SAND2020- 3071PE

PORTING SPHYNX TO -
GPU-ENABLED ﬁ

S

SYSTEMS
T

Seher Acer, ExaGraph TelCon, 03/09/2020

Sandia National Laboratories is a multimission

laboratory managed and operated by National
Technology & Engineering Solutions of Sandia,
LLC, a wholly owned subsidiary of Honeywell
International Inc,, for the U.S. Department of

Sandia National Laboratoriesis amultimission |aboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned energy's National Nuclear Security Administration
| subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. under contract DE-NA0003525.

2 | Qutline |

= SPHYNX —Trilinos aspects ‘

= A Kokkos example — GEMM for tall & skinny matrices

s ISPHYNX

= SPHYNX: Spectral Partitioning on HYbrid aNd
aXelerator-enabled systems

= paper accepted by AsHES @ IPDPS 2020

= SPHYNX uses Trilinos packages

= Trilinos uses Kokkos & Kokkos Kernels framework
= provides optimized functions and kernels

= Building on top of Kokkos means that SPHYNX will run
on all the ECP platforms from Day 1

Perlmutter (CUDA), Aurora (SYCL), Frontier (HIP, OpenMP)

+ I SPHYNX

= SPHYNX uses Tpetra

= ATrilinos package -- distributed linear algebra objects

e. g., sparse matrices, dense vectors, ...
= Supports hybrid parallelism: MPI+X
= Tpetra uses Kokkos & Kokkos Kernels
= Data-management and parallelization on the node
= X: Serial, OpenMP, Pthreads, CUDA

s KOKKOS ECOSYSTEM

N ~ Science and Engineering Applications

Kokkos
Tools

Trilinos

Kokkos EcoSystem
Kokkos Kernels

Kokkos Core

v/
=y

Multi-Core

G

[Kokkos Remote Spaces

¢ | A KOKKOS EXAMPLE -
GEMM

= C = beta C + alpha AT B
= A and B are tall & skinny dense matrices with n rows

= Serial pseudocode:
for 1=1 to numCrows
for j=1 to numCcols

C(i,j)= beta C(i,3) + alpha < A(:,1),B(:,3)>

7 ‘A KOKKOS EXAMPLE -
GEMMeta C + alpha AT B

// Determine the local length for the dot product
chunkSize = dotSize / numDivPerDot;
if(numDivPerDot > 1)

chunkSize++;

// Initialize C matrix if beta != 1

if(beta == CVT::zero()) {
Kokkos: :MDRangePolicy<TagZero, ExecSpace, Kokkos::Rank<2>> policyInit({0,0}, {numCrows, numCcols});
Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, xthis);

}

else if(beta != CVT::one()) {
Kokkos: :MDRangePolicy<TagInit, ExecSpace, Kokkos::Rank<2>> policyInit({@,0}, {numCrows, numCcols});
Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, xthis);

}

// Multiply alpha*A~TB and add it to beta*C

if(conjugateTranspose) {
Kokkos: : TeamPolicy<TagMultCT, ExecSpace> policyMult(numTeams, Kokkos::AUTO);
Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, xthis);

}
else{
Kokkos: : TeamPolicy<TagMult, ExecSpace> policyMult(numTeams, Kokkos::AUTO);
Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, xthis);
+
}

KOKKOS_INLINE_FUNCTION
void operator() (const TagZero&, const size_C &rowId, const size_C &colId) const {
C(rowId, colld) = CVT::zero();

5 |A KOKKOS EXAMPLE -
-G%MLMation: C = beta C

// Initialize C matrix if beta != 1

if(beta == CVT::zero()) {
Kokkos: :MDRangePolicy<TagZero, ExecSpace, Kokkos::Rank<2>> policyInit({@,@}, {numCrows, numCcols});
Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, xthis);

}

else if(beta != CVT::one()) {
Kokkos: :MDRangePolicy<TagInit, ExecSpace, Kokkos::Rank<2>> policyInit({@,@}, {numCrows, numCcols});
Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, xthis);

KOKKOS_INLINE_FUNCTION
void operator() (const TagZero&, const size_C &rowId, const size_C &colId) const {
C(rowId, colld) = CVT::zero();

KOKKOS_INLINE_FUNCTION
void operator() (const TagInit&, const size_C &rowId, const size_C &colld) const {
C(rowId, colld) = beta * C(rowId, colld);

2 i

g |A KOKKOS EXAMPLE -
-G%MMication C = C + alpha AT B

// Multiply alpha*A~TB and add it to betaxC
if(conjugateTranspose) {

Kokkos: :TeamPolicy<TagMultCT, ExecSpace> policyMult(numTeams, Kokkos::AUTO);
Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, xthis);

}

else{
Kokkos: :TeamPolicy<TagMult, ExecSpace> policyMult(numTeams, Kokkos::AUTO);
Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, xthis);

}
| | |] [
A" (rowld, :) Each dot product is performed by
numDivPerDot teams
B(:,colId) e Total number of teams:

a numCrows*numCcols*numDivPerDot

0 ‘A KOKKOS EXAMPLE -
-G%MMication C = C + alpha AT B

KOKKOS_INLINE_FUNCTION
void operator() (const TagMult&, const typename Kokkos::TeamPolicy<>::member_type&

const size_C globalRank = teamMember.league_rank();
const size_C localRank = globalRank S numDivPerDot;
const size_C i = globalRank / numDivPerDot;

const size_C rowId = i / numCcols;

const size_C colld = i % numCcols;

scalar_C result = CVT::zero();
const size_A baseInd = chunkSizexlocalRank;

Kokkos: :parallel_reduce(Kokkos::TeamThreadRange(teamMember, chunkSize), [&](const size_A k, scalar_C &update) {

if(baseInd + k < dotSize)

teamMember) const {

update += alpha * A(baseInd+k, rowId) x B(baseInd+k, colld); |

}, result);

Kokkos: :single(Kokkos: :PerTeam(teamMember), [&] () {
Kokkos: :atomic_add(&C(rowId, colId), result);
3

B(:,colId)

