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2 | Waste Isolation Pilot Plant (WIPP)

*Transition to a 3-D model domain for Performance Assessment
* Development of WIPP_FLOW mode in PFLOTRAN

* Development of NUCLEAR_WASTE_TRANSPORT mode in PFLLOTRAN
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Need for a 3-D Model Domain
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Current WIPP Recertification PA Codes

Title 40 CFR Part 191 Subparts B and C Compliance Recertification Application 2014
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Figure PA-1. Computational Models Used in PA




5 I PFLOTRAN (https://www.pflotran.org)

*Open source, state-of-the-art, massively parallel subsurface flow and reactive transport

*3-D domain decomposition with PETSc (https://www.mcs.anl.gov/petsc/) Argonne &

NATIONAL LABORATORY

*Strong scaling to over 10,000 cores
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6 I PFLOTRAN Usage

Agriculture

DOE NE’s Geologic Disposal Safety Assessment Framework ™

Apatite reactive barrier

Behind-casing pressure development in well annulus
Biogeochemical hot spots/hot moments
Biogeochemistry in groundwater-river exchange zones

CO, sequestration
Coupled surface/subsurface land mode
Geothermal systems

Groundwater age Mariner et al. 2016

Groundwater management 1 Total 1129 V)

Interpretation of in-situ through-diffusion experiments

Modelling of enhanced oil recovery (using CO, as solvent) Uranium migration (Hanford 300 Area)
Modelling of oil and gas reservoirs p— B =
Mountain block recharge beneath soil mantled hill slopes -1E.07 Saeion EL BSR s L0 GEN 100

Multicomponent transport of trace gases

Nuclear waste repository performance assessment
Nuclear waste repository near-field models
Permafrost modeling

pH sweep and water quality data analysis
Radionuclide transport

Redox gradients within hyporheic zones

Remediation design Hammond and Lichtner, 2010

Species specific diffusion and Donnan equilibrium in clays

Surface / hill slope hydrology Pressure (Pa: 10000 50000 -a;:no 130000 170000 210000



7 I WIPP PA Flow and Transport Scenarios
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WIPP PA Flow and Transport — 2-D Flared Grid
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9 I PFLOTRAN-BRAGFLO Comparison

Objectives

*Verify that 2-phase immiscible flow
and WIPP-specific process models are
implemented correctly in

PFLOTRAN
*Verity that PELOTRAN performs

robustly over the entire sample space

used in WIPP PA

*Quantify differences between
BRAGFLO and PFLOTRAN flow

solutions
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PFLOTRAN-NUTS Comparison

Objectives

*Verify that WIPP-specific transport capabilities are implemented correctly in
PFLOTRAN

*Verify that PFLOTRAN performs robustly over the entire sample space used in
WIPP PA

*Assess differences between NUTS and PFLOTRAN transport solutions
Scope

*Development of NUCLEAR_WASTE_TRANSPORT mode in PFLOTRAN
*PFLOTRAN-NUTS comparison on suite of 0-D, 1-D, and 2-D test problems
*PFLOTRAN-NUTS comparison on suite of 1500 PA simulations (S1-S5)
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PFLOTRAN Nuclear Waste Transport (NWT) Mode

WIPP-specific transport capabilities

*Handles dry-out (formulation and discretization of governing equations is robust at
100%0 gas saturation)

*Conservation of species mass at step change in porosity (e.g., borehole intrusion)
*Calculation of advective fluxes on flared grid (comparison to existing baseline)
Other

*Phase partitioning (solid, aqueous, sorbed)

*Decay and ingrowth (in all phases)

*Advection 1n liquid phase (which may coexist with a mobile gas phase)

*Diffusion in liquid phase (neglected in WIPP PA)
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Mass Conservation Equations
Rate-controlled

Flux mineral
SUBSURFACE TRANSPORT (advection & precipitation and
e dispersion) dissolution
¥; =mol j / L fluid
) . 05
5(("25“'{1?) +V'Zﬂj =Q;—Zvjm1m— 5 °
Change in mass in Source/sink Change in sorbed
fluid phase(s) concentration
NUCLEAR_WASTE_TRANSPORT Flux
Z]V[;.x = mol j / m3 bulk (advection & Decay &
dispersion) Ingrowth

0 A P S A _
5 (M + M+ M) + Ff = Q; + R,

Change in total mass Source/sink
in bulk material



13 I Test Suite

Test problems

*70 test problems

°0-D, 1-D, 2-D regular cartesian
°1-D and 2-D flared grid
Comparison

*To NUTS solutions

*To analytical solutions

AM241L [mol/L], mobilized

Mobilized concentration in 0-D domain with decay
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14 | Partitioning of mass during dry-out L

1D Dry Out, Calc'd Sol. w/ Deca ts=1yr
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15 I Partitioning of Mass During Step Change in Porosity (@)

Radionuclide mass partitioning in 0-D model domain
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16 1 Flux Calculation on Flared Grid
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17 I Summary

Flow

*Comparison to BRAGFLO demonstrates that 2-phase immiscible flow and WIPP-
specific process models are implemented correctly in PFLOTRAN

*WIPP_FLOW mode performs robustly over the entire sample space used in WIPP PA
Transport

*Comparison to NUTS demonstrates that WIPP-specific transport capabilities are
implemented correctly in PFELOTRAN

Next
*PFLOTRAN-NUTS comparison on 1500 WIPP PA realizations

*Development and demonstration of 3-D problem
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