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SPHYNX — Trilinos aspects

A Kokkos example — GEMM for tall & skinny matrices
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- SPHYNX: Spectral Partitioning on HYbrid aNd
aXelerator-enabled systems

paper accepted by AsHES @ IPDPS 2020

• SPHYNX uses Trilinos packages

• Trilinos uses Kokkos & Kokkos Kernels framework

provides optimized functions and kernels

Building on top of Kokko, means that SPHYNX will run

on all the ECP platforms from Day 1

Perlmutter (CUDA), Aurora (SYCL), Frontier (HIP, OpenMP)
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SPHYNX uses Tpetra

A Trilinos package -- distributed linear algebra objects

e. g., sparse matrices, dense vectors, ...

Supports hybrid parallelism: MPI+X

Tpetra uses Kokkos & Kokkos Kernels

Data-management and parallelization on the node

X: Serial, OpenMP, Pthreads, CUDA
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6 A KOKKOS EXAMPLE -
GEMM

c = beta C + alpha AT B
A and B are tall & skinny dense matrices with n rows

Serial pseudocode:

for i=1 to numCrows

for j=1 to numCcols

C(i,j)= beta C(i,j) + alpha < A(:,i) f B (:,j)>



7 1 A KOKKOS EXAMPLE -
QP\ANeta C + alpha AT B
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// Determine the local length for the dot product

chunkSize = dotSize / numDivPerDot;

if(numDivPerDot > 1)

chunkSize++;

// Initialize C matrix if beta != 1

if(beta == CVT::zero()) {

Kokkos::MDRangePolicy<Tagzero, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, inumCrows, numCcols1);

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

else if(beta != CVT::one()) {

Kokkos::MDRangePolicy<TagInit, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, {numCrows, numCcols1):

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

// Multiply alpha*A^TB and add it to beta*C

if(conjugateTranspose) {

Kokkos::TeamPolicy<TagMultCT, ExecSpace> policyMult(numTeams, Kokkos::AUTO):

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

else{

Kokkos::TeamPolicy<TagMult, ExecSpace> policyMult(numTeams, Kokkos::AUTO);

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

}

KOKKOS_INLINE_FUNCTION

void operator() (const Tagero&, const size_C &rowId, const size_C &colId ) const {

C(rowld, colId) = CVT::zero();

}
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KMation: C = beta C

// Initialize C matrix if beta != 1

if(beta == CVT::zero()) {

Kokkos::MDRangePolicy<Tagero, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, {numCrows, numCcols});

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

else if(beta != CVT::one()) {

Kokkos::MDRangePolicy<TagInit, ExecSpace, Kokkos::Rank<2» policyInit({0,0}, {numCrows, numCcols});

Kokkos::parallel_for("Initialize C for Dot Product Based GEMM", policyInit, *this);

}

KOKKOS_INLINE_FUNCTION

void operator() (const Tagero&, const size_C &rowId, const size_C &colId ) const {

C(rowId, colId) = CVT::zero();
}

KOKKOS_INLINE_FUNCTION

void operator() (const Taglnit&, const size_C &rowId, const size_C &colId ) const {

C(rowId, colId) = beta * C(rowId, colId);
}
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GENIM:RnuRvication c = C + alpha AT B

// Multiply alpha*VTB and add it to beta*C

if(conjugateTranspose)

Kokkos::TeamPolicy<TagMultCT, ExecSpace> policyMult(numTeams, Kokkos::AUTO);

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

else{

Kokkos::TeamPolicy<TagMult, ExecSpace> policyMult(numTeams, Kokkos::AUTO);

Kokkos::parallel_for("Perform Dot Product Based GEMM", policyMult, *this);

}

AT(rowId,:)

B ( : , colld)

• Each dot product is performed by
numDivPerDot teams

• Total number of teams:

numCrows*numCcols*numDivPerDot



10 IA KOKKOS EXAMPLE -
PUItNication c = C + alpha AT B

KOKKOS_INLINE_FUNCTION

void operator() (const TagMult&, const typename Kokkos::TeamPolicy<>::member_type& teamMember) const {

const size_C globalRank = teamMember.league_rank();

const sizej localRank = globalRank % numDivPerDot;

const size_C i = globalRank / numDivPerDot;

const size_C rowId = i / numCcols;

const size_C colId = i % numCcols;

scalar_C result = CVT::zero();

const size_A baseInd = chunksize*localRank;

Kokkos::parallel_reduce( Kokkos::TeamThreadRange(teamMember, chunkSize), [6]( const size_A k, scalar_C &update ) 1

if(baseInd + k < dotSize)

update += alpha * A(baseInd+k, rowld) * B(baseInd+k, colld);

}, result );
AT(rowId,:)

Kokkos::single(Kokkos::PerTeam(teamMember), [&] () {

Kokkos::atomic_add(&C(rowId, result);

1);

} B(:,colId)


