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Abstract— We evaluate the sensitivity of neuromorphic inference
accelerators based on Silicon-Oxide-Nitride-Oxide-Silicon
(SONOS) charge trap memory arrays to total ionizing dose (TID)
effects. Data retention statistics were collected for 16 Mbit of 40
nm SONOS digital memory exposed to ionizing radiation from a
Co0-60 source, showing good retention of the bits up to the
maximum dose of 500 krad(Si). Using this data, we formulate a
rate-equation-based model for the TID response of trapped charge
carriers in the ONO stack, and predict the effect of TID on
intermediate device states between ‘program’ and ‘erase’. This
model is then used to simulate arrays of low-power, analog
SONOS devices that store 8-bit neural network weights and
support in situ matrix-vector multiplication. We evaluate the
accuracy of the irradiated SONOS-based inference accelerator on
two image recognition tasks — CIFAR-10 and the challenging
ImageNet dataset — using state-of-the-art convolutional neural
networks, such as ResNet-50. We find that across the datasets and
neural networks evaluated, the accelerator tolerates a maximum
TID between 10 krad(Si) and 100 krad(Si), with deeper networks
being more susceptible to accuracy losses due to TID.

Index Terms— Charge trap memory, SONOS, total ionizing dose,
ionizing radiation, neuromorphic computing, neural networks,
inference accelerators.

I. INTRODUCTION

ON-VOLATILE memory arrays that compute large matrix
operations in the analog domain have emerged as strong
candidates for high-throughput and energy-efficient hardware
accelerators of deep neural networks. Synaptic weights within
a neural network layer can be stored in the conductance states
of the memory elements, as shown in Fig. 1(a). By driving the
rows with a vector of input activations, the full matrix-vector
multiplication (MVM) can be performed locally within the
array — eliminating the data transfer bottleneck — with all
constituent multiply-accumulate operations (MACs) executed
in parallel [1, 2].
Charge trap memory is an attractive option for synaptic
weights owing to its CMOS compatibility and multi-level
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Fig. 1. (a) A matrix of weights belonging to one layer of a deep neural network
can be stored in a SONOS memory array. /n situ matrix-vector multiplication
can be performed within this array by driving the rows with an input vector
and summing the output currents on the columns. (b) Memory cell consisting
of a SONOS transistor, which stores information in the quantity of trapped
charge, and an access transistor. A signed weight can be implemented using
the difference in current between two SONOS cells. When exposed to ionizing
radiation, the state of the SONOS cells may be perturbed.

storage capability. In SONOS (silicon-oxide-nitride-oxide-
silicon) memory, which is in commercial production for data
storage, a non-volatile state is represented by the quantity of
electrons residing in a charge-trapping nitride layer between the
channel and gate of a MOSFET structure, as shown in Fig. 1(b).
SONOS devices have recently been engineered for inference
applications, with low read noise and programmability to many
current levels (up to 8 bits) [3]. The accuracy of SONOS-based
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Fig. 2. Measured Vr distribution of the SONOS test chips at varying levels of
TID. The Vr levels are grouped into 100 mV bins; the number of devices in
each bin is shown.

neuromorphic accelerators, accounting for device properties,
has been explored by previous work [4, 5]. Several accelerator
architectures have been also demonstrated using charge trap
memory and the closely related floating-gate memory [6-8].

In high-radiation environments, such as space missions, non-
volatile memories are subject to cumulative damage induced by
ionizing radiation. Total ionizing dose (TID) effects on neural
network accuracy has been previously studied in neuromorphic
accelerators based on resistive random-access memory
(ReRAM), both for inference [9] and for training [10]. In flash
and charge trap memories, TID can lead to the addition or
removal of stored charge, as described theoretically [11, 12] and
characterized experimentally [13-16]. We measure the state
distribution across 16 Mbit of 40nm SONOS digital memory
devices when exposed to varying levels of TID and combine
this with a device physics model to derive the irradiated
response of analog SONOS weights. We use this model to
project the resilience of SONOS-based inference accelerators,
running state-of-the-art convolutional neural networks (CNN5s)
pre-trained on image recognition tasks, when operated under
high levels of ionizing radiation.

II. TID EXPERIMENTS ON SONOS DIGITAL MEMORY

In a SONOS memory device, stored electrons within the
nitride charge trap layer modify the threshold voltage (V1)
needed to turn on the channel. When operated as digital
memory, electrons can be injected into the nitride layer to set
the device to the ‘program’ state with high Vr (low current), or
the nitride can be depleted of electrons to reach the ‘erase’ state
with low Vr (high current). To function reliably as digital
memory, the Vr distributions of the ‘program’ and ‘erase’ states
across a large array of SONOS devices must have a sufficiently
large separation to minimize bit errors.

TID experiments were conducted on memory arrays
fabricated by Infineon Technologies in a 40nm SONOS
technology. Test chips containing 8 Mbit of un-cycled SONOS
memory were used for these tests. Of these, 4 Mbit was used to
measure the effect of the radiation on the device Vr states; 2
Mbit was set to the ‘program’ state and 2 Mbit was set to the

‘erase’ state immediately prior to irradiation. The remaining 4
Mbit of the chip was used to verify the ability to reprogram the
cells after irradiation. The chips were mounted on a test board
and exposed to ionizing radiation from a Co-60 source in a
sequence of dose steps at room temperature. While exposed,
power was supplied to the test chip, including the peripheral
circuits, and all memory cells were left in standby mode; the
cells were not read, programmed, or erased during the tests and
therefore not under any applied bias. The Vrt distribution across
all 8 Mbit of memory per chip was profiled after each step, at
TID levels of 25k, 50k, 100k, 150k, 200k, 300k, and 500k
rad(Si). A constant dose rate of 50 rad(Si)/s was used during
exposure. The full duration of the test, including Vr
characterization after each radiation step, was approximately
three hours.

Fig. 2 shows the aggregated Vr distribution of the irradiated
devices across four test chips, containing a total of 16 Mbits, at
varying TID levels. Only the cells that were not reprogrammed
are shown. Devices in the ‘program’ state show a decrease in
Vr with TID exposure on average, while the ‘erase’ state Vr
increases. The ‘program’ Vt shows a more pronounced
response to radiation. These trends are consistent with previous
reports in the literature for SONOS and flash memory [13, 14,
17]. Up to the maximum TID of 500 krad(Si), the test chips
retain a large enough separation in Vr between the ‘program’
and ‘erase’ distributions to reliably support the full
program/erase window of the digital memory.

The remaining 4 Mbit of SONOS cells on each exposed test
chip, separate from the cells characterized in Fig. 2, were erased
and programmed after each radiation step. The Vr distribution
of these reprogrammed cells, which continued to support the
full program/erase window without any bit errors, showed
minimal damage to the peripheral circuits up to 500 krad(Si).

III. MODELING RADIATION-INDUCED DECAY IN SONOS
SYNAPSES

While the tested SONOS devices retain their digital state
under a total dose of at least 500 krad(Si), TID will affect the
devices more strongly when they are operated as multi-level
synaptic elements for analog in situ MVM operations. We
consider an inference accelerator where neural network weights
are stored at 8-bit precision, which is a commonly used
resolution for neural network inference [18, 19], using the
difference in current of two SONOS devices to represent
positive and negative weights. For this use case, each SONOS
device needs to be programmable to 128 distinct current levels,
and each level must have good retention to maintain sufficient
data precision in the neural network. The accuracy of the analog
accelerator is thus more sensitive to TID-induced Vr shifts than
a binary digital memory array.

To predict the TID response of intermediate states of the
SONOS device between ‘program’ and ‘erase’, we use a rate-
equation model for the quantity of trapped electrons and holes
within the ONO (oxide-nitride-oxide) gate stack. We fit this
model to the measured TID response of the ‘program’ and
‘erase’ states, which represent the two extremes of a continuum
of analog device states. Since we measured the Vr distribution
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at several intermediate radiation levels below 500 krad(Si) (see
Fig. 2), the experimental data also includes the response of
several intermediate V' states to further TID exposure.

In a SONOS gate stack, charge is stored in traps within the
bulk of the nitride layer, as well as in traps at the interface of
the nitride and the oxide. We assume that the threshold voltage
is modified by the trapped charge as:

dBO dn
VT = VT,neu + q(nT _pT) <€_ + )
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where Ve is the value of the threshold voltage when the ONO
stack is neutral, i.e. contains net zero trapped charge. nr and pr
are the densities (per area) of electrons and holes stored in bulk
nitride traps, and nto and ngo are densities of electrons trapped
at the silicon nitride interface with the tunneling oxide (TO) and
blocking oxide (BO), respectively. We do not include interface
hole traps in the present model as these were not needed to
describe the available measured data. dy and dso are the
thicknesses of the nitride and BO, respectively, &, and &ox are
the dielectric constants of Si3N4 and SiO,, and ¢ is the electron
charge. Equation (1) assumes that the bulk nitride traps are
distributed uniformly through the thickness of the nitride
storage layer [20].

The three types of traps considered (bulk electron traps, bulk
hole traps, and interface electron traps) each respond differently
to ionizing radiation owing to their position, energy
distribution, and total density of traps. Since the density of traps
is not directly known for our devices, we treat these as fitting
parameters of the model. We do not model the energy
distributions of the traps directly, since these are also not known
a priori, and instead capture their effect using a different
emission coefficient e. for each group of traps in Equation (1).
Shallow traps close to the conduction or valence bands are more
easily ionized by radiation than traps that lie deep inside the
bandgap, and traps at the interface can more readily be evicted
from the gate stack than traps in the interior of the nitride.

We use a separate rate equation to describe how each of the
four trapped charge densities (nt, pt, n10, and ngo) changes with
an increment of ionizing dose y (rad). The processes that add or
remove charge from these traps are depicted in Fig. 3(a) and (b)
for the program and erase state, respectively. We describe these
mechanisms below.

A. Oxide charge generation and injection into nitride

Ionizing radiation generates electrons and holes in the oxide
layers. After generation, some of these electron-hole pairs very
quickly recombine before they drift in opposite directions under
the influence of an electric field. The fraction of carriers that
remain after recombination is the charge yield. The depedence
of the charge yield on the electric field and the energy and type
of incident radiation has been extensively studied for SiO, [21].
We use the germinate recombination model [22], which
accurately describes the carrier dynamics under exposure Co-
60 gamma rays, to compute the charge yield in the TO and BO.
Since the TO tends to be significantly thinner, it has a lower
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Fig. 3. Modeled processes of trapped charge injection and removal when the
SONOS device is exposed to ionizing radiation in (a) the program state and
(b) the erase state. The effects of ionizing radiation labeled (A)—(C) are
described under the corresponding subsection headings in Section III.

carrier generation rate per area but a higher charge yield due to
the larger field.

When there is net negative charge in the ONO stack, as in
Fig. 3(a), the oxide fields drive the holes toward the nitride
while electrons are swept out to the electrodes. These holes can
be captured by unfilled traps in the nitride, decreasing Vr so
that the device approaches the neutral state Vr neu. Holes that do
not find an available trap recombine after some time in the
nitride layer and have no effect on V1. Trap saturation is
modeled by a trapping probability 1 — pr/Pr, where Pr is the
density of available hole traps. We do not include the trapping
of carriers within the oxide, away from the interface, as this
effect tends to be minor due to the small oxide thickness in
scaled SONOS technology [13].

When there is net positive charge in the ONO stack, as in Fig
3(b), the generated electrons migrate into the nitride layer.
These electrons can populate either the traps at the nearest
interface (TO or BO) or the traps in the bulk nitride, increasing
Vr and again driving the device toward the neutral state Vr ncu.
Injected electrons that are not trapped eventually recombine and
have no effect on Vr.

B. Charge generation in the nitride

Tonizing radiation can also generate electrons and holes in the
nitride. Unlike SiO,, the process of electron-hole generation
and subsequent recombination resulting from Co-60 irradiation
has not been well studied in silicon nitride. To model it, we first
scale the number of electron-hole pairs generated per dose in
SiO; by the density and bandgap of SizN4, and use the same
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charge yield model in Si3N4 as in SiO,. The charge yield is
calculated as a function of depth in the SizN4 layer, where the
electric field varies linearly following the assumption of
uniform charge distribution in the nitride layer. We then scale
this effective charge generation rate at each position by a fixed
value o, which is left as a fitting parameter to the measured data
in Fig. 2. This parameter reflects our uncertainty in the charge
generation and separation processes as a result of gamma ray
irradiation in the nitride layer compared to SiO, stemming,
among other factors, from different carrier mobilities and
charge screening properties.

For the situation in Fig. 3(a), electrons that survive the initial
recombination drift toward either the TO or BO, depending on
their initial position, and will either fill these interface traps, the
bulk electron traps, or recombine. Trapped electrons at the
interface can escape out of the ONO stack via tunneling, whose
probability is calculated using a modified Fowler-Nordheim
expression [23]. The tunneling probability is much higher
through the thinner TO than the BO, though in general electron
tunneling is a small effect due to the relatively small oxide field
(compared to that seen during the program/erase operation). If
the net charge in the ONO stack is positive, as in Fig. 3(b), the
electrons must be trapped or recombine in the interior of the
nitride. Holes that are generated in the nitride are likewise
trapped or recombine, though there is less dependence on the
polarity of the field in this case since hole interface traps are not
included, and hole tunneling is even smaller than that of
electrons due to the considerably larger offset in the valence
band.

C. Radiation-assisted trap emission

Trapped charge in the nitride layer and at the interfaces can
be emitted out of the ONO stack upon receiving energy from
ionizing radiation. Following [11], we model this emission rate
to be proportional to the trapped charge density with an
emission coefficient e.. As described previously, different
emission rates are chosen for the bulk nitride electron traps,
bulk hole traps, and interface electron traps which have
different energy and spatial distributions. We expect the
interface traps to be shallower on average than the bulk traps,
which can lie in a defect band that is deep inside the bandgap,
particularly for electrons [24].

D. Fit to measured data

We choose the trap densities and emission coefficients for
each group of traps (bulk electron traps, bulk hole traps, and
interface electron traps), the neutral-point voltage V't neu, and the
scale factor o for the nitride charge generation to fit the
measured data in Fig. 2. These parameters are listed in Table I.
We also use additional parameters to convert a given initial
threshold voltage to an initial distribution of charge among the
different traps in Equation (1). The resulting fit to the data is
shown in Fig. 4(a), where the blue and red points denote the
mean values of the measured Vr distribution for the program
and erase states, respectively, at each TID level in Fig. 2. The
solid curves are the Vr evolutions with TID predicted for
several intermediate values of initial Vr. The model gives an
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Fig. 4. (a) The rate equation based model of Vr as a function of TID is plotted
alongside the means of the Vr distributions in Fig. 2 for the ‘program’ and
‘erase’ states. The data points and error bars denote the mean and standard
deviations of the Vr distributions in Fig. 2 at different TID levels. The green
region denotes the range used to represent synaptic weights with a two-sided
mapping scheme as in Fig. 5(a). (b) The evolution of the trapped carrier
densities with increasing TID for the program state. (¢) The evolution of the
trapped carrier densities with increasing TID for the erase state.

TABLE I
TID MODEL FITTING PARAMETERS

Parameter Value
Neutral point threshold voltage Vrneu -0.907V
Nitride charge generation scaling
0.150
factor, o
Trap densities.
Bulk electron traps 1.0 x 10" cm™
Bulk hole traps 2.4 %102 cm™
Interface electron traps 9.1 x 10" cm™
Emission coefficients:
Bulk electron traps 1.9 x 107 rad™!
Bulk hole traps 5.8 x 107 rad™
Interface electron traps 3.3 x 107° rad™!

accurate fit to the measured data using a neutral-point voltage
of V1new =—0.907V, which is closer to the erase state than to the
program state.

Fig. 4(b) and (c) show the evolution of trapped carrier
densities corresponding to the predicted Vt evolution of the
program and erase states, respectively, in Fig. 4(a). In the
program state, Fig. 4(b), the sharp decrease in Vr that is
observed at low TID is explained by a rapid de-filling of the
interface traps, which are shallow in energy and readily ionized
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Fig. 5. Two schemes of mapping Vr values to currents and neural network
weights. The weight represented by a pair of SONOS devices is proportional
0 Ipos — Ineg. (a) In the two-sided mapping scheme, a zero weight is mapped to
two devices with currents set to the midpoint of the range from 0.01 pA to 3.2
pA. (b) Decay in drain current with TID when the neutral point is set to the
midpoint current. (¢) In the one-sided mapping scheme, a zero weight is
mapped to two devices programmed to the lowest current level. (d) Decay in
drain current with TID when the neutral point is set to the lowest current.

by radiation. This de-filling is eventually balanced by electrons
that are generated in the nitride and trapped at the interfaces,
reaching a steady state. Afterwards, Vr declines more gradually
toward the neutral point by the slow de-filling of the deeper
electron traps in the bulk. The trapped hole population remains
relatively stable due to saturation of the available traps.

In the erase state, Fig. 4(c), the net charge in the ONO stack
is initially positive due to the trapped holes and low population
of trapped electrons. Upon exposure to ionization radiation, the
trapped electron and hole populations both increase due to
carrier generation in the nitride and electron injection from the
oxides. This increases Vrt, but as the device approaches the
neutral point where the bands are flat, these processes are slowed
or reversed as a result of the decreasing charge yield and the
removal of trapped charge by radiation. The smaller response in
the erase state Vr is attributed to its relative proximity to the
neutral point Vr ey 0f the device.

We note that while the set of fitting parameters in Table I
yields a strong fit to the data, it is not guaranteed to be a unique
solution. The values of these parameters, and the model itself,
can be clarified with additional irradiation data for intermediate
device states, as well as by independent experiments on
unexposed devices to ascertain the values of Ve, and the trap
densities.

E. Mapping of device state to neural network weights

Since the matrix-vector product is given by a sum of currents
along a column (or bit line) of the array, the values of the neural
network weights are proportional to the currents passed by the
memory cells. To operate the cells as energy-efficient multi-
level synapses, we use the SONOS transistors in the
subthreshold regime. We allocate 128 current levels in the range
from 0.01 pA to 3.2 pA to represent the weights, which is similar
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Fig. 6. Distribution of device currents in the first layer of the CIFAR-10 CNN
in Fig. 7 at several levels of TID. For the two-sided mapping scheme, zero
weights are represented using the midpoint current (1.6 pA) while for the one-
sided mapping scheme zero weights correspond to zero current. For the one-
sided case, the current of the “unused” device in the pair, which is always set
to the minimum value, is not included in the distribution. With increasing TID,
the weights are compressed towards zero in both cases.

to the range previously used in Ref. [3] for low-current multi-bit
SONOS devices optimized for neural inference. We use
measured Ip-Vcg data on devices programmed to different
threshold voltages as the basis of the conversion from Vr to Ip.
The drain-source voltage is fixed at 0.1V.

The control gate voltage Vg can be used as a degree of
freedom to set the range of Vr values that will be mapped to a
desired range of drain currents Ip. This bias point should be
chosen in order to minimize the disturbance to Ip, and therefore
the neural network weights, caused by ionization radiation. The
response to TID is weakest near the neutral point of the device,
where the charge yield is near zero (due to the absence of an
electric field) and the trapped carrier densities are also near
zero. Thus, Vr values near Vrue should be mapped to the
weights; in particular, since synaptic weights tend to be
distributed around zero, the zero weight should be mapped
exactly to the neutral point.

We investigate two possible schemes of mapping Vr values
that satisfy the above condition, shown in Fig. 5. In the “two-
sided” scheme in Fig. 5(a), the neutral point Ve i set to
correspond to the midpoint current of 1.6 pA. When using the
difference in current of two memory cells to represent a signed
weight, writing both devices to the midpoint current sets the
weight to zero. Writing one device to a higher (lower) current
than the midpoint and the other device to a lower (higher) current
yields a progressively more positive (negative) weight value.
This scheme has the advantage that neither the largest nor the
smallest current used will decay very strongly with TID, as
shown in Fig. 5(b), because they remain somewhat close to the
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Fig. 7. TID-induced accuracy degradation of a plain CNN trained on the
CIFAR-10 task. The network has 4.36M total weights and 100.4M multiply-
accumulate operations (MACs). A ReLU activation with an upper bound of 1
is used between layers [4].

neutral point. Since the currents are subtracted, the TID-induced
decay in the two devices reinforce each other. We note that the
degradation in current is not symmetric about the neutral point;
the states with V1 > Ve, (Ip below the mid-point) are more
sensitive to TID.

In the “one-sided” scheme in Fig. 5(c), the neutral point Vr pey
is set to the lowest current level in the desired range. When
mapping to weights, one of the two devices in the pair will
always be set to the lowest current, which is at the neutral point
and is therefore relatively immune to TID. However, the other
device has a larger sensitivity to TID if the programmed current
is high, as shown in Fig. 5(d). The one-sided scheme has the
advantage of significantly lower energy consumption, since the
majority of devices in the system will be set to the lowest current
level. It may also be more robust to programming errors, since it
has been found that SONOS devices with lower target currents
can be programmed more precisely [3].

In both mapping schemes in Fig. 5, zero weights (which
appear most frequently in a neural network) are unperturbed by
TID while the weights at the extremes of the distribution will
be compressed toward zero, leading to a loss of inference
accuracy. This is shown in Fig. 6 for the first layer of the CNN
to be shown in Fig. 7. As TID increases, the device currents
decay toward the neutral point and the weight values are
compressed toward zero.

IV. NEURAL INFERENCE ACCURACY LOSS UNDER RADIATION
EXPOSURE

In this section, we evaluate the image recognition accuracy
of a SONOS-based neural inference engine operating in a high-
radiation environment using CrossSim, a simulation tool for
computational memory arrays [25]. Sensitivity to TID is
evaluated on CNNs trained on two image classification tasks:
CIFAR-10, which has 10 categories of objects, and the much
more difficult ImageNet Large-Scale Visual Recognition
Challenge dataset (ILSVRC-2012, or ImageNet for short),
which has 1000 categories. For CIFAR-10, we evaluate two
networks: a plain, strictly sequential CNN (Fig. 7) and a deep
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Fig. 8. TID-induced accuracy degradation of a deep residual network (ResNet-
56v1l [26]) trained on the CIFAR-10 task. The network has 0.86M total
weights and 126.3M MACs. On the left, asterisk refers to a shortcut layer or a
stride of 2 that is present only in the first residual block of the group.

residual network, ResNet-56v1 (Fig. 8), that is trained using the
procedure detailed in [26]. For ImageNet, we evaluate the pre-
trained ResNet-50 network (Fig. 9) that is available in the Keras
machine learning library [27]. Since ResNet-56v1 and ResNet-
50 share similar topologies, we expect that our evaluations
across these three networks will reveal the role of both task
complexity and network topology on the sensitivity of the
inference accelerator to TID. For CIFAR-10, we evaluate
inference on the full dataset (10,000 images) while for
ImageNet we use the same subset of 5,000 images (10% of
validation set) in each inference simulation.

We follow the scheme proposed in Ref. [28] for mapping the
weights of a convolutional layer onto a memory array. Batch
normalization parameters, if present, are folded into the weights
of the convolutional layers [29]. For each layer, the full range
of weight values is mapped to the current range from 0.01 pA
to 3.2 pA using one of the two schemes in Fig. 5. To isolate the
effect of TID on the SONOS device synapses, our simulations
do not include the effect of random programming errors or read
noise, array parasitic resistances, the resolution of the analog-
to-digital converter (ADC), or any radiation-induced damage to
the peripheral circuits or access devices. We do, however,
quantize the floating-point weights from the neural network
model to 8-bit precision so that they are compatible with the
programmable resolution of the SONOS devices. The effect of
TID, based on the model in Section III, is then applied onto the
programmed current values in each device. Bias weights are not
included in the array and are instead stored digitally at higher
precision to maintain high accuracy [29]. We assume that these
digitally stored weights are unaffected by TID.

Fig. 7 shows the TID-induced loss in classification accuracy
of a plain CNN trained on the CIFAR-10 task, which has a
floating-point baseline accuracy of 84.5%. The accuracy falls
off gradually with TID due to the induced decay in the weight
values. For the one-sided mapping scheme, the accuracy falls
by 10% relative to the floating-point baseline after a TID of 70
krad(Si), while for the two-sided scheme the same point is
reached at 40 krad(Si). The inferior performance of the two-
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Fig. 9. TID-induced degradation in the top-1 accuracy on ImageNet using
ResNet-50 [26]. The network has 25.6M total weights and 4.1B MACs.

sided scheme results from the fact that devices with V1> V1 pey,
which correspond to the lower half of Fig. 5(b), are more
sensitive to TID in our model. This can also be observed in Fig.
6 (left) where the smaller currents collapse more swiftly than
the larger currents. The one-sided scheme performs better since
it uses only devices with V1 < Ve, which are more stable
upon exposure to radiation, and only one of two devices in each
memory cell pair is degraded by radiation. Only the large outlier
weights, which map to states far from the neutral point, are
prone to degrade more rapidly in the one-sided scheme than the
two-sided scheme.

Fig. 8 shows the TID response of a CNN that is trained on
the same task but has a more complex structure. The network,
which implements the ResNet-56v1 topology in Ref. [26], is 56
layers deep when counting the convolutional and dense layers
along the main path, but also employs frequent skip
connections. The floating-point accuracy of this network is
92.3%, which is close to the state-of-the-art for CIFAR-10. The
accuracy falls by 10% relative to floating-point at ~16 krad(Si)
for the one-sided mapping scheme and ~13 krad(Si) for the two-
sided scheme. Despite being evaluated on the same task, the
residual network is significantly more sensitive to TID than the
plain network. Since the weight matrices (i.e. filter sizes) are
smaller in ResNet-56v1 than the plain CNN in Fig. 7, we
believe that the added sensitivity can be largely attributed to the
depth of the residual network, which is greater by about a factor
of 9. Due to the many sequential matrix-vector multiplication
operations encountered in a deep network, the effects of TID
accumulate from layer to layer. Unlike the effects of random
noise or programming errors, these TID-induced decays do not
experience any cancellation during propagation. In fact, the

decayed weights in one layer are propagated to the next layer as
decayed activations, and the effects of TID may be
multiplicative from one layer to the next. We note it is also
possible that since the network in Fig. 7 has about 5% more
weights, it gains some resilience simply from having more
redundant fitting parameters.

Fig. 9 shows the TID sensitivity of ResNet-50, a state-of-the-
art CNN for the ImageNet dataset. This network attains 75.6%
floating-point top-1 accuracy (92.3% top-5 accuracy) on the
5,000 validation images used for our evaluation. The accuracy
falls by 10% relative to this value at 12 krad(Si) for the one-
sided mapping scheme and 9 krad(Si) for the two-sided
mapping scheme. Remarkably, despite the much greater
difficulty of the ImageNet task compared to CIFAR-10, the
ResNet-50 network is only slightly more sensitive to TID
compared to ResNet-56v1. This is in stark contrast to the large
difference in noise sensitivity seen between CIFAR-10 and
ImageNet when running the two tasks using similar ResNet
topologies [30]. This suggests that the TID sensitivity seen in
Fig. 8 and Fig. 9 originate primarily from the topology of the
network rather than the complexity of the task. ResNet-50 and
ResNet-56v1 are similar in the total depth of the network and
therefore the number of cascaded matrix-vector multiplications,
even though they differ dramatically in the network size as
measured by the total number of weights or arithmetic
operations. Therefore, if sufficiently deep, the network’s depth
appears to be the dominant factor that determines its TID
sensitivity. Further evaluation of networks with different depths
will be needed to fully validate this finding.

In addition to TID, a SONOS-based inference accelerator
may be affected by single event effects, such as upsets in
random individual synaptic cells due to heavy ion irradiation.
Such upsets would affect the inference accuracy in a different
way from TID, which gradually degrades the information stored
in all of the cells. Investigation of single event effects, which
are also relevant for geosynchronous and low-earth orbit
applications, is an important subject of future work.

V. CONCLUSION

We have examined the resilience of neural network inference
accelerators implemented with scaled SONOS memory when
exposed to ionizing radiation. Our evaluation is based on a
device-level model of TID response, which is fit to the
measured characteristics of irradiated SONOS digital memory.
The sensitivity of inference accuracy to TID depends upon the
proximity of the selected synaptic weight levels to the neutral
point of the device, which is immune to radiation. Considering
the effect of radiation on the SONOS devices alone, the
magnitude of the inference accuracy degradation at a given TID
depends on the neural network topology, particularly the depth
of the network, and varies from 10 krad(Si) to 100 krad(Si) for
networks that we have evaluated on CIFAR-10 and ImageNet.
This level of radiation hardness may be suitable for deployment
at geosynchronous orbit. In addition, the weights in the SONOS
devices can be periodically refreshed to further extend the life
of the accelerator for deep space missions.
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