbll IIAII)



54 Background: Condition Number
What does this mean physically?
• For Ill-conditioned systems, small perturbation in input can result in a

large change in solution

What does this mean for linear solvers?

• Condition number dictates accuracy

• Using relationships Ax=b, e=A-1 r, can show that —Ile II < IIAII I"11xII 11bII
• Small relative residual does not imply small relative error!

• Condition number dictates convergence rate
k

(Vic(A)-1)
Ile(°)11A Vic(A)+1 A

1C2

o-4

o 8

Ice

10-10

Fixed

end
Free end

\\NA

Cantilevered
beam

50 100 150
Iterations

200 250

Convergence curves for
optimal Krylov methods



55 Conditioning of Peridynamic Operators
CI Why is conditioning important?

CI Condition number dictate convergence rates of linear solvers

CI Condition numbers dictate the accuracy of computed solution

CI Rule of thumb:

lf K(A) = 1016-d, then computed solution has d digits of accuracy (double precision)
If K(A) = 1016, expect zero digits of accuracy!

CI Old saying: "You get the answer you deserve..."

Point x interacts
directly with all
points x' within H

CI New component in nonlocal modeling is peridynamic horizon 6
CI How does 6 affect the conditioning?
CI Develop preconditioners/solvers optimized for nonlocal models at extreme scales

CI To explore the effects of conditioning, let's consider a FEM discretization of peridynamics

*E. Emmrich and O. Weckner, The peridynamic equation and its spatial discretization, Math. Model. Anal., 12(1), pp. 17-27, 2007.



56 Spectral Equivalence
U For simplicity, assume

{1 if x-x' 8
C(x, x') = )(6(x — x 1

0 otherwise

U Main Theorem*

Ai(c.2)15.d+2 < a(u,u) < 22 (c_.2)8d

1142 (Q)

U Let K be a finite element discretization of a(u,u). Then, in h

"Canonical"
Kernel Function

K(K) - Fb(6-2)

U E I-20 (CI)

< < 6 limit,

U Dominant length scale in nonlocal model set by 6.
CI Contrast with local model, where length scaled introduced by h
U Mesh-independent condition number bound!

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.



{1 if x-x' .(5'

57  Conditioning Results I D
U Let n = (0,1), tn = [-6,0]u[1, 6].
U u=0 on tû

U Let C(x, xi) =
0 otherwise

U Weak form becomes

1 x+8

a(u,v)= -f f [u(x)-u(x)]v(x)dx'dx
0 x-8

U Numerical Study
U PW constant and PW linear SFs
U Hold 6 fixed, vary h
U Hold h fixed, vary 6

Integration Domain in (x,x')
(grey = outside C2)

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.



58 Conditioning Results - I D
❑ Observations: K(K)-0(6-2), only weak h-dependence

(a) Constant 6, vary h.

4

2

o

Piecewise Constant Shape Functions Piecewise Linear Shape Functions
1/h 1/6 Amin Amax Condition # Amin Amax Condition #
2000 20 1.94E-07 6.07E-05 3.13E+02 1.94E-07 G.07E-05 3.13E+02
4000 20 9.69E-08 3.04E-05 3.13E+02 9.69E-08 3.04E-05 3.14E+02
8000 20 4.84E-08 1.52E-05 3.14E+02 4.84E-08 1.52E-05 3.14E+02

(b) Constant h, vary S.

Piecewise Constant Shape Functions Piecewise Linear Shape Functions
1/h 1/(5 Amin Amax Condition # Amin Amax Condition #
8000 20 4.84E-08 1.52E-05 3.15E+02 4.84E-08 1.52E-05 3.14E+02
8000 40 6.24E-09 7.61E-06 1.22E+03 6.24E-09 7.60E-06 1.22E+03
8000 80 7.92E-10 3.80E-06 4.80E+03 7.91E-10 3.80E-06 4.80E+03

-A- log(Amin)

- log(kma.)

- log(Condition #)

3.3 3.4 3.5 3.6 3.7
log(1/h)

3.8 3.9 4

4

2

o

-2-

-4-

-e-

-8-

1 I 

3

2

-A- log(A....)

- log(km..)

-0- log(Condition #)

:1
1O ' ' ' ' ' '
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9

log(1/8)

(a) Constant 6, vary h. (b) Constant h, vary 6.

2

•

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.



59  Conditioning Results 2D
U Do exact quadrature (no quadrature error)
U Observations: K(K)-0(6-2), weak h-dependence

(a) Constant 8, vary h.

1/h 1/5 Amin Amax Condition #
50 10 2.95E-07 1.40E-05 4.77E+01
100 10 7.11E-08 3.54E-06 4.97E+01
200 10 1.75E-08 8.86E-07 5.05E+01

2

o -

-1-

-2-

-3-

-5-

-A- IN(Imin)

- lOg(Arnad
-M- log(Condition #)

1 6 1.7 1.8 1.9 2 2.1
log(1/1h)

2

(b) Constant h, vary S.

1/h 1/6 Amin Amax Condition #
200 10 1.75E-08 8.86E-07 5.05E+01
200 20 1.17E-09 2.22E-07 1.90E+02
200 40 7.63E-11 5.50E-08 7.21E+02

4

2

o

-2-

-4-

-6

-8-

-10-

-12-

4

-A- log(?...)

- log( max)

-M- log(Condition #)

2

2

2.2 2.3 2 4 0 9 1.1 1.2 1.3 1.4 1.5 1.6
log(1/5)

(a) Constant 8, vary h. (b) Constant h, vary 6.

*B. Aksoylu and M.L. Parks, Variational Theory and Domain Decomposition for Nonlocal Problems. Applied Mathematics and Computation, 217, pp. 6498-6515, 2011.



60 More General Results
U Consider a more general kernel ...

1—s i i (u(y) — u(x))2 
dydx, u E Hs(Q), s E (0,1)a(u,u) = 

52-2s j j 1., _ xl d+2s

Q Hx 1 Y

Ll Can capture h-, 6 -, and s-quantification of conditioning (Aksoylu & Unlu, 2015, Zhou & Du, 2010)

K(A) c min {h-2s5-(2-20 , h —2

CI Note interplay of 6, h

}





62 Summary: Survey of Computational Peridynamics
❑ Local Models, Nonlocal Models, and Length Scales
❑ Peridynamics overview
❑ Example computations
❑ Material models and fracture models

❑ Linear isotropic elastic

❑ Elastic-plastic

❑ Viscoelastic

❑ Brittle and ductile failure

❑ Discretizations and numerical methods
❑ Weak form discretization

❑ Strong form discretization

❑ Asymptotically Compatible Discretizations
❑ Nonlocal Calculus
❑ Condition Number Analysis



63 Kalthoff-Winkler Experiment
1:1 Dynamic fracture in steel (Kalthoff & Winkler, 1988)
❑ Mode-ll loading at notch tips results in mode-1 cracks at 70o angle
❑ Peridynamic model reproduces the crack angle observed experimentally*

TRANSPARENT
SPECIMEN

VIRTUAL IMAGE PLANE
TRANSMISSION

-"/

1 1

k 1

CIOEN3„.. 
/

LIGHT \

NERECTI°N

OBSERVATION
IN REFLECTION

Experimental
Results

MAL IMAGE PLANE 
OBSERVATION

11 TRANSMISSIONIN TRANSMISSION

STEEL
SPECIMEN

,q

1 •

VIRTUAL
*ACE PLANE

IN REFLECTION

Peridynamic Model

Simulation performed

with EMU

" S. A. Silting, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and Solid Mechanics 2003, K.J. Bathe, ed., Elsevier, pp. 641-644.



64 Taylor Bar Test
CI Taylor impact test of 6061-T6 aluminum*

1
00

Experiment

Peridynamic Model*

Simulation performed

with EMU

" J. Foster, S.A. Silting, W.W. Chen, Viscoplasticity Using Peridynamics, Sandia National Laboratories Technical Report SAND2008-7835, 2008.



65 Failure in Fiber-Reinforced Composites
CI Splitting and fracture mode changes in fiber-reinforced composites*
CI Fiber orientation between plies strongly influences crack growth

Typical crack growth in notched laminate
(photo courtesy Boeing)
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Peridynamic Model

Simulation performed

with EMU

* E. Askari, F. Bobaru, R.B. Lehoucq, M.L. Parks, S.A. Silling, O.Weckner, Peridynamics for multiscale materials modeling, in SciDAC 2008, Seattle, Washington, vol. 125 of Journal of Physics: Conference Series, (012078) 2008.



66 Mesh-Independent Crack Growth
CI Discrete peridynamic model exhibits mesh-independent crack growth
CI Plate with a pre-existing defect is subjected to prescribed boundary velocities
CI Crack growth direction depends continuously on loading direction

= (0.25s-1) 0 
0.1 1

' 0 1

Original grid direction

v\ v3Odeg

Rotated grid direction

Damage

❑ Nonlocal network of bonds in many directions allows cracks to grow in any direction.

Simulation performed

with EMU



67 Shockwave Ejecta
Li Motivated by experiments by Ogorodnikov et al.*
CI Utilize Peridynamic Eulerian model with Mie-Grüneisen EOS
CI impact aluminum flyer plate on aluminum target plate at 3 km/s, pressure 30 Gpa

50

40

A

25

v

Flier plate

I 3 km/s

Target plate

Initial geometry. Peridynamic simulation results.
Dimensions in mm. Six different simulation times are shown.

CI Computed shock velocity is 7.140 km/s; Expected value is 7.230 km/s.
CI Computed jet tip velocity is 4.0 km/s; Experimentally measured value is 3.7 km/s.

Simulation performed

with EMU

* V. A. Ogorodnikov, A. L. Mikhailov, A. V. Romanov, A. A. Sadovoi, S. S. Sokolov, and O. A. Gorbenko, Modeling jet flows caused by the incidence of a shock wave on a profiled free surface, Journal of Applied Mechanics
and Technical Physics, 48 (2007), pp. 11-16.



68 Maximum Interaction Distance
CI Recall the linear peridynamic solid (LPS) model

pii(x, t) = f (T[x, t] (x' — x) — T[xr, t]Kx — xr))dVx, + b(x, t)
H

T[X, t] (Xf - X) 
i  3k0 

cox + 
1 5µ coed Xf - X

m m y Xf - X

CI The dilatation is defined as 0 =  
3 

.I. coxedV
m H -

CI Movement at x" influences dilatation at x'.
CI Dilatation at x' influences force state at x.

CI In the state-based theory, the effective interaction distance is 26!
CI Affects communication patterns

CI Affects stiffness matrix bandwidth (^' 26/h, not 6/h)


