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Abstract: 

A novel modeling framework that simultaneously improves accuracy, predictability, 

and computational efficiency is presented. It embraces the benefits of three modeling 

techniques integrated together for the first time: surrogate modeling, parameter inference, and 

data assimilation. The use of polynomial chaos expansion (PCE) surrogates significantly 

decreases computational time. Parameter inference allows for model faster convergence, 

reduced uncertainty, and superior accuracy of simulated results. Ensemble Kalman filters 

(EnKFs) assimilate errors that occur during forecasting. To examine the applicability and 

effectiveness of the integrated framework, we developed 18 approaches according to how 

surrogate models are constructed, what type of parameter distributions are used as model 

inputs, and whether model parameters are updated during the data assimilation procedure. We 

conclude that (1) PCE must be built over various forcing and flow conditions and, in contrast 

to previous studies, it does not need to be rebuilt at each time step; (2) model parameter 

specification that relies on constrained, posterior information of parameters (so-called 

Selected specification) can significantly improve forecasting performance and reduce 

uncertainty bounds compared to Random specification using prior information of parameters; 

and (3) no substantial differences in results exist between single and dual EnKFs, but the 

latter better simulates flood peaks. The use of PCE effectively compensates for the 

computational load added by the parameter inference and data assimilation (up to ~80 times 

faster). Therefore, the presented approach contributes to a shift in modeling paradigm arguing 

that complex, high-fidelity hydrologic and hydraulic models should be increasingly adopted 

for real-time and ensemble flood forecasting. 

Keywords: Real-time ensemble flood forecasting, Uncertainty quantification, Polynomial 

chaos expansions, Generalized Likelihood Uncertainty Estimation, ensemble Kalman filter 
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1. Introduction 

Real-time forecasting is an important component of flood risk management and 

mitigation but is subject to multiple uncertainties caused by meteorological inputs, initial 

states, model structures, and model parameters [Beven, 1989; Ajami et al., 2007; Moradkhani 

and Sorooshian, 2008; Mockler et al., 2016]. Due to the complexities of natural phenomena 

represented by equifinality [Beven and Freer, 2001; Beven, 2006], hysteresis [Wei and 

Dewoolkar, 2006; Ivanov et al., 2010; Fatichi et al., 2015], non-uniqueness [Beven, 2000; 

McKenna et al., 2003; Kim and Ivanov, 2014; Kim et al., 2016a], non-linearity [Kitanidis and 

Bras, 1980; Xie and Zhang, 2010; Kim and Ivanov, 2015], and internal variability [Nikiema 

and Laprise, 2011; Mondal and Mujumdar, 2012; Lafaysse et al., 2014; Kim et al., 2016c; 

Kim et al., 2016b; Kim et al., 2018],  perfect predictions using numerical models are 

infeasible. The problem exacerbates, if one attempts to simulate constitutive models derived 

from empirical or phenomenological observations rather than basic conservation laws of 

physics that would also require embracing a large number of parameters. Forecasting systems 

must therefore rely on approaches with intrinsic tools to quantify and reduce associated 

uncertainties and allow end-users to make informed decisions [Todini, 1999; 2004].  

Forecasts made with sufficient lead time can mitigate flood damages considerably. 

Results should therefore be provided within a predetermined time horizon and accurate 

enough to promote community confidence in actions taken for emergency preparedness 

[Todini, 2004; APFM, 2013]. Extensive efforts have been devoted to enhance forecast 

accuracy, predictability, and efficiency in real time with uncertainty quantification (Table 1). 

However, simultaneous improvement of predictive accuracy and efficiency, while evaluating 

effectiveness, remains a major challenge [Liu et al., 2012; Cintra and Velho, 2018]. 
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For the purpose of enhancing model accuracy in real-time flood forecasting where no 

information of model states and parameters is available, data assimilation (DA) has been 

proven useful. Due to the nature of forecasting, the effect of future unknowns (model 

parameters and states) on flood prediction will change over time. In addition, uncertainty can 

be amplified not only by the features of the model itself, but also by errors in forcing data and 

observations. Therefore, model adjustment for the forecasting period may be necessary 

[Young, 2002; Moradkhani et al., 2005b]. Several assimilation methods have been developed 

using Kalman or particle filters and optimization or inference techniques such as the back-

fitting algorithm [Zhang et al., 2018], shuffled complex evolution algorithm [Li et al., 2014], 

shuffled complex evolution metropolis [Vrugt et al., 2005], generalized likelihood 

uncertainty estimation (GLUE) [Beven and Freer, 2001], and sequential Bayesian 

combination [DeChant and Moradkhani, 2014]. Due to the higher computational 

requirements of the latter techniques, filter-type approaches have attracted attention as 

assimilation tools [Moradkhani and Sorooshian, 2008; Gharamti et al., 2013]. 

Currently, the ensemble Kalman filter (EnKF) [Evensen, 1994] and its modifications 

(e.g., ensemble Kalman smoothers, ensemble square-root filters, and gain function) are the 

most commonly used techniques in the hydrology community (Table 1), despite the issue of 

slow convergence caused by intrinsic assumptions, especially for domains with complexities 

[Moradkhani et al., 2005a; Weerts and El Serafy, 2006; Moradkhani et al., 2012; Wang et al., 

2017]. Recent studies have suggested that particle filtering (PF) [Arulampalam et al., 2002] is 

an alternative method to resolve the inclusion of unrealistic Gaussian assumptions in the 

EnKF. The PF method has more advantages than EnKF in reducing numerical instability by 

providing particle weights and using non-Gaussian state-space models [Liu et al., 2012]. 

However, this method is computationally more expensive as it generally requires more 

ensemble members [Moradkhani et al., 2005a; Liu et al., 2012].  
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When assimilating data, model parameter specification and state initialization may 

play a crucial role, especially for short-range forecasting [Houtekamer and Zhang, 2016]. 

Generally, ensemble initialization of model states and parameters for the forecasting period 

can be generated approximately, e.g., using a random selection from uniform distributions for 

parameters and setting up the initial state values as an arbitrary number (e.g., zero) at the 

beginning of the forecasting period [Moradkhani et al., 2005a; Vrugt et al., 2005; 

Moradkhani et al., 2012; Xie and Zhang, 2013; DeChant and Moradkhani, 2014; Davison et 

al., 2017; Abbaszadeh et al., 2018]. Alternatively, the ensemble can be generated more 

carefully, e.g., specifying parameters from relevant distributions [Beven and Freer, 2001; 

Madsen and Skotner, 2005; Ajami et al., 2007; Clark et al., 2008; He et al., 2012; Mendoza et 

al., 2012; Chen et al., 2013; Zahmatkesh et al., 2015] and using a warm-up technique for 

states [Ajami et al., 2007; He et al., 2012; Mendoza et al., 2012; DeChant and Moradkhani, 

2014; Wang et al., 2018], as summarized in Table 1. 

The assimilation techniques described above generally require a large number of 

model evaluations to update parameter and state values and present predictive uncertainties, 

leading to computational challenges [Vrugt et al., 2008; Vrugt, 2016; Zhang et al., 2017], 

even with the benefit of parallel computation with multiple processors [Cintra and Velho, 

2018]. Because keeping calculation time to a minimum is a key element for timely flood 

warnings and responding to emergency situations [Ballio and Guadagnini, 2004; Sene, 2008], 

it is necessary to find alternatives that significantly increase forecast lead time. Surrogate 

modeling can address this challenge by substituting computationally intensive models with 

computationally efficient metamodels, such as the polynomial chaos expansion (PCE). 

Through the expansion of orthogonal polynomials, approximate functions can be constructed 

and applied to hydrologic models. Recent studies have used PCE to perform robust 

uncertainty assessment of diverse hydrologic problems [Sochala and Le Maître, 2013; Fan et 



 

 
©2020 American Geophysical Union. All rights reserved. 

al., 2014; Wu et al., 2014; Wang et al., 2015; Fan et al., 2016; Wang et al., 2017; Wang et al., 

2018; Dwelle et al., 2019] rather than running deterministic models. However, few studies 

have tested its effectiveness in a setting of real-time flood forecasting [Wang et al., 2015; Fan 

et al., 2016; Wang et al., 2017; Wang et al., 2018].  

To fill the above gaps, we propose a novel integrated modeling framework that 

improves accuracy, predictability, and efficiency of real-time flood forecasting. Eighteen 

approaches to the framework are presented, combining ways of constructing the surrogate 

models, specifying model parameters and states, and assimilating newly observed data. This 

study investigates (i) the effects of building methods of the PCE model and its capacity for 

real-time flood forecasting; (ii) the effects of specifying methods on predictive performance; 

(iii) the effects of single- and dual-assimilation techniques; and (iv) the computational time of 

the proposed approaches. 

2. Methodologies and Frameworks 

2.1. Methodologies 

2.1.1. Deterministic rainfall-runoff model: NAM 

To construct a surrogate model, simulate streamflow, quantify uncertainty, and 

assimilate observed data, a Nedbør–Afstrømnings model (NAM) [Nielsen and Hansen, 1973] 

is employed. As one of the widely used deterministic, lumped models, it is considered useful 

and flexible and has been applied to many catchments [Madsen, 2000; Butts et al., 2004; 

Thompson et al., 2004; O’Brien et al., 2013; Mockler et al., 2016]. Specifically, its design 

assumes three different and mutually integrated storages representing a surface zone, lower 

zone, and routing components that simulate overland flow, interflow, and base flow, 

respectively. The model requires two input forcing variables (𝑀𝐼) of spatially averaged 

precipitation and evapotranspiration, five model states (𝑀𝑆 = 5), and nine model parameter 
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values (𝑀𝑃 = 9) listed in Table 2 [DHI, 2014]. The latter states and parameters control the 

amount of water content and the rates of release from the conceptualized storage 

compartments of the model. Because evapotranspiration is assumed to be negligible during 

the rainy season with flooding events, the number of inputs used in this study is 1 (𝑀𝐼 = 1). 

2.1.2. Surrogate model: polynomial chaos expansion 

Polynomial chaos expansion (PCE) [Wiener, 1938; Ghanem and Spanos, 1991] can 

build a surrogate model (𝓜𝑃𝐶𝐸 ) for any (deterministic rainfall-runoff) model (𝓜) through 

the expansions of orthogonal polynomials. This enables a polynomial approximation of the 

model through its deterministic input/output relationship. The form of a PCE model 

approximating a model output (e.g., streamflow 𝑦𝑡) as a function of model parameters 𝜽𝑡 is 

given as:  

 𝑦𝑡 = 𝓜(𝜽𝑡) ≈ 𝓜𝑃𝐶𝐸𝑡 (𝜽𝑡) (1) 

Note that the surrogate model (𝓜𝑃𝐶𝐸 ) in Eq. 1 has the subscript of 𝑡, indicating that the 

surrogate model is a collection of PCEs constructed at each time step of interest. Also, only 

the parameter 𝜽𝑡 (this includes a subscript of 𝑡 as well) is chosen as an input variable during 

PCE construction, and other forcing or state inputs required to simulate hydrologic models 

are held constant [Sochala and Le Maître, 2013; Fan et al., 2016; Meng and Li, 2018; Wang 

et al., 2018; Dwelle et al., 2019; Tran and Kim, 2019]. This mathematical formulation 

conveys that PCE should be built separately for each time step at which a meteorological 

condition or model state is updated.  

Unlike previous studies based on Eq. 1, this study constructs the surrogate PCE model 

with Eq. 2, which has three characteristics: (i) the model input consists of meteorological 

data, model states, and model parameters; (ii) model parameters do not change over time, 
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which is different from Eq. 1; and (iii) there is no need to constantly create the PCE model 

over time (which is the most important practical feature). The single PCE model represents 

streamflow phenomena over the entire calibration period during which the PCE model was 

generated. Specifically, ensemble model output (𝒀𝒕) at each time step, including streamflow 

(𝑦𝑡) and states (𝒙𝑡), can be written as a function of model inputs (𝑿𝑡), including states (𝒙𝑡−1), 

climate data (𝒖𝑡), and time-invariant parameters (𝜽): 

 𝒀𝒕 = 𝓜(𝑿𝑡) ≈ 𝓜𝑃𝐶𝐸(𝑿𝑡) = ∑ 𝜀 Ψ (𝑿𝑡)

  ∈𝐴

 (2) 

 𝒀𝒕 = [𝑦𝑡 𝒙𝑡], 𝑿𝑡 = [𝒙𝑡−1 𝒖𝑡  𝜽]  (3) 

where 𝜀  represents the PCE coefficients to be determined for all multi-indices, 𝜶 =

{𝛼1, … , 𝛼𝑀𝑋
} belonging to a set of candidate polynomials 𝐴, {𝜶 ∈ 𝐴}. Ψ (𝑿𝑡) represents the 

multivariate polynomials corresponding to the given input 𝑿𝑡. The polynomials are 

constructed as the product of univariate orthonormal polynomials: 

 Ψ (𝑿𝑡) =  ∏ Ψ 𝑗

(𝑗)
(𝑿𝑡

𝑗)

𝑀𝑋

𝑗=1

 (4) 

where Ψ 𝑗

(𝑗)
 is the univariate orthonormal polynomials of the j-th variables of the degree  𝑗. In 

general, the size of 𝑿𝑡, 𝑀𝑋, is equal to the summation of the number of parameters, states, 

and forcing inputs of the deterministic NAM model (i.e., 𝑀𝑋 = 𝑀𝑃 + 𝑀𝑆 + 𝑀𝐼). Set 𝐴 is 

determined by 𝑀𝑋 and the polynomial degree, 𝑝 of the PCE model as: 

 𝐴 = 𝐴𝑀𝑋 ,𝑝 = {𝜶 ∈ ℕ𝑀𝑋 ∶  |𝜶| ≤ 𝑝}, 𝑐𝑎𝑟𝑑 𝐴𝑀𝑋 ,𝑝 = (
𝑀𝑋 + 𝑝

𝑝
) (5) 
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Various polynomial bases (e.g., uniform, Gaussian, beta, and gamma) can be chosen 

for Ψ (𝑿𝑡) from the Weiner–Askey scheme, depending on the probabilistic characteristics of 

model input variables 𝑿𝑡 [Xiu and Karniadakis, 2002]. 

Given the set of multivariate orthonormal polynomials (Ψ (𝑿𝑡)), the next step is to 

compute the PCE coefficients (𝜀 ), which are influenced by the number of model evaluations 

(called the experimental design, 𝑁) and the polynomial degree, 𝑝 [Blatman and Sudret, 2010; 

Blatman and Sudret, 2011]. Increasing these numbers requires significant computational 

resources and the requirement is higher. When using the projection method [Ghiocel and 

Ghanem, 2002; Le Maı̂tre et al., 2002], one of the methods employed to compute PCE 

coefficients, 𝑁 is determined based on 𝑝 and the size of 𝑿𝑡, 𝑀𝑋 as N = (p+1)
𝑀𝑋 . This number 

is large enough that it takes a considerable time to construct the surrogate model [Blatman 

and Sudret, 2011; Tran and Kim, 2019]. Reducing N is desirable as it lessens the 

computational cost. For the least-squares regression method adopted in this study, N is not 

defined a priori and is provided by the researcher, which can enable a significant decrease for 

the value of N [Berveiller et al., 2006; Sudret, 2008; Blatman and Sudret, 2010]. Also, 𝑝 can 

be determined by the complexity of model outputs and the subjectivity of researcher, with 

many studies choosing values of 2 or 3 [Sochala and Le Maître, 2013; Fan et al., 2014; Wang 

et al., 2015; Wang et al., 2017]. Investigating the effects of varying values of 𝑁 and 𝑝 on the 

PCE model allows for determination of the optimal values of the both parameters. According 

to the approach by Blatman and Sudret [2010], a metric of the leave-one-out (𝐿𝑂𝑂) cross-

validation error in Eq. A.5 can illustrate the performance of the PCE model. A brief overview 

of the construction of the PCE surrogate model is detailed in Appendix A.  
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2.1.3. Parameter inference: GLUE 

GLUE [Beven and Binley, 1992] refers to a series of procedures for inferring 

parameter posterior distributions and quantifying the associated uncertainties. The objective 

of GLUE is to select “behavioral” model runs based on the threshold values of likelihood 

functions with observations, among a large number of runs simulated with random 

combinations of parameter values. The latter parameter’s values can be sampled randomly 

from the prior distributions of each parameter (constrained in this study with upper and lower 

bounds of Table 2) using Monte Carlo or Latin hypercube sampling (LHS). For more 

efficient performance, LHS was used [Helton and Davis, 2003]. The likelihood functions 

proposed in this study are three metrics of Nash–Sutcliffe efficiency (𝑁𝑆𝐸), peak error (𝑃𝐸), 

and volume error (𝑉𝐸) defined in Appendix B, representing the model performance with 

respect to the shape, peak, and volume of hydrograph, respectively. Acceptance threshold 

values are determined according to an approach [Tran and Kim, 2019] in which relationships 

between accuracy and efficiency indices are identified for their determinations. Specifically, 

cutoff threshold values for the likelihood functions of 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸 are suggested as 0.8, 

5%, and 5%, respectively [Tran and Kim, 2019]. The model runs (or parameters) that satisfy 

the modelling error within the above thresholds for all the likelihood functions are defined 

here as “behavioral” runs (or parameters). 

2.1.4. Ensemble data assimilation: Single and dual EnKFs 

Among many reported techniques, the single ensemble Karman filter (EnKF) and the 

dual-ensemble Karman filter (dual EnKF) are often chosen to optimally update the ensemble 

of model states (and parameters) of forecasting systems with real-time observations, which 

can be coupled with any models [Evensen, 1994; Burgers et al., 1998; Moradkhani et al., 

2005b; Whitaker, 2012]. Specific details are provided in Appendix C. 
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The EnKF allows for the perturbation of observations to generate replicates of 𝒙𝑡−1 

and 𝜽𝑡, and the correction of the ensemble forecast members through an update step (Eqs. 

C.10 and C.18) [Moradkhani et al., 2005b]. This prevents the EnKF from a collapse in which 

all ensemble forecast members are likely to have similar values [Burgers et al., 1998]. As 

shown in Eq. C.11, observations can be perturbed by adding stochastic noise to the observed 

value. This observed error in measurements is assumed to be independent and is set to be 

proportional to the observed values, following a Gaussian distribution with predetermined 

variance. In this study, we assume that the standard deviation of the observational error is 5% 

of streamflow observations (i.e., noise) at each time step, similar to prior studies [Clark et al., 

2008; DeChant and Moradkhani, 2012; Fan et al., 2016; Bauser et al., 2018]. Sensitivity 

analysis on the observation error are illustrated in Section S.1 of the Supplementary Material. 

Furthermore, overshooting or filter divergence problem in data assimilation happens when 

the ensemble size is small or the initial values of ensemble members are quite different from 

the true. To resolve this issue, we used a sufficiently large ensemble size and the posterior 

information of parameters to initialize the ensemble of EnKF. 

2.2. New modeling framework 

2.2.1. Obtaining prior and posterior parameter distributions of a deterministic model 

The first preparation step of the modeling framework is to obtain the prior and 

posterior parameter distributions for a deterministic model. There could be various ways to 

handle this, but in this study the following assumptions and methodologies are specifically 

applied. We first assume that each of the parameters follows a uniform distribution within 

specified bounds – the prior parameter distributions are simply attained by utilizing prior-

known information for the bounds in Table 2. In contrast, the posterior parameter 

distributions are fitted to the 500 behavior parameters of GLUE – the 500 NAM behavior 
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samples are identified as an optimal number from our previous study which has confirmed 

that more than the 500 parameter sets does not change the shape of the posterior distributions 

[Tran and Kim, 2019]. For consistency, this number will be also used for making the 

posterior distributions of PCE-I and PCE-II in Sec. 2.2.2.  

The mathematical expression of this step is as follows. For the warm-up and 

calibration periods, a model 𝓜 (NAM) can be simulated to attain behavioral runs with 

GLUE, i.e., 

 [𝑦𝑡
𝑖𝑖  𝒙𝑡

𝑖𝑖] = 𝓜(𝒙𝑡−1
𝑖𝑖 , 𝒖𝑡 , 𝜽𝑖𝑖), 𝑖𝑖 = 1, … , 𝑛𝑤;  𝑡 = 1, … , 𝑡𝑐 (6) 

where 𝑛𝑤 is the number of model runs to obtain the 𝑛 number of the behavioral set based on 

the likelihood scores estimated with the GLUE method [Tran and Kim, 2019]. Among the 𝑛𝑤 

random runs (referring to the light blue shaded region in Fig. 1) that are simulated by using 

parameter sets (𝜽𝑖𝑖) sampled randomly from the prior (uniform) distributions, the only 𝑛 

behavior runs (referring to the light red shaded region in Fig. 1) are employed for making the 

posterior distributions. 

Reducing the effects of uncertainty by initial conditions (𝒙0
𝑖𝑖) is necessary for 

modeling. In this framework, a “warm-up” technique was employed to calibrate the 

deterministic model. Generally, a sufficient period of time (called the ‘warm-up’ period) can 

be set such that the influence of the initial condition is dissipated, and the warm-up is 

performed before entering the calibration period. This technique produces behavioral 

parameter sets much faster in GLUE, compared with cases that do not use the warm-up 

technique.  
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2.2.2. Building PCE with two types of experimental design  

We propose two types of approaches for constructing the PCE model, depending on 

how the sample collections of the experimental design (𝓧𝒕) is composed. One approach is to 

build a PCE model (“PCE-I”) by collecting the training samples that are generated from the 

prior parameter distributions. The other approach is (“PCE-II”) uses samples that are formed 

by the posterior parameters distributions. The associated mathematical expression is 

 [𝑦𝑡
𝑖𝑖𝑖  𝒙𝑡

𝑖𝑖𝑖 ] = 𝓜(𝒙𝑡−1
𝑖𝑖𝑖 , 𝒖𝑡 , 𝜽𝑖𝑖𝑖 ), 𝑖𝑖𝑖 = 1, … , 𝑁;  𝑡 = 1, … , 𝑡𝑐  (7) 

where the 𝑁I set of 𝓧𝒕 (i.e., 𝑁 = 𝑁I for PCE-I) consists of model 𝓜 simulation results 

calculated from parameters sampled from the prior distributions (correspond to 𝑁I set 

sampled randomly from the results in the light blue shaded region over the calibration period 

in Fig. 1) [Sudret, 2008; Blatman and Sudret, 2010; Blatman and Sudret, 2011]. In contrast, 

the experimental design of the latter approach assumes that the 𝑁II set of 𝓧𝒕 (i.e., 𝑁 = 𝑁II for 

PCE-II) are drawn from the more constrained, posterior parameter distributions (correspond 

to the light red shaded region over the calibration period in Fig. 1) [Tran and Kim, 2019]. All 

the samples were taken through LHS sampling [McKay et al., 1979].  

The former approach can be implemented easily and therefore has been used more 

commonly in the literature [Sudret, 2008; Blatman and Sudret, 2010; Blatman and Sudret, 

2011]. However, for past periods in which observations exist, the second approach using a 

well-calibrated set of parameters is beneficial in significantly reducing computational time 

[Tran and Kim, 2019]. It takes less time to build PCE in the second approach because less 

training samples (𝑁I is generally larger than 𝑁II) are required when estimating coefficients. 

On the other hand, in the context of real-time forecasting when no observations have been 

attained, the latter approach might cause a problem. Specifically, PCE models built with a set 

of “good” posterior parameters sets obtained only for a certain historic period of time would 
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not necessarily demonstrate validity for unknown prediction periods. Evaluation of the 

applicability of the two approaches to real-time flood forecasting will be addressed in Section 

4.  

Once the PCE models were constructed, the same GLUE procedure is made to obtain 

the posterior parameter distributions of both PCE models: 

 [𝑦𝑡
𝑖𝑖  𝒙𝑡

𝑖𝑖] = 𝓜𝑃𝐶𝐸 (𝒙𝑡−1
𝑖𝑖 , 𝒖𝑡 , 𝜽𝑖𝑖), 𝑖𝑖 = 1, … , 𝑛𝑤;  𝑡 = 1, … , 𝑡𝑐  (8) 

Note that the number 𝑛𝑤 is different depending on 𝑴𝒐𝒅𝒆𝒍 =  {NAM, PCE-I, PCE-II}. 

2.2.3. Specifying model parameters for data assimilation 

Determining initial conditions and parameter values before assimilating real-time 

observations over the forecasting period is a necessary step. The mathematical expression for 

preparing data assimilation (forecasting) is written as: 

 [𝑦𝑡
𝑖  𝒙𝑡

𝑖 ] = 𝑴𝒐𝒅𝒆𝒍(𝒙𝑡−1
𝑖 , 𝒖𝑡 , 𝜽𝑖), 𝑖 = 1, … , 𝑛;  𝑡 = 1, … , 𝑡𝑐   (9) 

where the initial ensemble of states (𝒙0
𝑖 ) is set to an arbitrary number (e.g., zero) at the 

beginning of simulation (i.e., 𝑡 = 0) (Fig. 1). In terms of specifying the model parameters, 

two types of approach are proposed. First, similarly to most previous studies of data 

assimilation [Moradkhani et al., 2005b; Vrugt et al., 2005; Wang et al., 2009; Gharamti et 

al., 2013; Xie and Zhang, 2013; DeChant and Moradkhani, 2014; Davison et al., 2017], the 

ensemble of parameters over the periods (0 ≤ 𝑡 ≤ 𝑡𝑐) is assumed to follow a prior 

distribution. That is, the 𝑛 number of parameter sets are sampled from uniform distributions 

with predefined bounded ranges (i.e., from the results in the light blue shaded region in Fig. 

1). The values of parameters remain unchanged, while those of state vectors are continuously 

updated until the beginning of the forecasting period (i.e., 𝑡 = 𝑡𝑐). This is hereafter named 



 

 
©2020 American Geophysical Union. All rights reserved. 

“Random” set — referring to the use of random parameter sets for running Model of NAM, 

PCE-I, and PCE-II. 

An alternative way to this Random specification method is enabled by taking the 

advantage of the ability to calibrate model parameters with observed data before the 

forecasting period. Specifically, this method uses the posterior results of GLUE behavioral 

runs (referring to the light red shaded region in Fig. 1), i.e., selected parameter sets for 

running Model — called “Selected” specification method. The selected parameter sets for 

Model remain unchanged over the warm-up and calibration periods as well. As with the 

former approach, the values of state vectors are initially set to be zero at 𝑡 = 0 but are 

continuously updated until 𝑡 = 𝑡𝑐. We expected to see the EnKF process converge much 

faster and the forecasting results improve. 

2.2.4. Modeling approaches for forecasting 

In total, 18 modeling approaches (see Fig. 2) were developed by combining the 

modeling options with various techniques (NAM + PCE + GLUE + EnKF) in Sections 2.2.2 

and 2.2.3. The modeling techniques were coupled to successfully perform ensemble flood 

forecasting and to meet the need for accurate and efficient flood forecasting. The 18 

approaches represent permutations of the 3 × 2 × 3 subcases (Table 3). First, they were 

divided into three subcases corresponding to 𝑴𝒐𝒅𝒆𝒍, depending on whether a deterministic 

model or a PCE model was used over the calibration period (see Sec. 2.2.2) and how the 

latter was developed. Second, these modeling sets were divided into two subcases 

corresponding to Random or Selected sets, depending on how the parameter sets before the 

forecasting period were specified (see Section 2.2.3). Lastly, they were divided into three 

subcases depending on the methodology of data assimilation. The first of the three subcases 

did not use any data assimilation, and the other two used single- and dual-ensemble Kalman 
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filters (see Sec. 2.1.4). We evaluated the modeling performance of the coupling framework 

by assessing accuracy, efficiency, and predictability in Sec. 4.2. The performance 

comparisons of the 18 approaches are expected to be a guide to which approach demonstrates 

better skill and most appropriate and which should be avoided. 

2.3. Performance metrics 

To assess the modeling performance of the 18 approaches, metrics representing 

accuracy, predictability, and efficiency were chosen, beginning with the accuracy metrics of 

Nash–Sutcliffe efficiency (𝑁𝑆𝐸), absolute error (𝐴𝐸), and relative entropy (𝑅𝐸) [Kullback 

and Leibler, 1951; Kullback, 1997; Kleeman, 2002]. Second, Brier scores (𝐵𝑆) [Brier, 1950], 

and the range of uncertainty (𝑈𝑅) were used to assess the predictability of probabilistic 

forecasts. Lastly, a metric calculating total runtime (𝑇𝑅𝑇) was evaluated to compare the 

computational efficiency of the tested approaches. 

𝑁𝑆𝐸, which is traditionally used to evaluate the accuracy power of deterministic 

models, is computed for each ensemble member (𝑖) over the entire computation time. In this 

study, 𝑁𝑆𝐸 is expressed as: 

 𝑁𝑆𝐸𝑖 = 1 −
∑ (𝑦𝑡

𝑂𝑏𝑠 − 𝑦𝑡
𝑖)2T

𝑡=1

∑ (𝑦𝑡
𝑂𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛

𝑖 )2T
𝑡=1

, 𝑖 = 1, … , 𝑛  (10) 

where 𝑦𝑡
𝑂𝑏𝑠 and 𝑦𝑡

𝑖 are the actual observation and i-th predicted output at time t; 𝑦𝑚𝑒𝑎𝑛
𝑖  is the 

mean of the i-th predicted output over the entire forecasting period; T is the total number of 

time steps over the forecasting period from 𝑡𝑐 to 𝑡𝑓. 

Absolute error (𝐴𝐸) is differences between actual observations and predictions of 

each ensemble members at each time t. Thus, it varies with time and can be written as: 
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        𝐴𝐸𝑡
𝑖 = |𝑦𝑡

𝑂𝑏𝑠 − 𝑦𝑡
𝑖|, 𝑡 =  1, … , T;  𝑖 = 1, … , 𝑛  (11) 

Relative entropy (𝑅𝐸) is a measure of the statistical difference between probability 

distributions over the entire forecasting period of observations and model simulations 

[Kleeman, 2002; Shukla et al., 2006; Giannakis and Majda, 2012]. Following Kleeman 

[2002] and Heo et al. [2014], 𝑅𝐸 can be defined as: 

 𝑅𝐸𝑖 = [log
𝜎

𝑦𝑂𝑏𝑠
2

𝜎
𝑦𝑖
2 +

𝜎
𝑦𝑖
2

𝜎
𝑦𝑂𝑏𝑠
2 − 1 ] + [

(𝜇𝑦𝑖 − 𝜇𝑦𝑂𝑏𝑠)2

𝜎
𝑦𝑂𝑏𝑠
2 ] , 𝑖 = 1, … , 𝑛  (12) 

where 𝜇𝑦𝑂𝑏𝑠  and 𝜇𝑦𝑖 are the mean, while 𝜎𝑦𝑂𝑏𝑠 and 𝜎𝑦𝑖 are the variance of streamflow 

observation and the i-th model prediction over the entire computation time from 𝑡𝑐 to 𝑡𝑓. 

Small values of relative entropy indicate that distribution of a given model is close to that of 

the observation. This is also called Kullback-Leibler divergence between the two 

distributions, model and data, assuming Gaussianity of both. 

The Brier score (𝐵𝑆) is one of the most commonly used verification measures for 

assessing the predictability of probabilistic forecasts. The score is defined as the mean 

squared error of the probabilistic forecasts over the verification sample, expressed as: 

 𝐵𝑆 =
1

T
∑(𝑝𝑡

𝑓
− 𝑜𝑡)

2
T

𝑡=1

 (13) 

where 𝑝𝑡
𝑓

 is the forecast probability for the t-th time, which refers to the ratio among 

ensemble reaching a predefined flow threshold; 𝑜𝑡 is the observed probability, which is 1 if 

observation at t-th time, 𝑦𝑡
𝑂𝑏𝑠 is larger than the threshold, and 0 if it is not. In this study, this 

threshold value was chosen as the proportional rate of 90% of the true discharge peak. 
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The uncertainty range (𝑈𝑅) is the range between the 5th and 95th percentiles of the 

ensemble outcomes (𝑞). It is computed over each computational time 𝑡 in hydrographs, 

expressed in Eq. 14: 

 𝑈𝑅𝑡 = 𝑞𝑡
95 − 𝑞𝑡

5, 𝑡 =  1, … , T (14) 

Lastly, the total run time (𝑇𝑅𝑇) for all of the approaches is defined as: 

 𝑇𝑅𝑇 = (𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴) × 𝑛 + 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍 (15) 

where 𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 is the run time to compute one simulation of Model (NAM, PCE-I, and 

PCE-II) over the warm-up and calibration periods, i.e., from 0 to 𝑡𝑐; 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴 is the run 

time to compute one simulation of Model with different DA methods over the forecasting 

period, i.e., from 𝑡𝑐 to 𝑡𝑓; and 𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍  is the run time needed for building Model. For 

example, because it is unnecessary for constructing the deterministic model, the time for 

NAM is zero. The building run times for PCE-I and PCE-II will be calculated in detail in Sec. 

4.1.2. The factor 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 represents the number of Model runs to obtain a single behavior 

run in GLUE, and remains 1 in A1 to A9, while it depends on Model for the rest of 

approaches. 

 Eq. 15 is a linear function with respect to the number of ensembles run, in which 

𝑅𝑇𝑤+𝑐,𝑴𝒐𝒅𝒆𝒍 × 𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 + 𝑅𝑇𝑓,𝑴𝒐𝒅𝒆𝒍,𝐷𝐴  serves as the slope of the linear function and 

𝑅𝑇𝑏𝑢𝑖𝑙𝑑,𝑴𝒐𝒅𝒆𝒍  the intercept. The values of the slope and intercept and the executed times of 

the 18 approaches are addressed in Section 4.2.  

3. Study Area and Experimental Setups 

In this study, the unified framework is applied to predict hourly streamflow in the Vu 

Gia watershed as shown in Fig. 3. The watershed is one of the largest in central Vietnam, 
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with a total area of 1,679.8 km2 in the tropical region. It experiences a typical continental 

monsoon climate, with concentrated rainfall mainly from September to December. As the Vu 

Gia watershed is characterized by a large difference in elevation (slopes of approximately 

30 %), floods occur rapidly and frequently. The region has experienced intense severe 

flooding and significant damage [UNDP, 1999; Nga et al., 2015]. 

Streamflow data used for the outlet of the basin was collected hourly at Thanh My 

station – the only hydrometric station in the domain. Rainfall data was also observed hourly 

and obtained from two weather stations near the study area (Thanh My and Kham Duc 

station). The average rainfall over the basin (Fig. 4) was calculated through the Thiessen 

polygon method. Observations from Dec. 1 to 17, 2016, are employed, in which the data from 

Dec. 1 to 13 was used for the warm-up period (i.e., from 0 to 𝑡𝑤), the data from Dec. 13 to 15 

for the calibration period (i.e., from 𝑡𝑤 to 𝑡𝑐), and the remaining data (assuming numerically 

that this data was newly provided at an hourly basis) corresponds to the forecasting period 

(i.e., from 𝑡𝑐 to 𝑡𝑓) (Fig. 4). The effects of the length of warm-up period are illustrated in 

Supplementary Material. Note that rainfall forecasts has not been considered in this 

experimental design, what is done is hindcasting but one refers to the period between 𝑡𝑐 and 

𝑡𝑓 as the “forecasting period”, allowing for replicating real-life operational flood-forecasting 

process. Also note that a source of uncertainty for rainfall forecasts has not been presented, 

but it could have been addressed in Eq. 2 that has the flexibility to include ensemble 

precipitation inputs (𝒖𝑡). 

Determining the size of ensemble for forecasting (𝑛) is related to quantifying the 

uncertainty bounds and representing the EnKF. In previous studies, the ensemble size was 

selected randomly or large enough (at least 100 members) to fully identify the uncertainty 

confidence intervals [Cameron et al., 2000; Beven and Freer, 2001; Hossain and 
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Anagnostou, 2005; Choi and Beven, 2007; Blasone et al., 2008; Jin et al., 2010; Shen et al., 

2012]. A sufficient number of ensemble parameter sets to achieve both goals of efficiency 

and uncertainty quantification should be determined. Following our previous study [Tran and 

Kim, 2019], we used an n of 500 as the optimal size of the ensemble. 

4. Results 

4.1. Preparation steps before forecasting 

4.1.1. Attaining parameter posterior distributions 

 The posterior distributions of parameters can be generally attained by using Bayesian 

inference. As detailed in Section 2.1.3, we employed a relatively simple and robust method, 

GLUE [Beven and Binley, 1992], that does not require reformulation of the deterministic 

model code. Details on why we choose the likelihood functions of 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸 

(presented in Appendix B), how we determine the cutoff threshold values of each function, 

and which parameters are more sensitive, are described in Tran and Kim [2019]. We 

confirmed the benefits of a warm-up technique that significantly speeds up the GLUE process 

of finding the behavioral sets: without warm-up, no behavioral set was obtained from GLUE 

even after a sufficiently large number of NAM model runs, while with warm-up, a behavioral 

set was obtained after approximately 118.0 model runs for NAM (A10 to A12), 26.9 for 

PCE-I (A13 to A15), and 3.6 for PCE-II (A16 to A18), respectively. Therefore, the factors, 

𝑓𝑎𝑐𝑴𝒐𝒅𝒆𝒍 are 118.0, 26.9, and 3.6 for NAM, PCE-I, and PCE-II, respectively in A10 to A18. 

4.1.2. Constructing the PCE models 

Determining the coefficients of the PCE-I and PCE-II models depends on the number 

of the experimental design (𝑁) and the polynomial degree (𝑝) [Blatman and Sudret, 2010; 

Blatman and Sudret, 2011]. To discover appropriate values for 𝑁 and 𝑝, the effect of 
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experimental design 𝑁 on PCE performance was first evaluated. Specifically, a number of 

simulations were repeated with the 𝑁 value varied between 10 and 5,000 but the value of 𝑝 

was set as 3, and the performance results of 𝐿𝑂𝑂 for streamflow (𝑦) and the five model states 

(Table 2) computed. Fig. 5 shows that the 𝐿𝑂𝑂 values for streamflow and five state variables 

become smaller as the value of 𝑁 increases, and ceases to become smaller when 𝑁 

approaches a certain value. For 𝑁 values larger than this threshold, the model performance 

was almost indistinguishable (the left column plots in Fig. 5). From a visual inspection of Fig. 

5, the optimal 𝑁 value for constructing the PCE-I and PCE-II models would be 1,000 and 

100, respectively.  

A selection of the polynomial degree 𝑝 was made in a fashion similar to the 

aforementioned procedure. The value of 𝑝 was varied from 1 to 6 and 𝑁 was set as 1,000 

(PCE-I) and 100 (PCE-II). From the results of Fig. 5 (the right column), the gradients of the 

𝐿𝑂𝑂 metrics assessed changed considerably when 𝑝 was set to 3 and the values remained 

stable for large magnitudes of 𝑝. In terms of reducing the computational time to construct a 

PCE model, a low polynomial degree would be preferred. Thus, a 𝑝 of 3 would be an 

appropriate value to use when building both PCE models. With optimal values of 𝑁 of 1,000 

and 100, and a 𝑝 of 3, PCE-I and PCE-II models can be built to quantify the uncertainty 

range for flow prediction and to compare the degree of accuracy and efficiency with the 

results of the deterministic NAM.  

The total time to establish both PCE models is described (further details are in Tran 

and Kim [2019]). Obviously, the larger the number of the experimental design set, the more 

time is needed for computing 𝑁 ensemble runs. The time required to perform the 𝑁I and 𝑁II 

ensemble runs of NAM was 121.9 and 12.6 seconds for PCE-I and PCE-II, respectively. It 

also takes much more time to estimate PCE-I coefficients if one uses an ensemble set (𝑁I) 
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generated from the prior distribution of the parameters than to compute PCE-II coefficients 

from parameter sets informed by the likelihood function. The time required to estimate PCE 

coefficients was 419.3 and 11.3 seconds, respectively. The summation of these two times was 

considered to be the total time required to build the PCE models before forecasting: 

approximately 541.2 and 23.9 seconds for PCE-I and PCE-II, respectively. The construction 

time of PCE-II is much (~22 times) faster than that of PCE-I. 

4.1.3. Comparing the ensemble results of NAM and PCE models 

Over the calibration period, ensemble results composed of 500 Random and Selected 

runs were compared for three different models. To make the 500 Selected behavioral results, 

58,977, 13,444, and 1,822 (𝑛𝑤) random runs were required for NAM, PCE-I, and PCE-II, 

respectively. Compared with the NAM itself, using PCE models can reduce the amount of 

computational runs by a factor of about 4.4 for PCE-I and 32.4 times for PCE-II model. The 

composing behavioral set for PCE-II was even faster (~7.4 times) than for PCE-I. 

Fig. 6 shows hydrographs for the 500 Random (A1 to A9) and Selected (A10 to A18) 

simulations for the three models. Their uncertainties are illustrated with a 90% confidence 

interval, which corresponds to 5 and 95% quantiles of the 500 ensemble members. Because 

we controlled the conditions for the behavioral set of GLUE, the overall comparison with the 

observed values for the results of the Selected cases (A10 to A18) is very satisfactory. 

Specifically, the 𝑁𝑆𝐸 value was always higher than 0.9 and both 𝑃𝐸 and 𝑉𝐸 values were less 

than 5% for all cases. However, streamflow curves for the Random simulations (A1 to A9) 

clearly show different patterns depending on the model. It can be anticipated that the results 

of these Random cases will not be encouraging and their uncertainties will be large. However, 

the results of some cases using PCE-II model were very satisfactory and their uncertainties 

small. 
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As mentioned above, when making using observations to constrain the parameter sets 

(A10 to A18), the results of both PCE models are similar to those of the NAM and no 

substantial differences were observed. This confirmed that both PCE models have an 

equivalent degree of accuracy as the NAM and can provide an excellent match to the 

deterministic model. In terms of efficiency, it is also advantageous to use the PCE model 

(discussed in Sections 4.2.1 and 5.1), and there is no reason to hesitate adopting the PCE 

model for streamflow prediction. 

4.2. Flood forecasting with 18 approaches 

For past periods when observations for calibration were collected, all models 

performed well. We then tested the forecasting performance of the three models using the 

permutation that resulted in 18 approaches in Table 3. Results of the real-time flood 

forecasting for these approaches are shown in Fig. 7 and 8, in which the 500 ensemble results 

are illustrated with a 90% confidence interval at each time step. The verification metrics for 

the simulations, specifically 𝑁𝑆𝐸, 𝐴𝐸, 𝑅𝐸, 𝐵𝑆, and 𝑈𝑅, and the peak values of hydrographs 

are compared in Fig. 9 and Fig. 11. Lastly, the total run time with respect to the ensemble size 

was computed for the 18 approaches in Fig. 10. In this section, we analyze the results and 

draw conclusions from the following four perspectives: (i) the applicability of PCE-I and 

PCE-II models for real-time flood forecasting, (ii) the impact of estimating appropriate 

parameter conditions for forecasting, (iii) the effect of using EnKF and dual EnKF, and (iv) 

the degree of improving efficiency performance among the approaches.  

4.2.1. PCE-I versus PCE-II model for real-time flood forecasting 

Depending on the model used in forward simulations (NAM, PCE-I, and PCE-II), the 

results for the 18 approaches were divided into three groups. Almost all of the results of the 

six approaches using the PCE-II model were worse than those obtained with both NAM and 
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PCE-I (Figs. 7 and 8). The only exception is for the A1 and A4, which did not have 

assimilation and whose parameter sets used were based on prior uniform distributions. No 

verification metrics computed using the results of forecasting based on PCE-II were 

satisfactory, except for the metric of 𝑈𝑅̅̅ ̅̅ . However, if the accuracy is not ensured, the better 

performance in terms of 𝑈𝑅̅̅ ̅̅  is not meaningful. Specifically, 𝑁𝑆𝐸 values were low, 

approximately 0.7; 𝐴𝐸 values at flood peak time (𝐴𝐸𝑝𝑒𝑎𝑘) were larger than 750 m3/s; 𝑅𝐸 was 

approximately 0.01; and 𝐵𝑆 was equal to 1 (Fig. 9). No metric improvements was found for 

the approaches based on PCE-II, even if combinations of assimilation and calibration 

techniques were applied. We concluded that the PCE-II model can reproduce streamflow 

characteristics well for the past period, but not for the future. 

Conversely, the forecasting results of the approaches based on the PCE-I model are 

almost similar to those obtained with NAM, and in some cases even better. The latter can be 

seen in Fig. 9; the verification metrics of 𝑁𝑆𝐸, 𝐴𝐸𝑝𝑒𝑎𝑘 , 𝑅𝐸, and 𝑈𝑅̅̅ ̅̅  show better performance 

for PCE-I than for NAM results (e.g., A5 vs. A2, A6 vs. A3, A14 vs. A11, and A15 vs. A12) 

(see Table 4). In particular, the 𝑅𝐸 results in Fig. 9c illustrate that the PCE-I results are closer 

to the observed values than those obtained with NAM (A15 is the best result with the smallest 

value of 𝑅𝐸). 𝐵𝑆 corresponding to PCE-I also has smaller values, close to zero, which 

indicates instances of when predictability of probabilistic forecasts matched predictability of 

observation (Fig. 9d). Therefore, the PCE-I model can be adapted to substitute the NAM in 

performing real-time flood forecasting, as well as in capturing the uncertainty of calibration 

period. 

Comparing the modeling results in terms of the computation speed, it is clear that 

simulating a surrogate model using the PCE theory is significantly faster than with a 

deterministic model such as NAM. The “slopes” of the runtime curves of Fig. 10 indicate 
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both PCE approaches are approximately 20 times faster (A4 to A9) and ~80 times faster (A13 

to A18) than the corresponding approaches using the NAM. Similarly, if we compare 

efficiency between PCE model approaches, using PCE-II may or may not offer much 

improvement in efficiency over PCE-I. There is only 10 % improvement when Random 

specification is applied (see the slope of A4, A5, A6 vs. A7, A8, A9 in Fig. 10), while there is 

about six times improvement when simulating Selected approaches (see the slope of A13, 

A14, A15 vs. A16, A17, A18). The use of surrogate models therefore did not sacrifice 

accuracy. The flood prediction accuracy of PCE-1 model presented here is similar to that of 

the original NAM, and computational efficiency has been found to be highly superior. 

4.2.2. Random versus Selected specification for forecasting 

The approaches using the Selected specification generally show a better performance 

than those using the Random specification. This is especially noticeable in the NAM and 

PCE-I approaches, and rarely in PCE-II. First, in the approaches without data assimilation, 

their accuracy was significantly improved (compare A1 vs. A10 and A4 vs. A13). The 

performance of A10, represented by the 𝑁𝑆𝐸, 𝐴𝐸𝑝𝑒𝑎𝑘 , 𝑅𝐸, and 𝑈𝑅̅̅ ̅̅  metrics, was improved by 

about 95, 73, 61, and 89% compared with A1, and the performance of A13 about 86, 72, 79, 

and 92% over A5, respectively. Despite the noticeable improvement of A10 and A13, these 

results were still not ideal. The large 𝐴𝐸 error at the peak of A10 and A13 was approximately 

450 m3/s less than the observation, and the 𝐵𝑆 value was close to 1 (Fig. 9, Table 4). On the 

other hand, in the approaches in which data assimilation was used, the improvement effect for 

Selected specification was not greater than when it was not used. The increasing performance 

for the same metrics was about 55, 22, 36, and 56% (A2 vs. A11), and about 56, 52, 44, and 

49% (A3 vs. A12). Here, the parameter specification effect was smaller because DA 

improves the absolute error magnitude. 
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Determination of states and parameters that can increase accuracy and predictability 

requires more computation time because a large number of model runs are carried out to 

make an inference for posterior distributions. For approaches using NAM (A1 vs. A10, A2 

vs. A11, and A3 vs. A12), it took 56, 41, and 30 times longer; while for PCE-I (A4 vs. A13, 

A5 vs. A14, and A6 vs. A15), it took 13, 10, and 8 times, respectively (Fig. 10). Because of 

this computational burden, parameter inference can be a weakness for real-time flood 

forecasts where it is important to ensure sufficient time ahead. However, if the surrogate 

model is employed, the necessary repetition of estimating the posterior distribution can be 

performed quickly, and such a weakness can be overcome. 

4.2.3. Single versus dual EnKF in real-time flood forecasting 

Convincing evidence is presented that both single and dual EnKF can improve 

accuracy and predictability during real-time forecasting (with the exception of approaches 

using PCE-II). Both of these techniques perform well but the dual EnKF is the superior 

choice. As an example of the approaches using NAM, the three metrics of 𝐴𝐸𝑝𝑒𝑎𝑘 , 𝐵𝑆, and 

𝑈𝑅̅̅ ̅̅  in the Random cases provided slightly better results: 515.64 vs. 500.45, 0.75 vs. 0.66, and 

367.34 vs. 340.12, respectively (A2 vs. A3). But, in the Selected cases, there was a relatively 

large performance improvement for the two metrics of 𝐴𝐸𝑝𝑒𝑎𝑘  and 𝐵𝑆: 401.26 vs. 242.62 and 

0.78 vs. 0.24 (A11 vs. A12). Similar trends were observed when using PCE-I, and the 

difference is remarkable, especially for the 𝐴𝐸𝑝𝑒𝑎𝑘  metric (e.g., about 2.5 times for A5 vs. 

A6). 

From the overall inspection, it can be determined that the dual EnKF can adjust the 

peak of a hydrograph more accurately, and give a more confident result with a smaller 

uncertainty range. Therefore, we compared the distribution of flood peak values for 500 

ensemble members in Fig. 11. This figure confirms that the joint update of states and 
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parameters improves accuracy at flood peak more effectively than a single update of states. 

Also for the joint update, the expected value of the distribution was closer to the peak 

observation, and its variability is smaller (a narrower distribution). 

Because the updating process is made twice, the dual EnKF is computationally more 

expensive. The computation time it takes to update states and parameters increased almost 

linearly. That is, the calculation time doubled or tripled for the cases of single and dual EnKF 

(using Random specification), respectively, as compared to the case without assimilations. 

However, for the approaches using the Selected specification, the calculation time did not 

seem to change significantly (Fig. 10), not because the time required for Kalman filtering was 

reduced, but because the time required for the parameter inference was so large that the 

filtering effect was masked. 

5. Discussion 

5.1. How can PCE be constructed for flood forecasting? 

From the simulated flood forecasting results presented in Section 4.2, it is apparent 

that the manner of PCE construction has a significant impact on forecasting. The biggest 

difference in building PCE-I and PCE-II involves setting the range of the training sample 

(called experimental design). It is not surprising that a surrogate model trained for an event 

provides acceptable results only for the event trained. The flexibility to generalize to well-

behaved outcomes for another event (e.g., a future event) is relatively low. This is why the 

calibrated model is often not appropriate for future forecasting. On the other hand, if a 

surrogate model can mimic the behavior of the original model to the greatest extent possible 

in a wide variety of situations and conditions, it will be able to capture its characteristics 

more comprehensively, thus playing a sufficient role in forecasting future events. Here we 

provide evidence the PCE-I model behaves like the NAM for the forecasting period, while 
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the PCE-II behaves differently (despite both models behaving properly for the calibration 

period). To examine the robustness of both PCE model results, the Sobol’ method (detailed in 

Appendix D) was used to implement the variance-based measures of parameter sensitivities 

[Sobol', 2001], which is commonly used as a global sensitivity analysis technique to 

determine the key parameters in the model [Wang et al., 2018]. 

First, the PCE-I posterior histograms of the nine parameters obtained from GLUE for 

the calibration period are similar to those of the NAM, except for Lm and TG (Fig. 12). For 

these two parameters, a posterior histogram difference is a minor issue because the choice of 

the parameter values does not affect the end result, i.e., the sensitivity of the parameters is 

low. Other parameters of CQOF (1st) and CK12 (2nd) are the two most influential 

parameters to the model results, that is, their sensitivities are high. This result is consistent for 

both NAM and PCE-I (Fig. 13). The slight difference between the results of PCE-I and 

NAM, observed from the investigation of the sensitivity and the posterior distribution, is 

because we chose an appropriate number of training samples when constructing the PCE-I 

model. If one greatly increases the number of training sets, the difference in the above results 

will essentially disappear. 

Second, the failure of PCE-II to mimic the NAM for the forecasting period can be 

explained largely due to the fact that PCE-II was trained using the only 100 behavioral 

parameter sets that were optimized for the calibration event. Model results will only vary 

within the boundaries that its trained data understand, and it will not be able to simulate the 

behavior of another event with a high skill, i.e., model “overfitting” occurs. However, over 

the calibration period, PCE-II always shows a good predictive performance for almost all 

parameter sets (compare the hydrographs of A1 to A3 with A7 to A9 in Fig. 6). In other 

words, no matter what parameter one chooses, satisfactory results are always achieved, which 

indicates that the influence of parameters is excluded. The posterior histograms of parameters 
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for PCE-II (Fig. 12c) are almost uniform, except for the parameter of CQOF, which is the 

only one that can affect the end result, especially maintain the accuracy of the flood peak 

(note that the sensitivity of this parameter for PE is unusually high in Fig. 13c). If we change 

the threshold value of the likelihood function corresponding to the flood peak chosen to make 

the behavior set a slightly less constrained, this parameter will no longer play a role in 

constraining the result and follow a uniform distribution as well. 

Another interesting aspect of the sensitivity test is that the sensitivity results of PCE-II 

differ from those of NAM and PCE-I, but are similar to those of NAM-II. The sensitivities of 

parameters have been altered in PCE-II. The NAM-II in Fig. 13d is hypothetically introduced 

to mimic the situations of PCE-II. Specifically, it refers to the sensitivity results when the 

NAM model was tested based on the posterior distributions (which are also used to select the 

training parameter set for building PCE-II), not the prior distributions of the parameters. 

5.2. Is it feasible to construct a time-invariant PCE model? 

A long-lasting challenge in hydrologic modeling is how to estimate parameters or 

state vectors optimized for all external and internal conditions. This would not be an issue for 

estimating previously described variables if the amount of data for calibration was sufficient. 

However, in the case of future forecasts during which no observation for calibration is 

available, it poses a problem. To tackle this challenging problem, Fan et al. [2016] and Wang 

et al. [2017] adopted a modeling framework in Eq. 1, so that PCE models should be 

reconstructed continuously at every time step. This method is flawless in theory, but requires 

additional computational resources (see efficiency comparisons in Supplementary Material). 

That is, the time to configure the PCE at every time step must be added to the total model 

simulation time, i.e., making the slope of Fig. 10 steeper. This disadvantage can be more 



 

 
©2020 American Geophysical Union. All rights reserved. 

pronounced when constructing surrogate models for complex, process-based deterministic 

models. 

Unlike previous efforts, this study adopted an alternative modeling framework such as 

Eq. 2; that is, the PCE model is time invariant and thus developed only once over the 

calibration period. Therefore, during real-time forecasting, the total run time consists only of 

computational intervals needed for data assimilation of all ensemble members. This enhances 

computational efficiency significantly (see efficiency comparisons in Supplementary 

Material). This framework is not perfect, but the potential error that can occur by using the 

time-independent PCE model is minimized by coupling the data assimilation technique, thus 

complementing accuracy. From a comparison of the results of 18 approaches, we confirmed 

that the modeling framework needed for building a PCE model (especially PCE-I) is feasible. 

This embraces the notion that the PCE construction does not require information for future 

conditions but can be made with historically available data available prior to the forecasting 

period. 

5.3. Do surrogate and specification sacrifice efficiency? 

Our results indicate that a sophisticated combination of three independent techniques 

(i.e., surrogate modeling, parameter inference, and data assimilation) supplies superior 

predictive performance for real-time ensemble flood forecasting. The combination of many 

methods however leads to an essential reduction in efficiency. Because data assimilation has 

been shown to be necessary, we must accept efficiency deterioration. However, for surrogate 

modeling and parameter specification, it remains to be determined whether the additional 

time required by the technique combination leads to efficiency deterioration. First, for 

construction of the surrogate model, particularly PCE-I, the efficiency issue may not be 

relevant because the task does not require any observations for calibration and can be 
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completed before the flooding season. In contrast, obtaining an ensemble of parameter sets 

from posterior distributions should be carried out immediately prior to the flood forecasting 

period, when observations are necessary. Therefore, it may take an appreciable time for 

completing this task, and method efficiency may be affected. 

5.4. What are the differences between PCE and data-driven models? 

Both PCE and data-driven models can provide satisfactory results for short-term 

forecast, but key differences between them exist. (1) PCE has a functionality of including 

model parameters and states as an input vector – this enables formal uncertainty 

quantification and model sensitivity analysis; (2) hydrologic/hydraulic model state variables 

(and parameters) are theoretically observable and in the case of process-based models have 

their own physical meaning, making it easier to physically interpret the results of PCE; (3) 

while purely data-driven methods are trained with observations, PCE is trained through high-

fidelity samples supervised by physical relations, thus requiring fewer data samples for 

training; (4) data-driven models often have assumptions about the distributions governing 

variability of their outputs, and therefore this can lead to non-physical results (e.g., negative 

outputs quantifying mass, streamflow, etc.) and fail to display non-normal, bi-modal, or other 

complex behaviors.  

5.5. Can modeling framework be applied to high-dimensional problems? 

 While the implementation and analysis of experiments is valid for the presented scope 

of the experimental design, one needs to proceed with care when extending this approach to 

more complex models. The most fundamental concern that remains is whether the proposed 

framework can be applied to high-dimensional problems in which fully distributed models 

are used. The dimension of a distributed model can be defined as the product of the number 

of grids cells and the number of parameters (and states). The dimension order of any truly 
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physical models is therefore large, and extending our framework directly to such a model is 

not straightforward – known as the “curse of dimensionality” [Caflisch, 1998; Davis and 

Rabinowitz, 2007; Sudret, 2007]. By examining how each of the methods mentioned in the 

framework resolves the problem of reducing dimensions efficiently and to what extent it has 

been applied, the feasibility of applying the proposed framework can be estimated. 

Regarding the surrogate modelling (PCE), techniques such as Bayesian compressive 

sensing [Sargsyan et al., 2014] and sparse regression [Blatman and Sudret, 2008; Blatman 

and Sudret, 2010] proved capability and efficiency in many prior studies using complex 

models with high dimensions, up to 80 dimension [Sargsyan et al., 2014]. However, these 

studies avoided the calculation of fully distributed problems by assuming the spatial 

variability of parameters to be homogeneous. Second, for the parameter specification, any 

optimization technique applied to high-dimensional problems could be relevant. For example, 

one of the large scale optimization algorithms, the competitive swarm optimizer (CSO) 

[Cheng and Jin, 2015] was employed up to the dimension of 5,000. These algorithms have 

been successfully optimized for problems of very large scale, but their optimizations have 

been applied to simple analytical functions rather than (hydrologic or meteorological) 

models. To our knowledge, the number of dimensions has not yet been high in problems of 

hydrologic optimization, in which the dimension order is almost identical to the number of 

parameters. The spatial variability of parameters is not fully addressed in most studies, 

although a “multiplier” concept [Pokhrel et al., 2008]. Last, EnKF is made possible in 

problems of higher dimensionality through covariance localization. It is mainly applied in 

meteorological models with many parameters, and the number of dimensions can be up to the 

order of millions, e.g., 2,592,000 [Fujita et al., 2007]. The localization technique was able to 

reduce the dimensions efficiently.  
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6. Conclusions 

This study presents a new robust, accurate, and efficient modeling framework that 

consists of the novel integration of three individual techniques: surrogate modeling, 

parameter inference, and data assimilation. This unified framework is suited for ensemble 

flood forecasts quantifying prediction uncertainty. The strengths of each technique are (i) the 

use of PCE offers significant computational savings; (ii) the inference of parameters before 

data assimilation allows for faster convergence, smaller uncertainties, and greater accuracy of 

the end results; and (iii) the Kalman filters assimilate errors that occur in real-time flood 

forecasting. Based on the results of the 18 refined approaches according to the permutations 

of the above methods, the following conclusions can be drawn: 

  Of the two methods for PCE construction, only PCE-I (constructed based on prior, 

uniform distributions) is acceptable for forecasting, although both methods reproduce 

observations of the calibration period well. Note that PCE-II (constructed based on 

posterior distributions) does not provide satisfactory results, even when coupled with 

other inference and assimilation techniques. The results obtained from PCE-I are 

similar, and in some cases even superior to those based on the original deterministic 

NAM model. The PCE used is a single model constructed before the forecast period 

and thus does not change over time — this is a unique feature different from previous 

studies in which PCE was rebuilt at each calibration or forecasting time step. 

  Especially for short-range forecasting, model parameter input and state initialization 

plays a crucial role. In some previous studies, posterior distributions were employed 

to derive a parameter ensemble before forecasting, but the effect of such parameter 

specification was not quantified for the data assimilation. Selected parameter 

specification (made through the GLUE framework in this study) offers improved 

accuracy and predictability of forecast outcomes over the Random parameter 
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specification. However, it is less computationally efficient, and the issue is expected 

to be especially problematic when using complex deterministic models. 

  The usefulness of single and dual EnKFs is demonstrated through comparisons of the 

18 approaches. Both techniques have excellent overall performance, but the dual 

EnKF showed a slightly better performance than the single EnKF. There was a 

remarkable improvement in reproducing the hydrograph peak values (Table 4). In the 

absence of assimilation, the Selected approach offers superior results and if it cannot 

be used, data assimilation must be applied. 

  The computational time discussed in this study consists of three principal 

components: surrogate building time, parameter inference time, and data assimilation 

time. Our conclusions may marginally vary depending on the particular model used 

and the region in which it is applied, but here the efficiency improvement from using 

the surrogate modeling technique overwhelms any efficiency deterioration derived 

from the other two components. That is, the use of the metamodel makes it possible to 

effectively address computational efficiency. This feasibility is maximized when 

many ensemble outcomes are needed and when complex, physically-based models 

should be simulated. 

  From the comprehensive analyses presented above, A15 is our first choice and A14 is 

the second. When only a deterministic model is used, we recommend A12 (or A11). 

Using the unified framework developed here, real-time and ensemble flood 

forecasting are promising directions, allowing for satisfactory measures of accuracy, 

predictability, and efficiency. Ultimately, the framework developed in this study 

contributes to a shift in modeling paradigm arguing that complex, high-fidelity, 

physical hydrologic and hydraulic models should be increasingly adopted for real-

time and ensemble flood forecasting   
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Appendix A. The construction of PCE surrogate model 

A.1. The determination of PCE coefficients 

The least-square regression method is employed to establish the PCE coefficients: 

 

𝜀 = argmin𝜀∈ℝ|𝐴|𝔼 [(𝒀𝒕 −  ∑ 𝜀𝜶Ψ𝜶(𝑿𝑡)

𝜶∈𝐴

)

2

] (A.1) 

where 𝓧𝒕 = {𝒳𝑡
(1)

, … , 𝒳𝑡
(𝑁)

} consists of 𝑁 sets of input variables 𝑿𝑡 (the set 𝓧𝒕 is called the 

experimental design), and 𝒴𝑡 = {𝓜(𝒳𝑡
(1)

), … , 𝓜(𝒳𝑡
(𝑁)

)} be the corresponding model 
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evaluations {𝒴𝑡
(𝑘)

= 𝓜(𝒳𝑡
(𝑘)

), 𝑘 = 1, … , 𝑁}. The estimates of the PCE coefficients are thus 

given by: 

 

𝜀̂  =  argmin𝜀∈ℝ|𝐴|

1

𝑁
∑ (𝒴𝑡

(𝑘)
− ∑ 𝜀𝜶Ψ𝜶(𝒳𝑡

(𝑘)
)

𝜶∈𝐴

)

2𝑁

𝑘=1

 (A.2) 

which is equivalent to: 

 𝜀̂ = (𝐅T𝐅)−1𝐅T𝒴𝑡 (A.3) 

where 𝐅 is so-called the information matrix of size 𝑁 × |𝐴| whose elements are defined as 

 𝐅𝑘,𝑙 = Ψ𝑙(𝒳𝑡
(𝑘)

)      𝑘 = 1, … , 𝑁; 𝑙 = 0, … , 𝑐𝑎𝑟𝑑 𝐴 − 1 (A.4) 

Once a PCE model is derived, the prediction using the model is extremely simple and 

straightforward: Input the values of model input to Eq. 2 and then obtain the values of model 

response 𝒀𝒕. 

A.2. PCE error estimates 

The leave-one-out cross-validation error (𝐿𝑂𝑂) was designed to overcome the over-

fitting limitation of normalized empirical error by using cross-validation [Blatman and 

Sudret, 2010]. In this study, after the number of sets 𝓧𝒕  is defined, the 𝐿𝑂𝑂 is used to 

determine the polynomial degree. The leave-one-out cross-validation error can be written as: 

 

𝐿𝑂𝑂 =  
1

𝑁
∑ (

𝓜(𝒳𝑡
(𝑘)

) − 𝓜𝑃𝐶𝐸(𝒳𝑡
(𝑘)

)

1 − 𝒽𝑘

)

2
𝑁

𝑘=1

 (A.5) 

where 𝒽𝑘 is the k–th diagonal term of the matrix 𝐅(𝐅T𝐅)−1𝐅T. 
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Several software tools are currently available for research purposes to carry a range of 

UQ tasks, including PCE regression,  e.g., the MIT Uncertainty Quantification Library 

[Parno et al.], the Uncertainty Quantification Toolkit [Debusschere et al., 2016], Dakota 

[Eldred et al., 2010], Chaospy [Feinberg and Langtangen, 2015], and the UQLab [Marelli 

and Sudret, 2017]. The latter libraries are used in this study. 

Appendix B. Likelihood functions used in GLUE 

Nash–Sutcliffe efficiency (𝑁𝑆𝐸, [-]): 

 
𝑁𝑆𝐸𝑖 = 1 −

∑ (𝑦𝑡
𝑂𝑏𝑠 − 𝑦𝑡

𝑖)2T
𝑡=1

∑ (𝑦𝑡
𝑂𝑏𝑠 − 𝑦𝑚𝑒𝑎𝑛

𝑖 )2T
𝑡=1

, 𝑖 = 1, … , 𝑛  (B.1) 

Peak error (𝑃𝐸, [%]): 

 
𝑃𝐸𝑖 =

|𝑦𝑚𝑎𝑥
𝑂𝑏𝑠 − 𝑦𝑚𝑎𝑥

𝑖 |

𝑦𝑚𝑎𝑥
𝑂𝑏𝑠

× 100,             𝑖 = 1, … , 𝑛 (B.2) 

Volume error (𝑉𝐸, [%]): 

 
𝑉𝐸𝑖 =

|𝑉𝑂𝑏𝑠 − 𝑉𝑖|

𝑉𝑂𝑏𝑠
× 100,             𝑖 = 1, … , 𝑛 (B.3) 

where 𝑉 is the total volume of hydrograph. 

Appendix C. Ensemble Kalman filter (EnKF) 

C.1. States updated 

An ensemble of state vector, 𝒙 consisting of 𝑛 by 𝑀𝑆 is propagated through 𝑴𝒐𝒅𝒆𝒍 of 

both deterministic model and PCE models, such that each state vector represents one 

realization of the model states. Then, the state forecast is made for each ensemble member as 

follows (forecast step): 
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 𝒙𝑡
𝑖− = 𝑓(𝒙𝑡−1

𝑖+ , 𝒖𝑡, 𝜽𝑖) + 𝑤𝑡
𝑖 ,       𝑖 = 1, … , 𝑛 (C.1) 

where 𝒙𝑡
𝑖− is the i-th forecasted states vector at time 𝑡, 𝒙𝑡−1

𝑖+  is the i-th updated states vector at 

time 𝑡 − 1, 𝑀𝑆 is the number of model states 𝒙 = {𝑥𝑗, 𝑗 = 1, … , 𝑀𝑠}, and 𝑛 is the number of 

ensemble members. The nonlinear propagator 𝑓(·) contains 𝑀𝐼 model input vector 

𝒖𝑡 , {𝑢1,𝑡 , … , 𝑢𝑀𝐼 ,𝑡} and the i-th model parameter vector 𝜽𝑖 corresponding to the model 

state 𝒙𝑡−1
𝑖+ . The term 𝑤𝑡

𝑖 is the i-th model error and presents all uncertainty related to model 

structure, forcing data and model parameter [Moradkhani et al., 2005b]. In this study, the 

model error is represented by the uncertainty of model parameters. 

Suppose that the actual observation (𝑦𝑡+1
𝑂𝑏𝑠) is taken at time 𝑡 + 1 and that we intend to 

assimilate the vector of observations into the model. The predicted output of model, 𝑦𝑡 +1
𝑖  at 

time 𝑡 + 1 is computed with the propagator ℎ(·) as a function of 𝜽𝑖 , 𝒖𝑡+1, and 𝒙𝑡
𝑖−, which can 

be written as: 

 𝑦𝑡+1
𝑖 = ℎ(𝒙𝑡

𝑖−, 𝒖𝑡+1, 𝜽𝑖) (C.2) 

To represent the error statistics in the forecast step, we assume that at time 𝑡 + 1, we 

have an ensemble of n forecasted states, 𝒙𝑡
− ≜ (𝒙𝑡

1−, … , 𝒙𝑡
𝑛−) and an ensemble of n forecasted 

outputs, 𝑦𝑡+1 ≜ (𝑦𝑡+1
1 , … , 𝑦𝑡+1

𝑛 ). Then the ensemble means of forecasted state (𝒙̅𝑡
−) and the 

ensemble mean of forecasted output (𝑦̅𝑡+1) are estimated by: 

 
𝒙̅𝑡

− ≜
1

𝑛
∑ 𝒙𝑡

𝑖−

𝑛

𝑖=1

 (C.3) 

 
𝑦̅𝑡+1 ≜

1

𝑛
∑ 𝑦𝑡+1

𝑖

𝑛

𝑖=1

 (C.4) 
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 Then, we define the ensemble error matrix of forecasted state, 𝐸𝑡+1
−  around the 

ensemble mean by: 

 𝐸𝑡+1
− ≜ [𝒙𝑡

1− − 𝒙̅𝑡
− … 𝒙𝑡

𝑛− − 𝒙̅𝑡
−] (C.5) 

and the ensemble of output error matrix, 𝐸𝑡+1
𝑦

 is: 

 𝐸𝑡+1
𝑦

≜ [𝑦𝑡+1
1 − 𝑦̅𝑡+1 … 𝑦𝑡+1

𝑛 − 𝑦̅𝑡+1] (C.6) 

The error covariance matrix is calculated including: 

- The error covariance matrix of ensemble forecast state: 

 
𝑄𝑡+1

𝑥 =
1

𝑛 − 1
𝐸𝑡+1

− (𝐸𝑡+1
− )T (C.7) 

- The error covariance matrix of model output: 

 
𝑄𝑡+1

𝑦 =
1

𝑛 − 1
𝐸𝑡+1

𝑦 (𝐸𝑡+1
𝑦 )T (C.8) 

- The forecast cross-covariance of the states and output: 

 
𝑄𝑡+1

𝒙𝑦
=

1

𝑛 − 1
𝐸𝑡+1

− (𝐸𝑡+1
𝑦

)T (C.9) 

In order for the EnKF to maintain sufficient spreads in ensemble and to prevent from 

filter divergence [Whitaker and Hamill, 2002], observations should be treated as random 

variables. At each time, an observation is perturbed by adding noise drawn from a Gaussian 

distribution of mean zero and predefined covariance [Burgers et al., 1998]. Thus, in the 

updated step, the forecasted state set 𝒙𝑡+1
𝑖−  is updated using the Kalman gain 𝐾𝑡+1

𝑥  as follow: 

 𝒙𝑡
𝑖+ = 𝒙𝑡

𝑖− + 𝐾𝑡+1
𝑥 (𝑦𝑡+1

𝑂𝑏𝑠,𝑖 − 𝑦𝑡+1
𝑖 ) (C.10) 
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where 𝑦𝑡+1
𝑂𝑏𝑠,𝑖

 is the i-th trajectory of the observation replicates generated by adding to the 

actual observation (𝑦𝑡+1
𝑂𝑏𝑠) error, 𝜂 (i.e., a perturbation to observation) that has zero mean and 

the covariance, 𝐸𝑡+1
𝑦𝑂𝑏𝑠

, which is determined in Section 2.1.4, as follow: 

 𝑦𝑡+1
𝑂𝑏𝑠,𝑖 = 𝑦𝑡+1

𝑂𝑏𝑠 + 𝜂𝑡+1
𝑖 , 𝜂𝑡+1

𝑖 ~𝑁 (0, 𝐸𝑡+1
𝑦𝑂𝑏𝑠

) (C.11) 

The Kalman gain matrix can be calculated by: 

 𝐾𝑡+1
𝑥 = 𝑄𝑡+1

𝒙𝑦 [𝑄𝑡+1
𝑦

+ 𝑄𝑡+1
𝑂𝑏𝑠]

−1
 (C.12) 

where 𝑄𝑡+1
𝑂𝑏𝑠  is the covariance matrix of the observation, 𝑦𝑡+1

𝑂𝑏𝑠,𝑖
, which is defined similar to 

𝑄𝑡+1
𝑦

. 

 
𝑄𝑡+1

𝑂𝑏𝑠 =
1

𝑛 − 1
𝐸𝑡+1

𝑂𝑏𝑠(𝐸𝑡+1
𝑂𝑏𝑠)T (C.13) 

 𝐸𝑡+1
𝑂𝑏𝑠 ≜ [𝑦𝑡+1

𝑂𝑏𝑠,1 − 𝑦𝑡+1
𝑂𝑏𝑠 … 𝑦𝑡+1

𝑂𝑏𝑠,𝑛 − 𝑦𝑡+1
𝑂𝑏𝑠] (C.14) 

C.2. Dual parameters-states updated 

The dual EnKF requires two interactive and parallel filters for the states and 

parameters estimation [Moradkhani et al., 2005b]. The parameters are first updated and then 

the states. In order to extend the applicability of the single EnKF to the simultaneous 

parameters–states EnKF, one needs to treat the ensemble size of parameter sets similar to the 

model state. However, the parameter values are not changed after the forecast step:  

 𝜽𝑡+1
𝑖− = 𝜽𝑡

𝑖+ (C.15) 

 Using the parameters forecasted and the replicates of forcing data, states of the 

ensemble model and model prediction are computed as follows: 
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 𝒙𝑡
𝑖− = 𝑓(𝒙𝑡−1

𝑖+ , 𝒖𝑡 , 𝜽𝑡+1
𝑖− ) + 𝑤𝑡

𝑖 ,       𝑖 = 1, … 𝑛 (C.16) 

 𝑦𝑡+1
𝑖 = ℎ(𝒙𝑡

𝑖−, 𝒖𝑡+1, 𝜽𝑡+1
𝑖− ) (C.17) 

Updating the ensemble parameter member is made: 

 𝜽𝑡+1
𝑖+ = 𝜽𝑡+1

𝑖− + 𝐾𝑡+1
𝜽 (𝑦𝑡+1

𝑂𝑏𝑠,𝑖 − 𝑦𝑡+1
𝑖 ) (C.18) 

where 𝐾𝑡+1
𝜽  is the Kalman gain for correcting the parameter trajectories obtained with: 

 𝐾𝑡+1
𝜽 = 𝑄𝑡+1

𝜽𝑦 [𝑄𝑡+1
𝑦

+ 𝑄𝑡+1
𝑂𝑏𝑠]

−1
 (C.19) 

where 𝑄𝑡+1
𝜽𝑦

 is the cross-covariance matrix of model parameters and model output. Now use 

the updated parameter 𝜽𝑡+1
𝑖+  to the step given in Appendix C.1 to update the ensemble model 

states simultaneously. 

Appendix D. Sobol’ sensitivity analysis 

 Sobol’ method is a variance-based sensitivity analysis that identifies parameter 

sensitivities by evaluating the variance of model output (𝑦) due to the variability of individual 

parameters and their parameter interactions [Sobol', 2001; Saltelli, 2002; Crestaux et al., 

2009]. Instead of the model output, model performance measures (e.g., 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸 in 

this study) can be used [Tang et al., 2007]. The total variance, 𝐷(𝑦) is decomposed as: 

 

𝐷(𝑦) = ∑ 𝐷𝑎

𝑀𝑃

𝑎=1

+ ∑ 𝐷𝑎𝑏

𝑎<𝑏

+ ⋯ + 𝐷1…𝑀𝑃
 (D.1) 

where 𝐷𝑎 is the variance of 𝑦 due to the changes of 𝑎-th model parameter, 𝜽𝑎, denoting the 

first order contribution to 𝐷(𝑦); 𝐷𝑎𝑏  is the variance of 𝑦 due to the pairwise interactions of 𝑎-

th and 𝑏-th parameters, referring to the second order contribution. 
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The first (𝑆𝑎) and total (𝑆𝑇𝑜𝑡𝑎𝑙,𝑎) order Sobol’ sensitivity indices can be respectively 

expressed as: 

 
𝑆𝑎 =

𝐷𝑎

𝐷(𝑦)
 (D.2) 

 
𝑆𝑇𝑜𝑡𝑎𝑙,𝑎 = 1 −

𝐷~𝑎

𝐷(𝑦)
 (D.3) 

where 𝐷~𝑎 is the variance averaged over the contributions resulting from all parameters 

except for 𝜽𝑎. 

 

References 

Abbaszadeh, P., H. Moradkhani, and H. Yan (2018), Enhancing hydrologic data assimilation 

by evolutionary Particle Filter and Markov Chain Monte Carlo, Advances in Water 

Resources, 111, 192-204, doi:10.1016/j.advwatres.2017.11.011. 

Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian 

multimodel combination framework: Confronting input, parameter, and model structural 

uncertainty in hydrologic prediction, Water Resources Research, 43(1), 

doi:10.1029/2005wr004745. 

APFM (2013), Integrated flood management tools series: Flood Forecasting and Early 

WarningRep., Associated Programme on Flood Management. 

Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp (2002), A tutorial on particle 

filters for online nonlinear/non-Gaussian Bayesian tracking, IEEE Transactions on Signal 

Processing, 50(2), 174-188, doi:10.1109/78.978374. 

Ballio, F., and A. Guadagnini (2004), Convergence assessment of numerical Monte Carlo 

simulations in groundwater hydrology, Water Resources Research, 40(4), 

doi:10.1029/2003wr002876. 

Bauser, H. H., D. Berg, O. Klein, and K. Roth (2018), Inflation Method for Ensemble 

Kalman Filter in Soil Hydrology, Hydrology and Earth System Sciences Discussions, 1-18, 

doi:10.5194/hess-2018-74. 

Berveiller, M., B. Sudret, and M. Lemaire (2006), Stochastic finite elements: a non intrusive 

approach by regression, Eur. J. Comput. Mech. , 15. 



 

 
©2020 American Geophysical Union. All rights reserved. 

Beven, K. (1989), Changing ideas in hydrology — The case of physically-based models, 

Journal of Hydrology, 105(1-2), 157-172, doi:10.1016/0022-1694(89)90101-7. 

Beven, K. (2000), Uniqueness of place and non-uniqueness of models in assessing predictive 

uncertainty, paper presented at Computational methods in water resources - Volume 2 - 

Computational methods,surface water systems and hydrology. 

Beven, K. (2006), A manifesto for the equifinality thesis, Journal of Hydrology, 320(1-2), 

18-36, doi:10.1016/j.jhydrol.2005.07.007. 

Beven, K., and A. Binley (1992), The future of distributed models: Model calibration and 

uncertainty prediction, Hydrological Processes, 6(3), 279-298, doi:10.1002/hyp.3360060305. 

Beven, K., and J. Freer (2001), Equifinality, data assimilation, and uncertainty estimation in 

mechanistic modelling of complex environmental systems using the GLUE methodology, 

Journal of Hydrology, 249(1-4), 11-29, doi:10.1016/s0022-1694(01)00421-8. 

Blasone, R.-S., J. A. Vrugt, H. Madsen, D. Rosbjerg, B. A. Robinson, and G. A. Zyvoloski 

(2008), Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain 

Monte Carlo sampling, Advances in Water Resources, 31(4), 630-648, 

doi:10.1016/j.advwatres.2007.12.003. 

Blatman, G., and B. Sudret (2008), Sparse polynomial chaos expansions and adaptive 

stochastic finite elements using a regression approach, Comptes Rendus Mécanique, 336(6), 

518-523, doi:10.1016/j.crme.2008.02.013. 

Blatman, G., and B. Sudret (2010), An adaptive algorithm to build up sparse polynomial 

chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics, 

25(2), 183-197, doi:10.1016/j.probengmech.2009.10.003. 

Blatman, G., and B. Sudret (2011), Adaptive sparse polynomial chaos expansion based on 

least angle regression, Journal of Computational Physics, 230(6), 2345-2367, 

doi:10.1016/j.jcp.2010.12.021. 

Brier, G. W. (1950), Verification of Forecasts Expressed in Terms of Probability, Monthly 

Weather Review, 78(1), 1-3, doi:10.1175/1520-0493(1950)078<0001:vofeit>2.0.co;2. 

Burgers, G., P. Jan van Leeuwen, and G. Evensen (1998), Analysis Scheme in the Ensemble 

Kalman Filter, Monthly Weather Review, 126(6), 1719-1724, doi:10.1175/1520-

0493(1998)126<1719:asitek>2.0.co;2. 

Butts, M. B., J. T. Payne, M. Kristensen, and H. Madsen (2004), An evaluation of the impact 

of model structure on hydrological modelling uncertainty for streamflow simulation, Journal 

of Hydrology, 298(1-4), 242-266, doi:10.1016/j.jhydrol.2004.03.042. 

Caflisch, R. E. (1998), Monte carlo and quasi-monte carlo methods, Acta numerica, 7, 1-49. 

Cameron, D., K. Beven, J. Tawn, and P. Naden (2000), Flood frequency estimation by 

continuous simulation (with likelihood based uncertainty estimation), Hydrology and Earth 

System Sciences Discussions, 4(1), 23-34. 



 

 
©2020 American Geophysical Union. All rights reserved. 

Chen, H., D. Yang, Y. Hong, J. J. Gourley, and Y. Zhang (2013), Hydrological data 

assimilation with the Ensemble Square-Root-Filter: Use of streamflow observations to update 

model states for real-time flash flood forecasting, Advances in Water Resources, 59, 209-220, 

doi:10.1016/j.advwatres.2013.06.010. 

Cheng, R., and Y. Jin (2015), A competitive swarm optimizer for large scale optimization, 

IEEE Trans Cybern, 45(2), 191-204, doi:10.1109/TCYB.2014.2322602. 

Choi, H. T., and K. Beven (2007), Multi-period and multi-criteria model conditioning to 

reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework, 

Journal of Hydrology, 332(3-4), 316-336, doi:10.1016/j.jhydrol.2006.07.012. 

Cintra, R. S., and H. F. d. C. Velho (2018), Data Assimilation by Artificial Neural Networks 

for an Atmospheric General Circulation Model, in Advanced Applications for Artificial 

Neural Networks, edited, doi:10.5772/intechopen.70791. 

Clark, M. P., D. E. Rupp, R. A. Woods, X. Zheng, R. P. Ibbitt, A. G. Slater, J. Schmidt, and 

M. J. Uddstrom (2008), Hydrological data assimilation with the ensemble Kalman filter: Use 

of streamflow observations to update states in a distributed hydrological model, Advances in 

Water Resources, 31(10), 1309-1324, doi:10.1016/j.advwatres.2008.06.005. 

Crestaux, T., O. Le Maıˆtre, and J.-M. Martinez (2009), Polynomial chaos expansion for 

sensitivity analysis, Reliability Engineering & System Safety, 94(7), 1161-1172, 

doi:10.1016/j.ress.2008.10.008. 

Davis, P. J., and P. Rabinowitz (2007), Methods of numerical integration, Courier 

Corporation. 

Davison, B., V. Fortin, A. Pietroniro, M. K. Yau, and R. Leconte (2017), Parameter-state 

ensemble data assimilation using Approximate Bayesian Computing for short-term 

hydrological prediction, Hydrology and Earth System Sciences Discussions, 1-38, 

doi:10.5194/hess-2017-482. 

Debusschere, B. J., K. Sargsyan, H. N. Najm, and C. Safta (2016), The Uncertainty 

Quantification Toolkit (UQTk), in Handbook of Uncertainty Quantification, edited, 

doi:10.1007/978-3-319-11259-6_56-1. 

DeChant, C. M., and H. Moradkhani (2012), Examining the effectiveness and robustness of 

sequential data assimilation methods for quantification of uncertainty in hydrologic 

forecasting, Water Resources Research, 48(4), doi:10.1029/2011wr011011. 

DeChant, C. M., and H. Moradkhani (2014), Toward a reliable prediction of seasonal forecast 

uncertainty: Addressing model and initial condition uncertainty with ensemble data 

assimilation and Sequential Bayesian Combination, Journal of Hydrology, 519, 2967-2977, 

doi:10.1016/j.jhydrol.2014.05.045. 

DHI (2014), DHI Mike 11: A Modelling System for Rivers and Channels, Reference Manual, 

Danish Hydraulic Institute (DHI) Water & Environment: Hørsholm, Denmark. 

Dwelle, M. C., J. Kim, K. Sargsyan, and V. Y. Ivanov (2019), Streamflow, stomata, and soil 

pits: sources of inference for complex models with fast, robust uncertainty quantification, 

Advances in Water Resources, doi:10.1016/j.advwatres.2019.01.002. 



 

 
©2020 American Geophysical Union. All rights reserved. 

Eldred, M. S., K. R. Dalbey, W. J. Bohnhoff, B. M. Adams, L. P. Swiler, P. D. Hough, D. M. 

Gay, J. P. Eddy, and K. H. Haskell (2010), Dakota, A Multilevel Parallel Object-Oriented 

Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and 

Sensitivity Analysis: Version 6.2 Theory ManualRep., Sandia NationalLaboratories, 

Albuquerque, NM, 2007. 

Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model 

using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 

99(C5), 10143, doi:10.1029/94jc00572. 

Fan, Y., W. Huang, G. H. Huang, K. Huang, and X. Zhou (2014), A PCM-based stochastic 

hydrological model for uncertainty quantification in watershed systems, Stochastic 

Environmental Research and Risk Assessment, 29(3), 915-927, doi:10.1007/s00477-014-

0954-8. 

Fan, Y. R., G. H. Huang, B. W. Baetz, Y. P. Li, K. Huang, Z. Li, X. Chen, and L. H. Xiong 

(2016), Parameter uncertainty and temporal dynamics of sensitivity for hydrologic models: A 

hybrid sequential data assimilation and probabilistic collocation method, Environmental 

Modelling & Software, 86, 30-49, doi:10.1016/j.envsoft.2016.09.012. 

Fatichi, S., G. G. Katul, V. Y. Ivanov, C. Pappas, A. Paschalis, A. Consolo, J. Kim, and P. 

Burlando (2015), Abiotic and biotic controls of soil moisture spatiotemporal variability and 

the occurrence of hysteresis, Water Resources Research, 51(5), 3505-3524, 

doi:10.1002/2014wr016102. 

Feinberg, J., and H. P. Langtangen (2015), Chaospy: An open source tool for designing 

methods of uncertainty quantification, Journal of Computational Science, 11, 46-57, 

doi:10.1016/j.jocs.2015.08.008. 

Fujita, T., D. J. Stensrud, and D. C. Dowell (2007), Surface Data Assimilation Using an 

Ensemble Kalman Filter Approach with Initial Condition and Model Physics Uncertainties, 

Monthly Weather Review, 135(5), 1846-1868, doi:10.1175/mwr3391.1. 

Ghanem, R. G., and P. D. Spanos (1991), Stochastic Finite Elements: a Spectral Approach, 

Springer, Verlag New York, doi:10.1007/978-1-4612-3094-6. 

Gharamti, M. E., I. Hoteit, and J. Valstar (2013), Dual states estimation of a subsurface flow-

transport coupled model using ensemble Kalman filtering, Advances in Water Resources, 60, 

75-88, doi:10.1016/j.advwatres.2013.07.011. 

Ghiocel, D. M., and R. G. Ghanem (2002), Stochastic Finite-Element Analysis of Seismic 

Soil–Structure Interaction, Journal of Engineering Mechanics, 128(1), 66-77, 

doi:10.1061/(asce)0733-9399(2002)128:1(66). 

Giannakis, D., and A. J. Majda (2012), Quantifying the Predictive Skill in Long-Range 

Forecasting. Part II: Model Error in Coarse-Grained Markov Models with Application to 

Ocean-Circulation Regimes, Journal of Climate, 25(6), 1814-1826, doi:10.1175/jcli-d-11-

00110.1. 

He, M., T. S. Hogue, S. A. Margulis, and K. J. Franz (2012), An integrated uncertainty and 

ensemble-based data assimilation approach for improved operational streamflow predictions, 

Hydrol. Earth Syst. Sci., 16(3), 815-831, doi:10.5194/hess-16-815-2012. 



 

 
©2020 American Geophysical Union. All rights reserved. 

Helton, J. C., and F. J. Davis (2003), Latin hypercube sampling and the propagation of 

uncertainty in analyses of complex systems, Reliability Engineering & System Safety, 81(1), 

23-69, doi:https://doi.org/10.1016/S0951-8320(03)00058-9. 

Heo, K.-Y., K.-J. Ha, K.-S. Yun, S.-S. Lee, H.-J. Kim, and B. Wang (2014), Methods for 

uncertainty assessment of climate models and model predictions over East Asia, International 

Journal of Climatology, 34(2), 377-390, doi:10.1002/joc.3692. 

Hossain, F., and E. N. Anagnostou (2005), Assessment of a stochastic interpolation based 

parameter sampling scheme for efficient uncertainty analyses of hydrologic models, 

Computers & Geosciences, 31(4), 497-512, doi:10.1016/j.cageo.2004.11.001. 

Houtekamer, P. L., and F. Zhang (2016), Review of the Ensemble Kalman Filter for 

Atmospheric Data Assimilation, Monthly Weather Review, 144(12), 4489-4532, 

doi:10.1175/mwr-d-15-0440.1. 

Ivanov, V. Y., S. Fatichi, G. D. Jenerette, J. F. Espeleta, P. A. Troch, and T. E. Huxman 

(2010), Hysteresis of soil moisture spatial heterogeneity and the “homogenizing” effect of 

vegetation, Water Resources Research, 46(9), doi:10.1029/2009wr008611. 

Jin, X., C.-Y. Xu, Q. Zhang, and V. P. Singh (2010), Parameter and modeling uncertainty 

simulated by GLUE and a formal Bayesian method for a conceptual hydrological model, 

Journal of Hydrology, 383(3-4), 147-155, doi:10.1016/j.jhydrol.2009.12.028. 

Kim, J., M. C. Dwelle, S. K. Kampf, S. Fatichi, and V. Y. Ivanov (2016a), On the non-

uniqueness of the hydro-geomorphic responses in a zero-order catchment with respect to soil 

moisture, Advances in Water Resources, 92, 73-89, doi:10.1016/j.advwatres.2016.03.019. 

Kim, J., and V. Y. Ivanov (2014), On the nonuniqueness of sediment yield at the catchment 

scale: The effects of soil antecedent conditions and surface shield, Water Resources 

Research, 50(2), 1025-1045, doi:10.1002/2013wr014580. 

Kim, J., and V. Y. Ivanov (2015), A holistic, multi-scale dynamic downscaling framework 

for climate impact assessments and challenges of addressing finer-scale watershed dynamics, 

Journal of Hydrology, 522, 645-660, doi:10.1016/j.jhydrol.2015.01.025. 

Kim, J., V. Y. Ivanov, and S. Fatichi (2016b), Environmental stochasticity controls soil 

erosion variability, Sci Rep, 6, 22065, doi:10.1038/srep22065. 

Kim, J., V. Y. Ivanov, and S. Fatichi (2016c), Soil erosion assessment-Mind the gap, 

Geophysical Research Letters, 43(24), 12,446-412,456, doi:10.1002/2016gl071480. 

Kim, J., M. E. Tanveer, and D.-H. Bae (2018), Quantifying climate internal variability using 

an hourly ensemble generator over South Korea, Stochastic Environmental Research and 

Risk Assessment, 32(11), 3037-3051, doi:10.1007/s00477-018-1607-0. 

Kitanidis, P. K., and R. L. Bras (1980), Real-time forecasting with a conceptual hydrologic 

model: 1. Analysis of uncertainty, Water Resources Research, 16(6), 1025-1033, 

doi:10.1029/WR016i006p01025. 

https://doi.org/10.1016/S0951-8320(03)00058-9


 

 
©2020 American Geophysical Union. All rights reserved. 

Kleeman, R. (2002), Measuring Dynamical Prediction Utility Using Relative Entropy, 

Journal of the Atmospheric Sciences, 59(13), 2057-2072, doi:10.1175/1520-

0469(2002)059<2057:mdpuur>2.0.co;2. 

Kullback, S. (1997), Information theory and statistics, Courier Corporation. 

Kullback, S., and R. A. Leibler (1951), On Information and Sufficiency, The Annals of 

Mathematical Statistics, 22(1), 79-86, doi:10.1214/aoms/1177729694. 

Lafaysse, M., B. Hingray, A. Mezghani, J. Gailhard, and L. Terray (2014), Internal variability 

and model uncertainty components in future hydrometeorological projections: The Alpine 

Durance basin, Water Resources Research, 50(4), 3317-3341, doi:10.1002/2013wr014897. 

Le Maı̂tre, O. P., M. T. Reagan, H. N. Najm, R. G. Ghanem, and O. M. Knio (2002), A 

Stochastic Projection Method for Fluid Flow, Journal of Computational Physics, 181(1), 9-

44, doi:10.1006/jcph.2002.7104. 

Li, Y., D. Ryu, A. W. Western, Q. J. Wang, D. E. Robertson, and W. T. Crow (2014), An 

integrated error parameter estimation and lag-aware data assimilation scheme for real-time 

flood forecasting, Journal of Hydrology, 519, 2722-2736, doi:10.1016/j.jhydrol.2014.08.009. 

Liu, Y., et al. (2012), Advancing data assimilation in operational hydrologic forecasting: 

progresses, challenges, and emerging opportunities, Hydrology and Earth System Sciences, 

16(10), 3863-3887, doi:10.5194/hess-16-3863-2012. 

Madsen, H. (2000), Automatic calibration of a conceptual rainfall–runoff model using 

multiple objectives, Journal of Hydrology, 235(3-4), 276-288, doi:10.1016/s0022-

1694(00)00279-1. 

Madsen, H., and C. Skotner (2005), Adaptive state updating in real-time river flow 

forecasting—a combined filtering and error forecasting procedure, Journal of Hydrology, 

308(1-4), 302-312, doi:10.1016/j.jhydrol.2004.10.030. 

Marelli, S., and B. Sudret (2017), UQLab user manual – Polynomial chaos expansionsRep., 

Chair of Risk, Safety & Uncertainty Quantification, ETH Zurich. 

McKay, M. D., R. J. Beckman, and W. J. Conover (1979), A Comparison of Three Methods 

for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, 

Technometrics, 21(2), 239, doi:10.2307/1268522. 

McKenna, S. A., J. Doherty, and D. B. Hart (2003), Non-uniqueness of inverse transmissivity 

field calibration and predictive transport modeling, Journal of Hydrology, 281(4), 265-280, 

doi:10.1016/s0022-1694(03)00194-x. 

Mendoza, P. A., J. McPhee, and X. Vargas (2012), Uncertainty in flood forecasting: A 

distributed modeling approach in a sparse data catchment, Water Resources Research, 48(9), 

doi:10.1029/2011wr011089. 

Meng, J., and H. Li (2018), Uncertainty Quantification for Subsurface Flow and Transport: 

Coping With Nonlinearity/Irregularity via Polynomial Chaos Surrogate and Machine 

Learning, Water Resources Research, doi:10.1029/2018wr022676. 



 

 
©2020 American Geophysical Union. All rights reserved. 

Mockler, E. M., K. P. Chun, G. Sapriza-Azuri, M. Bruen, and H. S. Wheater (2016), 

Assessing the relative importance of parameter and forcing uncertainty and their interactions 

in conceptual hydrological model simulations, Advances in Water Resources, 97, 299-313, 

doi:10.1016/j.advwatres.2016.10.008. 

Mondal, A., and P. P. Mujumdar (2012), On the basin-scale detection and attribution of 

human-induced climate change in monsoon precipitation and streamflow, Water Resources 

Research, 48(10), doi:10.1029/2011wr011468. 

Moradkhani, H., C. M. DeChant, and S. Sorooshian (2012), Evolution of ensemble data 

assimilation for uncertainty quantification using the particle filter-Markov chain Monte Carlo 

method, Water Resources Research, 48(12), doi:10.1029/2012wr012144. 

Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005a), Uncertainty assessment of 

hydrologic model states and parameters: Sequential data assimilation using the particle filter, 

Water Resources Research, 41(5), n/a-n/a, doi:10.1029/2004WR003604. 

Moradkhani, H., and S. Sorooshian (2008), General Review of Rainfall-Runoff Modeling: 

Model Calibration, Data Assimilation, and Uncertainty Analysis, in Hydrological Modelling 

and the Water Cycle: Coupling the Atmospheric and Hydrologic Models, edited by S. 

Sorooshian, K.-L. Hsu, E. Coppola, B. Tomassetti, M. Verdecchia and G. Visconti, pp. 1-24, 

Springer, Berlin, doi:10.1007/978-3-540-77843-1_1. 

Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005b), Dual state–parameter 

estimation of hydrological models using ensemble Kalman filter, Advances in Water 

Resources, 28(2), 135-147, doi:https://doi.org/10.1016/j.advwatres.2004.09.002. 

Nga, P. H., K. Takara, and N. H. Son (2015), Flood Hazard Impact Analysis in the 

Downstream of Vu Gia-Thu Bon River System, Quang Nam Province, Central Vietnam, 

Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering), 71(4), I_157-

I_162, doi:10.2208/jscejhe.71.I_157. 

Nielsen, S. A., and E. Hansen (1973), Numerical simulation of the rainfall-runoffprocess on a 

daily basis, Hydrology Research, 4(3), 171-190. 

Nikiema, O., and R. Laprise (2011), Budget study of the internal variability in ensemble 

simulations of the Canadian Regional Climate Model at the seasonal scale, Journal of 

Geophysical Research, 116(D16), doi:10.1029/2011jd015841. 

O’Brien, R. J., B. D. Misstear, L. W. Gill, J. L. Deakin, and R. Flynn (2013), Developing an 

integrated hydrograph separation and lumped modelling approach to quantifying hydrological 

pathways in Irish river catchments, Journal of Hydrology, 486, 259-270, 

doi:10.1016/j.jhydrol.2013.01.034. 

Parno, M., A. Davis, and P. Conrad MIT Uncertainty Quantification (MUQ) library, edited. 

Pokhrel, P., H. V. Gupta, and T. Wagener (2008), A spatial regularization approach to 

parameter estimation for a distributed watershed model, Water Resources Research, 44(12), 

doi:10.1029/2007wr006615. 

Saltelli, A. (2002), Sensitivity Analysis for Importance Assessment, Risk Analysis, 22(3), 

579-590, doi:10.1111/0272-4332.00040. 

https://doi.org/10.1016/j.advwatres.2004.09.002


 

 
©2020 American Geophysical Union. All rights reserved. 

Sargsyan, K., C. Safta, H. N. Najm, B. J. Debusschere, D. Ricciuto, and P. Thornton (2014), 

Dimensionality Reduction for Complex Models Via Bayesian Compressive Sensing, 

International Journal for Uncertainty Quantification, 4(1), 63-93, 

doi:10.1615/Int.J.UncertaintyQuantification.2013006821. 

Sene, K. (2008), Flood Warning, Forecasting and Emergency Response, Springer Science & 

Business Media, doi:10.1007/978-3-540-77853-0. 

Shen, Z. Y., L. Chen, and T. Chen (2012), Analysis of parameter uncertainty in hydrological 

and sediment modeling using GLUE method: a case study of SWAT model applied to Three 

Gorges Reservoir Region, China, Hydrology and Earth System Sciences, 16(1), 121-132, 

doi:10.5194/hess-16-121-2012. 

Shukla, J., T. DelSole, M. Fennessy, J. Kinter, and D. Paolino (2006), Climate model fidelity 

and projections of climate change, Geophysical Research Letters, 33(7), 

doi:10.1029/2005gl025579. 

Sobol', I. M. (2001), Global sensitivity indices for nonlinear mathematical models and their 

Monte Carlo estimates, Mathematics and Computers in Simulation, 55(1-3), 271-280, 

doi:10.1016/s0378-4754(00)00270-6. 

Sochala, P., and O. P. Le Maître (2013), Polynomial Chaos expansion for subsurface flows 

with uncertain soil parameters, Advances in Water Resources, 62, 139-154, 

doi:10.1016/j.advwatres.2013.10.003. 

Sudret, B. (2007), Uncertainty propagation and sensitivity analysis in mechanical models 

Contributions to structural reliability and stochastic spectral methods, Habilitation thesis, 

Universite Blaise Pascal, Clermont-Ferrand, France. 

Sudret, B. (2008), Global sensitivity analysis using polynomial chaos expansions, Reliability 

Engineering & System Safety, 93(7), 964-979, doi:10.1016/j.ress.2007.04.002. 

Tang, Y., P. Reed, K. van Werkhoven, and T. Wagener (2007), Advancing the identification 

and evaluation of distributed rainfall-runoff models using global sensitivity analysis, Water 

Resources Research, 43(6), doi:10.1029/2006wr005813. 

Thompson, J. R., H. R. Sørenson, H. Gavin, and A. Refsgaard (2004), Application of the 

coupled MIKE SHE/MIKE 11 modelling system to a lowland wet grassland in southeast 

England, Journal of Hydrology, 293(1-4), 151-179, doi:10.1016/j.jhydrol.2004.01.017. 

Todini, E. (1999), Using phase-state modelling for inferring forecasting uncertainty in 

nonlinear stochastic decision schemes, Journal of Hydroinformatics, 1(2), 75-82, 

doi:10.2166/hydro.1999.0007. 

Todini, E. (2004), Role and treatment of uncertainty in real-time flood forecasting, 

Hydrological Processes, 18(14), 2743-2746, doi:10.1002/hyp.5687. 

Tran, V. N., and J. Kim (2019), Quantification of predictive uncertainty with a metamodel: 

Toward more efficient hydrologic simulations, Stochastic Environmental Research and Risk 

Assessment, doi:10.1007/s00477-019-01703-0. 

UNDP (1999), Viet Nam: Flood Damage Summary 06 Nov 1999, edited, ReliefWeb. 



 

 
©2020 American Geophysical Union. All rights reserved. 

Vrugt, J. A. (2016), Markov chain Monte Carlo simulation using the DREAM software 

package: Theory, concepts, and MATLAB implementation, Environmental Modelling & 

Software, 75, 273-316, doi:10.1016/j.envsoft.2015.08.013. 

Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved 

treatment of uncertainty in hydrologic modeling: Combining the strengths of global 

optimization and data assimilation, Water Resources Research, 41(1), 

doi:10.1029/2004wr003059. 

Vrugt, J. A., C. J. F. ter Braak, H. V. Gupta, and B. A. Robinson (2008), Equifinality of 

formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?, 

Stochastic Environmental Research and Risk Assessment, 23(7), 1011-1026, 

doi:10.1007/s00477-008-0274-y. 

Wang, D., Y. Chen, and X. Cai (2009), State and parameter estimation of hydrologic models 

using the constrained ensemble Kalman filter, Water Resources Research, 45(11), 

doi:10.1029/2008wr007401. 

Wang, S., B. C. Ancell, G. H. Huang, and B. W. Baetz (2018), Improving Robustness of 

Hydrologic Ensemble Predictions Through Probabilistic Pre‐ and Post‐Processing in 

Sequential Data Assimilation, Water Resources Research, 54(3), 2129-2151, 

doi:10.1002/2018wr022546. 

Wang, S., G. H. Huang, B. W. Baetz, and B. C. Ancell (2017), Towards robust quantification 

and reduction of uncertainty in hydrologic predictions: Integration of particle Markov chain 

Monte Carlo and factorial polynomial chaos expansion, Journal of Hydrology, 548, 484-497, 

doi:10.1016/j.jhydrol.2017.03.027. 

Wang, S., G. H. Huang, B. W. Baetz, and W. Huang (2015), A polynomial chaos ensemble 

hydrologic prediction system for efficient parameter inference and robust uncertainty 

assessment, Journal of Hydrology, 530, 716-733, doi:10.1016/j.jhydrol.2015.10.021. 

Weerts, A. H., and G. Y. H. El Serafy (2006), Particle filtering and ensemble Kalman 

filtering for state updating with hydrological conceptual rainfall-runoff models, Water 

Resources Research, 42(9), doi:10.1029/2005wr004093. 

Wei, C., and M. M. Dewoolkar (2006), Formulation of capillary hysteresis with internal state 

variables, Water Resources Research, 42(7), doi:10.1029/2005wr004594. 

Whitaker, J. S. (2012), Developments in ensemble data assimilation, paper presented at 

Proceedings of the Seminar on Data assimilation for atmosphere and ocean, ECMWF, 6-9 

September 2011. 

Whitaker, J. S., and T. M. Hamill (2002), Ensemble Data Assimilation without Perturbed 

Observations, Monthly Weather Review, 130(7), 1913-1924, doi:10.1175/1520-

0493(2002)130<1913:edawpo>2.0.co;2. 

Wiener, N. (1938), The Homogeneous Chaos, American Journal of Mathematics, 60(4), 897, 

doi:10.2307/2371268. 

Wu, B., Y. Zheng, Y. Tian, X. Wu, Y. Yao, F. Han, J. Liu, and C. Zheng (2014), Systematic 

assessment of the uncertainty in integrated surface water-groundwater modeling based on the 



 

 
©2020 American Geophysical Union. All rights reserved. 

probabilistic collocation method, Water Resources Research, 50(7), 5848-5865, 

doi:10.1002/2014wr015366. 

Xie, X., and D. Zhang (2010), Data assimilation for distributed hydrological catchment 

modeling via ensemble Kalman filter, Advances in Water Resources, 33(6), 678-690, 

doi:10.1016/j.advwatres.2010.03.012. 

Xie, X., and D. Zhang (2013), A partitioned update scheme for state-parameter estimation of 

distributed hydrologic models based on the ensemble Kalman filter, Water Resources 

Research, 49(11), 7350-7365, doi:10.1002/2012wr012853. 

Xiu, D., and G. E. Karniadakis (2002), The Wiener--Askey Polynomial Chaos for Stochastic 

Differential Equations, SIAM Journal on Scientific Computing, 24(2), 619-644, 

doi:10.1137/s1064827501387826. 

Young, P. C. (2002), Advances in real-time flood forecasting, Philos Trans A Math Phys Eng 

Sci, 360(1796), 1433-1450, doi:10.1098/rsta.2002.1008. 

Zahmatkesh, Z., M. Karamouz, and S. Nazif (2015), Uncertainty based modeling of rainfall-

runoff: Combined differential evolution adaptive Metropolis (DREAM) and K-means 

clustering, Advances in Water Resources, 83, 405-420, doi:10.1016/j.advwatres.2015.06.012. 

Zhang, H., H.-J. Hendricks Franssen, X. Han, J. A. Vrugt, and H. Vereecken (2017), State 

and parameter estimation of two land surface models using the ensemble Kalman filter and 

the particle filter, Hydrology and Earth System Sciences, 21(9), 4927-4958, doi:10.5194/hess-

21-4927-2017. 

Zhang, X., P. Liu, L. Cheng, Z. Liu, and Y. Zhao (2018), A back-fitting algorithm to improve 

real-time flood forecasting, Journal of Hydrology, 562, 140-150, 

doi:10.1016/j.jhydrol.2018.04.051. 

 

  



 

 
©2020 American Geophysical Union. All rights reserved. 

Table 1. Literature review of applications involving real-time, ensemble streamflow forecasting. The 

last column corresponds to the taxonomy of the predictive approach (A) that we define in Table 3. 

“Warm-up” methods have a warm-up period, while “Arbitrary” do not. 

Study 
Deterministi

c model 

Surrogat

e model 

Parameter 

specification 

State 

initializatio

n 

DA A 

Zhang et al. [2018] Xinanjiang - Optimization Warm-up Dual A12 

Abbaszadeh et al. 

[2018] 

SAC-SMA - Random Arbitrary Dual A12 

Wang et al. [2018] HyMOD PCE NA Warm-up Dual A6 

Davison et al. 

[2017] 

MESH - Random NA Dual A3 

Thiboult et al. 

[2016] 

Multimodels - NA Warm-up Single A2 

Fan et al. [2016] HyMOD PCE Random NA Dual A6 

Zahmatkesh et al. 

[2015] 

HyMOD, 

HBV, 

SWMM 

- Bayesian 

inference 
Warm-up None A10 

Li et al. [2014] GR4H - Optimization NA Dual A12 

DeChant and 

Moradkhani [2014] 

VIC - NA Warm-up Dual A3 

Xie and Zhang 

[2013] 
SWAT - Random Warm-up Dual A3 

Chen et al. [2013] HyMOD - Bayesian 

inference 

NA Single A11 

Moradkhani et al. 

[2012] 
HyMOD - Random Warm-up Dual A3 

He et al. [2012] SNOW17+ 

SAC-SMA 

- Bayesian 

inference 

Warm-up Single A11 

Mendoza et al. 

[2012] 

TopNet - Manual 

calibration 

Warm-up Single A11 

Clark et al. [2008] TopNet - Bayesian 

inference 

Warm-up Single A11 

Ajami et al. [2007] HyMOD, 

SWB 

- Bayesian 

inference 

Warm-up None A10 

Weerts and El Serafy 

[2006] 
HBV-96 - NA NA Single A2 

Vrugt et al. [2005] HyMOD - Random Arbitrary Dual A3 

Moradkhani et al. 

[2005] 
HyMOD - Random Arbitrary Dual A3 

Madsen and Skotner 

[2005] 

Mike 11 - Optimization Warm-up Single A11 

Beven and Freer 

[2001] 
TOPMODEL - Bayesian 

inference 
Warm-up Dual A12 

NA: Not Available 
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Table 2. Description of the NAM model states and parameters 

 
Unit Description 

Lower 

Bound  

Upper 

Bound 

S
ta

te
s 

U mm Water content in surface storage 0 35 

L mm Water content in lower zone/root storage 0 400 

OF m3/s Overland flow 0 +∞ 

IF m3/s Inter flow 0 +∞ 

BF m3/s Base flow 0 +∞ 

P
a

ra
m

et
e
rs

 

Um mm Maximum water content in surface storage 5 35 

Lm mm Maximum water content in lower zone/root storage 50 400 

CQOF [-] Overland flow coefficient 0 1 

CKIF hrs Interflow drainage constant 200 2000 

TOF [-] Overland flow threshold 0 0.9 

TIF [-] Interflow threshold 0 0.9 

TG [-] Groundwater recharge threshold 0 0.9 

CK12 hrs Time constant for routing interflow and overland flow 3 72 

CKBF hrs Time constant for base flow 500 5000 

 

 

 

 

 

Table 3. Forecasting approaches employed in this study 

Approach Specification Model Data assimilation 

A1 

Random 

NAM 
None 

A2 EnKF 

A3 Dual EnKF 

A4 

PCE-I 

None 

A5 EnKF 
A6 Dual EnKF 

A7 

PCE-II 

None 

A8 EnKF 

A9 Dual EnKF 

A10 

Selected 

NAM 

None 

A11 EnKF 

A12 Dual EnKF 

A13 
PCE-I 

None 
A14 EnKF 

A15 Dual EnKF 

A16 

PCE-II 

None 

A17 EnKF 

A18 Dual EnKF 
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Table 4. Performance metric values of 18 approaches. The values in the first 3 columns are the medians 

of 𝑁𝑆𝐸, 𝐴𝐸𝑝𝑒𝑎𝑘, and 𝑅𝐸, which match the values in Fig. 9. 

Approach 
median of 

𝑵𝑺𝑬 [-] 

median of 

𝑨𝑬𝒑𝒆𝒂𝒌 

[m
3
/s] 

median 

of 𝑹𝑬 

[-] 

𝑩𝑺 [-] 𝑼𝑹̅̅ ̅̅  [m
3
/s] 

A1 -3.62 2292.19 0.019 1.00 1834.18 

A2 0.70 515.64 0.009 0.75 367.34 

A3 0.75 500.45 0.009 0.66 340.12 

A4 -3.84 1928.86 0.015 0.97 1760.11 

A5 0.82 126.48 0.005 0.16 327.86 

A6 0.79 55.84 0.005 0.20 131.92 

A7 0.68 904.21 0.009 1.00 26.52 

A8 0.68 901.91 0.010 1.00 20.59 

A9 0.68 902.79 0.010 1.00 19.63 

A10 0.82 612.60 0.007 1.00 193.95 

A11 0.88 401.26 0.005 0.78 161.69 

A12 0.89 242.62 0.005 0.24 172.18 

A13 0.44 532.35 0.004 1.00 139.54 

A14 0.74 157.07 0.003 0.25 102.98 

A15 0.80 176.00 0.003 0.26 91.98 

A16 0.73 787.18 0.010 1.00 55.75 

A17 0.71 839.31 0.010 1.00 44.64 

A18 0.71 840.19 0.010 1.00 46.37 
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Figure 1. A schematic illustration for real-time ensemble flood forecasting, which consists of 3 intervals: 

warm-up, calibration, and forecasting periods. The light red shaded region in the warm-up and 

calibration periods refers to the 𝑛 behavior results of GLUE that are employed to estimate posterior 

parameter distributions, while the light blue region refers to the 𝑛𝑤  random results obtained from 

parameter sets sampled from prior (uniform) distributions to attain the 𝑛  behavior runs. The 

construction of PCE models is carried out over the calibration period: PCE-I model is built from the NI 

training samples extracted from the light blue region, while PCE-II is from the NII samples from the 

light red region. The (dense) blue and red shaded regions correspond to the approaches using the 

“Random” (A1 to A9) and “Selected” (A10 to A18) parameter specifications with the same 𝑛 ensemble 

runs, respectively. 
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Figure 2. The overview of an ensemble flood forecasting framework. The top box, “PCE construction” 

is for the process of building 2 PCE models (blue box for PCE-I and red box for PCE-II). The middle 

box, “Specification” describes 2 distinct approaches of specifying model parameters before forecasting 

including Random (blue box) and Selected (red box). The bottom box, “Forecasting” corresponds to 

data assimilation for flood forecasting in real-time (single and dual EnKFs). The top and middle blue 

boxes correspond to sampling 𝑁I and 𝑛, independently from the same prior uniform distributions, 

respectively, while the red boxes sampling 𝑁II and 𝑛 from the same posterior distributions. 
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Figure 3. Study area: Vu Gia watershed 
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Figure 4. Flood event used in the study. The black line is the discharge of outlet and the gray hyetograph 

represents the average rainfall of Vu Gia watershed. 
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Figure 5. The effects of (left plots) the experimental design, N and (right plots) the polynomial degree, 

p on the leave-one-out cross-validation error (𝐿𝑂𝑂) in constructing PCE-I and PCE-II models, for (a) 

streamflow and (b to f) 5 model states in Table 2.  
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Figure 6. The left column plots show hydrographs for the calibration period. The shades in the plots 

correspond to 90% confidence interval for 500 Random model runs (A1 to A9, light gray shade) and 

500 Selected model runs (A10 to 18, dark gray shade) for 18 approaches in Table 3. The boxplots in the 

right column demonstrate the verification metrics of 𝑁𝑆𝐸, 𝑃𝐸, and 𝑉𝐸 for the 18 approaches used. 
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Figure 7. Hydrographs over the forecasting period, with a 90 % confidence interval of 500 Random 

model runs (A1 to A9). 
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Figure 8. Hydrographs over the forecasting period, with a 90 % confidence interval of 500 Selected 

model runs (A10 to A18). 
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Figure 9. The performance metrics reflecting accuracy and predictability of the 18 approaches for the 

forecasting period. Boxplots of (a) 𝑁𝑆𝐸, (b) 𝐴𝐸𝑝𝑒𝑎𝑘 (𝐴𝐸 at flood peak time) and (c) 𝑅𝐸 show 500 

ensemble values with the statistics of median (central mark), the 25th and 75th percentiles (edges of the 

box), and maximum and minimum except for outliers (whiskers). (e) 𝑈𝑅̅̅ ̅̅  is the mean of uncertainty 

range, 𝑈𝑅𝑡 over the entire forecasting period. 
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Figure 10. The total runtime (𝑇𝑅𝑇) corresponding to 18 approaches in the forecasting period versus 

ensemble size (n). Note that although we plot on logarithmic axis, the actual total runtime has the form 

of a linear function with the ensemble size at linear scale; its slope and intercept values for all 

approaches are tabulated on the right. 
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Figure 11. Comparisons of the three assimilation methods (none, EnKF, and Dual EnKF) for 500 

ensemble flood peaks over the forecasting period. The left, middle, and right plots correspond to the 

approaches using NAM, PCE-I, and PCE-II, respectively. The first and second row plots correspond to 

the approaches using Random and Selected methods for parameter specification. The black square 

represents observed value at peak time; the circles are the expected values of the sample probability 

density functions. 
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Figure 12. The posterior histograms for the 9 model parameters in Table 2 from 500 behavioral sets of 

3 models (NAM, PCE-I and PCE-II) inferred by GLUE over the calibration period. 
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Figure 13. Sobol’ sensitivity analysis for the 9 parameters, computed for the 3 likelihood functions of 

(top) 𝑁𝑆𝐸 , (middle) 𝑃𝐸 , and (bottom) 𝑉𝐸  over the calibration period. The sensitivity results are 

attained based on (a, b, and c) the prior distributions of parameters for the 3 models of NAM, PCE-I, 

and PCE-II, respectively; and (d) the posterior distributions of parameters for NAM model. The 

posterior are also used to select the training parameter set for building PCE-II. 


