
Seher Acer, ExaGraph TelCon, 03/09/2020

Sandia Nabonal Laboratories is a rnultimission
laboratory managed and operated by National

Technology & Engineering Solutions of Sandia.
LLC, a wholly owned subsidiary of Honermell

International inc., for the U.S. Department of
Energy's National Nuclear Security Administration

under contract DE-NA0003S2S.

SAND2020-3071PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

2 lOutline

SPHYNX — Trilinos aspects

A Kokkos example — GEMM for tall & skinny matrices

3 I SPHYNX

- SPHYNX: Spectral Partitioning on HYbrid aNd
aXelerator-enabled systems

paper accepted by AsHES @ IPDPS 2020

• SPHYNX uses Trilinos packages

• Trilinos uses Kokkos & Kokkos Kernels framework

provides optimized functions and kernels

Building on top of Kokko, means that SPHYNX will run

on all the ECP platforms from Day 1

Perlmutter (CUDA), Aurora (SYCL), Frontier (HIP, OpenMP)

4 I SPHYNX

SPHYNX uses Tpetra

A Trilinos package -- distributed linear algebra objects

e. g., sparse matrices, dense vectors, ...

Supports hybrid parallelism: MPI+X

Tpetra uses Kokkos & Kokkos Kernels

Data-management and parallelization on the node

X: Serial, OpenMP, Pthreads, CUDA

5 1 KOKKOS ECOSYSTEM

Kolikos
Tools

Debugging

Frofilins

Tuning

- and Engineer'

Kokkos EcoSystens

Kokkos Kernels

[Linear Algebra Kernels) fkaph Kernt Is

Kok kos Core
Parallel

EkeicLiticin
Parallel Data
Structures

Kokkos
Support

Docu mental Lon
 •

Tutorials
►

Bootcarnps

[App supporti

[Kokkos Remote Spaces

PGA'S

Maft0-Core Many-Core APU CPU GPU

6 A KOKKOS EXAMPLE -
GEMM

c = beta C + alpha AT B
A and B are tall & skinny dense matrices with n rows

Serial pseudocode:

for i=1 to numCrows

for j=1 to numCcols

C(i,j)= beta C(i,j) + alpha < A(:,i) f B (:,j)>

7 1 A KOKKOS EXAMPLE -
QP\ANeta C + alpha AT B

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

// Determine the local length for the dot product

chunkSize = dotSize / numDivPerDot;

if(numDivPerDot > 1)

chunkSize++;

// Initialize C matrix if beta != 1

if(beta == CVT::zero()) {

Kokkos::MDRangePolicy<Tagzero, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, inumCrows, numCcols1);

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

else if(beta != CVT::one()) {

Kokkos::MDRangePolicy<TagInit, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, {numCrows, numCcols1):

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

// Multiply alpha*A^TB and add it to beta*C

if(conjugateTranspose) {

Kokkos::TeamPolicy<TagMultCT, ExecSpace> policyMult(numTeams, Kokkos::AUTO):

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

else{

Kokkos::TeamPolicy<TagMult, ExecSpace> policyMult(numTeams, Kokkos::AUTO);

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

}

KOKKOS_INLINE_FUNCTION

void operator() (const Tagero&, const size_C &rowId, const size_C &colId) const {

C(rowld, colId) = CVT::zero();

}

8 IA KOKKOS EXAMPLE -
KMation: C = beta C

// Initialize C matrix if beta != 1

if(beta == CVT::zero()) {

Kokkos::MDRangePolicy<Tagero, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, {numCrows, numCcols});

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

else if(beta != CVT::one()) {

Kokkos::MDRangePolicy<TagInit, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, {numCrows, numCcols});

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

KOKKOS_INLINE_FUNCTION

void operator() (const Tagero&, const size_C &rowId, const size_C &colId) const {

C(rowId, colId) = CVT::zero();
}

KOKKOS_INLINE_FUNCTION

void operator() (const Taglnit&, const size_C &rowId, const size_C &colId) const {

C(rowId, colId) = beta * C(rowId, colId);
}

9 A KOKKOS EXAMPLE -
GENIM:RnuRvication c = C + alpha AT B

// Multiply alpha*VTB and add it to beta*C

if(conjugateTranspose)

Kokkos::TeamPolicy<TagMultCT, ExecSpace> policyMult(numTeams, Kokkos::AUTO);

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

else{

Kokkos::TeamPolicy<TagMult, ExecSpace> policyMult(numTeams, Kokkos::AUTO);

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

AT(rowId,:)

B (: , colld)

• Each dot product is performed by
numDivPerDot teams

• Total number of teams:

numCrows*numCcols*numDivPerDot

10 IA KOKKOS EXAMPLE -
PUItNication c = C + alpha AT B

KOKKOS_INLINE_FUNCTION

void operator() (const TagMult&, const typename Kokkos::TeamPolicy<>::member_type& teamMember) const {

const size_C globalRank = teamMember.league_rank();

const sizej localRank = globalRank % numDivPerDot;

const size_C i = globalRank / numDivPerDot;

const size_C rowId = i / numCcols;

const size_C colId = i % numCcols;

scalar_C result = CVT::zero();

const size_A baseInd = chunksize*localRank;

Kokkos::parallel_reduce(Kokkos::TeamThreadRange(teamMember, chunkSize), [6](const size_A k, scalar_C &update) 1

if(baseInd + k < dotSize)

update += alpha * A(baseInd+k, rowld) * B(baseInd+k, colld);

}, result);
AT(rowId,:)

Kokkos::single(Kokkos::PerTeam(teamMember), [&] () {

Kokkos::atomic_add(&C(rowId, result);

1);

} B(:,colId)

