SANDIA REPORT

SAND2021-1452
Unlimited Release
Printed September 2015

ATDM Data Management FY2015:
Data Warehouse Progress Report

Nathan Fabian
Todd Kordenbrock
Shyamali Mukherjee
Ron Oldfield (PM)
Gary Templet

Craig Ulmer (PI)

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2021-1452
Unlimited Release
Printed September 2015

ATDM Data Management FY2015:
Data Warehouse Progress Report

Nathan Fabian
Todd Kordenbrock
Shyamali Mukherjee
Ron Oldfield (PM)

Gary Templet

Craig Ulmer (PI)

Sandia National Laboratories
P.O. Box 969 MS9152
Livermore, CA 94551-0969
cdulmer@sandia.gov

Abstract

The Advanced Technology Development and Mitigation (ATDM) program at Sandia Na-
tional Laboratories is a new effort to build next-generation simulation codes that will map
well to upcoming exascale computing platforms. Rather than follow traditional single-
program, multiple data (SPMD) programming techniques, ATDM is developing applications
in an asynchronous many task (AMT) form that describes work as a graph of tasks that have
data dependencies. The data management team is focused on developing a data warehouse
for ATDM that will enable tasks to store and exchange data objects efficiently. This report
summarizes the data management team’s efforts during FY15, and documents: (1) an initial
APT and implementation for the data warehouse’s key /value store, (2) API requirements for
use with ATDM’s runtime, (3) initial requirements for storing ATDM-specific data, and (4)
the current organization of software components that will be used by the data warehouse.

Contents

1 Overview

1.1 The Need for ATDM
1.2 ATDM Organizationt
1.3 Why Does ATDM Need a Data Warehouse?
1.4 Prior Data Warehouse Work
1.5 Data Warehouse Goals for FY15

2 Kelpie: Building a Key/Value Store for the Data Warehouse

2.1 Kelpie OVErview
2,11 KeYS ot
2.1.2 LocalK\V ..
2.1.3 Resources and Resource Handles

2.2 Kelpie APTUseo
2.2.1 Configuration and Initialization...........
2.2.2 Working with Resources.
2.2.3 Obtaining a Resource Handle
2.2.4 Accessing Data

2.3 Kelpie Prototype
2.3.1 Resource Management i

3 AMT Requirements for the Data Warehouse
3.1 DHARMA AMT Overview

3.2 Data Warehouse Requirements

3.2.1 Data Labels. e 25

3.2.2 Memory Management 25
3.2.3 Underlying Communication Behavior 27
3.2.4 Data Distribution 27
3.2.5 Persistence 28

4 Application Requirements for the Data Warehouse 31
4.1 Application Interface Challenges 31
4.2 Application Use of the Data Warehouse 32
4.3 MeshDB Overview 32
4.4 PIC OVEIVIEW . . . oo 34
4.4.1 Particle Streaming 35
4.4.2 Mesh Split/Join 36

4.5 Data Warehouse Mechanics i 37
4.6 Third-party Consumers and Producers 38
5 Data Warehouse Development 39
5.1 Identifying Areas for Improvement, 39
5.2 Improving Data Warehouse Components 41
5.2.1 NNTI 3: A Portable RDMA Transport for HPC 42
5.2.2 NSSI Shim: A Thin RPC Layer for NNTT 43
5.2.3 Lunasa: Memory Allocator for RDMA Data 45
5.2.4 Webhook: A Reusable Debug/Control Interface 46
5.2.5 SBL: A Simplified Interface to Boost.Log.......... 47

List of Figures

1.1

2.1

2.2

2.3

24

2.5

2.6

2.7

3.1

4.1

5.1

ATDM is organized into multiple areas of expertise, each with its own set of
design teams.
Kelpie allows users to define multiple resource pools at the same time.

Users can easily change how Kelpie behaves by setting different key/value
fields in the Configuration object used at initialization time.

Resource URLs provide information that can be used to reference and access
aresource URL.

Resources can be set at start time by defining them inside of a Configuration
passed in at initialization.

A ResourceManager encapsulates information necessary to communicate with
A SPECIIC TESOUICE. e e e e e e e e e e e e

Users can issue blocking put and get operations through a resource handle.
Users can perform asynchronous operations by issuing the request and then

waiting on the result at a later point.

DHARMA manages all aspects of operation within the node and uses the data
warehouse to orchestrate data transfers between nodes.

From a meshing perspective, an 10SS interface provides a standard way for
both the MeshDB and applications to use the data warehouse.

Data warehouse software was decomposed into multiple components.

17

18

20

21

33

41

Chapter 1

Overview

The Advanced Technology Development and Mitigation (ATDM) program at Sandia Na-
tional Laboratories is a new effort in ASC that is building next-generation simulation codes
that will be able to take advantage of new capabilities found in upcoming exascale computing
platforms. ATDM takes a different approach to parallel processing: rather than describe an
application as a collection of distributed processes with explicit communication, ATDM asks
users to organize their work into a graph of tasks with data dependencies that a runtime
system can dynamically schedule on distributed resources. This asynchronous, many-task
(AMT) approach presents an opportunity for a system to achieve better performance and
reliability on exascale platforms, while reducing the difficulty associated with developing
complex simulations.

The ATDM project covers the complete spectrum of what would be required to design,
implement, and run ASC-relevant simulations using AMT techniques. This work includes
simulation science (e.g., creating new codes to simulate and model complex systems in phys-
ical phenomena), modeling science (e.g., developing tools to represent the data in a way that
simulations require), and computer science (e.g., designing the underlying software needed
to run an AMT application efficiently on a distributed computing platform).

This document focuses on progress made in FY15 by the data management team in the
Architectures and Software Development domain of ATDM. The data management team
is responsible for developing a data warehouse that AMT applications can use to exchange
their data objects. This effort addresses a number of low-level efficiency challenges, including
migrating data between nodes, serializing data objects, managing memory, and defining
APIs that balance performance with ease-of-use. Rather than start from scratch, the data
management team focused on evaluating how prior work in ASC (e.g., Nessie and Kelpie)
can be scaled up to meet ATDM’s needs.

1.1 The Need for ATDM

ATDM was created out of concern that today’s high-performance computing (HPC) pro-
gramming techniques would not be effective on upcoming exascale computing platforms.
Exascale systems will push the boundaries of computing and will likely offer a different

hardware environment than what users see today. These systems will employ a massive
number of compute nodes and rely on special-purpose hardware (e.g., GPUs and nonvolatile
memory) to achieve their performance goals.

Today’s HPC users largely develop single-program, multiple data (SPMD) applications
that allow the user to explicitly define how computations and data flows take place in the
system. While this fine-grained control enables users to micromanage how their programs
execute, it can be challenging in complex applications to develop highly-efficient code that
maximizes the resources that are available in a system. The sheer size and heterogeneity of
upcoming systems compounds this problem and motivates us to consider approaches where
an AMT system may do a better job of scheduling computations and orchestrating data
flows than humans.

Resilience is another motivator for considering AMT solutions. Current codes are largely
optimized to run in an error-free environment where a single node failure crashes the whole
application and forces a restart from a previous checkpoint. Hardware errors are expected to
be more noticeable in exascale platforms due to the increase in hardware of these systems.
AMT approaches can help in these environments, as the runtime environment has more
knowledge about how to rewind and redo individual tasks that have failed. While ATDM
currently does not consider resilience to be the primary motivator for AMT, it is an extremely
useful benefit that may become essential in future systems.

1.2 ATDM Organization

Making the transition to AMT requires a substantial research and development effort in
a number of areas. Figure 1.1 presents a high-level view of different areas of work within
ATDM.

ATDM
Management | | |
Next-Gen Next-Gen Architectures &
Applications Capabilities SW Development
Thermal-Mechanical Algorithms Task Parallel Computations

Electromagnetics-

Plasma Analysis

Data Parallel Computations

» Data Management

Figure 1.1. ATDM is organized into multiple areas of
expertise, each with its own set of design teams.

At a high level, the different domains within ATDM are defined as follows:

Management: The management team oversees all work within ATDM and is responsible
for interacting with external entities.

Next-Generation Applications: The next-generation applications effort is responsible
for refactoring different ASC applications into AMT forms. Work this year largely
focused on particle-in-cell (PIC) methods for electromagnetic simulations.

Next-Generation Capabilities: The next-generation capabilities effort is developing ad-
ditional software that is necessary for supporting applications. For example, in the
algorithms portion of this effort, a number of meshing experts this year architected
a workflow that reads meshing specifications from existing libraries and populates a
MeshDB that ATDM applications can use. This effort will interface with the data
management team in FY16.

Architectures and Software Development: This effort is responsible for the majority
of the computer science related work that is necessary for making ATDM realizable.
The teams are:

1. Task Parallel Computations (DHARMA): DHARMA is responsible for
defining all aspects of the AMT and constructing a runtime that will manage
all of the other components in the system. In FY15 the DHARMA team focused
on evaluating existing AMT systems and ported different Sandia mini apps to
these systems to explore implementation trade-offs. This work has motivated the

need for a more advanced AMT system that will be more appropriate for Sandia’s
ASC needs.

2. Data Parallel Computations (Kokkos): In order to maximize on-node com-
puting performance, it is necessary to utilize tools that can efficiently map com-
putations to underlying hardware accelerators such as GPUs or SIMD arrays.
Kokkos [2] is an established effort at Sandia that has developed software that
makes it easy to leverage data-parallel hardware, without being tied to one specific
technology. Application developers will utilize Kokkos to make their individual
tasks run as fast as possible.

3. Data Management (Data Warehouse): The data warehouse is responsible for
managing all data objects that are produced and consumed by distributed tasks
in the AMT runtime. The data warehouse provides the mechanisms by which
DHARMA moves data objects between nodes in the system. It must be capable
of supporting multiple, application-specific data interfaces in order to support the
different data flows in ATDM applications.

This report focuses on the data management team’s efforts. Given that the end product
of this work will be a data warehouse for ATDM, data management is synonymous with data
warehouse in our discussions.

1.3 Why Does ATDM Need a Data Warehouse?

For traditional parallel computing users, there is often some uncertainty about what is meant
by the term data warehouse. The data management team is often asked the same questions:

What is a data warehouse? A data warehouse is simply a communication package that
allows distributed applications to exchange data objects with each other in a reliable
manner, without having to be specific about when or where those objects are generated
or consumed. A data warehouse operates at a higher level of abstraction than explicit
message passing: rather than require users to use directed communication in their
applications (e.g., send this message to that node with this tag), a data warehouse
distributes objects based on labels (e,g, make this data object available to any node
that requests this label). This abstraction enables the communication library to do
more on behalf of the user.

Is the data warehouse just for persistent data? No, the data warehouse is largely fo-
cused on managing in-memory data that a distributed application uses at runtime.
It uses low-level communication mechanisms such as RDMAs to move data efficiently
from one node’s memory to another. However, persistence is also a natural operation
for the data warehouse to manage. If a user tags an object as being persistent, the
data warehouse can automatically replicate the object to either nonvolatile memory or
the backing store of the platform’s I/O subsystem.

Why does ATDM need a data warehouse? Unlike traditional message passing appli-
cations, ATDM decomposes an application into a number of tasks that consume and
produce labeled data objects. A task has no knowledge about where its data objects
came from or where they are going to next. This property provides a great deal of
freedom for the AMT runtime to schedule how work and data transfers are performed
in the system. At some level, the AMT needs a way to manage how data objects are
moved about in the system.

While it is possible to implement both the scheduling operations and data transfer mech-
anisms needed by ATDM in the AMT runtime, it is valuable to separate the data object
management functionality into its own entity. Distributed data object management rapidly
grows in complexity as more production-related requirements are added: How are race con-
ditions resolved? How are objects deallocated? Can the system be hardened to support fault
tolerance? How are nonvolatile memory resources and persistent storage leveraged? Re-
solving these issues in a separate data warehouse component allows the AMT runtime to
concentrate on higher-level problems, such as scheduling work and data flow on distributed
resources.

10

1.4 Prior Data Warehouse Work

Members of our data management team have been working on data warehouse problems
relating to HPC 1/0 for a number of years. There are two software development efforts in
particular that are directly relevant to the construction of a new data warehouse for ATDM:

Nessie: Nessie [5] is a communication library that was designed to make it easy to write
portable 1/O services on top of different HPC platforms. Nessie is composed of two
components: a low-level RDMA library named NNTI and a general purpose RPC
library named NSSI. NNTT is a portability library for RDMA that includes drivers
for a number of different network substrates (e.g., Blue Gene, Cray, and InfiniBand).
While data services can be written entirely with NNTI, RDMA communication can
be challenging to orchestrate due to the complexities of remote memory management.
As such, Nessie’s NSSI layer provides a more familiar RPC API that performs many
useful operations for the user, such as automatic memory registration, fragmentation,
and argument /result packing. Compared to other RPC libraries, NSSI is appealing
because it still presents users with RDMA primitives for efficiently moving data in the
system. As such, RPC writers have greater control over how large amounts of data are
moved between nodes.

Kelpie: Kelpie is a distributed, in-memory object store that is enables users to move data
objects between compute nodes in a flexible and efficient manner. Kelpie utilizes Nessie
for its underlying communication operations and is therefore usable on today’s HPC
platforms. Data objects in Kelpie are referenced by a user-specified key, which is
composed of three values: an application ID integer, a row ID string, and an optional
column ID string. These fields allow users to organize their data and use the same
store for multiple purposes. Kelpie provides built-in mechanisms for distributing data
to different nodes (e.g., distributed hash table (DHT), broadcast group, reliable DHT),
and can easily be extended with custom user-defined distribution policies.

1.5 Data Warehouse Goals for FY15

The first year of work in ATDM was largely focused on determining how the system should
be constructed and developing prototypes for testing out how components will interact with
each other. This report provides details on the following tasks that were defined for the data
management team in FY15:

1. Design and document the application-programming interface for the key-value storage
service. (Chapter 2)

2. Implement and demonstrate a simple prototype key-value storage service that uses
available application memory to share data between tasks within an application. (Chap-
ter 2)

11

3. Design and document abstractions/interfaces required to support task-based program-
ming models and application resilience (e.g., local checkpoint /recovery). (Chapter 3)

4. Design and document abstractions/interfaces required for sharing mesh and particle
data. (Chapter 4)

In preparation for work that will take place in FY16, Chapter 5 summarizes our effort to
evaluate our current software and organize it into components that will be used to implement
a data warehouse for ATDM applications.

12

Chapter 2

Kelpie: Building a Key/Value Store
for the Data Warehouse

The distributed, in-memory object store (or key/value store) is the heart of the data ware-
house and the component that received most of our attention in FY15. Given the momentum
of our prior ASC I/O work, we decided to continue using Kelpie/Nessie as the basis for the
in-memory object store. This chapter summarizes the design and implementation of a Kelpie
prototype that was used for experiments during most of FY15. As the year progressed and
more of the other ATDM components took shape, it was clear that there are changes that
will need to be made to accommodate our users. Updates and a general discussion of the
current status of the data warehouse are presented in Chapter 5.

2.1 Kelpie Overview

The core philosophy of Kelpie is to build a focused set of distributed memory management
primitives that can be used to build more sophisticated data management services. The lower
level of Kelpie embeds a variable-sized, in-memory key/value store in each rank of a parallel
application in order to maintain data objects at each node, as directed by the application. A
local key /value (or LocalKV) store can be manipulated locally through direct operations, or
remotely through RPC/RDMA primitives. From a user’s perspective, a data object stored in
the LocalKV is simply a contiguous allocation of data that is labeled with a user-defined key.
The lower level of Kelpie has no knowledge of where objects are located in the distributed
system.

The higher level of Kelpie is responsible for how data objects are located in the distributed
system. Kelpie allows a user to define multiple resource pools in the system. Each pool
contains one or more nodes, and has a distribution policy specifying how objects should
be mapped to resources. A common resource pool policy is to implement a distributed hash
table (DHT) across a collection of nodes. When communicating with this DHT, the interface
computes a hash of the object’s key to determine the node where the object should reside.
Users can extend Kelpie with their own functionality for controlling data distribution.

13

2.1.1 Keys

Kelpie utilizes a simple key structure to reference a user’s data objects. Keys are composed
of three fields: an application ID integer, a row ID string, and an optional column ID string.
The application ID is a hash code that provides a namespace for data that Kelpie can use
to isolate one set of data from another. In most cases an application will select an identifier
at start time and use it for all of the application’s work. This identifier helps prevent two
concurrent applications from having naming collisions in the same Kelpie store. It can also be
used as a crude access mechanism for controlling how data is shared between two concurrent
applications: if an application wants to use data from another application, it must be given
its application ID value. The application ID field is an optional parameter on most API calls
and does not need to be explicitly set by the user.

The remaining two fields in the key are row and column identifiers in the store. These
fields are variable-length! strings. The column portion of the key is optional and is provided
as a simple way for users to group related items together. By themselves, keys only function
as a way to label items, not dictate how they are distributed in the store. Distribution is
controlled by the resource handles.

2.1.2 LocalKV

The LocalKV is a two-dimensional hash table that manages all of the bookkeeping for data
objects that are stored at the local node. The application ID and the row ID are concatenated
to index the first dimension of the table and retrieve information about all the columns in
a particular row. The column ID of the key is used to select the corresponding column.
This approach allows users to retrieve a specific row/column cell out of the table, as well
as perform operations on all columns available for a particular row. If a request is made to
retrieve an item that does not exist yet, the LocalKV can be directed to take later action
(e.g., transmit to destinations) when the object does arrive.

In FY15 the LocalKV underwent significant modifications in order to take advantage of
C++11 lambdas. The new implementation allows users to pass in a lambda operation to
execute on a referenced object. This change simplified the LocalKV code and enables other
parts of Kelpie to perform custom operations with the LocalKV.

2.1.3 Resources and Resource Handles

The upper layer of Kelpie is responsible for managing different resource pools that an ap-
plication may utilize. Resource pools are simply a collection of one or more nodes that are
responsible for storing a particular set of data objects in a way that is consistent to all nodes.

'Kelpie does have practical limits on how long these strings may be, due to the fact that large keys are
time consuming to pack. Future versions will place lower bounds on length.

14

A resource pool is defined by a label, a distribution method, and the collection of nodes to
use. Users access a data pool through a resource handle. A resource handle maintains config-
uration information about a pool (e.g., node IDs) and implements the means by which data
is exchanged with the pool. All concrete resource handler classes implement a common set
of communication functions and are responsible for interacting with the pool in the proper
manner.

N20

LKV

Figure 2.1. Kelpie allows users to define multiple resource
pools at the same time.

Figure 2.1 illustrates how a node may interact with multiple resources pools that are
distributed across different collections of nodes. In this scenario there are four DHT resource
pools, some of which share common nodes. Node 20 has obtained resource handles to
communicate with three of these DHTs, as well as a peer resource handle to talk to a
specific node and a LocalKV handle to interact with its own store. When writing objects
to the green DHT, the resource handle hashes the key of the object to determine which of
the seven node will be the owner of the data. Given that resource pools are lightweight to
construct, applications can easily establish small data communities for related items.

In FY15 we redesigned Kelpie’s resource management (RM) service to allow better han-
dling of dynamic resource registration. The RM now operates in a hierarchical manner and
will automatically discover parent nodes in the resource path if a service is unknown. For
example, if a resource is named “/a/b/c/d/mydht” and only the node “/a/b/c” is known,
the resource management will consult “/a/b/c” to learn d, consult “/a/b/c/d” to learn my-
dht, and then interact with “/a/b/c/d/mydht” to get dynamic membership information for

15

mydht.

2.2 Kelpie API Use

The full Kelpie API is available as a Doxygen-generated document that is part of the source
code. This section provides a stripped down description of how users use the API to perform
specific operations.

2.2.1 Configuration and Initialization

The kelpie: :Kelpie class is the top-level class used to direct all Kelpie operations. Kelpie
is a singleton (i.e., only one Kelpie instance is allowed at a time for a program or rank), as
it holds specific network components that are tied to underlying hardware. A user typically
creates the Kelpie object and then calls its Init function to dispatch the necessary services.
Destroying the Kelpie object results in the termination of all network operations, which may
affect other nodes in the system.

A Kelpie object is composed of a number of other components. It is often desirable to be
able to customize how each of these components behaves in order to tune how a particular
node operates (e.g., a server node may want to increase the default LocalKV memory limits
to improve performance). Kelpie uses a kelpie::Configuration object to allow users to
specify how different parameters are set in its components. The Append function allows users
to pass in a multiple-line string of key/value parameters to set in the Configuration object.
If a particular key is set multiple times, only the last value is utilized. For convenience,
numerical values can utilize standard suffixes for large values (e.g., 1k = 1024).

Configuration uses a role-based approach to make it easier to define how different nodes
in the system should behave. For example, in Figure 2.2 two roles are defined: a server and
a client. The server sets the rpc_server_type parameter to single to specify that the node
will be dedicated to RPC requests and will not need to spin the Kelpie RPC server off in its
own thread. In contrast, clients are configured to not host any RPC services of their own.
After the default configuration is programmed into the Configuration object, an additional
Append operation is used to specify that node 0 will function as the server and all other
nodes will function as clients. Configuration operations can be changed through appends
until the Configuration is passed into a Kelpie initialization function.

2.2.2 Working with Resources

The goal of Kelpie is to make it easy for users to allocate one or more pools of distributed
compute nodes, and utilize each pool as an application-specific resource. A resource in
Kelpie is composed of three components: a resource name, a list of nodes that implement

16

// Multiple-line strings make it easy to define many things
string default_config = R"EOF(

Define the application id
security_bucket my_atdm_app

Server: run in a dedicated mode for hosting data
Client: do not allow others to connect
server.rpc_server_type single
server.resource_manager.path /myserver

client.rpc_server_type none
client.resource_manager.path /myserver/clientl

)EOF";

main (){
int mpi_rank;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);

Configuration conf;
conf . Append (default_config);
conf . Append("node_role", (mpi_rank==0) 7 "server" : "client");

Kelpie kelpie;
kelpie.Init (conf);

Figure 2.2. Users can easily change how Kelpie behaves by
setting different key/value fields in the Configuration object
used at initialization time.

the resource, and a client-side interface into the resource that defines how the resource
behaves.

As illustrated in Figure 2.3, a resource URL may contain five pieces of information:

Resource Type : The resource type defines the client-side interface that is to be used to
interact with the nodes. Kelpie currently provides three built-in handlers: lkv (for use
with the node’s LocalKV store), peer (for communication with a specific node), and
dht (for communication with a distributed hash table of nodes). Users can define their
own interfaces and register them with Kelpie as a new Resource Type.

Node ID: A URL may include one node ID to identify the node that is responsible for a
particular resource. When the Node ID field is not present in a URL, Kelpie must
discover the location of the node by walking the resource’s path and consulting with

17

’ Resource Type: ‘ <Node ID> ‘ [Application ID] ‘ /Resource/Path ‘ Options ‘

Examples:
lkv: Use LocalKV with default settings
lkv:[myappid] Use LocalKV, but set Application ID to myappid
peer:<0x0123>[myappid2]/a/b Communicate with a specific host
dht:/a/b/mydht Interact with a DHT (discovering details first)
dht:<0x4567>/a/mydht&nodes=4 | Specific DHT information

Figure 2.3. Resource URLs provide information that can
be used to reference and access a resource URL.

ancestors.

Application ID: A specific application ID can be defined in the URL to help in instances
where data is moved from one application’s namespace to another’s. String values are
automatically hashed to the numeric application ID value. The application’s default
value is used if this field is left unspecified.

Resource Path: The Resource Path is a “/”-delimited string that allows users to organize
their resources into a tree-based hierarchy.

Options: The options portion of the URL provides a means for users to encode differ-
ent configuration operations into a single URL. Options are separated by an am-
persand and may be any string value of the user’s choosing. Options can simplify
query/response services, as a user may send a sparse URL (e.g., “dht:/a/b/mydht”)
to a node to find more information, and be returned a URL with more details (e.g.,
“dht:[myappid]<0x1234>/a/b/mydht ’num nodes=4").

Kelpie provides two means by which users can define, locate, and use resources. First, a
user can define resources in a static way when Kelpie initializes, as illustrated in Figure 2.4.
This approach is used for small installations and debugging, and simply involves users defin-
ing one or more resource URLs in a Configuration passed to Kelpie. These resources are
shared through simple file operations and are only intended to simplify the bootstrapping
required to get a small environment running.

The preferred way to manage resources is for applications to dynamically manage them
as needed. In this approach one or more root nodes are defined for each application (e.g.,
“/a”, “/b”, etc.) and made known to all relevant nodes. Resources can then be added to
the path in a hierarchical manner as needed. Because Kelpie will automatically walk the
resource path to discover unknown resources, users simply request a resource to locate it.
Nodes can request to join, leave, or get information about a particular resource.

18

// Multiple-Line strings make it easy to define many things
string default_config = R"EOF(

Server is the root in the tree and hosts a dht

server.resource_manager .hosting /a
server.resource_manager .hosting dht:/a/mydht?num_nodes=2
server .resource_manager .write_to_file .server-id

Client reads config info from a file
client.resource_manager .read_from_file .server-id

)EOF";

main () {
int mpi_rank;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &mpi_rank);

Configuration conf;
conf . Append(default_config);
conf.Append("node_role", (mpi_rank==0) 7 "server" : "client");

Kelpie kelpie;
kelpie.Init (conf);

if (mpi_rank==1){
ResourceManager *rm;
kelpie.GetComponents (NULL, NULL, &rm);
rm->Join("dht:/a/mydht");
/.

rm->Leave ("dht:/a/mydht");

//

Figure 2.4. Resources can be set at start time by defining
them inside of a Configuration passed in at initialization.

API Note: Future versions of Kelpie will migrate resource manager functionality to the
Kelpie object for simplicity.

2.2.3 Obtaining a Resource Handle

A resource handle is the primary means by which a Kelpie user interacts with a resource.
The kelpie: :Resource class is the base class for all resources, and provides standard put

19

and get semantics for retrieving data. As illustrated in Figure 2.5, a user can easily request
a new resource handle simply by issuing a connect operation to Kelpie.

/.

Kelpie kelpie;

kelpie.Init(config);

Resource *dht = kelpie.Connect("dht:/my/dht");
/7.

Figure 2.5. A ResourceManager encapsulates information
necessary to communicate with a specific resource.

2.2.4 Accessing Data

Once a resource handle is obtained, a user can read or write data objects as needed. While
Kelpie utilizes asynchronous operations for all communication, synchronous (i.e., blocking)
API calls are provided for operations as well. Asynchronous operations require the user
to maintain a kelpie::RequestHandle data structure. This structure maintains internal
state information about a network operation and cannot be deallocated until the operation
completes. The RequestHandle can be queried to retrieve information about the network
operation (e.g., whether it was successful, whether the remote node fulfilled the request,
etc.). A basic put/get example is listed in Figure 2.6.

Better overlap can be achieved by using Kelpie’s asynchronous interfaces. As demon-
strated in Figure 2.7, these operations require a user to issue one or more commands and
then block on their completion.

API Note: Given the operation completion requirements defined by DHARMA, this
interface will change in the near future. We expect to switch to supporting callbacks (possibly
lambdas) for completion notification. Request handles may be removed entirely if callbacks
present a cleaner interface.

20

rc_t rc;
Resource *dht = Kelpie.Connect("dht:/my/dht");

//Push out an object and wait until the transaction completes

rc = dht->PutSync(Key("myobjl"), &my_data, my_data_size);

//Make sure operation completed without errors
assert (rc==KELPIE_0OK);

//Retrieve an object, blocking until it is available
RequestHandle req;
char myobj2[1024];
rc = dht->GetSync (Key("myobj2"), myobj, 1024, &req);

//Make sure operation completed without errors
assert (rc==KELPIE_OK);

//Get more tinfo about the operation

cout << req.remote_rc << endl
<< req.get.returned_bytes << endl
<< req.get.origin << endl;

Figure 2.6. Users can issue blocking put and get operations
through a resource handle.

Resource *dht = Kelpie.Connect("dht:/my/dht");

RequestHandle reqs [100];
for(int i=0; i<100; i++){
dht ->Put (Key (item_names [i]),
data_ptrs[i], data_lens[il],
&reqs [i]);
}
for(int i=0; i<100; i++){
regs[i].Wait ();
//.. check return codes and results

Figure 2.7. Users can perform asynchronous operations by
issuing the request and then waiting on the result at a later
point.

21

2.3 Kelpie Prototype

The Kelpie implementation from FY14 served as an initial prototype for our data warehouse
work throughout most of FY15. Given that this prototype was functional and the require-
ments for other ATDM components did not stabilize until the end of the year, we largely
focused on enhancing Kelpie’s resource management functionality. In this section we briefly
summarize the work that went into improving the resource manager that was described
previously.

2.3.1 Resource Management

The most challenging aspect of the Kelpie prototype this year was renovating its resource
management facilities. The FY14 implementation’s ResourceManager suffered from two
main deficiencies:

Limited Attributes: The original resource manager only needed to maintain a simple list
of nodes that belonged to a resource pool. While this approach was sufficient for basic
resources, we realized that additional attributes needed to be associated with a resource
and that applications would need better control or the memberships. We realized that
URLs provided an excellent means by which these attributes could be modified and
retrieved.

Implementing Hierarchy: The FY14 also lacked the ability for Kelpie to walk through a
resource hierarchy and discover information that was not available locally. The system
could query a remote node, but it could not work its way upwards to find gaps in
knowledge.

The resource management portion of Kelpie was rewritten in order to fix these defi-
ciencies. The changes utilize improvements to URL notation, and resulted in new caching
structures that track information about different resources in the system.

22

Chapter 3

AMT Requirements for the Data
Warehouse

The core strategy of ATDM is to transition ASC applications from a traditional single
program, multiple data (SPMD) form into an asynchronous many-task (AMT) form that
allows a runtime to manage how computations and data transfers are scheduled on parallel
resources. The DHARMA team leads this work and is responsible for assessing the viability
of existing AMT runtime systems and, if needed, developing a new AMT that would be
appropriate for ATDM’s applications on exascale platforms.

DHARMA
Async Many Task (AMT) Management

|
MeshDB
Mesh Loading and Manipulation

:,(Data Warehouse Interface)..

DAG of Tasks

Application >

Active Tas}[s

Application-Specific Interfaces Task| |Task| |Task| |Task
Nessie Kelpie Kokkos
PC+RDMA Network Operation Shareable Object Management Local, Data-Parallel Compute
| I
GPU || GPU
NIC Shareable Memory M M

Figure 3.1. DHARMA manages all aspects of operation
within the node and uses the data warehouse to orchestrate
data transfers between nodes.

23

As illustrated in Figure 3.1, DHARMA’s AMT will manage all of the software components
that are used to process ATDM applications. In the AMT approach, an application is defined
as a collection of tasks that have data dependencies. DHARMA uses the data warehouse to
resolve these dependencies so that it can schedule tasks on local data-parallel resources.

3.1 DHARMA AMT Overview

The DHARMA AMT runtime is responsible for managing all aspects of how an ATDM
application is processed in a distributed system. Rather than define an application as a
traditional single program, multiple data (SPMD) executable that explicitly passes data
between different ranks in the simulation, DHARMA’s AMT requires users to express an
application as a collection of tasks that have data dependencies. These dependencies result in
organizing the tasks into a directed acyclic graph (or task DAG) that the DHARMA runtime
can use to schedule how work and data transfers take place in the distributed system.

A task is the fundamental unit of computing in DHARMA. Each task consumes zero
or more input data objects and produces one or more output data object. An application-
defined label (or key) is associated with a data object to allow the system to manage the
application’s data in a symbolic manner. In order to make the runtime more practical, tasks
are idempotent: they do not modify their input data objects and they always produce the
same outputs for a given set of inputs. Ideally, all possible input dependencies are defined
for a task when it is created. Doing so enables DHARMA to defer the execution of a task
until all of its inputs are available on the local node. However, DHARMA does permit
running tasks to request data objects that were not in the original input dependency list.
This feature is necessary in workloads where a variable amount of data is generated during
execution, or in situations where a task inspects its inputs to locate additional pieces of data
that are necessary for completing a task.

While it is expected that developers will take advantage of libraries such as Kokkos to
leverage local, data-parallel hardware, a task only executes on a single node (i.e., a task is not
a collection of MPI ranks that work in parallel). Ideally, all communication between tasks
would take place as data warehouse operations, thereby allowing DHARMA to control all
aspects of data flow through the system. From a practical perspective though, it is expected
that this bookkeeping would be excessive and impede the performance of the system. As
such, DHARMA will likely allow tasks to perform some form of lightweight communication.
While the data warehouse’s underlying communication layer may be used for these transfers,
the data warehouse will not need to directly support these operations.

24

3.2 Data Warehouse Requirements

Based on the current design plans for DHARMA, it is useful to define core requirements for
how the task DAG will utilize the data warehouse. The remainder of this chapter focuses
on defining these requirements.

3.2.1 Data Labels

DHARMA uses application-defined labels to reference data objects that are used by a sim-
ulation. These labels have the following properties:

Variable-Length Keys: Data labels used by applications will be converted to a variable-
length field that is 56 bytes or smaller. This length was chosen because it gives a large
key space to work with, while at the same time being compact enough to fit in a cache
line.

Multi-Dimensional Key Components: The key will contain multiple data fields that
inherently make it multidimensional in nature. The first field is mandatory and is a
variable name for the object.

Optional Fields: A key may be encoded to have optional fields, such as a version number.
These fields may take on specific meaning for key/value operations (e.g., only maintain
the latest two versions of an object).

Low-Dimensionality in Organization: While keys may have several dimensions, it is
expected that the underlying key/value store will largely organize them in a two-
dimensional manner (e.g., row/column). A mapping will be defined at a later point to
determine how particular keys are grouped in the underlying storage.

External User ID: The key will not contain a user ID (or bucket) field to separate one
application’s data from another. When needed, this field will be managed at the client
interface into the data warehouse.

3.2.2 Memory Management

The fundamental purpose of the data warehouse is to store data objects in a way that
allows the objects to be retrieved in an efficient manner. RDMA transfers are desirable
for facilitating quick remote access, but require users to store data structures in memory
registered with the communication library. As such, the data warehouse must manage how
data objects are housed in NIC-accessible memory. A functional system requires the data
warehouse perform the following memory management functions:

25

Allocate/Deallocate NIC-Accessible Memory: The data warehouse must be able to

allocate/deallocate variable amounts of memory that the NIC can access through
RDMA methods.

Common Data Structure for Referencing Memory: The data warehouse needs to use
a single data structure for referencing memory in the system. This structure must be
capable of identifying both local and remote memory, although the structure is not
responsible for resolving remote references by itself. Remote references will be resolved
by the data warehouse and DHARMA.

Referencing Remote Memory: When used to reference remote memory, the memory
data structure must:

1. Contain RDMA pointers and block lengths that can be used by the messaging
layer to move data.

2. Include serialization mechanisms that allow the a memory reference to be easily
packed in a message.

3. Expected: Include additional, application-specific information, such as an expira-
tion date for the memory region.

Referencing Local Memory: When used to reference local memory, the memory data
structure must:

1. Utilize some form of reference counting to ensure an object is not deallocated
while in use.

2. Provide raw pointer semantics that allow a user to easily reference the data by
virtual address.

Network Agnostic: All memory management must be done in a way that is network ag-
nostic. Developers should not need to be aware of the specifics about the network
transports they are using when referencing memory.

Expeditious: Allocation and deallocation need to be quick. Given that allocating network
accessible memory can be time consuming, it is necessary for the system to preallocate
memory blocks when possible.

No Enforcement of Idempotency: DHARMA is built on idempotent policies and has
the expectation that applications will not modify previously generated data values.
This policy could be enforced by the data warehouse by returning users with copies of
data instead of references. However, this approach is expensive to the common case
and may impede in optimizations where referenced memory can safely be modified.
Therefore the system will not prevent users from modifying data handed back through
references.

Directed Garbage Collection: DHARMA has detailed knowledge about how useful dif-
ferent data objects are in the system. As such, the data warehouse’s memory manage-
ment system will take guidance from DHARMA as to when objects can be deallocated
or moved to persistent storage.

26

3.2.3 Underlying Communication Behavior

The data warehouse is responsible for migrating data between nodes as dictated by DHARMA
and its applications. As such, it is important that the data warehouse has the following com-
munication properties:

Asynchronous Operations: The data warehouse must utilize asynchronous communica-
tion primitives that allow multiple requests to be in flight at the same time.

Internal Bookkeeping: All information used to track outstanding messages must be main-
tained within the data warehouse. DHARMA will not keep lists of in-flight messages.

Callback-Driven Completion: In order to make communication more manageable, DHARMA
will issue communication operations that include the communication action to perform
(e.g., put or get) and the callback function to invoke when the action completes. These
callbacks are currently expected to be traditional functions, although C++11 lambdas
may be an option if additional flexibility is needed.

Expected Data Movement Operations: At the top level, the data warehouse will be
responsible for moving data objects between nodes. Internally, there is great benefit
in handling these operations in different ways. The top-level data movements include:

1. Prefetch: This operation notifies other nodes that this node should be forwarded
a copy of the data when it becomes available.

2. Publish: This operation pushes an object to zero or more destinations, depending
on the configuration and specifications of the client interface.

3. Get: This operation is used by DHARMA or an application to retrieve a local
reference to a data object. If the object is not available, the data warehouse will
retrieve it from a remote node.

While prefetch is a simplified version of get, it is worth distinguishing between the two
as prefetch may use one-sided communications that incur less overhead.

It is expected that additional operations will be added to this list for more sophisti-
cated data transfers. It is feasible to add operations that factor in key dimensionality
(e.g., GetRow) or do data-specific manipulations (retrieve a portion of a row). These
optimizations will be developed later as requested by DHARMA.

3.2.4 Data Distribution

There are multiple ways in which DHARMA may need to distribute data at runtime. Based
on Kelpie’s previous work, data distribution can be handled through custom, client-side
interfaces that can be adapted to different situations. These interfaces have the following
properties:

27

Uniform, Client-Side Interface: A client communication interface will implement all fea-
tures needed to talk to a set of distributed resources. It will maintain the list of nodes
participating in the resource as well as the underlying functions for implementing a
particular communication strategy. Client communication interfaces will implement
the Prefetch, Publish, and Get API described in the previous section.

Multiple Client Communication Interfaces: A task may instantiate multiple client com-
munication interfaces at the same time to handle data transfers with different resources
in the system.

Extensible: There are multiple ways in which DHARMA may need to manage collections
of nodes for data distribution. It is therefore vital that users be able to define new
client communication interfaces that implement different data transfer mechanisms.
Examples of different client interfaces may include:

1. Pure DHT: A traditional DHT hashes a key to determine which end node is
responsible for hosting a particular piece of data. While easy to implement, a
pure DHT is inefficient for large objects, as an intermediate node must be used
for communication between two nodes.

2. Meta DHT: In a Meta DHT, objects remain on the nodes that generate them,
while metadata is published to DHT nodes. A client then consults the Meta DHT
to locate information about where a particular object is hosted, and then performs
an RDMA get to retieve the actual data.

3. Reliable DHT: A DHT can be made more resilient by replicating its data objects
on different nodes. The simplest approach is to have clients push data to the node
the key hashes to, and then push a copy to the next node in the collection.

4. DHT with Backing Store: A DHT can be extended to support persistent storage
in a variety of ways. This operation may hash the operation to a particular node
in the collection, and then delegate the job of storing data to disk to that node.

It is expected that the majority of this functionality can be implemented using a
simple API. However, future work may need to expand the capabilities of the client
communication interface.

3.2.5 Persistence

While DHARMA'’s immediate need for the data warehouse is in the role of in-memory data
object storage, there is interest in extending it to be able to utilize both nonvolatile memory
and parallel filesystem storage.

Burst Buffers: Emerging HPC platforms such as Trinity make large pools of flash memory
storage available for intermediate storage. These resources present an opportunity for
DHARMA to improve both memory utilization and resilience by offloading older data

28

objects to the burst buffer. As such, the data warehouse should provide a mechanism
for housing objects in the burst buffer.

Persistent Data Stores: DHARMA will need to be able to store important data objects
off to persistent storage in order to save results and allow applications to be restarted.
The data warehouse will need to be able to:

1. Store individual data objects as directed by DHARMA. This approach differs
from the per-rank based approach favored in today’s checkpoint /restart libraries.

2. Store metadata about data objects in a way that allows the data to be reloaded
or inspected by other applications.

3. Take advantage of any built-in, multi-dimensional object store capabilities in the
target 1/O system (e.g., Ceph’s RADOS) in order to allow better organization of
data objects.

29

This page intentionally left blank.

Chapter 4

Application Requirements for the
Data Warehouse

In addition to meeting the data movement requirements of DHARMA’s AMT runtime, the
data warehouse must also be capable of storing and retrieving ATDM-specific data in a way
that is easy for our application developers to use. An examination of ATDM’s applications
and data access patterns reveals there are a number of challenges to building useful appli-
cation interfaces into the data warehouse, and that there should be no expectation that a
single API will serve all purposes. As such, we advocate constructing a small number of
data-specific interfaces for the data warehouse that (1) provide the user with familiar APIs
and (2) handle data distribution in a way that is useful to DHARMA. For this work we
focus on the design of data interfaces and conceptual algorithms in support of two ATDM
applications: a meshing database (or MeshDB) API for managing geometries and field data,
and a particle data interface for use with particle-in-cell (PIC) simulations.

4.1 Application Interface Challenges

In prior task-DAG efforts, researchers have built custom data warehouses that are optimized
for particular dataset types (e.g., unstructured grids). These systems work well for their
intended applications because the data warehouse’s interfaces are tightly coupled to the
applications’ needs. Unfortunately, these interfaces also make it difficult to use the task
DAG software for applications that have different data needs. An examination of ATDM’s
applications reveals there are a number of challenges that will need to be addressed to make
the data warehouse a success:

Multiple Types of Datasets: Different ATDM applications process different types of data.
While many applications operate on mesh datasets, others manipulate their own types
of data, such as particles. As such, the data warehouse cannot be optimized to han-
dle just one type of dataset. It must be flexible enough to be customized to each
application’s needs.

Different Data Access Patterns: Even when applications use the same type of data,
they may access the information in vastly different ways. Optimizing how data is

31

distributed may help one application but penalize another. Therefore a single data
interface may need to be customized to different runtime conditions.

Mixed Workloads: Some applications will need to access different types of data at the
same time. For example, a PIC application may need to retrieve mesh data and
exchange particle data among tasks. A data warehouse must be able to support both
types of operation at the same time.

Users Expect Familiar APIs: ATDM’s developers have a great deal of experience work-
ing with existing APIs and expect the data warehouse to have a familiar interface they
can easily use. There is little overlap between some user communities, and therefore
the data warehouse will need a way to support a small number of custom interfaces.

4.2 Application Use of the Data Warehouse

The challenges associated with ATDM’s applications make it clear that it is unlikely that
a single API will be sufficient for all data warehouse users. Instead, we focus on the de-
velopment of a small number of data interface modules that will enable us to customize
how different users leverage the data warehouse. Each data interface module is responsible
for two functions: (1) providing the top-level API that end users see when they work with
their data and (2) implementing the internal mechanisms by which data is decomposed into
objects that can be managed and distributed by the data warehouse.

Figure 4.1 illustrates an example of how an application would use multiple data interface
modules to interact with the data warehouse. In this example, the MeshDB team reads input
data from external files, refines it, and then pushes the data to the data warehouse through
an 1OSS data interface module. This module allows the MeshDB team to use IOSS for their
API and enables data warehouse developers to decompose mesh data into a collection of
data objects that are distributed to different in-memory resources in the data warehouse.
An application’s tasks use two modules: an IOSS data interface module to read relevant
sections of the mesh data and another application-specific data interface module to push
results back into the data warehouse. A separate analysis application can then use the same
application-specific module to retrieve the results as needed.

4.3 MeshDB Overview

The MeshDB team is using IOSS as a general interface into the data produced by the
meshing tools. Following their lead, the data warehouse will also provide IOSS as an interface
to ATDM’s application components. This is an obvious decision as it reuses an interface
familiar to ATDM developers and does not require the development and learning curve of a
custom interface. We expect IOSS and the data warehouse to adapt as ATDM requirements

32

Application

t Task J t Task j

Mesh

Definition 1055 H App 105S H App
TR AN

IAWAN ~/_\

File

Analysis

Task
— Task

MeshDB

Read mesh definition, 0SS
refine, and supply data

Data Warehouse

Figure 4.1. From a meshing perspective, an I0SS interface
provides a standard way for both the MeshDB and applica-
tions to use the data warehouse.

develop. Several important points about the design of this module emerged during our
discussions with the MeshDB team:

I0SS Data Warehouse Back-End: To allow ATDM components to read and write mesh
data, fields, and particles, the data warehouse team will develop an 10SS back-end,
which functions as a data translation layer between the data warehouse and ATDM
components. This module is critical as it makes component data available for storage
and communication by Kelpie.

Storage and Communication: In its current form IOSS does not support data warehouse
storage and communication APIs. To provide this support we are investigating two
options: (1) extend the IOSS interface to include storage and communication semantics,
or (2) create a separate data interface module for storage and communication for use
alongside IOSS. The latter option is more viable in the near term as it is less disruptive
to other IOSS users. Interfaces to parallel meshing have been an active research area
for some time. In that sense, ATDM requirements are unique as it seeks to reduce

33

dependence on file I/O, and also introduces a parallel key/value store. Development
of this interface can produce original work in this area.

Not a Parallel Mesh Object: In storing the mesh, the data warehouse becomes, in a very
real sense, an in-memory parallel mesh object. It is tempting to seek a do-it-all data
warehouse interface that offers a wide range of meshing and computational operations.
However, this option is nearly impossible given the wide variety of mesh types (struc-
tured, unstructured, hybrid, etc.) and the diversity of computational operators needed
by ATDM. Our goal instead is to focus on the immediate requirements for ATDM, and
concentrate on data operations that reduce the burden of the component developer.

Mesh Resilience: The meshing interface has mixed resilience requirements due to the na-
ture of its data. In general, the geometries generated by the MeshDB do not need to
be made resilient to failure because the MeshDB should always be able to reconstruct
the data based on external input files and application parameters. However, any field
data that a simulation generates during its lifetime may benefit from redundancy to
protect against failures. Decisions about when to replicate these objects will originate

from DHARMA.

Persistence: Mesh data objects may need to be made persistent to (1) support resilience
and (2) enable different components in a workflow to share information over extended
periods of time. Mesh data objects must be stored in a way that is relevant to end
users: some readers need a complete set of data fields for a particular timestep while
others need multiple timesteps for a particular region of the mesh. Similar to resilience,
persistence will need direction from a DHARMA-based workflow to determine which
objects are made persistent.

There are a few points to consider in the context of the above solution strategy concepts:

e All of the solution strategies above are in their conceptual phases of development. We
expect these ideas to grow and change through close collaboration with other ATDM
component developers.

e Many of the data operations above will be controlled via the AMT either by having the
data warehouse create AMT nodes, or the AMT tasks exercising the data warehouse
interface.

e The development path should be to solve the data mechanics problem first and then
decide what is the most natural ATDM component(s) to house it.

4.4 PIC Overview

ATDM is using particle-in-cell (PIC) methods to simulate plasma physics. PIC is a classic
computational mechanics tool dating back to early Hydrodynamic codes developed at Los

34

Alamos [3]. PIC methods are based on the idea of decoupling the interactions of charged
particles and E-M fields of a plasma. The particles encode a location in the computational
domain and many other physical properties such as charge and velocity. The mesh provides a
domain for computing and interpolating the E-M fields. While the particles move, the mesh
is typically not moving, so decoupling the two is an intuitive approximation. PIC methods
are generally broken into four computational steps:

Particle mover: Compute the motion of particles acted upon by the E-M field described
on the mesh.

Charges and currents: Compute the charges and currents produced by the motion of the
charged particles. These are interpolated to mesh topologies, nodes, edges, etc.

E-M fields: Compute the E-M field induced by the charges and currents associated with
the mesh.

Field forces acting on particles: Compute the forces acting on the particles in the sys-
tem, thus closing the system of equations and allowing this series of computation to
repeat until equilibrium.

While these computational stages are sufficient for implementing a basic PIC simulation,
there are additional advanced modeling capabilities that modern PIC codes support that
make the code’s implementation more complex. For example, a PIC code may include sup-
port for modeling particle interactions, which results in additional particles being generated
and tracked during the lifetime of a simulation. Also, PIC codes may support the use of
meshes of differing types (e.g., hybrid structured-unstructured meshes), which complicates
how particles are applied to the meshes.

In terms of the data warehouse, the key hardship for handling data in PIC simulations
is dealing with how particles are exchanged between geometric partitions of the domain.
The number of particles exchanged and the frequency at which they are exchanged can
vary wildly throughout the simulation. As such, using a data warehouse to route PIC data
means our implementation must be able to (1) deal with variable amounts of data flow,
and (2) perform load balancing to minimize communication costs when possible. Based on
our interactions with the DHARMA and PIC application teams, we have outlined strategies
for addressing two challenges associated with handling data flow for the PIC application:
particle streaming and mesh splitting/joining.

4.4.1 Particle Streaming

In the ATDM PIC application, neighboring mesh partitions exchange a variable amount of
particle data every time step. The problem with orchestrating these data exchanges is that a
partition does not know how much data it will receive in a timestep or when it will arrive. A
sender may need to push multiple bundles of particles to a neighbor in a single timestep (e.g.,

35

when fast-moving particles arrive from a neighbor after the partition’s initial set of particles
has already been transmitted). As such, a PIC data interface module cannot simply declare a
static list of objects a task will need at the beginning of its timestep. Instead, it is necessary
to devise a way of streaming variable amounts of data through the data warehouse.

After discussing the problem with the PIC application team, we believe one possible
solution is to embed a key management system into the data interface module that can take
advantage of Kelpie’s 2D key notation. In this system the application interface would allow
a task to query the data warehouse to locate any new bundles of particles that the task
would need at a particular timestep. Internally, the data interface module would encode
the destination and timestep values into the row portion of the key, and the source and
microtimestep information into the column portion of the key. This naming avoids collisions
by uniquely labeling each bundle, and enables Kelpie to do the work of grouping related
items together in the same row. The system becomes even more efficient if the key/value
store allows a receiver to subscribe to all activity in a particular row.

This type of streaming can be used for multiple forms of particle exchange. In addition
to streaming particles between partitions, PIC applications may need to eject dead particles
for efficiency and gather live particles for statistics. Application-specific details depend on
how DHARMA'’s APIs evolve, but this strategy provides a basis upon which more complex
schemes for communication can be built for PIC particles. We expect that there are many
other data flows in ATDM applications where this streaming strategy will also be useful.

4.4.2 Mesh Split/Join

One strategy to balance the load of particles across mesh partitions is to simply split (ge-
ometrically) the overloaded partition into smaller pieces. After the particle-processing load
on these new partitions has been reduced the caller may want to recombine the partitions
to avoid unnecessary over-decomposition. The geometric rejoin poses a tough problem —
gjoin has a long history of addressing just such a problem, and is still not the ideal solution.

Our solution is to avoid the geometric problem altogether by simply saving the mesh
just before partitioning. To reconstitute a partitioned mesh one can simply read the saved,
unsplit mesh partition from the data warehouse. The fields and particles must be handled
by the caller since that is an application-specific operation.

One can envision similar techniques to archive application data before complex changes
are made to the mesh or its associated data. In particular, when rolling-back to a previous
task the data warehouse could archive that data needed to recreate the task in its original
form. Though this likely is not viable for each task, it could provide a technique for a check-
pointing of sorts. The term hard-rollback might be more appropriate. We seek to provide
this capability and leave the decision of when use of this type of check-pointing to the PIC
and AMT developers.

36

4.5 Data Warehouse Mechanics

All of the functionality above is based on some fundamental capabilities of the data ware-
house. These are described below.

Key Management I An import role of the data warehouse is to insulate ATDM compo-
nents from the existence of keys in Kelpie, the key-value store. While there are many
data operations that manipulate key-value pairs, the user will be insulated from those
operations and see a much simpler interface.

Key Management II Since Kelpie is a distributed key/value store, we can consider keys
as lightweight proxies for much large data values. Using a 1D or 2D array, or a more
complex graph, we can envision manipulating key relationships and then aggregating
the data values into a composite data structure. A simple example is a 1D array
partitioned into smaller pieces. A more complex example is a graph that describes the
global partitioning scheme for the entire mesh.

App-aware Data Warehouse Application semantics are required for some data opera-
tions (e.g., storing fields to a file such that a different application can make sense of it
later). This also allows for operations such as adding overlapping data as is done in
the case of ghost zones.

App-agnostic Data Warehouse There may be cases where an application simply pro-
vides the data warehouse with a generic pointer to data — this is probably a good
design choice in the early stages of applications development. The data warehouse will
support these cases and provide a path to evolve them into a algorithm reusable to
other data warehouse components.

Architecture Much of the data warehouse functionality can be handled by template meta-
programming devices such as policies and traits. One advantage of this type of software
design is mitigation of bloated APIs. They also allow a finer-grain control to the callers
who can tailor a specific algorithm with data warehouse machinations handled by a
host class. A more structured — and more rigid — architecture might emerge as the
data warehouse matures, but the initial stages will benefit from the flexibility provided
by modern template meta-programming techniques.

It easy to imagine more complex cases of topological relationships between data values
are expressed as keys in a graph. For example, a top-level node may represent a specific field
(e.g., “pressure”), and each second-level node represents a different version of that same field,
with requisite sub-trees below the version nodes. Version here can mean timestep, refinement
level, or whatever application-level semantics makes sense. Graph representations provide
an elegant means of defining the data relationships.

It is important to note that any description of relations between keys-value pairs can
itself be stored as a data object in data warehouse. This allows for a type of self-describing

37

data. In practice, the caller can retrieve meta-data (i.e. a relation between keys) that can
be used to locate the key-value pairs and find the required keys. The benefit is in reducing
the burden of the application to coordinate task-data interactions and providing global data
topologies in a lightweight data abject.

Since the data warehouse is so closely linked to the MeshDB in terms of data, and the
AMT in terms of data operations, we hope to have significant co-design collaborations with
both teams. In fact, we feel this is a requirement for a successful ATDM ecosystem.

It’s clear that many algorithms for data management can be perform by algorithms
contained in various ATDM components. We seek an abstraction layer that has the data
warehouse responsible for operations in which most of the logic is concerned with data
management, and other ATDM components responsible for algorithms that have little or no
data management logic.

4.6 Third-party Consumers and Producers

Much work has been done in in-situ computing where the nodes participating in a physics
computation also perform some type of post-processing. The in-situ approach is convenient
for two reasons: (1) the datasets are large and we want to avoid significant communication for
just one operation, and (2) the data produced by in-situ applications is closely related to the
ATDM analysis. We argue that there are third-party applications that seek to process ATDM
analysis data, but are not critical such that they be granted resources on a compute node. In
those cases, Kelpie can be used as a conduit to provide data to third-party consumers without
affecting the load on the compute nodes, modulo the I/O costs. Specific cases where third-
party computing, or cooperative computing, is helpful are visualization and Reduced-Order

Modeling (ROM).

The decision as to whether a post-processing application should be run using compute
node resources or on machines that are not ATDM compute nodes should be made with a
consideration of the problem at hand. As analysis needs change, so can the proximity of
these additional operations.

38

Chapter 5

Data Warehouse Development

After gathering requirements from DHARMA and the application teams, the data warehouse
team began evaluating our previous work with in-memory data stores for HPC to see how
well it mapped to ATDM’s needs. This evaluation primarily focused on three topics: APIs,
performance, and usability. Following this examination, we began restructuring, adapting,
and modernizing our prior work to make it more in line with what will be developed in FY16.

5.1 Identifying Areas for Improvement

The members of the data warehouse team have built a variety of communication software
libraries in other ASC projects. These efforts were largely targeted at building scalable 1/O
services for HPC, and are therefore well-suited to data warehouse operations. However, given
the new interfacing requirements listed in Chapters 3 and 4, we felt it was worthwhile to
take a critical look at ways our software could be improved to make a more appropriate data
warehouse for ATDM. The following topics were identified for Kelpie and Nessie, as well as
our software development efforts in general:

Unexpected Overheads: One of the benefits of using Nessie is that it performs a good
bit of the low-level communication work that is necessary for making distributed com-
puting possible. For example Nessie automatically fragments large RPC arguments
and employs a significant amount of intelligence to determine how data should be dy-
namically registered with the NIC for RDMA transfers. While these features make it
easier to develop applications, they can lead to unexpected overheads that limit perfor-
mance. These costs may vary significantly on different networks, leaving users confused
as to why their software runs well on one architecture and poor on another. Dynamic
registration was particularly problematic in our experiments. Given that ATDM com-
ponents will have a more active role in data transfers, it is no longer necessary for the
transport to handle all communication scenarios. It should instead be optimized for
speed with predictable overheads.

Pinned Memory Reuse: Another anticipated problem with ATDM applications is that
they will frequently need to allocate/deallocate small- to medium-sized blocks of mem-
ory. Other RDMA communication libraries such as GASNet[1] allocate a large region

39

of contiguous memory at initialization time and then assign regions of the memory to
different uses as the application progresses. This approach reduces the overhead for
obtaining network accessible memory and makes smaller transfers more streamlined.
A similar approach would be useful in the data warehouse.

Completion Notification: Kelpie and Nessie users currently perform asynchronous oper-
ations by issuing a request and querying the status of a request handle to determine
when it has completed. This methodology works but forces the user to maintain a han-
dle for the lifetime of an operation. The DHARMA team in particular is focused on
callback styles of completion notification. As such, Kelpie will need to be restructured
to perform completion callbacks in an efficient manner.

Streamlined RPC: While the NNTT layer has received a fair amount of attention over
the last few years, there has been little development in the NSSI RPC layer outside of
modifications made to improve C++ use. A holistic look at how the data warehouse
and Kelpie use NSSI revealed a number of opportunities in which the transport software
could be optimized.

1. Pinned Memory: Kelpie handles the bookkeeping for pinned memory objects in
the system and therefore never wants NSSI to locate or pin memory blocks on
its own. Removing memory management functionality from NSSI could speed up
the data path.

2. Short Messages: NSSI automatically handles arbitrary-length RPC inputs and
outputs automatically through multiple data transfers. These operations impede
performance and are easily overlooked by users. Kelpie would benefit from a more
streamlined interface that forces hard limits on the maximum message size.

3. C++ Aware: NSSI is currently written in C, which limits Kelpie’s ability to use
some C++ features (e.g., class-based serialization and lambdas). It would be
useful to have a C+-+-based transport.

Out-of-Band Control/Debug: The data warehouse will be constructed from a number
of different software components, each with its own configuration and status settings.
Based on our experiences with other complex data frameworks (e.g., Hadoop [6]), it is
valuable to be able to remotely inspect the status of different components in a running
application’s software stack and manipulate various settings. A common library for
providing a TCP-based interface would be extremely useful for the data warehouse.

Repository Accessibility: Nessie is currently distributed through the Trilinos software
repository. While this packaging makes it easy for Sandia Trilinos users to acquire
Nessie, it greatly increases the amount of effort new users must go through to get started
with the software. In order to make data warehouse components more accessible, it is
important that specific components be brought out from under Trilinos’s umbrella and
hosted independently in standalone software repositories that can be accessed more

fluidly.

40

5.2 Improving Data Warehouse Components

The issues brought up during our self evaluation motivated us to begin rearchitecting our
software to be better aligned for FY16 work. We took efforts to split our existing software
into a number of independently-managed software repositories that can stand on their own.
Each repository is hosted on Sandia’s internal Gitlab site under the nessie-dev group!.

PIC Data Interface AEllEE WEeE
Proposed interface for [ici) Rlcz HRIC3HR1CA] :§X.
storing PIC application data :\J\\».']
as distributed Kelpie objects _Q*ﬁg
.| Maintains distributed objects ——S—
— using row,column notation i
n Manages pinned memory
I0SS Mesh Interface that can be RDMA'd 1)
roocsed interface Nessie Shim D SEL
roposed interface for storing Lightweight RPC layer f \ Simplified interface to
o yer for
mesr_1 datg as distributed invoking remote operations \ Boost Logging)
Kelpie objects E
NNTI (NN Webhook
Portable RDMA layer for Mini web server for
data transfers over network out-of-band control/status

= =

HPC Network Monitor Network

Figure 5.1. Data warehouse software was decomposed into
multiple components.

The new organization of the data warehouse’s different software components is illustrated
in Figure 5.1. These components are summarized below.

NNTT 3.0: The Nessie Network Transport Interface (NNTT) provides a portable lightweight
abstraction for RDMA operation on common HPC system interconnects. In addition to
moving NNTT into its own repository, we refactored the API to be a more streamlined
system that employs work requests to manage network operations.

NessieShim: NessieShim is a new, thin messaging layer that implements lightweight remote
procedure calls (RPCs) on top of NNTI. This work took the essential portions of Nessie
and reorganized them into a form that was better suited to C++.

Lunasa: Lunasa (pronounced Loo-NAH-sah) is a new project that implements a lightweight
memory management unit for NN'TT. This unit requests large regions of pinned memory
from NNTT and then divides the allocations out to end applications as needed. By
allocating in advance and reusing memory, the system helps the data warehouse avoid
overheads that were observed in Nessie when memory was dynamically allocated.

https://gitlab.sandia.gov/groups/nessie-dev

41

Kelpie: Kelpie is an in-memory data store that allows users to move data objects between
nodes in a flexible manner. Kelpie’s developments for this year are discussed in detail
in Chapter 2.

Webhook: Webhook is a flexible out-of-band communication service that allows software
components in the data warehouse to be queried and configured over a standard HTTP
connection. Webhook implements a trivial web server and enables application com-
ponents to register callback operations that can respond to specific queries by end
users.

SBL: SBL is a Simplified Interface to Boost.Log. We conducted a survey of common third
party logging libraries and determined that Boost.Log provided the best fit for our
work. SBL was implemented as a simple wrapper around Boost.Log to make it easier
for different data warehouse components to incorporate its logging functionality in a
standard way.

The PIC Data Interface and 10SS Mesh Interface are the first data warehouse interfaces
that have been defined for ATDM. Planning for these components was discussed in Chapter 4.
The components will be developed in FY16.

More detailed activities for each of these efforts are provided as follows.

5.2.1 NNTI 3: A Portable RDMA Transport for HPC

The Nessie Network Transport Interface (NNTI) provides a portable, lightweight abstrac-
tion for RDMA operations on common HPC systems. Our current implementation includes
support for the InfiniBand, Cray Gemini, and IBM BG/Q interconnects. The API includes
commands to open/close the interface, connect/disconnect a peer, register/deregister mem-
ory buffers, send/receive messages, and transport bulk data asynchronously (put, get, and
wait). The NNTI library was originally developed as part of Sandia’s Nessie RPC project
to enable portability across HPC interconnects. NNTT is built around four core concepts:
memory buffers, send operations, RDMA operations, and events.

Memory Buffers: Many HPC interconnects require memory regions to be registered with
the NIC before the memory can be used in data transfers. In order to do DMA, the NIC
must know the physical address of the memory region involved. When the application
registers the memory region, the pages are pinned to prevent the VMM from relocating
the pages and changing the physical addresses. NNTT tracks these memory regions and
provides the application with a handle that can be shared with peers to perform data
operations.

Send Operations: The NNTI send protocol is a messaging protocol used to transfer data
from sender to receiver. The protocol uses command packets to initiate the transfer
and tell the receiver the parameters of the message including destination, length and

42

event flags. The exact format of the command packet is transport specific, but it is
expected that it contains enough information for the receiver to make decisions about
message delivery.

RDMA Operations: The NNTI RDMA APl is a lightweight one-sided API that is mapped
as closely as possible to the interconnect with native one-sided operations. On inter-
connects that do not have native one-sided operations, NNTI uses a protocol similar
to the send protocol to manage the transfer.

Events: All NNTI data transfer operations are asynchronous. NNTI events are generated
at the completion of data operations and contain the detailed results of the operation.
Completion does not mean success, so the event’s result field must be check for each
operation. Event delivery is selected by the initiator when the operation is submitted.
Events can be delivered at the initiator, the target, neither or both.

NNTT is currently undergoing an API revision [4] to better support dynamic programming
models. As part of this work, the internals are being rewritten in C++ which gives NNTT a
native C++ interface with a C wrapper. This is the reverse of previous versions which only
had a C API that made some programming tasks (e.g., callbacks) tedious in C++.

5.2.2 NSSI Shim: A Thin RPC Layer for NNTI

Nessie’s existing NSSI layer provides a good, general-purpose remote procedure call (RPC)
library that makes it easy for users to invoke data processing operations on remote nodes.
While this layer is flexible enough to be used in a variety of ways, we have observed that
NSSI’s generality can impede performance in certain workloads. In situations where higher-
level services such as Kelpie only use a fraction of the RPC library’s capabilities, it is useful
to consider optimizations to the RPC library’s data path that would improve performance.

NssiShim is a lightweight version of NSSI that is focused on implementing Kelpie’s RPC
operations as efficiently as possible. It is a complete redesign of Nessie. Key differences are
characterized as follows:

C++: NSSI was largely written in C, which at times made it difficult to use from C++.
NssiShim was written in C+4 to provide better coupling with other components in
the data warchouse.

User-Managed Data Buffers: NSSI transparently handles memory registration for its
users and employs APIs that only use virtual addresses to reference memory. Given
that Kelpie is responsible for managing chunks of registered data, NssiShim expects
most messages to contain only RDMA pointers that RPCs will use to invoke additional
data transfers. This design point places greater responsibility on the user, but also
greatly simplifies the RPC layer.

43

Single-Message RPCs: NSSI allows users to transfer a variable amount of data for both
inputs to and outputs from an RPC. While this feature makes RPCs easier to use,
they can result in additional processing delay in the library, as well as invoke multiple
data transfers. NssiShim only supports RPCs that pack their arguments in single
messages. This minimalist style fits the expectation that services such as Kelpie will
largely be sending messages with RDMA pointers, and that they will manage the
buffers themselves.

Simplified Serialization: The original NSSI implementation used XDR for data serializa-
tion. While XDR is a quick and rugged serialization library, its C interfaces can be
difficult to work with from C++ software. NssiShim provides a simple serialization
interface that allows users to append their data structures into the end of a message
buffer. Custom serialization operations can easily be added to classes. Lambda oper-
ators make it possible to perform serialization without intermediate buffers.

A deeper understanding of how NssiShim is architected can be better illustrated by
tracing through the different operations that take place during an RPC:

Send a Request: All RPC calls are initiated by a client that wants to invoke a specific
function on a remote node. The NssiShim call function selects the next available
outgoing message buffer and begins assembling header information into it based on the
user’s specifications. The call function appends the RPC’s arguments onto the back
of the buffer based on a packing function supplied by the user. The call operation
aborts with an error if the packing would overflow the buffer, as the expectation is
that a user should never expect a call operation to fragment into multiple messages.
A result buffer is also acquired at this time to provide a place for the remote node to
return a short reply for the transaction. The message is transmitted to its destination
via NNTT’s send message operation.

Request Buffer Deallocation: Once NNTT finishes transmitting the request message, it
triggers an event notifying NssiShim that the send of the request buffer has completed
locally and the request is now pending processing on the remote side. NssiShim can
then mark the request buffer as available for subsequent messages.

Message Receival: When the message arrives at the remote NNTI queue, it triggers an
event that is handled by NssiShim. NssiShim unpacks the RPC request header and
invokes the corresponding RPC function to process the message. NssiShim does not
move any bulk data that may be associated with the message automatically. Instead,
a small amount of RPC data (such as an RDMA buffer handle) can be embedded in
the message and then retrieved by the RPC using NNTI operations.

Reply with Optional Results: An RPC may send a reply back to the sender that includes
optional result data of limited size. NssiShim allocates a buffer for assembling the reply
message and then transmits the message as a put operation. Once the put completes,
the reply message’s buffer space is deallocated.

44

Sender Completion: The arrival of a reply message with optional results triggers an event
in NNTT that is processed by NssiShim. Replies are currently detected and observed
by user applications through wait operations.

The current implementation of NssiShim follows the same call/wait nonblocking se-
mantics as the original NSSI layer. Given that DHARMA prefers asynchronous messages be
specified entirely at issue time, NssiShim will be adapted in the near future to allow users to
define a callback to be invoked when the RPC completes. This callback should streamline
message processing, as users will no longer need to poll for a message’s completion.

5.2.3 Lunasa: Memory Allocator for RDMA Data

Lunasa (pronounced Loo-NAH-sah) is a memory allocator written on top of the NNTI trans-
port library. Kelpie and the data warehouse use of NNTIT may result in the allocation of
many small blocks of pinned memory for use in transport. These many small allocations
result in poor performance. Lunasa is an approach similar to malloc and virtual memory
paging. It allocates a large block of NNTT memory upfront and as needed. As requests for
smaller memory come in, it allocates and tracks offsets into this larger block of memory.
The transport layer operates as well on offsets and length as the whole block, so this allows
us to avoid making too many of the high cost allocations at any time. As offsets are freed,
Lunasa returns the blocks to its pool of available memory for later reallocation.

Lunasa uses a linked-list, greedy allocator. It keeps track of both filled and empty
regions sorted in order of their offsets into the page. When a new buffer is allocated, the
first available, large enough offset will be taken and the memory assigned. The remainder,
if any, becomes a new free region.

Currently there are no options for aligning the allocated offsets. If the available free
regions are not large enough to support the request, then a new page will be allocated. When
memory is freed any adjoining regions will be merged into a single freed region. However,
fragmentation is still inevitable. In experiments this tends to be no more than 10 percent.
However, it remains to be seen how much overhead occurs in practice.

To aid understanding these overheads, Lunasa exports its current state as a Webhook
function allowing users to monitor the current allocations and available regions. This allows
us to monitor, through a webpage, how well Lunasa performs as it is running.

Because this is a generalized allocator for NNTT memory, it turns out to be relatively easy
to make it a Kokkos allocation space as well. Kokkos’ space API expects only allocation
and deallocation through void pointers. By implementing a wrapper around the Lunasa
calls in the expected Kokkos API, we are able to support a vector created directly in pinned
memory, like:

View<double [10] , LunasaSpace> myVector;

45

This capability allows us to manage Kokkos vectors across the entire system through
Kelpie and the data warehouse, where Kokkos manages memory exclusively on the node.

While the linked-list performance is acceptable, some optimizations in future work may
be considered, especially caches for common allocation sizes, usually powers of 2. This
optimization keeps a cache in a set of buckets, labeled by the common sizes, of currently
available freed regions that can fit such sizes.

5.2.4 Webhook: A Reusable Debug/Control Interface

Distributed software applications are often challenging to debug, monitor, and tune because
it is difficult to access the inner details of a particular software component without substantial
instrumentation. For example, when Kelpie was first being developed, we spent a significant
amount of time debugging how nodes exchanged metadata about each other. While logging
provided a history of what different nodes in the system were doing, it took a good bit of
manual analysis to assemble all of the logs together and verify the nodes had the right states
at the right times. What we wanted was a way that we could more easily examine the state
of running nodes and set different variables if needed.

System software developers in the big data community have faced similar problems, and
routinely utilize an appealing solution: they embed a lightweight web server in a software
component that allows users to query and manipulate the component as it runs. This
approach is beneficial because users can interact with their software using either a web
browser or command line tools. Application developers typically utilize an existing web
server to handle HTTP requests, and then implement functions that respond to specific
queries (usually in a RESTful API manner).

In order to make such services available for the data warehouse, we constructed a stan-
dalone library called Webhook. This library launches a simple webserver thread for an
application that can be used by different software components. The webserver uses Boost’s
asynchronous I1/O (asio) module and is largely based on the http reference design by Christo-
pher M. Kohlhoff. A Webhook user defines one or more hooks they would like the node to
perform. A hook is composed of two parts: a name for the operation “/mycomponent/s-
tatus” and a function to invoke when a request for that operation is received. Webhook
handles most of the parsing work for requests. A user’s function is handed a map of all the
input arguments that were provided and expects a string that provides all the data needed
in the response.

Our early experiences with Webhook have found that it has uses beyond debugging.
One problem that we have had for years with NNTT is resolving new connection requests.
The original code used a non-blocking TCP socket to handle new requests for connections.
Unfortunately, the implementation would occasionally have timing issues that caused pairs
of nodes to deadlock on each other without any warning to the user. Changing this operation
to be performed by a Webhook has multiple benefits: the sockets software is no longer needed

46

in NNTI, the operation can be performed asynchronously without blocking other functions,
and one socket can be easily used by different components in the application’s stack.

5.2.5 SBL: A Simplified Interface to Boost.Log

In previous implementations of Nessie, a custom logger was constructed that allowed the
software to capture internal messages at different layers in the stack. While this software
worked well, it was oriented at C code and was not used outside of applications that directly
used Nessie. We explored different open source logging packages that are currently available.
Boost’s Boost.Log library was selected for it’s stability, wide availability and flexibility.
Flexibility comes at the cost of a large API with a learning curve to match. SBL was
developed to balance the flexibility and complexity. It is composed of two simple classes
that consolidate Boost.Log’s core features:

sbl::source Source is a log message producer that attaches a severity and channel attribute
to each message. SBL defines five severity levels from debug (lowest) to fatal (highest).
Each sbl::source object is assigned a severity at construction that can be changed
during the life of the object. The channel attribute is an application defined string
that groups together related log messages. The channel attribute is not assigned to
the sbl::source, but instead is assigned to each message when it is produced. If a
channel is not assigned by the application, the message will be placed in the global
channel. As each message is produced, it is broadcast to all sbl: :stream objects.

sbl::stream Stream is a log message consumer that receives messages from all sbl: :source
objects. Fach sbl::stream has an std::ostream where log messages get written.
sbl: :stream can open a file by name, write to std: : clog or write to any std: :ostream
that the application has previously created. As each message is received, a severity
filter is applied that determines if the message should be written to the underlying
stream. The severity filter uses a channel map to give each channel its own severity
with a fallback severity for messages in the global channel. The severity filter rejects
messages with a severity lower than the severity of the channel.

Multiple sources and streams can interact in unexpected ways that can lead to devel-
oper frustration. So for the simplest cases where a single stream of log messages is the
basic requirement, sbl::logger was created. sbl::logger is a further simplification of
Boost.Log that combines multiple sbl: :source’s and an sbl::stream into a single inter-
face. sbl::logger uses additional attributes and a more restrictive filter to hide its messages
from other sbl::stream objects and block out messages from other sbl::source objects.
While not as flexible as separate sources and streams, this usage may feel more natural to
users familiar with simpler loggers.

SBL is fully implemented and ready for use. There are a number of possible options for
future work. SBL does not have any special severity levels that would force an sbl: :stream

47

to accept or reject a message. These special levels are available is some other logging libraries
and could be added to SBL if there is interest from developers. SBL does not support removal
of a channel from the channel filter. To gain the same effect, the application can set the
severity for the channel to match the severity of the global filter.

48

References

Dan Bonachea. Gasnet specification, v1. 1. 2002.

H Carter Edwards, Christian R Trott, and Daniel Sunderland. Kokkos: Enabling many-
core performance portability through polymorphic memory access patterns. Journal of
Parallel and Distributed Computing, 74(12):3202-3216, 2014.

Francis H Harlow and MW Evans. A machine calculation method for hydrodynamic
problems. LAMS-1956, 1955.

Todd Kordenbrock. The NNTT 3.0 programming interfac.

Jay Lofstead, Ron Oldfield, Todd Kordenbrock, and Charles Reiss. Extending scalability
of collective io through nessie and staging. In Proceedings of the sixth workshop on
Parallel Data Storage, pages 7-12. ACM, 2011.

Tom White. Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

49

DISTRIBUTION:

O U U U U T O G W

MS 1319
MS 1327
MS 9152
MS 9152
MS 9152
MS 9159
MS 0899

Jay Lofstead, 1423

Ron Oldfield, 1461

Robert Clay, 8953

Shyamali Mukherjee, 8953

Craig Ulmer, 8953

Gary Templet, 8954

Technical Library, 8944 (electronic copy)

50

v1.39

@ Sandia National Laboratories

