This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government. .

Chark for

SAND2021- 2531J ates

Tran Vinh, Ngoc (Orcid ID: 0000-0001-8272-4843)
Sargsyan Khachik (Orcid ID: 0000-0002-1037-786X)
Ivanov Valeriy, Yuryevich (Orcid ID: 0000-0002-5208-2189)

Kim Jongho (Orcid ID: 0000-0002-4101-7429)

A novel modeling framework for computationally efficient and accurate real-time

ensemble flood forecasting with uncertainty quantification

Vinh Ngoc Tran', M. Chase Dwelle?, Khachik Sargsyan®, Valeriy Y. Ivanov?, Jongho Kim!*

'School of Civil and Environmental Engineering, University of Ulsan, South Korea
’Department of Civil and Environmental Engineering, University of Michigan, USA
3Sandia National Laboratories, Livermore, CA 94550, USA

Feb. 14, 2020

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as doi:
10.1029/2019WR025727

©2020 American Geophysical Union. All rights reserved.

Sandia National Laboratoriesisamultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.


http://crossmark.crossref.org/dialog/?doi=10.1029%2F2019WR025727&domain=pdf&date_stamp=2020-02-25

*Corresponding author: Prof. Jongho Kim, School of Civil and Environmental Engineering,
University of Ulsan, South Korea, tel: (+82) 052-259-2855, email: kjongho(@ulsan.ac.kr

Abstract:

A novel modeling framework that simultaneously improves accuracy, predictability,
and computational efficiency is presented. It embraces the benefits of three modeling
techniques integrated together for the first time: surrogate modeling, parameter inference, and
data assimilation. The use of polynomial chaos expansion (PCE) surrogates significantly
decreases computational time. Parameter inference allows for model faster convergence,
reduced uncertainty, and superior accuracy of simulated results. Ensemble Kalman filters
(EnKFs) assimilate errors that occur during forecasting. To examine the applicability and
effectiveness of the integrated framework, we developed 18 approaches according to how
surrogate models are constructed, what type of parameter distributions are used as model
inputs, and whether model parameters are updated during the data assimilation procedure. We
conclude that (1) PCE must be built over various forcing and flow conditions and, in contrast
to previous studies, it does not need to be rebuilt at each time step; (2) model parameter
specification that relies on constrained, posterior information of parameters (so-called
Selected specification) can significantly improve forecasting performance and reduce
uncertainty bounds compared to Random specification using prior information of parameters;
and (3) no substantial differences in results exist between single and dual EnKFs, but the
latter better simulates flood peaks. The use of PCE effectively compensates for the
computational load added by the parameter inference and data assimilation (up to ~80 times
faster). Therefore, the presented approach contributes to a shift in modeling paradigm arguing
that complex, high-fidelity hydrologic and hydraulic models should be increasingly adopted

for real-time and ensemble flood forecasting.

Keywords: Real-time ensemble flood forecasting, Uncertainty quantification, Polynomial

chaos expansions, Generalized Likelihood Uncertainty Estimation, ensemble Kalman filter
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1. Introduction

Real-time forecasting is an important component of flood risk management and
mitigation but is subject to multiple uncertainties caused by meteorological inputs, initial
states, model structures, and model parameters [Beven, 1989; Ajami et al., 2007; Moradkhani
and Sorooshian, 2008; Mockler et al., 2016]. Due to the complexities of natural phenomena
represented by equifinality [Beven and Freer, 2001; Beven, 2006], hysteresis [ Wei and
Dewoolkar, 2006; Ivanov et al., 2010; Fatichi et al., 2015], non-uniqueness [Beven, 2000;
McKenna et al., 2003; Kim and Ivanov, 2014; Kim et al., 2016a], non-linearity [Kitanidis and
Bras, 1980; Xie and Zhang, 2010; Kim and Ivanov, 2015], and internal variability [ Nikiema
and Laprise, 2011; Mondal and Mujumdar, 2012; Lafaysse et al., 2014; Kim et al., 2016c;
Kim et al., 2016b; Kim et al., 2018], perfect predictions using numerical models are
infeasible. The problem exacerbates, if one attempts to simulate constitutive models derived
from empirical or phenomenological observations rather than basic conservation laws of
physics that would also require embracing a large number of parameters. Forecasting systems
must therefore rely on approaches with intrinsic tools to quantify and reduce associated

uncertainties and allow end-users to make informed decisions [Todini, 1999; 2004].

Forecasts made with sufficient lead time can mitigate flood damages considerably.
Results should therefore be provided within a predetermined time horizon and accurate
enough to promote community confidence in actions taken for emergency preparedness
[Todini, 2004; APFM, 2013]. Extensive efforts have been devoted to enhance forecast
accuracy, predictability, and efficiency in real time with uncertainty quantification (Table 1).
However, simultaneous improvement of predictive accuracy and efficiency, while evaluating

effectiveness, remains a major challenge [Liu et al., 2012; Cintra and Velho, 2018].
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For the purpose of enhancing model accuracy in real-time flood forecasting where no
information of model states and parameters is available, data assimilation (DA) has been
proven useful. Due to the nature of forecasting, the effect of future unknowns (model
parameters and states) on flood prediction will change over time. In addition, uncertainty can
be amplified not only by the features of the model itself, but also by errors in forcing data and
observations. Therefore, model adjustment for the forecasting period may be necessary
[Young, 2002; Moradkhani et al., 2005b]. Several assimilation methods have been developed
using Kalman or particle filters and optimization or inference techniques such as the back-
fitting algorithm [Zhang et al., 2018], shuftled complex evolution algorithm [Li ef al., 2014],
shuffled complex evolution metropolis [ Vrugt et al., 2005], generalized likelihood
uncertainty estimation (GLUE) [Beven and Freer, 2001], and sequential Bayesian
combination [ DeChant and Moradkhani, 2014]. Due to the higher computational
requirements of the latter techniques, filter-type approaches have attracted attention as

assimilation tools [Moradkhani and Sorooshian, 2008; Gharamti et al., 2013].

Currently, the ensemble Kalman filter (EnKF) [Evensen, 1994] and its modifications
(e.g., ensemble Kalman smoothers, ensemble square-root filters, and gain function) are the
most commonly used techniques in the hydrology community (Table 1), despite the issue of
slow convergence caused by intrinsic assumptions, especially for domains with complexities
[Moradkhani et al., 2005a; Weerts and El Serafy, 2006; Moradkhani et al., 2012; Wang et al.,
2017]. Recent studies have suggested that particle filtering (PF) [Arulampalam et al., 2002] is
an alternative method to resolve the inclusion of unrealistic Gaussian assumptions in the
EnKF. The PF method has more advantages than EnKF in reducing numerical instability by
providing particle weights and using non-Gaussian state-space models [Liu et al., 2012].
However, this method is computationally more expensive as it generally requires more

ensemble members [Moradkhani et al., 2005a; Liu et al., 2012].
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When assimilating data, model parameter specification and state initialization may
play a crucial role, especially for short-range forecasting [ Houtekamer and Zhang, 2016].
Generally, ensemble initialization of model states and parameters for the forecasting period
can be generated approximately, e.g., using a random selection from uniform distributions for
parameters and setting up the initial state values as an arbitrary number (e.g., zero) at the
beginning of the forecasting period [ Moradkhani et al., 2005a; Vrugt et al., 2005;
Moradkhani et al., 2012; Xie and Zhang, 2013; DeChant and Moradkhani, 2014; Davison et
al., 2017; Abbaszadeh et al., 2018]. Alternatively, the ensemble can be generated more
carefully, e.g., specifying parameters from relevant distributions [Beven and Freer, 2001;
Madsen and Skotner, 2005; Ajami et al., 2007; Clark et al., 2008; He et al., 2012; Mendoza et
al.,2012; Chen et al., 2013; Zahmatkesh et al., 2015] and using a warm-up technique for
states [Ajami et al., 2007; He et al., 2012; Mendoza et al., 2012; DeChant and Moradkhani,

2014; Wang et al., 2018], as summarized in Table 1.

The assimilation techniques described above generally require a large number of
model evaluations to update parameter and state values and present predictive uncertainties,
leading to computational challenges [ Vrugt et al., 2008; Vrugt, 2016; Zhang et al., 2017],
even with the benefit of parallel computation with multiple processors [Cintra and Velho,
2018]. Because keeping calculation time to a minimum is a key element for timely flood
warnings and responding to emergency situations [Ballio and Guadagnini, 2004; Sene, 2008],
it is necessary to find alternatives that significantly increase forecast lead time. Surrogate
modeling can address this challenge by substituting computationally intensive models with
computationally efficient metamodels, such as the polynomial chaos expansion (PCE).
Through the expansion of orthogonal polynomials, approximate functions can be constructed
and applied to hydrologic models. Recent studies have used PCE to perform robust

uncertainty assessment of diverse hydrologic problems [Sochala and Le Maitre, 2013; Fan et
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al.;2014; Wu et al., 2014; Wang et al., 2015; Fan et al., 2016; Wang et al., 2017; Wang et al.,
2018; Dwelle et al., 2019] rather than running deterministic models. However, few studies
have tested its effectiveness in a setting of real-time flood forecasting [ Wang et al., 2015; Fan

etal., 2016; Wang et al., 2017; Wang et al., 2018].

To fill the above gaps, we propose a novel integrated modeling framework that
improves accuracy, predictability, and efficiency of real-time flood forecasting. Eighteen
approaches to the framework are presented, combining ways of constructing the surrogate
models, specifying model parameters and states, and assimilating newly observed data. This
study investigates (i) the effects of building methods of the PCE model and its capacity for
real-time flood forecasting; (ii) the effects of specifying methods on predictive performance;
(111) the effects of single- and dual-assimilation techniques; and (iv) the computational time of

the proposed approaches.

2. Methodologies and Frameworks

2.1. Methodologies

2.1.1. Deterministic rainfall-runoff model: NAM

To construct a surrogate model, simulate streamflow, quantify uncertainty, and
assimilate observed data, a Nedber—Afstremnings model (NAM) [Nielsen and Hansen, 1973]
is employed. As one of the widely used deterministic, lumped models, it is considered useful
and flexible and has been applied to many catchments [Madsen, 2000; Butts et al., 2004;
Thompson et al., 2004; O Brien et al., 2013; Mockler et al., 2016]. Specifically, its design
assumes three different and mutually integrated storages representing a surface zone, lower
zone, and routing components that simulate overland flow, interflow, and base flow,
respectively. The model requires two input forcing variables (M;) of spatially averaged

precipitation and evapotranspiration, five model states (Mg = 5), and nine model parameter
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values (Mp = 9) listed in Table 2 [DHI, 2014]. The latter states and parameters control the
amount of water content and the rates of release from the conceptualized storage
compartments of the model. Because evapotranspiration is assumed to be negligible during

the rainy season with flooding events, the number of inputs used in this study is 1 (M; = 1).

2.1.2. Surrogate model: polynomial chaos expansion

Polynomial chaos expansion (PCE) [Wiener, 1938; Ghanem and Spanos, 1991] can
build a surrogate model (MT¢E) for any (deterministic rainfall-runoff) model (M) through
the expansions of orthogonal polynomials. This enables a polynomial approximation of the
model through its deterministic input/output relationship. The form of a PCE model
approximating a model output (e.g., streamflow y;) as a function of model parameters 8; is

given as:

ye = M(6,) = MPE(0,) (1)

Note that the surrogate model (MF¢E) in Eq. 1 has the subscript of t, indicating that the
surrogate model is a collection of PCEs constructed at each time step of interest. Also, only
the parameter 0, (this includes a subscript of t as well) is chosen as an input variable during
PCE construction, and other forcing or state inputs required to simulate hydrologic models
are held constant [Sochala and Le Maitre, 2013; Fan et al., 2016; Meng and Li, 2018; Wang
et al., 2018; Dwelle et al., 2019; Tran and Kim, 2019]. This mathematical formulation
conveys that PCE should be built separately for each time step at which a meteorological

condition or model state is updated.

Unlike previous studies based on Eq. 1, this study constructs the surrogate PCE model
with Eq. 2, which has three characteristics: (i) the model input consists of meteorological

data, model states, and model parameters; (ii) model parameters do not change over time,
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which is different from Eq. 1; and (iii) there is no need to constantly create the PCE model
over time (which is the most important practical feature). The single PCE model represents
streamflow phenomena over the entire calibration period during which the PCE model was
generated. Specifically, ensemble model output (¥,) at each time step, including streamflow
(y:) and states (x;), can be written as a function of model inputs (X;), including states (x;_),

climate data (u,), and time-invariant parameters (0):

Y, =M(X,) ~ MPF(X,) = Z €qWa(X) (2)
a €A
Y, = [y x¢], X: = [x¢-1 u; 0] (3)

where ¢, represents the PCE coefficients to be determined for all multi-indices, a =
{ay, ..., aMX} belonging to a set of candidate polynomials 4, {a € A}. W, (X,) represents the

multivariate polynomials corresponding to the given input X;. The polynomials are

constructed as the product of univariate orthonormal polynomials:

Mx
v, = | [wPx) @
j=1

where ‘Pg) is the univariate orthonormal polynomials of the j-th variables of the degree ¢;. In

general, the size of X, My, is equal to the summation of the number of parameters, states,
and forcing inputs of the deterministic NAM model (i.e., My = Mp + Mg + M;). Set A is

determined by My and the polynomial degree, p of the PCE model as:

My +
A= AMxD — {a € NMx . |a| < p},CaT'dAMX'p = ( X p) (5)

p
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Various polynomial bases (e.g., uniform, Gaussian, beta, and gamma) can be chosen
for W,(X;) from the Weiner—Askey scheme, depending on the probabilistic characteristics of

model input variables X, [Xiu and Karniadakis, 2002].

Given the set of multivariate orthonormal polynomials (W,(X;)), the next step is to
compute the PCE coefficients (&,), which are influenced by the number of model evaluations
(called the experimental design, N) and the polynomial degree, p [Blatman and Sudret, 2010;
Blatman and Sudret, 2011]. Increasing these numbers requires significant computational
resources and the requirement is higher. When using the projection method [Ghiocel and
Ghanem, 2002; Le Maitre et al., 2002], one of the methods employed to compute PCE
coefficients, N is determined based on p and the size of X;, My as N = (p+1)"*. This number
is large enough that it takes a considerable time to construct the surrogate model [ Blatman
and Sudret, 2011; Tran and Kim, 2019]. Reducing N is desirable as it lessens the
computational cost. For the least-squares regression method adopted in this study, N is not
defined a priori and is provided by the researcher, which can enable a significant decrease for
the value of N [Berveiller et al., 2006; Sudret, 2008; Blatman and Sudret, 2010]. Also, p can
be determined by the complexity of model outputs and the subjectivity of researcher, with
many studies choosing values of 2 or 3 [Sochala and Le Maitre, 2013; Fan et al., 2014; Wang
etal., 2015; Wang et al., 2017]. Investigating the effects of varying values of N and p on the
PCE model allows for determination of the optimal values of the both parameters. According
to the approach by Blatman and Sudret [2010], a metric of the leave-one-out (LOO) cross-
validation error in Eq. A.5 can illustrate the performance of the PCE model. A brief overview

of the construction of the PCE surrogate model is detailed in Appendix A.
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2.1.3. Parameter inference: GLUE

GLUE [Beven and Binley, 1992] refers to a series of procedures for inferring
parameter posterior distributions and quantifying the associated uncertainties. The objective
of GLUE is to select “behavioral” model runs based on the threshold values of likelihood
functions with observations, among a large number of runs simulated with random
combinations of parameter values. The latter parameter’s values can be sampled randomly
from the prior distributions of each parameter (constrained in this study with upper and lower
bounds of Table 2) using Monte Carlo or Latin hypercube sampling (LHS). For more
efficient performance, LHS was used [Helton and Davis, 2003]. The likelihood functions
proposed in this study are three metrics of Nash—Sutcliffe efficiency (NSE), peak error (PE),
and volume error (VE) defined in Appendix B, representing the model performance with
respect to the shape, peak, and volume of hydrograph, respectively. Acceptance threshold
values are determined according to an approach [Tran and Kim, 2019] in which relationships
between accuracy and efficiency indices are identified for their determinations. Specifically,
cutoff threshold values for the likelihood functions of NSE, PE, and VE are suggested as 0.8,
5%, and 5%, respectively [Tran and Kim, 2019]. The model runs (or parameters) that satisfy
the modelling error within the above thresholds for all the likelihood functions are defined

here as “behavioral” runs (or parameters).

2.1.4. Ensemble data assimilation: Single and dual EnKFs

Among many reported techniques, the single ensemble Karman filter (EnKF) and the
dual-ensemble Karman filter (dual EnKF) are often chosen to optimally update the ensemble
of model states (and parameters) of forecasting systems with real-time observations, which
can be coupled with any models [Evensen, 1994; Burgers et al., 1998; Moradkhani et al.,

2005b; Whitaker, 2012]. Specific details are provided in Appendix C.
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The EnKF allows for the perturbation of observations to generate replicates of x;_;
and O, and the correction of the ensemble forecast members through an update step (Egs.
C.10 and C.18) [Moradkhani et al., 2005b]. This prevents the EnKF from a collapse in which
all ensemble forecast members are likely to have similar values [Burgers et al., 1998]. As
shown in Eq. C.11, observations can be perturbed by adding stochastic noise to the observed
value. This observed error in measurements is assumed to be independent and is set to be
proportional to the observed values, following a Gaussian distribution with predetermined
variance. In this study, we assume that the standard deviation of the observational error is 5%
of streamflow observations (i.e., noise) at each time step, similar to prior studies [Clark et al.,
2008; DeChant and Moradkhani, 2012; Fan et al., 2016; Bauser et al., 2018]. Sensitivity
analysis on the observation error are illustrated in Section S.1 of the Supplementary Material.
Furthermore, overshooting or filter divergence problem in data assimilation happens when
the ensemble size is small or the initial values of ensemble members are quite different from
the true. To resolve this issue, we used a sufficiently large ensemble size and the posterior

information of parameters to initialize the ensemble of EnKF.

2.2. New modeling framework

2.2.1. Obtaining prior and posterior parameter distributions of a deterministic model

The first preparation step of the modeling framework is to obtain the prior and
posterior parameter distributions for a deterministic model. There could be various ways to
handle this, but in this study the following assumptions and methodologies are specifically
applied. We first assume that each of the parameters follows a uniform distribution within
specified bounds — the prior parameter distributions are simply attained by utilizing prior-
known information for the bounds in Table 2. In contrast, the posterior parameter

distributions are fitted to the 500 behavior parameters of GLUE — the 500 NAM behavior
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samples are identified as an optimal number from our previous study which has confirmed
that more than the 500 parameter sets does not change the shape of the posterior distributions
[Tran and Kim, 2019]. For consistency, this number will be also used for making the

posterior distributions of PCE-I and PCE-II in Sec. 2.2.2.

The mathematical expression of this step is as follows. For the warm-up and
calibration periods, a model M’ (NAM) can be simulated to attain behavioral runs with

GLUE, ie.,

[ 2] = 2t 0, =T €= Lt ©

where n,, is the number of model runs to obtain the n number of the behavioral set based on
the likelihood scores estimated with the GLUE method [7Tran and Kim, 2019]. Among the n,,
random runs (referring to the light blue shaded region in Fig. 1) that are simulated by using
parameter sets (0%) sampled randomly from the prior (uniform) distributions, the only n
behavior runs (referring to the light red shaded region in Fig. 1) are employed for making the

posterior distributions.

Reducing the effects of uncertainty by initial conditions (x%) is necessary for
modeling. In this framework, a “warm-up” technique was employed to calibrate the
deterministic model. Generally, a sufficient period of time (called the ‘warm-up’ period) can
be set such that the influence of the initial condition is dissipated, and the warm-up is
performed before entering the calibration period. This technique produces behavioral
parameter sets much faster in GLUE, compared with cases that do not use the warm-up

technique.
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2.2.2. Building PCE with two types of experimental design

We propose two types of approaches for constructing the PCE model, depending on
how the sample collections of the experimental design (X;) is composed. One approach is to
build a PCE model (“PCE-I") by collecting the training samples that are generated from the
prior parameter distributions. The other approach is (“PCE-II"") uses samples that are formed

by the posterior parameters distributions. The associated mathematical expression is

[yiit xit] = m(xi, u,, 0%),  iii=1,...N;t=1,..,t (7)

where the Nj set of X; (i.e., N = Nj for PCE-I) consists of model M simulation results
calculated from parameters sampled from the prior distributions (correspond to Nj set
sampled randomly from the results in the light blue shaded region over the calibration period
in Fig. 1) [Sudret, 2008; Blatman and Sudret, 2010; Blatman and Sudret, 2011]. In contrast,
the experimental design of the latter approach assumes that the Ny set of X; (i.e., N = Ny for
PCE-II) are drawn from the more constrained, posterior parameter distributions (correspond
to the light red shaded region over the calibration period in Fig. 1) [Tran and Kim, 2019]. All

the samples were taken through LHS sampling [McKay et al., 1979].

The former approach can be implemented easily and therefore has been used more
commonly in the literature [Sudret, 2008; Blatman and Sudret, 2010; Blatman and Sudret,
2011]. However, for past periods in which observations exist, the second approach using a
well-calibrated set of parameters is beneficial in significantly reducing computational time
[Tran and Kim, 2019]. It takes less time to build PCE in the second approach because less
training samples (N is generally larger than Ny;) are required when estimating coefficients.
On the other hand, in the context of real-time forecasting when no observations have been
attained, the latter approach might cause a problem. Specifically, PCE models built with a set

of “good” posterior parameters sets obtained only for a certain historic period of time would
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not necessarily demonstrate validity for unknown prediction periods. Evaluation of the
applicability of the two approaches to real-time flood forecasting will be addressed in Section

4.

Once the PCE models were constructed, the same GLUE procedure is made to obtain

the posterior parameter distributions of both PCE models:

[yit xi] = MPOE (x|, u,, 0%),  ii=1,..,n,; t=1,..,t (8)
Note that the number n,, is different depending on Model = {NAM, PCE-I, PCE-II}.
2.2.3. Specifying model parameters for data assimilation

Determining initial conditions and parameter values before assimilating real-time
observations over the forecasting period is a necessary step. The mathematical expression for

preparing data assimilation (forecasting) is written as:

lyi xi] = Model(xi_,,u,,0), i=1,.,nt=1,..,t 9)

where the initial ensemble of states (x}) is set to an arbitrary number (e.g., zero) at the
beginning of simulation (i.e., t = 0) (Fig. 1). In terms of specifying the model parameters,
two types of approach are proposed. First, similarly to most previous studies of data
assimilation [ Moradkhani et al., 2005b; Vrugt et al., 2005; Wang et al., 2009; Gharamti et
al., 2013; Xie and Zhang, 2013; DeChant and Moradkhani, 2014; Davison et al., 2017], the
ensemble of parameters over the periods (0 < t < t.) is assumed to follow a prior
distribution. That is, the n number of parameter sets are sampled from uniform distributions
with predefined bounded ranges (i.e., from the results in the light blue shaded region in Fig.
1). The values of parameters remain unchanged, while those of state vectors are continuously

updated until the beginning of the forecasting period (i.e., t = t.). This is hereafter named
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“Random” set — referring to the use of random parameter sets for running Model of NAM,

PCE-L and PCE-II.

An alternative way to this Random specification method is enabled by taking the
advantage of the ability to calibrate model parameters with observed data before the
forecasting period. Specifically, this method uses the posterior results of GLUE behavioral
runs (referring to the light red shaded region in Fig. 1), i.e., selected parameter sets for
running Model — called “Selected” specification method. The selected parameter sets for
Model remain unchanged over the warm-up and calibration periods as well. As with the
former approach, the values of state vectors are initially set to be zero at t = 0 but are
continuously updated until t = t.. We expected to see the EnKF process converge much

faster and the forecasting results improve.

2.2.4. Modeling approaches for forecasting

In total, 18 modeling approaches (see Fig. 2) were developed by combining the
modeling options with various techniques (NAM + PCE + GLUE + EnKF) in Sections 2.2.2
and 2.2.3. The modeling techniques were coupled to successfully perform ensemble flood
forecasting and to meet the need for accurate and efficient flood forecasting. The 18
approaches represent permutations of the 3 x 2 x 3 subcases (Table 3). First, they were
divided into three subcases corresponding to Model, depending on whether a deterministic
model or a PCE model was used over the calibration period (see Sec. 2.2.2) and how the
latter was developed. Second, these modeling sets were divided into two subcases
corresponding to Random or Selected sets, depending on how the parameter sets before the
forecasting period were specified (see Section 2.2.3). Lastly, they were divided into three
subcases depending on the methodology of data assimilation. The first of the three subcases

did not use any data assimilation, and the other two used single- and dual-ensemble Kalman
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filters (see Sec. 2.1.4). We evaluated the modeling performance of the coupling framework
by assessing accuracy, efficiency, and predictability in Sec. 4.2. The performance
comparisons of the 18 approaches are expected to be a guide to which approach demonstrates

better skill and most appropriate and which should be avoided.

2.3. Performance metrics

To assess the modeling performance of the 18 approaches, metrics representing
accuracy, predictability, and efficiency were chosen, beginning with the accuracy metrics of
Nash—Sutcliffe efficiency (NSE), absolute error (AE), and relative entropy (RE) [Kullback
and Leibler, 1951; Kullback, 1997; Kleeman, 2002]. Second, Brier scores (BS) [Brier, 1950],
and the range of uncertainty (UR) were used to assess the predictability of probabilistic
forecasts. Lastly, a metric calculating total runtime (TRT) was evaluated to compare the

computational efficiency of the tested approaches.

NSE, which is traditionally used to evaluate the accuracy power of deterministic
models, is computed for each ensemble member (i) over the entire computation time. In this

study, NSE is expressed as:

T Obs i\2
; e=1(Ve " —Yt) .
NSE'=1 — obs 5 i=1,..,n (10)
=1 Vmean)

where ¥2PS and y! are the actual observation and i-th predicted output at time #; y;,oqy is the

mean of the i-th predicted output over the entire forecasting period; T is the total number of

time steps over the forecasting period from ¢, to t;.

Absolute error (AE) is differences between actual observations and predictions of

each ensemble members at each time #. Thus, it varies with time and can be written as:
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AE = yf» -y,  t=1.,Ti=1.,n (n)

Relative entropy (RE) is a measure of the statistical difference between probability
distributions over the entire forecasting period of observations and model simulations
[Kleeman, 2002; Shukla et al., 2006, Giannakis and Majda, 2012]. Following Kleeman

[2002] and Heo et al. [2014], RE can be defined as:

RE! = |log—X— + =%

0. 0obs

2 2 2
Ojobs O (Ui — [y, 0bs)
S i _1]+|: yl y S
yt y

], i=1,..,n (12)

2
(o)
yobs

where My 0bs and Hyi are the mean, while o_0»s and o1 are the variance of streamflow

y

observation and the i-th model prediction over the entire computation time from ¢t to t;.

Small values of relative entropy indicate that distribution of a given model is close to that of
the observation. This is also called Kullback-Leibler divergence between the two

distributions, model and data, assuming Gaussianity of both.

The Brier score (BS) is one of the most commonly used verification measures for
assessing the predictability of probabilistic forecasts. The score is defined as the mean

squared error of the probabilistic forecasts over the verification sample, expressed as:

T
1 2
BS =2 (0] —o.) (13)
t=1

where p{ is the forecast probability for the #-th time, which refers to the ratio among
ensemble reaching a predefined flow threshold; o, is the observed probability, which is 1 if
observation at ¢-th time, y2S is larger than the threshold, and 0 if it is not. In this study, this

threshold value was chosen as the proportional rate of 90% of the true discharge peak.
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The uncertainty range (UR) is the range between the 5th and 95th percentiles of the
ensemble outcomes (q). It is computed over each computational time t in hydrographs,

expressed in Eq. 14:

UR, =q®—q°, t=1,..,T (14)

Lastly, the total run time (TRT) for all of the approaches is defined as:

TRT = (RTW+C,MOdel X facyoder t+ RTf,Model,DA) Xn+ RTbuild,Model (15)

where RT\y, ¢ moder 18 the run time to compute one simulation of Model (NAM, PCE-I, and
PCE-II) over the warm-up and calibration periods, i.e., from 0 to t.; RTf modet,pa 1S the run
time to compute one simulation of Model with different DA methods over the forecasting

period, i.e., from t; to t¢; and RTpyi10 Moder 18 the run time needed for building Model. For

example, because it is unnecessary for constructing the deterministic model, the time for
NAM is zero. The building run times for PCE-I and PCE-II will be calculated in detail in Sec.
4.1.2. The factor facyqer represents the number of Model runs to obtain a single behavior
run in GLUE, and remains 1 in Al to A9, while it depends on Model for the rest of

approaches.

Eq. 15 is a linear function with respect to the number of ensembles run, in which

RT\, ¢ modet X faCymodet + RTf moder,pa serves as the slope of the linear function and
RTpuiia moeder the intercept. The values of the slope and intercept and the executed times of

the 18 approaches are addressed in Section 4.2.
3. Study Area and Experimental Setups

In this study, the unified framework is applied to predict hourly streamflow in the Vu

Gia watershed as shown in Fig. 3. The watershed is one of the largest in central Vietnam,
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with a total area of 1,679.8 km? in the tropical region. It experiences a typical continental
monsoon climate, with concentrated rainfall mainly from September to December. As the Vu
Gia watershed is characterized by a large difference in elevation (slopes of approximately

30 %), floods occur rapidly and frequently. The region has experienced intense severe

flooding and significant damage [UNDP, 1999; Nga et al., 2015].

Streamflow data used for the outlet of the basin was collected hourly at Thanh My
station — the only hydrometric station in the domain. Rainfall data was also observed hourly
and obtained from two weather stations near the study area (Thanh My and Kham Duc
station). The average rainfall over the basin (Fig. 4) was calculated through the Thiessen
polygon method. Observations from Dec. 1 to 17, 2016, are employed, in which the data from
Dec. 1 to 13 was used for the warm-up period (i.e., from 0 to t,, ), the data from Dec. 13 to 15
for the calibration period (i.e., from t,, to t.), and the remaining data (assuming numerically
that this data was newly provided at an hourly basis) corresponds to the forecasting period
(Le., from t. to tr) (Fig. 4). The effects of the length of warm-up period are illustrated in
Supplementary Material. Note that rainfall forecasts has not been considered in this
experimental design, what is done is hindcasting but one refers to the period between t, and
tr as the “forecasting period”, allowing for replicating real-life operational flood-forecasting
process. Also note that a source of uncertainty for rainfall forecasts has not been presented,
but it could have been addressed in Eq. 2 that has the flexibility to include ensemble

precipitation inputs (u;).

Determining the size of ensemble for forecasting (n) is related to quantifying the
uncertainty bounds and representing the EnKF. In previous studies, the ensemble size was
selected randomly or large enough (at least 100 members) to fully identify the uncertainty

confidence intervals [ Cameron et al., 2000; Beven and Freer, 2001; Hossain and
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Anagnostou, 2005; Choi and Beven, 2007; Blasone et al., 2008; Jin et al., 2010; Shen et al.,
2012]. A sufficient number of ensemble parameter sets to achieve both goals of efficiency
and uncertainty quantification should be determined. Following our previous study [Tran and

Kim, 2019], we used an n of 500 as the optimal size of the ensemble.

4. Results

4.1. Preparation steps before forecasting

4.1.1. Attaining parameter posterior distributions

The posterior distributions of parameters can be generally attained by using Bayesian
inference. As detailed in Section 2.1.3, we employed a relatively simple and robust method,
GLUE [Beven and Binley, 1992], that does not require reformulation of the deterministic
model code. Details on why we choose the likelihood functions of NSE, PE, and VE
(presented in Appendix B), how we determine the cutoff threshold values of each function,
and which parameters are more sensitive, are described in Tran and Kim [2019]. We
confirmed the benefits of a warm-up technique that significantly speeds up the GLUE process
of finding the behavioral sets: without warm-up, no behavioral set was obtained from GLUE
even after a sufficiently large number of NAM model runs, while with warm-up, a behavioral
set was obtained after approximately 118.0 model runs for NAM (A10 to A12), 26.9 for
PCE-I (A13 to A15), and 3.6 for PCE-II (A16 to A18), respectively. Therefore, the factors,

facmyoder are 118.0, 26.9, and 3.6 for NAM, PCE-I, and PCE-II, respectively in A10 to A18.

4.1.2. Constructing the PCE models

Determining the coefficients of the PCE-I and PCE-II models depends on the number
of the experimental design (N) and the polynomial degree (p) [Blatman and Sudret, 2010;

Blatman and Sudret, 2011]. To discover appropriate values for N and p, the effect of
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experimental design N on PCE performance was first evaluated. Specifically, a number of
simulations were repeated with the N value varied between 10 and 5,000 but the value of p
was set as 3, and the performance results of LOO for streamflow (y) and the five model states
(Table 2) computed. Fig. 5 shows that the LOO values for streamflow and five state variables
become smaller as the value of N increases, and ceases to become smaller when N
approaches a certain value. For N values larger than this threshold, the model performance
was almost indistinguishable (the left column plots in Fig. 5). From a visual inspection of Fig.
5, the optimal N value for constructing the PCE-I and PCE-II models would be 1,000 and

100, respectively.

A selection of the polynomial degree p was made in a fashion similar to the
aforementioned procedure. The value of p was varied from 1 to 6 and N was set as 1,000
(PCE-I) and 100 (PCE-II). From the results of Fig. 5 (the right column), the gradients of the
LOO metrics assessed changed considerably when p was set to 3 and the values remained
stable for large magnitudes of p. In terms of reducing the computational time to construct a
PCE model, a low polynomial degree would be preferred. Thus, a p of 3 would be an
appropriate value to use when building both PCE models. With optimal values of N of 1,000
and 100, and a p of 3, PCE-I and PCE-II models can be built to quantify the uncertainty
range for flow prediction and to compare the degree of accuracy and efficiency with the

results of the deterministic NAM.

The total time to establish both PCE models is described (further details are in Tran
and Kim [2019]). Obviously, the larger the number of the experimental design set, the more
time is needed for computing N ensemble runs. The time required to perform the Ny and Ny
ensemble runs of NAM was 121.9 and 12.6 seconds for PCE-I and PCE-II, respectively. It

also takes much more time to estimate PCE-I coefficients if one uses an ensemble set (/Ny)
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generated from the prior distribution of the parameters than to compute PCE-II coefficients
from parameter sets informed by the likelihood function. The time required to estimate PCE
coefficients was 419.3 and 11.3 seconds, respectively. The summation of these two times was
considered to be the total time required to build the PCE models before forecasting:
approximately 541.2 and 23.9 seconds for PCE-I and PCE-II, respectively. The construction

time of PCE-II is much (~22 times) faster than that of PCE-I.

4.1.3. Comparing the ensemble results of NAM and PCE models

Over the calibration period, ensemble results composed of 500 Random and Selected
runs were compared for three different models. To make the 500 Selected behavioral results,
58,977,13,444, and 1,822 (n,,) random runs were required for NAM, PCE-I, and PCE-II,
respectively. Compared with the NAM itself, using PCE models can reduce the amount of
computational runs by a factor of about 4.4 for PCE-I and 32.4 times for PCE-II model. The

composing behavioral set for PCE-II was even faster (~7.4 times) than for PCE-I.

Fig. 6 shows hydrographs for the 500 Random (Al to A9) and Selected (A10 to A18)
simulations for the three models. Their uncertainties are illustrated with a 90% confidence
interval, which corresponds to 5 and 95% quantiles of the 500 ensemble members. Because
we controlled the conditions for the behavioral set of GLUE, the overall comparison with the
observed values for the results of the Selected cases (A10 to A18) is very satisfactory.
Specifically, the NSE value was always higher than 0.9 and both PE and VE values were less
than 5% for all cases. However, streamflow curves for the Random simulations (Al to A9)
clearly show different patterns depending on the model. It can be anticipated that the results
of these Random cases will not be encouraging and their uncertainties will be large. However,
the results of some cases using PCE-II model were very satisfactory and their uncertainties

small.
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As mentioned above, when making using observations to constrain the parameter sets
(A10 to A18), the results of both PCE models are similar to those of the NAM and no
substantial differences were observed. This confirmed that both PCE models have an
equivalent degree of accuracy as the NAM and can provide an excellent match to the
deterministic model. In terms of efficiency, it is also advantageous to use the PCE model
(discussed in Sections 4.2.1 and 5.1), and there is no reason to hesitate adopting the PCE

model for streamflow prediction.

4.2. Flood forecasting with 18 approaches

For past periods when observations for calibration were collected, all models
performed well. We then tested the forecasting performance of the three models using the
permutation that resulted in 18 approaches in Table 3. Results of the real-time flood
forecasting for these approaches are shown in Fig. 7 and 8, in which the 500 ensemble results
are illustrated with a 90% confidence interval at each time step. The verification metrics for
the simulations, specifically NSE, AE, RE, BS, and UR, and the peak values of hydrographs
are compared in Fig. 9 and Fig. 11. Lastly, the total run time with respect to the ensemble size
was computed for the 18 approaches in Fig. 10. In this section, we analyze the results and
draw conclusions from the following four perspectives: (i) the applicability of PCE-I and
PCE-II models for real-time flood forecasting, (ii) the impact of estimating appropriate
parameter conditions for forecasting, (iii) the effect of using EnKF and dual EnKF, and (iv)

the degree of improving efficiency performance among the approaches.

4.2.1. PCE-I versus PCE-II model for real-time flood forecasting

Depending on the model used in forward simulations (NAM, PCE-I, and PCE-II), the
results for the 18 approaches were divided into three groups. Almost all of the results of the

six approaches using the PCE-II model were worse than those obtained with both NAM and
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PCE-I (Figs. 7 and 8). The only exception is for the A1 and A4, which did not have
assimilation and whose parameter sets used were based on prior uniform distributions. No
verification metrics computed using the results of forecasting based on PCE-II were
satisfactory, except for the metric of UR. However, if the accuracy is not ensured, the better
performance in terms of UR is not meaningful. Specifically, NSE values were low,
approximately 0.7; AE values at flood peak time (AE)qx) were larger than 750 m’/s; RE was
approximately 0.01; and BS was equal to 1 (Fig. 9). No metric improvements was found for
the approaches based on PCE-II, even if combinations of assimilation and calibration
techniques were applied. We concluded that the PCE-II model can reproduce streamflow

characteristics well for the past period, but not for the future.

Conversely, the forecasting results of the approaches based on the PCE-I model are
almost similar to those obtained with NAM, and in some cases even better. The latter can be
seen in Fig. 9; the verification metrics of NSE, AEp¢qx, RE, and UR show better performance
for PCE-I than for NAM results (e.g., A5 vs. A2, A6 vs. A3, Al4 vs. All, and A15 vs. A12)
(see Table 4). In particular, the RE results in Fig. 9c illustrate that the PCE-I results are closer
to the observed values than those obtained with NAM (A15 is the best result with the smallest
value of RE). BS corresponding to PCE-I also has smaller values, close to zero, which
indicates instances of when predictability of probabilistic forecasts matched predictability of
observation (Fig. 9d). Therefore, the PCE-I model can be adapted to substitute the NAM in
performing real-time flood forecasting, as well as in capturing the uncertainty of calibration

period.

Comparing the modeling results in terms of the computation speed, it is clear that
simulating a surrogate model using the PCE theory is significantly faster than with a

deterministic model such as NAM. The “slopes” of the runtime curves of Fig. 10 indicate
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both PCE approaches are approximately 20 times faster (A4 to A9) and ~80 times faster (A13
to A18) than the corresponding approaches using the NAM. Similarly, if we compare
efficiency between PCE model approaches, using PCE-II may or may not offer much
improvement in efficiency over PCE-I. There is only 10 % improvement when Random
specification is applied (see the slope of A4, AS, A6 vs. A7, A8, A9 in Fig. 10), while there is
about six times improvement when simulating Selected approaches (see the slope of A13,
Al4, A15 vs. Al6, A17, A18). The use of surrogate models therefore did not sacrifice
accuracy. The flood prediction accuracy of PCE-1 model presented here is similar to that of

the original NAM, and computational efficiency has been found to be highly superior.
4.2.2. Random versus Selected specification for forecasting

The approaches using the Selected specification generally show a better performance
than those using the Random specification. This is especially noticeable in the NAM and
PCE-I approaches, and rarely in PCE-II. First, in the approaches without data assimilation,
their accuracy was significantly improved (compare Al vs. A10 and A4 vs. A13). The
performance of A10, represented by the NSE, AE,.qi, RE, and UR metrics, was improved by
about 95, 73, 61, and 89% compared with A1, and the performance of A13 about 86, 72, 79,
and 92% over AS, respectively. Despite the noticeable improvement of A10 and A13, these
results were still not ideal. The large AE error at the peak of A10 and A13 was approximately
450 m?/s less than the observation, and the BS value was close to 1 (Fig. 9, Table 4). On the
other hand, in the approaches in which data assimilation was used, the improvement effect for
Selected specification was not greater than when it was not used. The increasing performance
for the same metrics was about 55, 22, 36, and 56% (A2 vs. All), and about 56, 52, 44, and
49% (A3 vs. A12). Here, the parameter specification effect was smaller because DA

improves the absolute error magnitude.
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Determination of states and parameters that can increase accuracy and predictability
requires more computation time because a large number of model runs are carried out to
make an inference for posterior distributions. For approaches using NAM (A1 vs. A10, A2
vs. All, and A3 vs. A12), it took 56, 41, and 30 times longer; while for PCE-I (A4 vs. A13,
A5 vs. Al4, and A6 vs. Al5), it took 13, 10, and 8 times, respectively (Fig. 10). Because of
this computational burden, parameter inference can be a weakness for real-time flood
forecasts where it is important to ensure sufficient time ahead. However, if the surrogate
model is employed, the necessary repetition of estimating the posterior distribution can be

performed quickly, and such a weakness can be overcome.
4.2.3. Single versus dual EnKF in real-time flood forecasting

Convincing evidence is presented that both single and dual EnKF can improve
accuracy and predictability during real-time forecasting (with the exception of approaches
using PCE-II). Both of these techniques perform well but the dual EnKF is the superior
choice. As an example of the approaches using NAM, the three metrics of AEyqqx, BS, and
UR in the Random cases provided slightly better results: 515.64 vs. 500.45, 0.75 vs. 0.66, and
367.34 vs. 340.12, respectively (A2 vs. A3). But, in the Selected cases, there was a relatively
large performance improvement for the two metrics of AE.q, and BS: 401.26 vs. 242.62 and
0.78 vs. 0.24 (A11 vs. A12). Similar trends were observed when using PCE-I, and the
difference is remarkable, especially for the AE,.q, metric (e.g., about 2.5 times for AS vs.

A6).

From the overall inspection, it can be determined that the dual EnKF can adjust the
peak of a hydrograph more accurately, and give a more confident result with a smaller
uncertainty range. Therefore, we compared the distribution of flood peak values for 500

ensemble members in Fig. 11. This figure confirms that the joint update of states and
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parameters improves accuracy at flood peak more effectively than a single update of states.
Also for the joint update, the expected value of the distribution was closer to the peak

observation, and its variability is smaller (a narrower distribution).

Because the updating process is made twice, the dual EnKF is computationally more
expensive. The computation time it takes to update states and parameters increased almost
linearly. That is, the calculation time doubled or tripled for the cases of single and dual EnKF
(using Random specification), respectively, as compared to the case without assimilations.
However, for the approaches using the Selected specification, the calculation time did not
seem to change significantly (Fig. 10), not because the time required for Kalman filtering was
reduced, but because the time required for the parameter inference was so large that the

filtering effect was masked.

5. Discussion

5.1. How can PCE be constructed for flood forecasting?

From the simulated flood forecasting results presented in Section 4.2, it is apparent
that the manner of PCE construction has a significant impact on forecasting. The biggest
difference in building PCE-I and PCE-II involves setting the range of the training sample
(called experimental design). It is not surprising that a surrogate model trained for an event
provides acceptable results only for the event trained. The flexibility to generalize to well-
behaved outcomes for another event (e.g., a future event) is relatively low. This is why the
calibrated model is often not appropriate for future forecasting. On the other hand, if a
surrogate model can mimic the behavior of the original model to the greatest extent possible
in a wide variety of situations and conditions, it will be able to capture its characteristics
more comprehensively, thus playing a sufficient role in forecasting future events. Here we

provide evidence the PCE-I model behaves like the NAM for the forecasting period, while
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the PCE-II behaves differently (despite both models behaving properly for the calibration
period). To examine the robustness of both PCE model results, the Sobol” method (detailed in
Appendix D) was used to implement the variance-based measures of parameter sensitivities
[Sobol’, 2001], which is commonly used as a global sensitivity analysis technique to

determine the key parameters in the model [ Wang et al., 2018].

First, the PCE-I posterior histograms of the nine parameters obtained from GLUE for
the calibration period are similar to those of the NAM, except for Lm and TG (Fig. 12). For
these two parameters, a posterior histogram difference is a minor issue because the choice of
the parameter values does not affect the end result, i.e., the sensitivity of the parameters is
low. Other parameters of CQOF (1st) and CK12 (2nd) are the two most influential
parameters to the model results, that is, their sensitivities are high. This result is consistent for
both NAM and PCE-I (Fig. 13). The slight difference between the results of PCE-I and
NAM, observed from the investigation of the sensitivity and the posterior distribution, is
because we chose an appropriate number of training samples when constructing the PCE-I
model. If one greatly increases the number of training sets, the difference in the above results

will essentially disappear.

Second, the failure of PCE-II to mimic the NAM for the forecasting period can be
explained largely due to the fact that PCE-II was trained using the only 100 behavioral
parameter sets that were optimized for the calibration event. Model results will only vary
within the boundaries that its trained data understand, and it will not be able to simulate the
behavior of another event with a high skill, i.e., model “overfitting” occurs. However, over
the calibration period, PCE-II always shows a good predictive performance for almost all
parameter sets (compare the hydrographs of Al to A3 with A7 to A9 in Fig. 6). In other
words, no matter what parameter one chooses, satisfactory results are always achieved, which

indicates that the influence of parameters is excluded. The posterior histograms of parameters
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for PCE-II (Fig. 12c¢) are almost uniform, except for the parameter of CQOF, which is the
only one that can affect the end result, especially maintain the accuracy of the flood peak
(note that the sensitivity of this parameter for PE is unusually high in Fig. 13c¢). If we change
the threshold value of the likelihood function corresponding to the flood peak chosen to make
the behavior set a slightly less constrained, this parameter will no longer play a role in

constraining the result and follow a uniform distribution as well.

Another interesting aspect of the sensitivity test is that the sensitivity results of PCE-II
differ from those of NAM and PCE-I, but are similar to those of NAM-II. The sensitivities of
parameters have been altered in PCE-II. The NAM-II in Fig. 13d is hypothetically introduced
to mimic the situations of PCE-II. Specifically, it refers to the sensitivity results when the
NAM model was tested based on the posterior distributions (which are also used to select the

training parameter set for building PCE-II), not the prior distributions of the parameters.

5.2. Is it feasible to construct a time-invariant PCE model?

A long-lasting challenge in hydrologic modeling is how to estimate parameters or
state vectors optimized for all external and internal conditions. This would not be an issue for
estimating previously described variables if the amount of data for calibration was sufficient.
However, in the case of future forecasts during which no observation for calibration is
available, it poses a problem. To tackle this challenging problem, Fan et al. [2016] and Wang
et al. [2017] adopted a modeling framework in Eq. 1, so that PCE models should be
reconstructed continuously at every time step. This method is flawless in theory, but requires
additional computational resources (see efficiency comparisons in Supplementary Material).
That is, the time to configure the PCE at every time step must be added to the total model

simulation time, i.e., making the slope of Fig. 10 steeper. This disadvantage can be more
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pronounced when constructing surrogate models for complex, process-based deterministic

models.

Unlike previous efforts, this study adopted an alternative modeling framework such as
Eq. 2; that is, the PCE model is time invariant and thus developed only once over the
calibration period. Therefore, during real-time forecasting, the total run time consists only of
computational intervals needed for data assimilation of all ensemble members. This enhances
computational efficiency significantly (see efficiency comparisons in Supplementary
Material). This framework is not perfect, but the potential error that can occur by using the
time-independent PCE model is minimized by coupling the data assimilation technique, thus
complementing accuracy. From a comparison of the results of 18 approaches, we confirmed
that the modeling framework needed for building a PCE model (especially PCE-I) is feasible.
This embraces the notion that the PCE construction does not require information for future
conditions but can be made with historically available data available prior to the forecasting

period.

5.3. Do surrogate and specification sacrifice efficiency?

Our results indicate that a sophisticated combination of three independent techniques
(i.e., surrogate modeling, parameter inference, and data assimilation) supplies superior
predictive performance for real-time ensemble flood forecasting. The combination of many
methods however leads to an essential reduction in efficiency. Because data assimilation has
been shown to be necessary, we must accept efficiency deterioration. However, for surrogate
modeling and parameter specification, it remains to be determined whether the additional
time required by the technique combination leads to efficiency deterioration. First, for
construction of the surrogate model, particularly PCE-I, the efficiency issue may not be

relevant because the task does not require any observations for calibration and can be
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completed before the flooding season. In contrast, obtaining an ensemble of parameter sets
from posterior distributions should be carried out immediately prior to the flood forecasting
period, when observations are necessary. Therefore, it may take an appreciable time for

completing this task, and method efficiency may be affected.

5.4. What are the differences between PCE and data-driven models?

Both PCE and data-driven models can provide satisfactory results for short-term
forecast, but key differences between them exist. (1) PCE has a functionality of including
model parameters and states as an input vector — this enables formal uncertainty
quantification and model sensitivity analysis; (2) hydrologic/hydraulic model state variables
(and parameters) are theoretically observable and in the case of process-based models have
their own physical meaning, making it easier to physically interpret the results of PCE; (3)
while purely data-driven methods are trained with observations, PCE is trained through high-
fidelity samples supervised by physical relations, thus requiring fewer data samples for
training; (4) data-driven models often have assumptions about the distributions governing
variability of their outputs, and therefore this can lead to non-physical results (e.g., negative
outputs quantifying mass, streamflow, etc.) and fail to display non-normal, bi-modal, or other

complex behaviors.

5.5. Can modeling framework be applied to high-dimensional problems?

While the implementation and analysis of experiments is valid for the presented scope
of'the experimental design, one needs to proceed with care when extending this approach to
more complex models. The most fundamental concern that remains is whether the proposed
framework can be applied to high-dimensional problems in which fully distributed models
are used. The dimension of a distributed model can be defined as the product of the number

of grids cells and the number of parameters (and states). The dimension order of any truly
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physical models is therefore large, and extending our framework directly to such a model is
not straightforward — known as the “curse of dimensionality” [Caflisch, 1998; Davis and
Rabinowitz, 2007; Sudret, 2007]. By examining how each of the methods mentioned in the
framework resolves the problem of reducing dimensions efficiently and to what extent it has

been applied, the feasibility of applying the proposed framework can be estimated.

Regarding the surrogate modelling (PCE), techniques such as Bayesian compressive
sensing [Sargsyan et al., 2014] and sparse regression [Blatman and Sudret, 2008; Blatman
and Sudret, 2010] proved capability and efficiency in many prior studies using complex
models with high dimensions, up to 80 dimension [Sargsyan et al., 2014]. However, these
studies avoided the calculation of fully distributed problems by assuming the spatial
variability of parameters to be homogeneous. Second, for the parameter specification, any
optimization technique applied to high-dimensional problems could be relevant. For example,
one of the large scale optimization algorithms, the competitive swarm optimizer (CSO)
[Cheng and Jin, 2015] was employed up to the dimension of 5,000. These algorithms have
been successfully optimized for problems of very large scale, but their optimizations have
been applied to simple analytical functions rather than (hydrologic or meteorological)
models. To our knowledge, the number of dimensions has not yet been high in problems of
hydrologic optimization, in which the dimension order is almost identical to the number of
parameters. The spatial variability of parameters is not fully addressed in most studies,
although a “multiplier” concept [Pokhrel et al., 2008]. Last, EnKF is made possible in
problems of higher dimensionality through covariance localization. It is mainly applied in
meteorological models with many parameters, and the number of dimensions can be up to the
order of millions, e.g., 2,592,000 [Fujita et al., 2007]. The localization technique was able to

reduce the dimensions efficiently.
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6. Conclusions

This study presents a new robust, accurate, and efficient modeling framework that
consists of the novel integration of three individual techniques: surrogate modeling,
parameter inference, and data assimilation. This unified framework is suited for ensemble
flood forecasts quantifying prediction uncertainty. The strengths of each technique are (i) the
use of PCE offers significant computational savings; (ii) the inference of parameters before
data assimilation allows for faster convergence, smaller uncertainties, and greater accuracy of
the end results; and (iii) the Kalman filters assimilate errors that occur in real-time flood
forecasting. Based on the results of the 18 refined approaches according to the permutations

of'the above methods, the following conclusions can be drawn:

e Of the two methods for PCE construction, only PCE-I (constructed based on prior,
uniform distributions) is acceptable for forecasting, although both methods reproduce
observations of the calibration period well. Note that PCE-II (constructed based on
posterior distributions) does not provide satisfactory results, even when coupled with
other inference and assimilation techniques. The results obtained from PCE-I are
similar, and in some cases even superior to those based on the original deterministic
NAM model. The PCE used is a single model constructed before the forecast period
and thus does not change over time — this is a unique feature different from previous
studies in which PCE was rebuilt at each calibration or forecasting time step.

e Especially for short-range forecasting, model parameter input and state initialization
plays a crucial role. In some previous studies, posterior distributions were employed
to derive a parameter ensemble before forecasting, but the effect of such parameter
specification was not quantified for the data assimilation. Selected parameter
specification (made through the GLUE framework in this study) offers improved

accuracy and predictability of forecast outcomes over the Random parameter
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specification. However, it is less computationally efficient, and the issue is expected
to be especially problematic when using complex deterministic models.

The usefulness of single and dual EnKFs is demonstrated through comparisons of the
18 approaches. Both techniques have excellent overall performance, but the dual
EnKF showed a slightly better performance than the single EnKF. There was a
remarkable improvement in reproducing the hydrograph peak values (Table 4). In the
absence of assimilation, the Selected approach offers superior results and if it cannot
be used, data assimilation must be applied.

The computational time discussed in this study consists of three principal
components: surrogate building time, parameter inference time, and data assimilation
time. Our conclusions may marginally vary depending on the particular model used
and the region in which it is applied, but here the efficiency improvement from using
the surrogate modeling technique overwhelms any efficiency deterioration derived
from the other two components. That is, the use of the metamodel makes it possible to
effectively address computational efficiency. This feasibility is maximized when
many ensemble outcomes are needed and when complex, physically-based models
should be simulated.

From the comprehensive analyses presented above, A15 is our first choice and Al4 is
the second. When only a deterministic model is used, we recommend A12 (or All).
Using the unified framework developed here, real-time and ensemble flood
forecasting are promising directions, allowing for satisfactory measures of accuracy,
predictability, and efficiency. Ultimately, the framework developed in this study
contributes to a shift in modeling paradigm arguing that complex, high-fidelity,
physical hydrologic and hydraulic models should be increasingly adopted for real-

time and ensemble flood forecasting
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Appendix A. The construction of PCE surrogate model

A.l. The determination of PCE coefficients

The least-square regression method is employed to establish the PCE coefficients:

2
€ = argmin, piaE <Yt — Z ea‘Pa(Xt)) (A.1)

a€cA

where X; = {Xt(l), s Xt(N)} consists of N sets of input variables X, (the set X, is called the

experimental design), and Y, = {M (Xt(l)), e M (Xt(N))} be the corresponding model
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evaluations { t(k) =M (Xt(k)), k=1,..,N } The estimates of the PCE coefficients are thus

given by:

N 2
1
& = argmingeR|A|Nz< t(k) - Z sa‘Pa(JCt(k))> (A.2)
k=1

a€EA

which is equivalent to:

¢ = (FTF)~'F1Y, (A3)

where F is so-called the information matrix of size N X |A| whose elements are defined as

Foo=%(x) k=1,.,N1=0,.. cardd—1 (A.4)

Once a PCE model is derived, the prediction using the model is extremely simple and
straightforward: Input the values of model input to Eq. 2 and then obtain the values of model

response Y.
A.2. PCE error estimates

The leave-one-out cross-validation error (LOO) was designed to overcome the over-
fitting limitation of normalized empirical error by using cross-validation [Blatman and
Sudret, 2010]. In this study, after the number of sets X, is defined, the LOO is used to

determine the polynomial degree. The leave-one-out cross-validation error can be written as:

N (®)\ _ apPCE x) 2
LOO = %; (X )1 _J:,Ltk (") (A.5)

where i, is the k—th diagonal term of the matrix F(FTF)~1FT.
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Several software tools are currently available for research purposes to carry a range of

UQ tasks, including PCE regression, e.g., the MIT Uncertainty Quantification Library

[Parno et al.], the Uncertainty Quantification Toolkit [ Debusschere et al., 2016], Dakota

[Eldred et al., 2010], Chaospy [Feinberg and Langtangen, 2015], and the UQLab [Marelli

and Sudret, 2017]. The latter libraries are used in this study.

Appendix B. Likelihood functions used in GLUE

Nash—Sutcliffe efficiency (NSE, [-]):

T Obs i\2
; t=1(Ve > — V)
NSEt =1 — T obs > i=1,..,n
=1Vt Vimean)
Peak error (PE, [%]):
Obs i
i |Ymax — VYmax .
PEL=T>< 100, i=1,..,n
max
Volume error (VE, [%)]):
i |V0bs _ Vl' .
VE' = 7 0bs x 100, i=1,..,n

where V is the total volume of hydrograph.

Appendix C. Ensemble Kalman filter (EnKF)

C.1. States updated

(B.1)

(B.2)

(B.3)

An ensemble of state vector, x consisting of n by M is propagated through Model of

both deterministic model and PCE models, such that each state vector represents one

realization of the model states. Then, the state forecast is made for each ensemble member as

follows (forecast step):
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= f(xit,u, 0) +wi, i=1.,n (C.1)

where x.~ is the i-th forecasted states vector at time t, x:¥, is the i-th updated states vector at
time t — 1, Ms is the number of model states x = {x]-, j=1, ...,MS}, and n is the number of
ensemble members. The nonlinear propagator f () contains M; model input vector

u;, {ul,t, i, uMI,t} and the i-th model parameter vector 8° corresponding to the model

state xt*, . The term w} is the i-th model error and presents all uncertainty related to model
structure, forcing data and model parameter [Moradkhani et al., 2005b]. In this study, the

model error is represented by the uncertainty of model parameters.

Suppose that the actual observation (y225) is taken at time ¢ + 1 and that we intend to
assimilate the vector of observations into the model. The predicted output of model, y} ,, at
time t + 1 is computed with the propagator h(-) as a function of 8%, u,,, and x.~, which can

be written as:

Yt,é+1 = h(xé_'ut+1i Bi) (C2)

To represent the error statistics in the forecast step, we assume that at time t + 1, we
have an ensemble of n forecasted states, x; 2 (x;~,...,xI) and an ensemble of n forecasted
outputs, Yr11 = (v 1, ..., ¥&%1). Then the ensemble means of forecasted state (X; ) and the

ensemble mean of forecasted output (y;, 1) are estimated by:

n
__ 1 o
X, 2 az x; (C.3)
i=1
n
= a 1 i
Ve+1 = n Ve+1 (C4)
i=1
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Then, we define the ensemble error matrix of forecasted state, E; ; around the

ensemble mean by:

O Pl e (C.5)

and the ensemble of output error matrix, E}, , is:

EL?]+1 2 [yhy = Vewr o Vi1 — Vel (C.6)

The error covariance matrix is calculated including:

- The error covariance matrix of ensemble forecast state:

1
Qi1 = n—1 Et_+1(Et_+1)T (C.7)

- The error covariance matrix of model output:

1
Qg’+1 = n—1 Ety+1(Ety+1)T (C.3)

- The forecast cross-covariance of the states and output:

1
o1 = 7 B ()" (C.9)

In order for the EnKF to maintain sufficient spreads in ensemble and to prevent from
filter divergence [ Whitaker and Hamill, 2002], observations should be treated as random
variables. At each time, an observation is perturbed by adding noise drawn from a Gaussian
distribution of mean zero and predefined covariance [Burgers et al., 1998]. Thus, in the

updated step, the forecasted state set x.7, is updated using the Kalman gain K7, as follow:

xit = xl + KA (0o = i) (C.10)
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where yt0+b15 * is the i-th trajectory of the observation replicates generated by adding to the

actual observation (y2P%) error, 1 (i.e., a perturbation to observation) that has zero mean and

Ob
the covariance, E;,, , which is determined in Section 2.1.4, as follow:

Obs,i

Yot = yos by, mha~N (0B (C.11)

The Kalman gain matrix can be calculated by:

-1
% = Qe + 02 (C.12)

ob L .
where Q2% is the covariance matrix of the observation, y2°**, which is defined similar to

y
Qt41-

1
tofiq Th-1 Et0+bf(Et0+bf)T (C.13)
A Obs,1 Ob
EPEs 2 [yoht — yob5 .. yolom — yPbs (C.14)

C.2. Dual parameters-states updated

The dual EnKF requires two interactive and parallel filters for the states and
parameters estimation [Moradkhani et al., 2005b]. The parameters are first updated and then
the states. In order to extend the applicability of the single EnKF to the simultaneous
parameters—states EnKF, one needs to treat the ensemble size of parameter sets similar to the

model state. However, the parameter values are not changed after the forecast step:

1= 01" (C.15)

Using the parameters forecasted and the replicates of forcing data, states of the

ensemble model and model prediction are computed as follows:
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“=f(xt,u, 0 +wl, i=1,.n (C.16)

Vi = h(x{7, upp,003,) (C.17)

Updating the ensemble parameter member is made:

0, =07, + K& (v — i) (C.18)

where K2, , is the Kalman gain for correcting the parameter trajectories obtained with:

Kf = %[0, + 02%] (C.19)

oy . : :
where Q7 is the cross-covariance matrix of model parameters and model output. Now use

the updated parameter 8%, to the step given in Appendix C.1 to update the ensemble model

states simultaneously.

Appendix D. Sobol’ sensitivity analysis

Sobol’ method is a variance-based sensitivity analysis that identifies parameter
sensitivities by evaluating the variance of model output (y) due to the variability of individual
parameters and their parameter interactions [Sobol’, 2001; Saltelli, 2002; Crestaux et al.,
2009]. Instead of the model output, model performance measures (e.g., NSE, PE, and VE in

this study) can be used [Tang et al., 2007]. The total variance, D (y) is decomposed as:

D(y)—ZD +ZD“”+ “+ Dy _mp (D.1)

a<b

where D, is the variance of y due to the changes of a-th model parameter, 8, denoting the
first order contribution to D(y); Dy, is the variance of y due to the pairwise interactions of a-

th and b-th parameters, referring to the second order contribution.
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The first (S,) and total (Sto¢q14) Order Sobol’” sensitivity indices can be respectively

expressed as:

= Va D.2
D_q
Stotata = 1 — D(Y) (D.3)

where D._, is the variance averaged over the contributions resulting from all parameters

except for @,.
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Table 1. Literature review of applications involving real-time, ensemble streamflow forecasting. The
last column corresponds to the taxonomy of the predictive approach (A) that we define in Table 3.
“Warm-up” methods have a warm-up period, while “Arbitrary” do not.

Study Deterministi  Surrogat Par.amet.er ini tiS;ﬁ;ea tio DA A
¢ model e model specification n
Zhang et al. [2018] Xinanjiang - Optimization ~ Warm-up Dual Al2
Abbaszadeh et al. SAC-SMA - Random Arbitrary Dual Al2
[2018]
Wang et al. [2018] HyMOD PCE NA Warm-up Dual A6
Davison et al. MESH - Random NA Dual A3
[2017]
Thiboult et al. Multimodels - NA Warm-up Single A2
[2016]
Fan et al. [2016] HyMOD PCE Random NA Dual A6
Zahmatkesh et al. HyMOD, - Bayesian Warm-up None Al0
[2015] HBYV, inference
SWMM
Lietal [2014] GR4H - Optimization NA Dual Al2
DeChant and VIC - NA Warm-up Dual A3
Moradkhani [2014]
Xie and Zhang SWAT - Random Warm-up Dual A3
[2013]
Chen et al. [2013] HyMOD - Bayesian NA Single All
inference
Moradkhani et al. HyMOD - Random Warm-up Dual A3
[2012]
He et al. [2012] SNOW17+ - Bayesian Warm-up Single All
SAC-SMA inference
Mendoza et al. TopNet - Manual Warm-up Single All
[2012] calibration
Clark et al. [2008] TopNet - Bayesian Warm-up Single All
inference
Ajami et al. [2007] HyMOD, - Bayesian Warm-up None  AlO
SWB inference
Weerts and El Serafy HBV-96 - NA NA Single A2
[2006]
Vrugt et al. [2005] HyMOD - Random Arbitrary Dual A3
Moradkhani et al. HyMOD - Random Arbitrary Dual A3
[2005]
Madsen and Skotner Mike 11 - Optimization =~ Warm-up Single  All
[2005]
Beven and Freer TOPMODEL - Bayesian Warm-up Dual Al2
[2001] inference

NA: Not Available
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Table 2. Description of the NAM model states and parameters

Lower Upper

Unit Description Bound Bound
U mm Water content in surface storage 0 35
s L mm Water content in lower zone/root storage 0 400
§ OF m’/s Overland flow 0 +00
2 IR m’/s Inter flow 0 +00
BF m’/s Base flow 0 +00
Um mm Maximum water content in surface storage 5 35
Lm mm Maximum water content in lower zone/root storage 50 400
. CQOF [-] Overland flow coefficient 0 1
§ CKIF hrs Interflow drainage constant 200 2000
% TOF [-] Overland flow threshold 0 0.9
E TIF [-] Interflow threshold 0 0.9
TG [-] Groundwater recharge threshold 0 0.9
CK12 hrs Time constant for routing interflow and overland flow 3 72
CKBF  hrs Time constant for base flow 500 5000

Table 3. Forecasting approaches employed in this study

Approach Specification Model Data assimilation

Al None
A2 NAM  EnKF
A3 Dual EnKF
A4 None
AS Random PCE-I EnKF
A6 Dual EnKF
A7 None
A8 PCE-II EnKF
A9 Dual EnKF
Al0 None
All NAM  EnKF
Al2 Dual EnKF
Al3 None
Al4 Selected PCE-1 EnKF
AlS Dual EnKF
Al6 None
Al7 PCE-II EnKF
Al8 Dual EnKF
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Table 4. Performance metric values of 18 approaches. The values in the first 3 columns are the medians
of NSE, AEpeqk, and RE, which match the values in Fig. 9.

median of median

Approach  "VCERMTAE,u  ofRE BS[] UR [
[m’/s] -]

Al -3.62 2292.19 0.019 1.00 1834.18
A2 0.70 515.64 0.009 0.75 367.34
A3 0.75 500.45 0.009 0.66 340.12
A4 -3.84 1928.86 0.015 0.97 1760.11
A5 0.82 126.48 0.005 0.16 327.86
A6 0.79 55.84 0.005 0.20 131.92
A7 0.68 904.21 0.009 1.00 26.52
A8 0.68 901.91 0.010 1.00 20.59
A9 0.68 902.79 0.010 1.00 19.63
Al0 0.82 612.60 0.007 1.00 193.95
All 0.88 401.26 0.005 0.78 161.69
Al2 0.89 242.62 0.005 0.24 172.18
Al3 0.44 532.35 0.004 1.00 139.54
Al4 0.74 157.07 0.003 0.25 102.98
AlS 0.80 176.00 0.003 0.26 91.98
Al6 0.73 787.18 0.010 1.00 55.75
Al7 0.71 839.31 0.010 1.00 44.64
Al8 0.71 840.19 0.010 1.00 46.37
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Figure 1. A schematic illustration for real-time ensemble flood forecasting, which consists of 3 intervals:
warm-up, calibration, and forecasting periods. The light red shaded region in the warm-up and
calibration periods refers to the n behavior results of GLUE that are employed to estimate posterior
parameter distributions, while the light blue region refers to the n,, random results obtained from
parameter sets sampled from prior (uniform) distributions to attain the n behavior runs. The
construction of PCE models is carried out over the calibration period: PCE-I model is built from the N
training samples extracted from the light blue region, while PCE-II is from the Ni samples from the
light red region. The (dense) blue and red shaded regions correspond to the approaches using the
“Random” (A1 to A9) and “Selected” (A10 to A18) parameter specifications with the same n ensemble
runs, respectively.
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Figure 2. The overview of an ensemble flood forecasting framework. The top box, “PCE construction”
is for the process of building 2 PCE models (blue box for PCE-I and red box for PCE-II). The middle
box, “Specification” describes 2 distinct approaches of specifying model parameters before forecasting
including Random (blue box) and Selected (red box). The bottom box, “Forecasting” corresponds to
data assimilation for flood forecasting in real-time (single and dual EnKFs). The top and middle blue
boxes correspond to sampling Ny and n, independently from the same prior uniform distributions,
respectively, while the red boxes sampling Nj; and n from the same posterior distributions.

©2020 American Geophysical Union. All rights reserved.



1
VIETNAM RIVER BASIN [

LEGEND -

. Rainfall & Flow station
A Rainfall station

— Vu Gia river network
1 1 1 =

0 10
:—:—Klllometers

Figure 3. Study area: Vu Gia watershed

|

©2020 American Geophysical Union. All rights reserved.



Warm-up Calibration Forecasting
8000 T ot . )
1
1 1
__ 6000 F l 1 10 _
,:; ! ! E
= 1 I g
o —_—
&0 4000 F l l 20 =
= 1 1 =
= &=
& I ! -
A ! ! &
2000 | | \ 30
1
| I
O 1 | ! ! I I ' 40
50 100 150 200 250 289 345 385
Time [hrs] ‘. t L
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Figure 6. The left column plots show hydrographs for the calibration period. The shades in the plots
correspond to 90% confidence interval for 500 Random model runs (Al to A9, light gray shade) and
500 Selected model runs (A10 to 18, dark gray shade) for 18 approaches in Table 3. The boxplots in the
right column demonstrate the verification metrics of NSE, PE, and VE for the 18 approaches used.
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Figure 7. Hydrographs over the forecasting period, with a 90 % confidence interval of 500 Random
model runs (Al to A9).
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model runs (A10 to A18).
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ensemble values with the statistics of median (central mark), the 25th and 75th percentiles (edges of the

box), and maximum and minimum except for outliers (whiskers). (e) UR is the mean of uncertainty
range, UR; over the entire forecasting period.
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Figure 11. Comparisons of the three assimilation methods (none, EnKF, and Dual EnKF) for 500
ensemble flood peaks over the forecasting period. The left, middle, and right plots correspond to the
approaches using NAM, PCE-I, and PCE-II, respectively. The first and second row plots correspond to
the approaches using Random and Selected methods for parameter specification. The black square
represents observed value at peak time; the circles are the expected values of the sample probability

density functions.
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Figure 12. The posterior histograms for the 9 model parameters in Table 2 from 500 behavioral sets of
3 models (NAM, PCE-I and PCE-II) inferred by GLUE over the calibration period.
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Figure 13. Sobol’ sensitivity analysis for the 9 parameters, computed for the 3 likelihood functions of
(top) NSE, (middle) PE, and (bottom) VE over the calibration period. The sensitivity results are
attained based on (a, b, and ¢) the prior distributions of parameters for the 3 models of NAM, PCE-I,
and PCE-II, respectively; and (d) the posterior distributions of parameters for NAM model. The
posterior are also used to select the training parameter set for building PCE-II.
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