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Abstract— We evaluate the sensitivity of neuromorphic inference 

accelerators based on Silicon-Oxide-Nitride-Oxide-Silicon 

(SONOS) charge trap memory arrays to total ionizing dose (TID) 

effects. Data retention statistics were collected for 16 Mbit of 40 

nm SONOS digital memory exposed to ionizing radiation from a 

Co-60 source, showing good retention of the bits up to the 

maximum dose of 500 krad(Si). Using this data, we formulate a 

rate-equation-based model for the TID response of trapped charge 

carriers in the ONO stack, and predict the effect of TID on 

intermediate device states between ‘program’ and ‘erase’. This 

model is then used to simulate arrays of low-power, analog 

SONOS devices that store 8-bit neural network weights and 

support in situ matrix-vector multiplication. We evaluate the 

accuracy of the irradiated SONOS-based inference accelerator on 

two image recognition tasks – CIFAR-10 and the challenging 

ImageNet dataset – using state-of-the-art convolutional neural 

networks, such as ResNet-50. We find that across the datasets and 

neural networks evaluated, the accelerator tolerates a maximum 

TID between 10 krad(Si) and 100 krad(Si), with deeper networks 

being more susceptible to accuracy losses due to TID. 
 

Index Terms— Charge trap memory, SONOS, total ionizing dose, 

ionizing radiation, neuromorphic computing, neural networks, 

inference accelerators. 

I. INTRODUCTION 

ON-VOLATILE memory arrays that compute large matrix 

operations in the analog domain have emerged as strong 

candidates for high-throughput and energy-efficient hardware 

accelerators of deep neural networks. Synaptic weights within 

a neural network layer can be stored in the conductance states 

of the memory elements, as shown in Fig. 1(a). By driving the 

rows with a vector of input activations, the full matrix-vector 

multiplication (MVM) can be performed locally within the 

array – eliminating the data transfer bottleneck – with all 

constituent multiply-accumulate operations (MACs) executed 

in parallel [1, 2].   

Charge trap memory is an attractive option for synaptic 

weights owing to its CMOS compatibility and multi-level 
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storage capability. In SONOS (silicon-oxide-nitride-oxide-

silicon) memory, which is in commercial production for data 

storage, a non-volatile state is represented by the quantity of 

electrons residing in a charge-trapping nitride layer between the 

channel and gate of a MOSFET structure, as shown in Fig. 1(b). 

SONOS devices have recently been engineered for inference 

applications, with low read noise and programmability to many 

current levels (up to 8 bits) [3]. The accuracy of SONOS-based 
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Fig. 1. (a) A matrix of weights belonging to one layer of a deep neural network 

can be stored in a SONOS memory array. In situ matrix-vector multiplication 
can be performed within this array by driving the rows with an input vector 

and summing the output currents on the columns. (b) Memory cell consisting 

of a SONOS transistor, which stores information in the quantity of trapped 
charge, and an access transistor. A signed weight can be implemented using 

the difference in current between two SONOS cells. When exposed to ionizing 

radiation, the state of the SONOS cells may be perturbed.  
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neuromorphic accelerators, accounting for device properties, 

has been explored by previous work [4, 5]. Several accelerator 

architectures have been also demonstrated using charge trap 

memory and the closely related floating-gate memory [6-8]. 

In high-radiation environments, such as space missions, non-

volatile memories are subject to cumulative damage induced by 

ionizing radiation. Total ionizing dose (TID) effects on neural 

network accuracy has been previously studied in neuromorphic 

accelerators based on resistive random-access memory 

(ReRAM), both for inference [9] and for training [10]. In flash 

and charge trap memories, TID can lead to the addition or 

removal of stored charge, as described theoretically [11, 12] and 

characterized experimentally [13-16]. We measure the state 

distribution across 16 Mbit of 40nm SONOS digital memory 

devices when exposed to varying levels of TID and combine 

this with a device physics model to derive the irradiated 

response of analog SONOS weights. We use this model to 

project the resilience of SONOS-based inference accelerators, 

running state-of-the-art convolutional neural networks (CNNs) 

pre-trained on image recognition tasks, when operated under 

high levels of ionizing radiation.  

II. TID EXPERIMENTS ON SONOS DIGITAL MEMORY 

In a SONOS memory device, stored electrons within the 

nitride charge trap layer modify the threshold voltage (VT) 

needed to turn on the channel. When operated as digital 

memory, electrons can be injected into the nitride layer to set 

the device to the ‘program’ state with high VT (low current), or 

the nitride can be depleted of electrons to reach the ‘erase’ state 

with low VT (high current). To function reliably as digital 

memory, the VT distributions of the ‘program’ and ‘erase’ states 

across a large array of SONOS devices must have a sufficiently 

large separation to minimize bit errors. 

TID experiments were conducted on memory arrays 

fabricated by Infineon Technologies in a 40nm SONOS 

technology. Test chips containing 8 Mbit of un-cycled SONOS 

memory were used for these tests. Of these, 4 Mbit was used to 

measure the effect of the radiation on the device VT states; 2 

Mbit was set to the ‘program’ state and 2 Mbit was set to the 

‘erase’ state immediately prior to irradiation. The remaining 4 

Mbit of the chip was used to verify the ability to reprogram the 

cells after irradiation. The chips were mounted on a test board 

and exposed to ionizing radiation from a Co-60 source in a 

sequence of dose steps at room temperature. While exposed, 

power was supplied to the test chip, including the peripheral 

circuits, and all memory cells were left in standby mode; the 

cells were not read, programmed, or erased during the tests and 

therefore not under any applied bias. The VT distribution across 

all 8 Mbit of memory per chip was profiled after each step, at 

TID levels of 25k, 50k, 100k, 150k, 200k, 300k, and 500k 

rad(Si). A constant dose rate of 50 rad(Si)/s was used during 

exposure. The full duration of the test, including VT 

characterization after each radiation step, was approximately 

three hours. 

Fig. 2 shows the aggregated VT distribution of the irradiated 

devices across four test chips, containing a total of 16 Mbits, at 

varying TID levels. Only the cells that were not reprogrammed 

are shown. Devices in the ‘program’ state show a decrease in 

VT with TID exposure on average, while the ‘erase’ state VT 

increases. The ‘program’ VT shows a more pronounced 

response to radiation. These trends are consistent with previous 

reports in the literature for SONOS and flash memory [13, 14, 

17]. Up to the maximum TID of 500 krad(Si), the test chips 

retain a large enough separation in VT between the ‘program’ 

and ‘erase’ distributions to reliably support the full 

program/erase window of the digital memory. 

The remaining 4 Mbit of SONOS cells on each exposed test 

chip, separate from the cells characterized in Fig. 2, were erased 

and programmed after each radiation step. The VT distribution 

of these reprogrammed cells, which continued to support the 

full program/erase window without any bit errors, showed 

minimal damage to the peripheral circuits up to 500 krad(Si). 

III. MODELING RADIATION-INDUCED DECAY IN SONOS 

SYNAPSES 

While the tested SONOS devices retain their digital state 

under a total dose of at least 500 krad(Si), TID will affect the 

devices more strongly when they are operated as multi-level 

synaptic elements for analog in situ MVM operations. We 

consider an inference accelerator where neural network weights 

are stored at 8-bit precision, which is a commonly used 

resolution for neural network inference  [18, 19], using the 

difference in current of two SONOS devices to represent 

positive and negative weights. For this use case, each SONOS 

device needs to be programmable to 128 distinct current levels, 

and each level must have good retention to maintain sufficient 

data precision in the neural network. The accuracy of the analog 

accelerator is thus more sensitive to TID-induced VT shifts than 

a binary digital memory array. 

To predict the TID response of intermediate states of the 

SONOS device between ‘program’ and ‘erase’, we use a rate-

equation model for the quantity of trapped electrons and holes 

within the ONO (oxide-nitride-oxide) gate stack. We fit this 

model to the measured TID response of the ‘program’ and 

‘erase’ states, which represent the two extremes of a continuum 

of analog device states. Since we measured the VT distribution 

 

Fig. 2. Measured VT distribution of the SONOS test chips at varying levels of 
TID. The VT levels are grouped into 100 mV bins; the number of devices in 

each bin is shown. 
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at several intermediate radiation levels below 500 krad(Si) (see 

Fig. 2), the experimental data also includes the response of 

several intermediate VT states to further TID exposure. 

In a SONOS gate stack, charge is stored in traps within the 

bulk of the nitride layer, as well as in traps at the interface of 

the nitride and the oxide. We assume that the threshold voltage 

is modified by the trapped charge as:  

(1) 

VT = VT,neu + q(nT − p
T
) (

dBO

ϵox

+
dn

2ϵn

)

+ qnTO (
dBO

ϵox

+
dn

ϵn

) + qn
BO

dBO

ϵox

, 

where VT,neu is the value of the threshold voltage when the ONO 

stack is neutral, i.e. contains net zero trapped charge. nT and pT 

are the densities (per area) of electrons and holes stored in bulk 

nitride traps, and nTO and nBO are densities of electrons trapped 

at the silicon nitride interface with the tunneling oxide (TO) and 

blocking oxide (BO), respectively. We do not include interface 

hole traps in the present model as these were not needed to 

describe the available measured data. dn and dBO are the 

thicknesses of the nitride and BO, respectively, εn and εox are 

the dielectric constants of Si3N4 and SiO2, and q is the electron 

charge. Equation (1) assumes that the bulk nitride traps are 

distributed uniformly through the thickness of the nitride 

storage layer [20]. 

The three types of traps considered (bulk electron traps, bulk 

hole traps, and interface electron traps) each respond differently 

to ionizing radiation owing to their position, energy 

distribution, and total density of traps. Since the density of traps 

is not directly known for our devices, we treat these as fitting 

parameters of the model. We do not model the energy 

distributions of the traps directly, since these are also not known 

a priori, and instead capture their effect using a different 

emission coefficient ec for each group of traps in Equation (1). 

Shallow traps close to the conduction or valence bands are more 

easily ionized by radiation than traps that lie deep inside the 

bandgap, and traps at the interface can more readily be evicted 

from the gate stack than traps in the interior of the nitride. 

We use a separate rate equation to describe how each of the 

four trapped charge densities (nT, pT, nTO, and nBO) changes with 

an increment of ionizing dose γ (rad). The processes that add or 

remove charge from these traps are depicted in Fig. 3(a) and (b) 

for the program and erase state, respectively. We describe these 

mechanisms below. 

A. Oxide charge generation and injection into nitride 

Ionizing radiation generates electrons and holes in the oxide 

layers. After generation, some of these electron-hole pairs very 

quickly recombine before they drift in opposite directions under 

the influence of an electric field. The fraction of carriers that 

remain after recombination is the charge yield. The depedence 

of the charge yield on the electric field and the energy and type 

of incident radiation has been extensively studied for SiO2 [21]. 

We use the germinate recombination model [22], which 

accurately describes the carrier dynamics under exposure Co-

60 gamma rays, to compute the charge yield in the TO and BO. 

Since the TO tends to be significantly thinner, it has a lower 

carrier generation rate per area but a higher charge yield due to 

the larger field. 

When there is net negative charge in the ONO stack,  as in 

Fig. 3(a), the oxide fields drive the holes toward the nitride 

while electrons are swept out to the electrodes. These holes can 

be captured by unfilled traps in the nitride, decreasing VT so 

that the device approaches the neutral state VT,neu. Holes that do 

not find an available trap recombine after some time in the 

nitride layer and have no effect on VT. Trap saturation is 

modeled by a trapping probability 1 – pT/PT, where PT is the 

density of available hole traps. We do not include the trapping 

of carriers within the oxide, away from the interface, as this 

effect tends to be minor due to the small oxide thickness in 

scaled SONOS technology [13]. 

When there is net positive charge in the ONO stack, as in Fig 

3(b), the generated electrons migrate into the nitride layer. 

These electrons can populate either the traps at the nearest 

interface (TO or BO) or the traps in the bulk nitride, increasing 

VT and again driving the device toward the neutral state VT,neu. 

Injected electrons that are not trapped eventually recombine and 

have no effect on VT. 

B. Charge generation in the nitride 

Ionizing radiation can also generate electrons and holes in the 

nitride. Unlike SiO2, the process of electron-hole generation 

and subsequent recombination resulting from Co-60 irradiation 

has not been well studied in silicon nitride. To model it, we first 

scale the number of electron-hole pairs generated per dose in 

SiO2 by the density and bandgap of Si3N4, and use the same 

 

Fig. 3. Modeled processes of trapped charge injection and removal when the 

SONOS device is exposed to ionizing radiation in (a) the program state and 

(b) the erase state. The effects of ionizing radiation labeled (A)–(C) are 

described under the corresponding subsection headings in Section III. 
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charge yield model in Si3N4 as in SiO2. The charge yield is 

calculated as a function of depth in the Si3N4 layer, where the 

electric field varies linearly following the assumption of 

uniform charge distribution in the nitride layer. We then scale 

this effective charge generation rate at each position by a fixed 

value α, which is left as a fitting parameter to the measured data 

in Fig. 2. This parameter reflects our uncertainty in the charge 

generation and separation processes as a result of gamma ray 

irradiation in the nitride layer compared to SiO2 stemming, 

among other factors, from different carrier mobilities and 

charge screening properties. 

For the situation in Fig. 3(a), electrons that survive the initial 

recombination drift toward either the TO or BO, depending on 

their initial position, and will either fill these interface traps, the 

bulk electron traps, or recombine. Trapped electrons at the 

interface can escape out of the ONO stack via tunneling, whose 

probability is calculated using a modified Fowler-Nordheim 

expression [23]. The tunneling probability is much higher 

through the thinner TO than the BO, though in general electron 

tunneling is a small effect due to the relatively small oxide field 

(compared to that seen during the program/erase operation). If 

the net charge in the ONO stack is positive, as in Fig. 3(b), the 

electrons must be trapped or recombine in the interior of the 

nitride. Holes that are generated in the nitride are likewise 

trapped or recombine, though there is less dependence on the 

polarity of the field in this case since hole interface traps are not 

included, and hole tunneling is even smaller than that of 

electrons due to the considerably larger offset in the valence 

band. 

C. Radiation-assisted trap emission 

Trapped charge in the nitride layer and at the interfaces can 

be emitted out of the ONO stack upon receiving energy from 

ionizing radiation. Following [11], we model this emission rate 

to be proportional to the trapped charge density with an 

emission coefficient ec. As described previously, different 

emission rates are chosen for the bulk nitride electron traps, 

bulk hole traps, and interface electron traps which have 

different energy and spatial distributions. We expect the 

interface traps to be shallower on average than the bulk traps, 

which can lie in a defect band that is deep inside the bandgap, 

particularly for electrons [24]. 

D. Fit to measured data 

We choose the trap densities and emission coefficients for 

each group of traps (bulk electron traps, bulk hole traps, and 

interface electron traps), the neutral-point voltage VT,neu, and the 

scale factor α for the nitride charge generation to fit the 

measured data in Fig. 2. These parameters are listed in Table I. 

We also use additional parameters to convert a given initial 

threshold voltage to an initial distribution of charge among the 

different traps in Equation (1). The resulting fit to the data is 

shown in Fig. 4(a), where the blue and red points denote the 

mean values of the measured VT distribution for the program 

and erase states, respectively, at each TID level in Fig. 2. The 

solid curves are the VT evolutions with TID predicted for 

several intermediate values of initial VT. The model gives an 

accurate fit to the measured data using a neutral-point voltage 

of VT,neu = –0.907V, which is closer to the erase state than to the 

program state.  

Fig. 4(b) and (c) show the evolution of trapped carrier 

densities corresponding to the predicted VT evolution of the 

program and erase states, respectively, in Fig. 4(a). In the 

program state, Fig. 4(b), the sharp decrease in VT that is 

observed at low TID is explained by a rapid de-filling of the 

interface traps, which are shallow in energy and readily ionized 

 

Fig. 4. (a) The rate equation based model of VT as a function of TID is plotted 
alongside the means of the VT distributions in Fig. 2 for the ‘program’ and 

‘erase’ states. The data points and error bars denote the mean and standard 

deviations of the VT distributions in Fig. 2 at different TID levels. The green 
region denotes the range used to represent synaptic weights with a two-sided 

mapping scheme as in Fig. 5(a). (b) The evolution of the trapped carrier 

densities with increasing TID for the program state. (c) The evolution of the 
trapped carrier densities with increasing TID for the erase state. 
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TABLE I 

TID MODEL FITTING PARAMETERS 

Parameter Value 

Neutral point threshold voltage VT,neu –0.907V 

Nitride charge generation scaling 

factor, α 
0.150 

Trap densities:  

Bulk electron traps 1.0 × 1013 cm–2 

Bulk hole traps 2.4 × 1012 cm–2 

Interface electron traps 9.1 × 1011 cm–2 

Emission coefficients: 

Bulk electron traps 

Bulk hole traps 

Interface electron traps 

 

1.9 × 10–7 rad–1
 

5.8 × 10–7 rad–1 

3.3 × 10–5 rad–1
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by radiation. This de-filling is eventually balanced by electrons 

that are generated in the nitride and trapped at the interfaces, 

reaching a steady state. Afterwards, VT declines more gradually 

toward the neutral point by the slow de-filling of the deeper 

electron traps in the bulk. The trapped hole population remains 

relatively stable due to saturation of the available traps. 

In the erase state, Fig. 4(c), the net charge in the ONO stack 

is initially positive due to the trapped holes and low population 

of trapped electrons. Upon exposure to ionization radiation, the 

trapped electron and hole populations both increase due to 

carrier generation in the nitride and electron injection from the 

oxides. This increases VT, but as the device approaches the 

neutral point where the bands are flat, these processes are slowed 

or reversed as a result of the decreasing charge yield and the 

removal of trapped charge by radiation. The smaller response in 

the erase state VT is attributed to its relative proximity to the 

neutral point VT,neu of the device. 

We note that while the set of fitting parameters in Table I 

yields a strong fit to the data, it is not guaranteed to be a unique 

solution. The values of these parameters, and the model itself, 

can be clarified with additional irradiation data for intermediate 

device states, as well as by independent experiments on 

unexposed devices to ascertain the values of VT,neu and the trap 

densities.  

E. Mapping of device state to neural network weights 

Since the matrix-vector product is given by a sum of currents 

along a column (or bit line) of the array, the values of the neural 

network weights are proportional to the currents passed by the 

memory cells. To operate the cells as energy-efficient multi-

level synapses, we use the SONOS transistors in the 

subthreshold regime. We allocate 128 current levels in the range 

from 0.01 μA to 3.2 μA to represent the weights, which is similar 

to the range previously used in Ref. [3] for low-current multi-bit 

SONOS devices optimized for neural inference. We use 

measured ID-VCG data on devices programmed to different 

threshold voltages as the basis of the conversion from VT to ID. 

The drain-source voltage is fixed at 0.1V. 

The control gate voltage VCG can be used as a degree of 

freedom to set the range of VT values that will be mapped to a 

desired range of drain currents ID. This bias point should be 

chosen in order to minimize the disturbance to ID, and therefore 

the neural network weights, caused by ionization radiation. The 

response to TID is weakest near the neutral point of the device, 

where the charge yield is near zero (due to the absence of an 

electric field) and the trapped carrier densities are also near 

zero. Thus, VT values near VT,neu should be mapped to the 

weights; in particular, since synaptic weights tend to be 

distributed around zero, the zero weight should be mapped 

exactly to the neutral point. 

We investigate two possible schemes of mapping VT values 

that satisfy the above condition, shown in Fig. 5. In the “two-

sided” scheme in Fig. 5(a), the neutral point VT,neu is set to 

correspond to the midpoint current of 1.6 μA. When using the 

difference in current of two memory cells to represent a signed 

weight, writing both devices to the midpoint current sets the 

weight to zero. Writing one device to a higher (lower) current 

than the midpoint and the other device to a lower (higher) current 

yields a progressively more positive (negative) weight value. 

This scheme has the advantage that neither the largest nor the 

smallest current used will decay very strongly with TID, as 

shown in Fig. 5(b), because they remain somewhat close to the 

 

Fig. 5. Two schemes of mapping VT values to currents and neural network 
weights. The weight represented by a pair of SONOS devices is proportional 

to Ipos – Ineg. (a) In the two-sided mapping scheme, a zero weight is mapped to 

two devices with currents set to the midpoint of the range from 0.01 μA to 3.2 
μA. (b) Decay in drain current with TID when the neutral point is set to the 

midpoint current. (c) In the one-sided mapping scheme, a zero weight is 

mapped to two devices programmed to the lowest current level. (d) Decay in 

drain current with TID when the neutral point is set to the lowest current. 
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Fig. 6. Distribution of device currents in the first layer of the CIFAR-10 CNN 

in Fig. 7 at several levels of TID. For the two-sided mapping scheme, zero 

weights are represented using the midpoint current (1.6 μA) while for the one-
sided mapping scheme zero weights correspond to zero current. For the one-

sided case, the current of the “unused” device in the pair, which is always set 

to the minimum value, is not included in the distribution. With increasing TID, 

the weights are compressed towards zero in both cases. 
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neutral point. Since the currents are subtracted, the TID-induced 

decay in the two devices reinforce each other. We note that the 

degradation in current is not symmetric about the neutral point; 

the states with VT > VT,neu (ID below the mid-point) are more 

sensitive to TID. 

In the “one-sided” scheme in Fig. 5(c), the neutral point VT,neu 

is set to the lowest current level in the desired range. When 

mapping to weights, one of the two devices in the pair will 

always be set to the lowest current, which is at the neutral point 

and is therefore relatively immune to TID. However, the other 

device has a larger sensitivity to TID if the programmed current 

is high, as shown in Fig. 5(d). The one-sided scheme has the 

advantage of significantly lower energy consumption, since the 

majority of devices in the system will be set to the lowest current 

level. It may also be more robust to programming errors, since it 

has been found that SONOS devices with lower target currents 

can be programmed more precisely [3].  

In both mapping schemes in Fig. 5, zero weights (which 

appear most frequently in a neural network) are unperturbed by 

TID while the weights at the extremes of the distribution will 

be compressed toward zero, leading to a loss of inference 

accuracy. This is shown in Fig. 6 for the first layer of the CNN 

to be shown in Fig. 7. As TID increases, the device currents 

decay toward the neutral point and the weight values are 

compressed toward zero. 

IV. NEURAL INFERENCE ACCURACY LOSS UNDER RADIATION 

EXPOSURE 

In this section, we evaluate the image recognition accuracy 

of a SONOS-based neural inference engine operating in a high-

radiation environment using CrossSim, a simulation tool for 

computational memory arrays [25]. Sensitivity to TID is 

evaluated on CNNs trained on two image classification tasks: 

CIFAR-10, which has 10 categories of objects, and the much 

more difficult ImageNet Large-Scale Visual Recognition 

Challenge dataset (ILSVRC-2012, or ImageNet for short), 

which has 1000 categories. For CIFAR-10, we evaluate two 

networks: a plain, strictly sequential CNN (Fig. 7) and a deep 

residual network, ResNet-56v1 (Fig. 8), that is trained using the 

procedure detailed in [26]. For ImageNet, we evaluate the pre-

trained ResNet-50 network (Fig. 9) that is available in the Keras 

machine learning library [27]. Since ResNet-56v1 and ResNet-

50 share similar topologies, we expect that our evaluations 

across these three networks will reveal the role of both task 

complexity and network topology on the sensitivity of the 

inference accelerator to TID. For CIFAR-10, we evaluate 

inference on the full dataset (10,000 images) while for 

ImageNet we use the same subset of 5,000 images (10% of 

validation set) in each inference simulation. 

We follow the scheme proposed in Ref. [28] for mapping the 

weights of a convolutional layer onto a memory array. Batch 

normalization parameters, if present, are folded into the weights 

of the convolutional layers [29]. For each layer, the full range 

of weight values is mapped to the current range from 0.01 μA 

to 3.2 μA using one of the two schemes in Fig. 5. To isolate the 

effect of TID on the SONOS device synapses, our simulations 

do not include the effect of random programming errors or read 

noise, array parasitic resistances, the resolution of the analog-

to-digital converter (ADC), or any radiation-induced damage to 

the peripheral circuits or access devices. We do, however, 

quantize the floating-point weights from the neural network 

model to 8-bit precision so that they are compatible with the 

programmable resolution of the SONOS devices. The effect of 

TID, based on the model in Section III, is then applied onto the 

programmed current values in each device. Bias weights are not 

included in the array and are instead stored digitally at higher 

precision to maintain high accuracy [29]. We assume that these 

digitally stored weights are unaffected by TID. 

Fig. 7 shows the TID-induced loss in classification accuracy 

of a plain CNN trained on the CIFAR-10 task, which has a 

floating-point baseline accuracy of 84.5%. The accuracy falls 

off gradually with TID due to the induced decay in the weight 

values. For the one-sided mapping scheme, the accuracy falls 

by 10% relative to the floating-point baseline after a TID of 70 

krad(Si), while for the two-sided scheme the same point is 

reached at 40 krad(Si). The inferior performance of the two-

 

Fig. 7. TID-induced accuracy degradation of a plain CNN trained on the 

CIFAR-10 task. The network has 4.36M total weights and 100.4M multiply-

accumulate operations (MACs). A ReLU activation with an upper bound of 1 
is used between layers [4]. 
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Fig. 8. TID-induced accuracy degradation of a deep residual network (ResNet-

56v1 [26]) trained on the CIFAR-10 task. The network has 0.86M total 

weights and 126.3M MACs. On the left, asterisk refers to a shortcut layer or a 

stride of 2 that is present only in the first residual block of the group. 
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sided scheme results from the fact that devices with VT > VT,neu, 

which correspond to the lower half of Fig. 5(b), are more 

sensitive to TID in our model. This can also be observed in Fig. 

6 (left) where the smaller currents collapse more swiftly than 

the larger currents. The one-sided scheme performs better since 

it uses only devices with VT < VT,neu, which are more stable 

upon exposure to radiation, and only one of two devices in each 

memory cell pair is degraded by radiation. Only the large outlier 

weights, which map to states far from the neutral point, are 

prone to degrade more rapidly in the one-sided scheme than the 

two-sided scheme. 

Fig. 8 shows the TID response of a CNN that is trained on 

the same task but has a more complex structure. The network, 

which implements the ResNet-56v1 topology in Ref. [26], is 56 

layers deep when counting the convolutional and dense layers 

along the main path, but also employs frequent skip 

connections. The floating-point accuracy of this network is 

92.3%, which is close to the state-of-the-art for CIFAR-10. The 

accuracy falls by 10% relative to floating-point at ~16 krad(Si) 

for the one-sided mapping scheme and ~13 krad(Si) for the two-

sided scheme. Despite being evaluated on the same task, the 

residual network is significantly more sensitive to TID than the 

plain network. Since the weight matrices (i.e. filter sizes) are 

smaller in ResNet-56v1 than the plain CNN in Fig. 7, we 

believe that the added sensitivity can be largely attributed to the 

depth of the residual network, which is greater by about a factor 

of 9. Due to the many sequential matrix-vector multiplication 

operations encountered in a deep network, the effects of TID 

accumulate from layer to layer. Unlike the effects of random 

noise or programming errors, these TID-induced decays do not 

experience any cancellation during propagation. In fact, the 

decayed weights in one layer are propagated to the next layer as 

decayed activations, and the effects of TID may be 

multiplicative from one layer to the next. We note it is also 

possible that since the network in Fig. 7 has about 5× more 

weights, it gains some resilience simply from having more 

redundant fitting parameters. 

Fig. 9 shows the TID sensitivity of ResNet-50, a state-of-the-

art CNN for the ImageNet dataset. This network attains 75.6% 

floating-point top-1 accuracy (92.3% top-5 accuracy) on the 

5,000 validation images used for our evaluation. The accuracy 

falls by 10% relative to this value at 12 krad(Si) for the one-

sided mapping scheme and 9 krad(Si) for the two-sided 

mapping scheme. Remarkably, despite the much greater 

difficulty of the ImageNet task compared to CIFAR-10, the 

ResNet-50 network is only slightly more sensitive to TID 

compared to ResNet-56v1. This is in stark contrast to the large 

difference in noise sensitivity seen between CIFAR-10 and 

ImageNet when running the two tasks using similar ResNet 

topologies [30]. This suggests that the TID sensitivity seen in 

Fig. 8 and Fig. 9 originate primarily from the topology of the 

network rather than the complexity of the task. ResNet-50 and 

ResNet-56v1 are similar in the total depth of the network and 

therefore the number of cascaded matrix-vector multiplications, 

even though they differ dramatically in the network size as 

measured by the total number of weights or arithmetic 

operations. Therefore, if sufficiently deep, the network’s depth 

appears to be the dominant factor that determines its TID 

sensitivity. Further evaluation of networks with different depths 

will be needed to fully validate this finding. 

In addition to TID, a SONOS-based inference accelerator 

may be affected by single event effects, such as upsets in 

random individual synaptic cells due to heavy ion irradiation. 

Such upsets would affect the inference accuracy in a different 

way from TID, which gradually degrades the information stored 

in all of the cells. Investigation of single event effects, which 

are also relevant for geosynchronous and low-earth orbit 

applications, is an important subject of future work. 

V. CONCLUSION 

We have examined the resilience of neural network inference 

accelerators implemented with scaled SONOS memory when 

exposed to ionizing radiation. Our evaluation is based on a 

device-level model of TID response, which is fit to the 

measured characteristics of irradiated SONOS digital memory. 

The sensitivity of inference accuracy to TID depends upon the 

proximity of the selected synaptic weight levels to the neutral 

point of the device, which is immune to radiation. Considering 

the effect of radiation on the SONOS devices alone, the 

magnitude of the inference accuracy degradation at a given TID 

depends on the neural network topology, particularly the depth 

of the network, and varies from 10 krad(Si) to 100 krad(Si) for 

networks that we have evaluated on CIFAR-10 and ImageNet. 

This level of radiation hardness may be suitable for deployment 

at geosynchronous orbit. In addition, the weights in the SONOS 

devices can be periodically refreshed to further extend the life 

of the accelerator for deep space missions. 

 

Fig. 9. TID-induced degradation in the top-1 accuracy on ImageNet using 

ResNet-50 [26]. The network has 25.6M total weights and 4.1B MACs. 
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